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BROWNIAN CONTINUUM RANDOM TREE CONDITIONED TO BE

LARGE

ROMAIN ABRAHAM, JEAN-FRANÇOIS DELMAS, AND HUI HE

Abstract. We consider a Feller diffusion (Zs, s ≥ 0) (with diffusion coefficient
√
2β and drift θ ∈

R) that we condition on {Zt = at}, where at is a deterministic function, and we study the limit in
distribution of the conditioned process and of its genealogical tree as t → +∞. When at does not
increase too rapidly, we recover the standard size-biased process (and the associated genealogical

tree given by the Kesten’s tree). When at behaves as αβ2t2 when θ = 0 or as α e2β|θ|t when
θ 6= 0, we obtain a new process whose distribution is described by a Girsanov transformation
and equivalently by a SDE with a Poissonian immigration. Its associated genealogical tree
is described by an infinite discrete skeleton (which does not satisfy the branching property)
decorated with Brownian continuum random trees given by a Poisson point measure.

As a by-product of this study, we introduce several sets of trees endowed with a Gromov-
type distance which are of independent interest and which allow here to define in a formal and
measurable way the decoration of a backbone with a family of continuum random trees.

1. Introduction

In [1], for the geometric reproduction law, and in [5], for general super-critical reproduction
laws with finite mean and some special sub-critical reproduction laws, the authors consider the
limit of a Galton-Watson (GW) process (Zn, n ∈ N) started at Z0 = 1 conditionally on Zn = an
as n goes to infinity, provided the event {Zn = an} has positive probability. They also consider
more generally the local limit of the GW tree, which in particular allows to study condensation
phenomenon (on this latter subject, see [26, 25, 4]). According to the different growth rate of
an as n goes to infinity, they observe different regimes for the limiting random tree: if an = 0
for n large, the limiting tree corresponds to the GW tree conditioned on the extinction event; if
an is strictly positive but grows slowly (including the case an bounded), then the limit is the so
called Kesten tree, which consists in an infinite spine decorated with independent GW trees with
the initial reproduction law; if an grows at a moderate speed (given in the super-critical case of
finite variance by an ∼ αmn with α > 0 and m the mean of the reproduction law), then the
limit is a skeleton given by an immigration process decorated again with independent GW trees
with the initial reproduction law; if an grows faster than mn (that is limn→∞m−nan = ∞) then
results are known only for the geometric reproduction law (the limit exhibits a condensation at
the root, that is, the root has an infinite number of children, and then those children generate
independent trees) and for bounded reproduction laws (the limit is the regular b-ary tree, with
b the possible maximum number of children).

This work is a first step to extend those results to random real trees called Lévy trees introduced
by Duquesne and Le Gall in [18, 19] which are scaling limits of (sub)critical GW trees and can
be seen as genealogical trees for (sub)critical continuous state branching processes (CSBP); see
also [3, 20] for the extension of this latter representation to the super-critical case. We shall only
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consider Feller diffusions, which correspond to CSBPs with quadratic branching mechanism and
whose genealogy can be described using the Brownian continuum random tree introduced by
Aldous [9]. Our results belong also to the family of works dedicated to the description of limits
of conditioned random real trees, in this direction, see [29, 28, 17, 2].

We now present informally our result. We denote by T the rooted Brownian continuum tree
which describes the genealogy of a population started at time 0, and by Zt the “size” of the
population at time t ≥ 0. The process Z = (Zt, t ≥ 0) is a quadratic CSBP solution to the
following stochastic differential equation (SDE):

dZt =
√

2βZt dBt − 2βθZtdt, for t ≥ 0,

where (Bt, t ≥ 0) is some standard Brownian motion, β > 0 and θ ∈ R. The CSBP is associated
with the branching mechanism

ψθ(λ) = βλ2 + 2βθλ.

The CSBP is sub-critical (resp. super-critical) if θ > 0 (resp. θ < 0). We denote by N
θ the

σ-finite excursion measure associate with the Brownian tree T and the process Z, stressing the
dependence in the parameter θ, whereas the time scaling parameter β is fixed. Intuitively, under
N
θ, the population starts from an infinitesimal individual which is the root of T , and the non-zero

process Z starts from an infinitesimal mass. In the introduction, we simply denote by tt the real
tree t truncated at level t. We denote by Gt the σ-field generated by Tt for t ≥ 0; in particular the
process Z is adapted to the filtration (Gt, t ≥ 0). Let a = (at, t ≥ 0) be a non-negative function.
We shall consider for s > 0, the possible limiting distribution of Ts, conditionally on {Zt = at}
as t goes to infinity. Let F be any bounded continuous function defined on the set of trees (see
Section 5 for the topology on the set of rooted locally compact tree).

• Extinction case: at = 0 for t large. We have:

lim
t→∞

N
θ
[

F (Ts)
∣

∣ Zt = at
]

= N
|θ|
[

F (Ts)
]

.

We recall that the measure of the non extinction event is given by N
θ[Zt > 0 for all t >

0] = 2max(0,−θ). So the conditioning on the extinction event does not change anything
in the (sub)critical case. In the super-critical case, this result is a direct consequence
of the Girsanov transformation used in [3] to define the super-critical Lévy tree, see
also (78). This result holds in general for any compact Lévy trees (but for the above
value of the measure of the non extinction event).

• Low regime: a is positive and at = o(t2) if θ = 0 or at = o(e2β|θ|t) if θ 6= 0. We have
(see Theorem 6.13):

lim
t→∞

N
θ
[

F (Ts)
∣

∣ Zt = at
]

= E

[

F
(

T 0,|θ|
s

)]

,

where for q ≥ 0, T 0,q is a Kesten tree with parameter (β, q), which is informally ob-
tained by grafting the trees (Ti, i ∈ I) respectively at levels (hi, i ∈ I) on an infinite
spine, where the point measure

∑

i∈I δhi,Ti is a Poisson point measure with intensity rate
2β1{h>0}dhN

q[dT ]. See Section 6.2 for a more formal definition of the Kesten tree. When
conditioning instead by {Zt > 0}, this result appears already in [2] for general compact
Lévy trees.

• Moderate regime: at ∼ αβ2t2 if θ = 0 or at ∼ α(2θ)−2 e2β|θ|t if θ 6= 0, where α ∈
(0,+∞). We have (see Theorem 6.12):

lim
t→∞

N
θ
[

F (Ts)
∣

∣ Zt = at
]

= E

[

F
(

T α,|θ|
s

)]

,
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where for q ≥ 0, T α,q is a random tree informally obtained by grafting the tree Ti at
vertex xi of a backbone tree Tα,q, with the point measure

∑

i∈I δxi,Ti being, conditionally
given Tα,q, a Poisson point measure with intensity rate 2βL (dx)Nq[dT ], and L (dx)
being the length measure on Tα,q. The backbone tree Tα,q represents in some sense the
genealogy associated to an inhomogeneous Poissonian immigration with finite rate, see
Section 6.4 for a more precise description. Let us stress that the backbone tree does not
enjoy the branching property, as already observed by [1, 5] in a discrete setting.

• High regime: limt→∞ t−2at = +∞ if θ = 0 or limt→∞ e−2β|θ|t at = +∞ if θ 6= 0.
The description of the possible limit in this regime is still an open question. As in the
discrete setting studied in [1], one expects to have a condensation phenomenon at the
root. However, such limiting tree would not be locally compact (at least at the root),
and the study of such trees would require a non trivial extension of the current topology
developed for locally compact trees.

The present result on the convergence in distribution of the conditioned Brownian tree in the
low and moderate regime is given in Section 6.4. It relies on:

(i) The extremal time-space harmonic functions for the process Z given by Overbeck [31].
Those harmonic functions appear in the limit when conditioning the process Z by the
events {Zt = at} in the moderate regime, see Section 3.

(ii) A nice representation of the Doob h-transform using those extremal harmonic functions,
based on Feller diffusion with an increasing immigration rate given by an inhomogeneous
Poisson process. Roughly speaking, for θ ≥ 0 and α > 0, the local time process Zα =
(Zα

t , t ≥ 0) of the tree T α,θ is a Markov process which satisfies the following SDE:

dZα
t =

√

2βZα
t dBt − 2βθZα

t dt+ 2β (Sα,θ
t + 1) dt for t ≥ 0, and Zα

0 = 0,

whereB = (Bt, t ≥ 0) is a standard Brownian motion and Sα,θ = (Sα,θ
t , t ≥ 0) is a Poisson

process with intensity αβ e2βθt dt independent of B. See the main result of Section 4 in
Proposition 4.1 for more details. Its proof, given in Section 4.2, uses a result from Rogers
and Pitman [33] for a transformation of a Markov process (which in our case amount to
not be able to distinguish the immigration Sα,θ) to still be a Markov process.

(iii) An extension of a result from Duquesne and Le Gall [19, Theorem 4.5] on the description
of the Brownian tree T as a decorated sub-tree spanned by n vertices chosen randomly
at level t, see Theorem 6.8 in Section 6.3. We believe that this theorem is of independent
interest and complete the description of [20] where one chooses theses vertices at random
without condition on their level.

(iv) A transcription of the genealogy for immigration process from point (ii) above into a
backbone tree, see Section 6.1 and the combinatorial Lemma 6.1 on the distribution of a
tree built sequentially by grafting uniformly branches at random levels.

Let us mention here that there have been several works on skeletal/backbone decompositions
for (spatial) branching processes and their corresponding genealogical trees, for example see
[2, 10, 12, 20, 23, 24, 27] and the references therein. In particular, in [23], coupled systems of SDEs
were established to represent the skeletal decompositions for continuous-state branching processes
(conditioned on survival), where the skeletons are determined by continuous-time Galton-Watson
processes. And we refer to [20], for reconstruction of a Lévy tree from a backbone tree, which
could be formed by leaves taking at random in a Poissonnian way from the Lévy tree according
to the so-called mass measure; see Remark 5.4 there and [18]. For representations of branching
processes (with immigrations) via SDEs, we also refer to [15] and references therein.
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To complete the outline of the paper, let us mention that Section 2 is devoted to some notations
and elementary facts for quadratic CSBP and Section 6.2 to known results on the Brownian tree.
Eventually the large Section 5 is devoted to various topological results on the spaces of trees.
The main objective of this section is to define the grafting, the splitting, as well as the decorating
of trees in a measurable way on the set of equivalent classes of locally compact rooted real trees.
An index of all the (numerous) relevant notations of this section is provided at the end of the
document.

2. General quadratic CSBP

2.1. Notations. We set R+ = [0,+∞), R∗
+ = (0, +∞), N = {0, 1, 2, · · · } and N

∗ = {1, 2, · · · }.
For x ∈ R, we set x+ = max(0, x) and x− = max(0,−x), so that x = x+ − x−. We write δx

for the Dirac mass at x.
Let (E, d) be a metric space. We denote by M+(E) the space of non-negative measures on

E endowed with the vague topology. For µ ∈ M+(E) and A a Borel subset of E, we denote by
µ|A(dx) the measure 1A(x)µ(dx). We write µ(f) = (f, µ) =

∫

f dµ = 〈f, µ〉 for the integral of
the measurable real-valued function f with respect to the measure µ, whenever it is meaningful.

We say that a function from a measurable space to a measurable space is bi-measurable if it
is measurable and the image of any measurable set is a measurable set (when the function is
one-to-one this is equivalent to the function and its inverse being measurable).

2.2. Quadratic CSBP. Let β > 0 be fixed. Let θ ∈ R. We consider the quadratic branching
mechanism ψθ given for λ ∈ R by:

(1) ψθ(λ) = βλ2 + 2βθλ.

The corresponding CSBP Z = (Zt, t ≥ 0) is the unique strong solution to the following stochastic
differential equation (SDE):

(2) dZt =
√

2βZt dBt − 2βθZtdt for t ≥ 0,

where B = (Bt, t ≥ 0) is a standard Brownian motion and Z0 = x ≥ 0. For t ≥ 0, let Ft be the
σ-field generated by (Zs, t ∈ [0, t]). We write P

θ
x to stress the value of the parameter θ, and the

initial value of the process Z, Z0 = x. We denote by N
θ the canonical measure of the process Z,

normalized in such a way that for λ ≥ 0:

N
θ
[

1− e−λσ
]

= ψ−1
θ (λ),

where σ =
∫∞
0 Zt dt is the total size of the population under the canonical measure N

θ and

ψ−1
θ (λ) is the only root t to ψθ(t) = λ such that t ≥ 2θ−. In particular, the process (Zt, t ≥ 0)

under P
θ
x is distributed as the process

(

∑

i∈I Z
(i)
t , t ≥ 0

)

where
∑

i∈I δZ(i) is a Poisson point

measure with intensity xNθ(dZ). We refer to [18] for θ ≥ 0 (critical and sub-critical case) and to
[16, 3, 20] for θ < 0 (super-critical case) for a detailed presentation of the CSBP process Z and
the corresponding continuum Brownian random tree T .

In order to recall the Laplace transform of Zt, we introduce the following positive functions
cθ and c̃θ defined for t ∈ (0,+∞) by:

(3) cθt =
2θ

e2βθt −1
and c̃θt =

2θ

1− e−2βθt
,
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with the convention c0t = c̃0t = 1/βt. The functions cθ and c̃θ are decreasing with limt→0+ c
θ
t =

limt→0+ c̃
θ
t = +∞, limt→+∞ cθt = 2θ− and limt→+∞ c̃θt = 2θ+. We also have for t > 0:

(4) c̃θt = c−θ
t = cθt + 2θ.

Remark 2.1 (Scaling property of Z). In this remark, we write Z [β,θ] for Z under N
θ or P

θ
x in

order to stress the dependence in β > 0 and θ ∈ R. Let Y = (Ys, s ≥ 0) be a Feller diffusion,
i.e., a CSBP with parameters β = 1 and θ = 0; given as the unique strong solution to the SDE:

(5) dYs =
√

2Ys dBs, for s ≥ 0.

Let β > 0 and θ ∈ R, and define the process Y ′ = (Y ′
s , s ∈ [0, 1/(2θ−))) by:

(6) Y ′
s = e2βθt Z

[β,θ]
t with s =

1

cθt
·

Then, we get that Y ′ is distributed as (Ys, s ∈ [0, 1/(2θ−))) under N
θ or Pθ

x provided Y ′
0 = Y0 =

x ≥ 0.

We define for t > 0 and λ > −c̃θt :

(7) uθ(λ, t) =
λcθt
c̃θt + λ

= cθt −
cθt c̃

θ
t

c̃θt + λ
,

and set uθ(λ, 0) = λ for t = 0. This gives that for t > 0 and λ > −c̃θt :

uθ(λ, t) =







2θλ

(2θ + λ) e2βθt −λ
, if θ 6= 0,

λ/(1 + λβt), if θ = 0.

For r > 0 and t ≥ 0, we have that:

uθ(cθr , t) = cθt+r.

We recall from the above mentioned references ([18, 16, 3, 20]) for λ ≥ 0 and by analytic
prolongation for λ < 0, that for t > 0 and x ≥ 0:

(8) N
θ
[

1− e−λZt

]

= uθ(λ, t) and E
θ
x

[

e−λZt

]

= e−xuθ(λ,t) for all λ > −c̃θt .

We denote by ζ = inf{t > 0; Zt = 0} the lifetime of the process Z. We recall that for all t > 0:

N
θ[ζ > t] = lim

λ→∞
uθ(λ, t) = cθ(t).

By considering the series in λ in (7) and (8), we deduce that for all t > 0 and n ∈ N
∗:

(9) N
θ
[(

c̃θtZt

)n]

= n!cθt .

We now give a martingale related to the CSBP Z. Recall that c̃θt is decreasing in t, and
thus −c̃θt+r > −c̃θr. The next lemma is an easy consequence of (8) and the following elementary
equality:

u(−c̃θt+r, t) = −c̃θr for all t ≥ 0 and r > 0.

Lemma 2.2. Let θ ∈ R, x ∈ R+, r > 0 and the quadratic CSBP (Zt, t ≥ 0) solution of (2). The

process
(

ec̃
θ
t+rZt , t ∈ I

)

is a martingale under N
θ with I = (0,+∞) and under P

θ
x with I = R+

with respect to the filtration (Ft, t ≥ 0).
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We end this section with the computation of the densities of the entrance law qθt (dx) and the
transition kernel qθt (x,dy) of the CSBP Z under its excursion measure, where for t, s > 0, x > 0
and y ≥ 0:

qθt (dx) = dNθ[Zt = x, ζ > t] and qθt,s(x,dy) = dNθ[Zt+s = y|Zs = x].

Lemma 2.3 (Entrance law and transition densities of Z). Let θ ∈ R. Let t, s > 0, x > 0 and
y ≥ 0. We have:

qθt (dx) = qθt (x) dx and qθt,s(x,dy) = e−xcθt δ0(dy) + qθt (x, y) dy,

where:

qθt (x) = cθt c̃
θ
t e

−c̃θtx,(10)

qθt (x, y) = xcθt c̃
θ
t e−(x+y)cθt−2θy

∑

k∈N

(xycθt c̃
θ
t )

k

k!(k + 1)!
·(11)

Proof. We omit the parameter θ in the proofs. On one hand, from the definition of qt(dx), we
get that for λ ≥ 0:

∫ +∞

0
e−λx qt(dx) = N

[

e−λZt 1{ζ>t}

]

= −N

[

1− e−λZt

]

+ N [ζ > t] = c(t)− u(λ, t).

On the other hand, using (7), we get:
∫ ∞

0
ctc̃t e

−(c̃t+λ)x dx = c(t)− u(λ, t).

Then use that finite positive measures on R+ are characterized by their Laplace transform to
obtain that qt(dx) = qt(x) dx with qt given by (10).

From the definition of qt(x,dy), we get that for λ ≥ 0:
∫ +∞

0
e−λy qt(x,dy) = N

[

e−λZt+s

∣

∣

∣
Zs = x

]

= e−xu(λ,t) = e−
a
b
+ a

b+λ ,

where, thanks to (7), a = xctc̃t and b = c̃t. Notice that:

e
a

b+λ = 1 +
∑

k∈N

1

(k + 1)!

(

a

b+ λ

)k+1

= 1 + a
∑

k∈N

∫ +∞

0

(ay)k

k!(k + 1)!
e−by−λy dy.

Using (3), we deduce that qt(x,dy) = e−xct δ0(dy) + qt(x, y) dy, with qt(x, y) given by (11). �

3. Local limits for the process Z

3.1. Some martingales. We present in this section two martingales which will naturally appear
in the local limits for the Brownian continuum random tree (CRT). Recall θ ∈ R. Let α ∈ R.

We define the non-negative process Mα,θ = (Mα,θ
t , t > 0) by:

(12) Mα,θ
t = Zt e

−α/cθt
∑

i∈N

(αZt)
i

i!(i + 1)!
e(i+1)2βθt .

Remark 3.1. Using the Bessel function I1(x) =
∑

i∈N(x/2)
2i+1/i!(i + 1)!, we can rewrite Mα,θ

t
as:

Mα,θ
t =

√

e2βθt Zt

α
e−α/cθt I1

(

2
√

α e2βθt Zt

)

.
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Using the process Y ′ defined in (6), which is a time change of the process Z (and which is
distributed as a CSBP with parameter β = 1 and θ = 0), we have for t > 0:

(13) Mα,θ
t =

√

Y ′
s

α
e−αs I1

(

2
√

αY ′
s

)

= Y ′
s e−αs

∑

i∈N

(αY ′
s )

i

i!(i + 1)!
·

Using Theorem 3 of [31] and Remark 3.1, we immediately get the following result.

Proposition 3.2. Let α, θ ∈ R, x ∈ R+. The process
(

Mα,θ
t , t ∈ I

)

is a martingale under N
θ

with I = (0,+∞) and under P
θ
x with I = R+.

Moreover, for all t > 0, we have, using (9) and c̃αt /c
θ
t = e2βθt, that:

N
θ
[

Mα,θ
t

]

= 1.

Since uθ(−2θ, t) = −2θ, see (4) and (7), and −2θ > −c̃θt , we deduce that (e2θZt , t > 0) is a
martingale under Nθ. According to [3, Section 4], we have that for θ ∈ R, t > 0:

(14) N
−θ[dZ]|Ft

= e2θZt N
θ[dZ]|Ft

.

For α, θ ∈ R, we set M̃α,θ = (M̃α,θ
t , t > 0) with:

(15) M̃α,θ
t = e2θZt Mα,−θ

t .

Using (12), we get:

(16) M̃α,θ
t = Zt e

2θZt e−α/c̃θt
∑

i∈N

(αZt)
i

i!(i+ 1)!
e−(i+1)2βθt .

We then deduce from Proposition 3.2 the following corollary.

Corollary 3.3. Let θ, α ∈ R. The process M̃α,θ is a martingale under N
θ, and for t > 0 and

any non-negative Ft-measurable random variable Ht, we have:

(17) N
θ[Ht M̃

α,θ
t ] = N

−θ
[

HtM
α,−θ
t

]

.

Remark 3.4 (The case θ = 0 and α = 0). Let t > 0. For θ = 0, we have:

M̃α,0
t =Mα,0

t = Zt e
−αβt

∑

i∈N

(αZt)
i

i!(i+ 1)!
·

For α = 0, we have:

(18) M0,θ
t = Zt e

2βθt and M̃0,θ
t = Zt e

2θ(Zt−βt) .

Then for α = θ = 0, we have:

M̃0,0
t =M0,0

t = Zt.



8 ROMAIN ABRAHAM, JEAN-FRANÇOIS DELMAS, AND HUI HE

3.2. Local limit. We first consider the Poisson regime, whose name is inherited from the rep-
resentation given in Proposition 4.1 based on a Poisson immigration. Let a = (at, t > 0) be a
positive function.

Proposition 3.5 (Poisson regime). Let θ ∈ R, s > 0 and Hs be a bounded non-negative Fs-
measurable random variable. Let α ∈ (0,+∞). Assume the function a is such that as t → ∞
large:

at ∼

{

αβ2t2, if θ = 0;

α(2θ)−2 e2β|θ|t, if θ 6= 0.

Then we have:

(19) lim
t→∞

N
θ[Hs|Zt = at] = N

|θ|
[

HsM
α,|θ|
s

]

=

{

N
θ[HsM

α,θ
s ], if θ ≥ 0;

N
θ[Hs M̃

α,θ
s ], if θ ≤ 0.

Remark 3.6. Contrary to Proposition 3.2, it is not possible to deduce the result for any θ from
the result for θ = 0 in Proposition 3.5, since at is not continuous at θ = 0.

Proof. Let s > 0 and Hs be fixed. For t > 0, we set:

At = N
θ[Hs|Zt+s = at+s].

We omit most of the time the superscript θ in this proof. Thanks to (10) and (11), we have:

At =
N [Hsqt(Zs, at+s)]

qt+s(at+s)

=
ctc̃t

ct+sc̃t+s
e−at+s(ct+2θ−c̃t+s)N

[

HsZs e
−Zsct

∑

i∈N

(Zsat+sctc̃t)
i

i!(i + 1)!

]

.

As t goes to infinity, we have c̃t+rct+r ∼ (2θ)2 e−2β|θ|t e−2β|θ|r for θ 6= 0 and c̃t+rct+r ∼ (βt)−2 for
θ = 0. Thanks to the condition on a, it is tedious but elementary to check that:

lim
t→∞

ctc̃t/ct+sc̃t+s = e2β|θ|s,

lim
t→∞

at+s(ct + 2θ − c̃t+s) = lim
t→∞

at+s(c̃t − c̃t+s) =

{

α/cs if θ ≥ 0,

α/c̃s if θ ≤ 0,

lim
t→∞

at+sctc̃t = α e2β|θ|s .

In particular, we get limt→+∞Dt = D∞, where:

Dt =
ctc̃t

ct+sc̃t+s
Zs e

−Zsct
∑

i∈N

(Zsat+sctc̃t)
i

i!(i + 1)!
,

D∞ = Zs

∑

i∈N

(αZs)
i

i!(i + 1)!
×

{

e(i+1)2βθs, if θ ≥ 0;

e2θZs−(i+1)2βθs, if θ ≤ 0.

Using the definitions of Mα,θ and M̃α,θ, see (12) and (16), we get that:

D∞ =

{

eα/cs Mα,θ
s , if θ ≥ 0;

eα/c̃s M̃α,θ
s , if θ ≤ 0.

There exists a finite constant C such that, for t large enough:

at+sctc̃t ≤ C e2β|θ|s .
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Recall −ct ≤ 2θ (as ct + 2θ = c̃t ≥ 0). We deduce that there exists a finite constant C0 such
that, for t large enough:

Dt ≤ C0

(

MC,θ
s + M̃C,θ

s

)

.

Since MC,θ
s and M̃C,θ

s are integrable, we then deduce that the first equality in (19) holds using
the dominated convergence theorem. Then second equality in (19) is a consequence of (17). �

We now consider the Kesten regime, whose proof is left to the reader as it is very similar to
the proof in the Poisson regime when one takes α = 0 and uses (18).

Proposition 3.7 (Kesten regime). Let θ ∈ R, s > 0 and Hs be a bounded non-negative Fs-
measurable random variable. Assume the function a is positive (at > 0) and such that as t→ ∞:

at =

{

o(t2), if θ = 0;

o(e2β|θ|t), if θ 6= 0.

Then we have:

(20) lim
t→∞

N
θ[Hs|Zt = at] = N

|θ|
[

Hs Zs e
2β|θ|s

]

=

{

N
θ[HsM

0,θ
s ], if θ ≥ 0;

N
θ[Hs M̃

0,θ
s ], if θ ≤ 0.

For completeness, we add the well known extinction case, that is the function at = 0 for large
t, which is a direct consequence of (14).

Proposition 3.8 (Extinction regime). Let θ ∈ R, s > 0 and Hs be a bounded non-negative
Fs-measurable random variable. Then we have:

(21) lim
t→∞

N
θ[Hs|Zt = 0] = N

|θ|[Hs] =

{

N
θ[Hs], if θ ≥ 0;

N
−θ[Hs], if θ ≤ 0.

4. h-transform

We give a representation of the distribution of the process Z under the h-transform given by
the martingale Mα,θ. The proof will be done for β = 1 and θ = 0, and then use a time-change,
see (6), to get θ ∈ R.

4.1. SDE representation. Let β > 0 and θ ∈ R. Let B = (Bt, t ≥ 0) be a standard Brownian
motion. Let α > 0 and Sα,θ(dt) be a Poisson point measure on R+ with intensity αβ e2βθt dt

independent of the Brownian motion B. We set Sα,θ
t = Sα,θ([0, t]) for t ∈ R+. We define the

process Zα = (Zα
t , t ≥ 0) under P

θ as the unique strong solution (conditionally on S) of the
following SDE:

dZα
t =

√

2βZα
t dBt − 2βθZα

t dt+ 2β (Sα,θ
t + 1) dt for t ≥ 0, and Zα

0 = 0.

Proposition 4.1. Let α > 0, θ ∈ R and t0 > 0. The process (Zt, t ∈ [0, t0]) under N
θ
[

•Mα,θ
t0

]

(resp. under N
θ
[

• M̃α,θ
t0

]

) is distributed as the process (Zα
t , t ∈ [0, t0]) under P

θ (resp. P
−θ).

The proof of this proposition is detailed in the next subsection.
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4.2. Proof of Proposition 4.1. Following Remark 2.1, we first use a scaling argument to
remove the parameters β and θ.

Let α > 0. Let Sα = (Sα
t , t ≥ 0) be a Poisson process with parameter α independent of the

Brownian motion B. Let Y α = (Y α
t , t ≥ 0) be the unique strong solution (conditionally on S) of

the following SDE:

(22) dY α
t =

√

2Y α
t dBt + 2 (Sα

t + 1) dt for t ≥ 0, and Y α
0 = 0.

Let β, α > 0 and θ ∈ R, and write Z [β,θ,α] for the process Zα under N
θ or P

θ to stress the
dependence in β and θ. Define the process (Y ′α, S′α) = ((Y ′α

s , S′α
s ), s ∈ [0, 1/(2θ−))) by:

(23) Y ′α
s = e2βθt Z

[β,θ,α]
t and S′α

s = Sα,θ
t , with s =

1

cθt
·

Then, it is elementary that this deterministic time change yields the following result.

Lemma 4.2. Let β, α > 0 and θ ∈ R. The process (Y ′α, S′α) under P
θ (whose law depends on

(β, θ) and α) is distributed as
(

(Y α
s , S

α
s ), s ∈

[

0, 1/(2θ−)
)

)

.

Let (Pt, t ≥ 0) be the transition semi-group on R+ × N of the Markov process (Y α, Sα).

Lemma 4.3. The semi-group (Pt, t ≥ 0) is Feller, that is for all t ≥ 0 and all bounded continuous
function f defined on R+ × N, the function Pt(f) is also bounded and continuous.

Proof. Let
(

(Y
α,(x,s)
t , S

α,(x,s)
t ), t ≥ 0

)

denote the solution of the SDE (22) starting from (x, s).

Let (Xx
t , t ≥ 0) be a Feller process starting from x (it is distributed as a solution to the SDE

(5)) independent of the (Y
α,(x,s)
t , S

α,(x,s)
t )t≥0. We denote by Qt the semi-group of the process Xx

and recall that Qt is a Feller semi-group. By the branching property, we have the equality in
distribution for the processes:

(

(Y
α,(x,s)
t , S

α,(x,s)
t ), t ≥ 0

)

(d)
=

(

(Y
α,(0,s)
t +Xx

t , S
α,(0,s)
t ), t ≥ 0

)

.

Then for every t ≥ 0, x, y ∈ R+, s ∈ N and every bounded continuous function f defined on
R+ × N, we have:

Ptf(x, s)− Ptf(y, s) = E

[

f
(

Y
α,(x,s)
t , S

α,(x,s)
t

)

− f
(

Y
α,(y,s)
t , S

α,(y,s)
t

)]

= E

[

f
(

Y
α,(0,s)
t +Xx

t , S
α,(0,s)
t

)

− f
(

Y
α,(0,s)
t +Xy

t , S
α,(0,s)
t

)]

= E

[

Qtf(Y α,(0,s)
t ,S

α,(0,s)
t

)(x)−Qtf(Y α,(0,s)
t ,S

α,(0,s)
t

)(y)

]

where f(y,s) is the continuous map x 7→ f (y + x, s). By the Feller property of the semi-group Qt

and the dominated convergence theorem, we deduce that limy→x Ptf(x, s)− Ptf(y, s) = 0. This
gives the Feller property of the kernel Pt. �

We now give the density of (Y α
t , S

α
t ). Recall that Y α

0 = Sα
0 = 0. Let N be the counting

measure on N.

Lemma 4.4. Let t > 0. The random variable (Y α
t , S

α
t ) has a density f on R+ × N with respect

to dy ⊗N(dk) given by:

(24) f(y, k) =
1

t2
αk yk+1

k!(k + 1)!
e−(αt+t−1y), y ≥ 0, k ∈ N.
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Proof. Conditionally on S, by Definition (22), we can see Y α as a quadratic CSBP process (with
β = 1) with immigration whose rate is 2(Sα

t + 1)dt. This implies that, conditionally on Sα, the

process Y α is distributed as
(

∑

i∈I 1{hi≤t} Z
(i)
t−hi

, t ≥ 0
)

, where
∑

i∈I δ(hi,Z(i))(dt,dZ) is a Poisson

point measure on R+×C[0,R+) with intensity 2(Sα
t +1)dtN[dZ] and N is the excursion measure

of a CSBP with branching mechanism ψ(λ) = λ2.

We deduce that for λ, µ ≥ 0:

E

[

e−λY α
t −µSα

t

]

= E

[

e−µSα
t −

∫ t
0 2(Sα

r +1)N[1−e−λZt−r ] dr
]

= E

[

e
−µSα

t −2
∫ t
0 (S

α
r +1) λ

1+(t−r)λ
dr
]

,

where we used (8) for the last equality (with β = 1 and θ = 0). Denote by (ξi, i ∈ N
∗) the

increasing sequence of the jumping times of the Poisson process Sα, and set ξ0 = 0. Then, we
have on {Sα

t = k}:

∫ t

0
(Sα

r + 1)
λ

1 + (t− r)λ
dr =

k
∑

i=0

(i+ 1)

∫ ξi+1∧t

ξi

λ

1 + (t− r)λ
dr

= −
k

∑

i=0

(i+ 1) log(1 + (t− r)λ)

∣

∣

∣

∣

ξi+1∧t

ξi

=
k

∑

i=0

log(1 + (t− ξi)λ).

Conditionally on {Sα
t = k}, the random set {ξ1, . . . , ξk} is distributed as {tU1, . . . , tUk} (no-

tice the order is unimportant and is not preserved), where U1, . . . , Uk are independent random
variables uniformly distributed on [0, 1]. We deduce that:

E

[

e−λY α
t −µSα

t

]

=
∑

k∈N

(αt)k e−αt−µk

k!
E

[

k
∏

i=1

(

1 + t(1− Ui)λ
)−2

]

(1 + tλ)−2

=
∑

k∈N

(αt)k e−αt−µk

k!
(1 + tλ)−k−2

=
∑

k∈N

∫

R+

dy f(y, k) e−λy−µk,

where for the last equality, we used the definition of f given in (24). This finishes the proof. �

Let q′t be the distribution of Y α
t for t ∈ R+. We have q′0 = δ0 the Dirac mass at 0, and for

t > 0, we deduce from Lemma 4.4 that q′t(dy) has a density, also denoted by q′t, on R+ with
respect to the Lebesgue measure given by:

q′t(y) = t−2 e−(αt+t−1y)
∑

k∈N

αk yk+1

k!(k + 1)!
, t > 0, y ≥ 0·

We now give some properties of the conditional law of St given Yt.

Lemma 4.5. Let y ∈ R+. The law of Sα
t conditionally on {Y α

t = y} does not depend on t. More
precisely, we get for all t ≥ 0, k ∈ N and y ≥ 0:

(25) P(Sα
t = k|Y α

t = y) = C−1 (αy)k

k!(k + 1)!
with C =

∑

j∈N

(αy)j

j!(j + 1)!
∈ [1,+∞).
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Proof. Using Lemma 4.4, we directly have (25) for t > 0. Notice that for y = 0, we have C = 1
and

C−1 (αy)k

k!(k + 1)!
= 1{k=0}.

As (Y α
0 , S

α
0 ) = (0, 0), we deduce that (25) also holds for t = 0. �

We can now prove the Markov property of the process Y = (Yt, t ≥ 0).

Lemma 4.6. The process Y α is Markov, and its transition semi-group (Qt, t ∈ R+) is the unique
Feller semi-group such that q′t = q′0Qt for t ∈ R+, with q

′
t the distribution of Y α

t .

Proof. We say a probability kernel K is continuous if for all continuous and bounded function f ,
Kf is also continuous (and bounded). We shall check hypothesis from [33, Lemma 1]. With the
notation therein (X = (Y α, Sα) and φ(y, s) = y), the semi-group (Pt, t ≥ 0) is Feller, see Lemma
4.3. The probability kernel Λ(y; dz,dk) = P(Sα

t = k|Y α
t = y) δy(dz)N(dk) is clearly continuous

and does not depend on t. The probability kernel Φ(y, k; dz) = δy(dz) is also clearly continuous.
Lemma 4.5 gives exactly condition (i) in [33, Lemma 1]. We now check condition (ii) in [33,
Lemma 1], that is the one-dimensional marginal distributions of Y α, (q′t, t ∈ R+), are determining,
that is if h and g are bounded continuous functions defined on R+, then E[h(Y α

t )] = E[g(Y α
t )]

for all t ∈ R+ implies h = g. To prove this, notice that:

t2 eαt E
[

h(Y α
t )

]

=

∫

R+

e−t−1yH(y)dy,

where H(y) = h(y)
∑

k∈N
αkyk+1

k!(k+1)! . As the Laplace transform characterizes the bounded con-

tinuous function, we deduce that if E[h(Y α
t )] = E[g(Y α

t )] for all t ∈ R+, then H = G (with

G(y) = g(y)
∑

k∈N
αkyk+1

k!(k+1)!) and thus h = g on (0,+∞) and by continuity on R+.

As the assumption of [33, Lemma 1] are satisfied, we deduce that Y α is a Markov process, and
that its transition semi-group (Qt, t ∈ R+) is the unique Feller semi-group such that q′t = q′0Qt

for t ∈ R+, with q
′
t the distribution of Y α

t . �

We now compare the distribution of Y α and the distribution of the Feller diffusion Y defined
in Remark 2.1, which is a CSBP with parameter β = 1 and θ = 0. Following (13), we set for
t > 0:

Mα
t =

√

Yt
α

e−αt I1

(

2
√

αYt

)

.

Let N denote the canonical measure of Y .

Lemma 4.7. Let α > 0. Let t0 > 0. The process (Y α
t , t ∈ [0, t0]) has the same distribution as

the process (Yt, t ∈ [0, t0]) under N
[

•Mα
t0

]

.

Proof. We first check the two processes have the same one-dimensional marginals. Clearly Y α
0 =

Y0 = 0. Let t > 0. According to Lemma 2.3, the entrance law of Yt under N has density
y 7→ t−2 e−y/t. We deduce that for λ ≥ 0:

N

[

e−λYt Mα
t

]

=

∫

R+

e−λy y e−αt
∑

i∈N

(αy)i

i!(i+ 1)!
t−2 e−y/t dy

=

∫

R+

e−λy t−2 e−(αt+t−1y)
∑

i∈N

αi yi+1

i!(i + 1)!
dy

= E

[

e−λY α
t

]

.
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Since the Laplace transform characterizes the probability distribution on R+, we obtain that Y α
t

has the same distribution as Yt under N [•Mα
t ].

Using Doob’s h-transform, we get that the process (Yt, t ∈ [0, t0]) under N
[

•Mα
t0

]

is Markov.
Using that Mα is a martingale under N (see Proposition 3.2 and use that Y is distributed as
Z when β = 1, θ = 0), that Mα

t is a function of Yt, and that Y is Feller under N, we get that
(Yt, t ∈ [0, t0]) under N

[

•Mα
t0

]

is also Feller. We deduce from the uniqueness property of Lemma
4.6 and the identification of the one-dimensional marginals from the first step of the proof, that
(Y α

t , t ∈ [0, t0]) has the same distribution as (Yt, t ∈ [0, t0]) under N
[

•Mα
t0

]

. �

We can now give the proof of Proposition 4.1. Let β, α > 0, θ ∈ R and t0 > 0. Using the
time changes given by (6), (13) and (23), we deduce that the process (Zα

t , t ∈ [0, t0]) under P
θ is

distributed as the process (Zt, t ∈ [0, t0]) under N
θ
[

•Mα,θ
t0

]

. Then, using Corollary 3.3, we also

deduce that the process (Zα
t , t ∈ [0, t0]) under P

−θ is distributed as the process (Zt, t ∈ [0, t0])

under Nθ
[

• M̃α,θ
t0

]

. This finishes the proof of Proposition 4.1.

5. Topology on set of trees

In Section 5.1, we recall the usual basic definitions and notations for rooted real trees. In
Section 5.2 (resp. Section 5.3), we consider the Polish space of equivalent classes of compact
(resp. locally compact) rooted trees with distinguished vertices endowed with the Gromov-
Hausdorff distance. We define various grafting measurable operations (denoted by ⊛∗

∗) of a tree
on an another tree in Section 5.4. Motivated by the fact that some random trees are obtained
as decorated backbone trees, we introduce in Section 5.5 the space of marked trees, that is of
trees with a distinguished sub-tree (or backbone tree). We also establish in this section the
measurability of various truncation maps. The short Section 5.6 is devoted to special case of
the backbone tree being reduced to an infinite spine (this is the case for the Kesten tree). In
Section 5.7, we consider specifically discrete trees which are spanned by n distinguished vertices,
and describe them as a set of branches indexed by all the possible subsets of the n distinguished
vertices. This description is then used in Section 5.8 to split (with a function Splitn) a locally
tree with n distinguished vertices as sub-trees supported by the different branches of the discrete
tree spanned by the distinguished vertices. Then, we provide in a sense the inverse construction
in Section 5.9 where (with a function Graftn) we decorate the branches of a discrete trees with
subtrees. In Section 5.10, we describe a measurable procedure to decorate a branch with a family
of sub-trees given by the atoms of a point measure on the set of trees (the function Tree) and a
measurable procedure to describe the decoration of a distinguished branch of a tree (the function
M) through a point measure on the set of trees.

In a nutshell, the main objective of this section is to define the grafting and splitting functions,
as well as the decorating and de-decorating functions in a measurable way on the set of locally
compact rooted real trees. An index of all the (numerous) relevant notations of this section is
provided at the end of the document.

5.1. Notations and definitions for trees. We use as usual the framework of real trees to
encode the genealogy of a continuous state branching process. We refer to [21] for a detailed
introduction to real trees.

A real tree (or simply a tree in the rest of the text) is a metric space (T, d) that satisfies the
two following properties for every u, v ∈ T :
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(i) There is a unique isometric map fu,v from [0, d(u, u)] into T such that

fu,v(0) = u and fu,v
(

d(u, v)
)

= v.

(ii) If ϕ is a continuous injective map from [0, 1] into T such that ϕ(0) = u and ϕ(1) = v,
then the range of ϕ is also the range of fu,v.

The range of the map fu,v is denoted by [[u, v]]. It is the unique continuous path that links u
to v in the tree. We will write [[u, v[[ (resp. ]]u, v]], ]]u, v[[) for [[u, v]] \ {v} (resp. [[u, v]] \ {u},
[[u, v]] \ {u, v}).

A rooted tree is a tree (T, d) with a distinguished vertex denoted by ̺ and called the root. We
always consider rooted trees in this work. For an element x of a rooted tree (T, d, ̺), we denote
by H(x) = d(̺, x) its height, and we set H(T ) = supx∈T H(x) the height of the tree T .

The set of leaves Lf(T ) of T is {̺} if T = {̺} is reduced to its root and the set of x ∈ T \ {̺}
such that T \{x} has only one connected component. The skeleton of the tree is the set Sk(T ) =
T \ Lf(T ). The set of branching points (or vertices) Br(T ) is the set of x ∈ T such that T \ {x}
has at least 3 connected components if x 6= ̺ or at least 2 components if x = ̺.

For a vertex x ∈ T , we define the subtree Tx “above” x as:

Tx =
{

y ∈ T : x ∈ [[̺, y]]
}

.

The real tree Tx is endowed with the distance induced by T and will be rooted at x.
We define a partial order ≺ (called the genealogical order) on a rooted tree (T, d, ̺) by:

u ≺ v ⇐⇒ u ∈ [[̺, v]]

and we say in this case that u is an ancestor of v. If u, v ∈ T , we denote by u∧ v the most recent
common ancestor of u and v, i.e. the unique vertex of T such that:

[[̺, u]] ∩ [[̺, v]] = [[̺, u ∧ v]].

The trace of the Borel σ-field of T on Sk(T ) is generated by the sets [[s, s′]], s, s′ ∈ Sk(T ) (see
[22]). Hence, there exists a σ-finite Borel measure L T on T , such that

L
T
(

Lf(T )
)

= 0 and L
T
(

[[s, s′]]
)

= d(s, s′).

This measure L T is called the length measure on T . When there is no ambiguity, we simply
write L for L T .

5.2. Set of (equivalence classes of) n-pointed compact trees. Let n ∈ N. A rooted n-
pointed tree (T, d,v) is a tree (T, d) with a root ̺ and n-distinguished (possibly equal) vertices
v1, . . . , vn ∈ T , with the notation v = (v0 = ̺, v1, . . . , vn).

A correspondence R between two rooted n-pointed trees (T, d,v) and (T ′, d′,v′) is a subset
of T × T ′ such that for all x ∈ T (resp. x′ ∈ T ′), there exists x′ ∈ T ′ (resp. x ∈ T ) such
that (x, x′) ∈ R, and for all 0 ≤ k ≤ n, we have (vk, v

′
k) ∈ R, where v = (v0 = ̺, . . . , vn) and

v′ = (v′0 = ̺′, . . . , v′n). The distortion of R is defined as:

dist (R) = sup
{

∣

∣d(x, y)− d′(x′, y′)
∣

∣ : (x, x′), (y, y′) ∈ R
}

.

For two compact rooted n-pointed trees T = (T, d,v) and T ′ = (T ′, d′,v′), we set:

d
(n)
GH(T, T

′) = inf
1

2
dist (R),

where the infimum is taken over all the correspondences R between (T, d,v) and (T ′, d′,v′). The

function d
(n)
GH is the so-called Gromov-Hausdorff pseudo-distance, see [30]. Furthermore, we have

that d
(n)
GH(T, T

′) = 0 if and only if there exists an isometric one-to-one map ϕ from (T, d) to (T ′, d′)
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which preserves the root and the distinguished vertices (that is ϕ(vk) = v′k for all 0 ≤ k ≤ n).

The relation d
(n)
GH(T, T

′) = 0 defines an equivalence relation between compact rooted n-pointed

trees. The set T
(n)
K of equivalence classes of compact rooted n-pointed trees endowed with d

(n)
GH

is then a metric Polish space, see [30, Proposition 9]. We simply write (T,v) for (T, d,v), and
unless specified otherwise, we shall denote also by (T,v) its equivalence class. For n = 0, we

simply write TK and dGH for T
(n)
K and d

(n)
GH and T for (T, d, ̺).

For a rooted n-pointed tree (T, d,v), with v = (v0 = ̺, . . . , vn), we denote the corresponding
spanned tree Span◦(T,v) as:

(26) Span◦(T,v) =

n
⋃

k=1

[[̺, vk]].

The tree (Span◦(T,v), d, ̺) will be simply denoted by Span◦(T,v), whereas we will denote by
Span(T,v) the rooted n-pointed tree (Span◦(T,v), d,v). For y ∈ T , we also define pv(y), the
projection of y on Span◦(T,v), as the only point of Span◦(T,v) such that:

(27) [[̺, y]] ∩ Span◦(T,v) = [[̺, pv(y)]].

Let us state a technical result which will be used several times in what follows.

Lemma 5.1. Let n ∈ N. Let (T, d,v) and (T ′, d′,v′) be two compact rooted n-pointed trees and
let R be a correspondence between them. For every (x, x′) ∈ R with x′ ∈ Span◦(T ′,v′), we have:

d(x, pv(x)) ≤
3

2
dist (R).

Proof. Let (x, x′) ∈ R with x′ ∈ Span◦(T ′,v′). First remark that there exist k, ℓ ∈ {0, . . . , n}
such that pv(x) ∈ [[vk, vℓ]] and x

′ ∈ [[v′k, v
′
ℓ]]. Indeed, let us set:

A =
{

vk : pv(x) ∈ [[̺, vk]]
}

and A′ =
{

v′k : x
′ ∈ [[̺′, v′k]]

}

.

Notice that A 6= ∅ and A′ 6= ∅. If there exists k ≥ 1 such that vk ∈ A and v′k ∈ A′, then one can
take ℓ = 0 so that vℓ = ̺ and v′ℓ = ̺′. Otherwise, take k and ℓ with k 6= ℓ such that vk ∈ A and
v′ℓ ∈ A

′ . In this case, we get vℓ 6∈ A. Clearly we have pv(x) ∈ [[vk, vℓ]] and by a similar argument,
x′ ∈ [[v′k, v

′
ℓ]]. Therefore, we have:

2d
(

x, pv(x)
)

= d(x, vk) + d(x, vℓ)− d(vk, vℓ) ≤ d′(x′, v′k) + d′(x′, v′ℓ) − d′(v′k, v
′
ℓ) + 3dist (R).

Then, use that d′(x′, v′k) + d′(x′, v′ℓ)− d′(v′k, v
′
ℓ) = 0, as x′ ∈ [[v′k, v

′
ℓ]], to conclude. �

If (T,v) and (T ′,v′) belong to the same equivalence class in T
(n)
K , then so do Span(T,v) and

Span(T ′,v′) in T
(n)
K . Therefore, the function (T,v) 7→ Span(T,v) is well defined from T

(n)
K to

T
(n)
K . A first consequence of Lemma 5.1 is that this function is Lipschitz continuous; this result

will be completed in Lemma 5.6.

Lemma 5.2 (Continuity of the map Span). Let n ∈ N. The map (T,v) 7→ Span(T,v) is

4-Lipschitz continuous from T
(n)
K to T

(n)
K .

Proof. Let (T,v), (T ′,v′) be two compact rooted n-pointed trees and let R be a correspondence
between them. Let us set with obvious notations:

(28) R̃ =
{

(

x, p′
v′(x′)

)

: (x, x′) ∈ R, x ∈ Span◦(T,v)
}

∪
{

(

pv(x), x
′
)

: (x, x′) ∈ R, x′ ∈ Span◦(T ′,v′)
}

.
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Clearly, R̃ is a correspondence between Span(T,v) and Span(T ′,v′). We now compute its dis-
tortion. We consider the case x ∈ Span(T,v), y′ ∈ Span(T ′,v′) and (x, x′), (y, y′) ∈ R, so that

(x, p′
v′(x′)) and (pv(y), y

′) belong to R̃. We have:
∣

∣

∣
d
(

x, pv(y)
)

− d′
(

p′
v′(x′), y′

)

∣

∣

∣
=

∣

∣

∣
d(x, y) − d

(

y, pv(y)
)

− d′(x′, y′) + d′
(

x′, pv′(x′)
)

∣

∣

∣

≤
∣

∣d(x, y) − d′(x′, y′)
∣

∣+ d
(

y, pv(y)
)

+ d′
(

x′, pv′(x′)
)

≤ 4 dist (R),

where we used Lemma 5.1 for the last inequality. The other cases can be treated similarly. This

implies that dist (R̃) ≤ 4 dist (R) and thus, by definition of d
(n)
GH:

d
(n)
GH

(

Span(T,v),Span(T ′,v′)
)

≤ 4 d
(n)
GH

(

(T,v), (T ′,v′)
)

.

�

5.3. Set of (equivalence classes of) rooted n-pointed locally compact trees. Recall the
definition of the height H(x) = d(̺, x) of a vertex x in a rooted tree (T, d, ρ). For a rooted
n-pointed tree (T, d,v) and t ≥ 0, we define the rooted n-pointed tree T truncated at level t as
(rt(T,v), d,v) with:

(29) rt(T,v) =
{

x ∈ T : H(x) ≤ t
}

∪
{

Span◦(T,v)
}

,

and the distance on rt(T,v) is given by the restriction of the distance d. We shall simply write

rt(T,v) for (rt(T,v), d,v). If (T,v) and (T ′,v′) are in the same equivalence class of T
(n)
K , so are

rt(T,v) and rt(T
′,v′). Thus the function rt can be seen as a map from T

(n)
K to itself. When

n = 0, we shall simply write rt(T ) for rt(T, ̺). The next lemma is about the continuity of rt.

Lemma 5.3 (Continuity of rt). Let n ∈ N. For s, t ≥ 0 and (T,v), (T ′,v′) ∈ T
(n)
K , we have:

(30) d
(n)
GH

(

rt(T,v), rt+s(T
′,v′)

)

≤ 4 d
(n)
GH

(

(T,v), (T ′,v′)
)

+ s.

The map
(

t, (T,v)
)

7→ rt(T,v) is continuous from R+ × T
(n)
K to T

(n)
K .

Proof. Let (T, d,v), (T ′, d′,v′) be two compact rooted n-pointed trees. Firstly, notice that

d
(n)
GH

(

rt+s(T,v), rt(T,v)
)

≤ s. Secondly, recall Definition (27) of the projection pv on Span◦(T,v).
For y ∈ T , we also define the projection pt(y) on rt(T,v) as the only point of rt(T,v) such that:

[[̺, y]] ∩ rt(T,v) = [[̺, pt(y)]].

We first prove the analogue of Lemma 5.1. Let R be a correspondence between (T,v) and
(T ′,v′). Let (x, x′) ∈ R with x′ ∈ rt(T

′,v′). By construction, we have pt(x) ∈ [[pv(x), x]]. If x
′ ∈

Span(T ′,v′), then we deduce from Lemma 5.1 that d
(

x, pt(x)
)

≤ d
(

x, pv(x)
)

≤ 3
2dist (R). If x′ ∈

rt(T
′,v′)\Span(T ′,v′), then we have H(x′) ≤ t and thus H(x) = d(̺, x) ≤ d′(̺′, x′)+dist (R) ≤

t + dist (R), which implies that d
(

x, pt(x)
)

≤ dist (R). In conclusion, we get d
(

x, pt(x)
)

≤
3
2dist (R). Now, arguing as in the proof of Lemma 5.2, we deduce that d

(n)
GH

(

rt(T,v), rt(T
′,v)

)

≤

4 d
(n)
GH

(

(T,v), (T ′,v′)
)

. This gives the result.
�

A rooted n-pointed tree (T, d,v) is locally compact if rt(T,v) is a compact rooted tree for all
t ≥ 0. Following [6], we set for two locally compact rooted n-pointed trees (T,v) and (T ′,v′):

d
(n)
LGH((T,v), (T

′,v′)) =

∫ ∞

0
e−t dt

(

1 ∧ d
(n)
GH

(

rt(T,v), rt(T
′,v′)

)

)

.
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Furthermore, we have that d
(n)
LGH

(

(T,v), (T ′,v′)
)

= 0 if and only if there exists an isometric
one-to-one map ϕ from (T, d) to (T ′, d′) which preserves the distinguished vertices. The relation

d
(n)
LGH

(

(T,v), (T ′,v′)
)

= 0 defines an equivalence relation. The set T
(n)
loc−K of equivalence classes

of locally compact rooted trees endowed with d
(n)
LGH is then a metric Polish space. Furthermore,

T
(n)
K is an open dense subset of T

(n)
loc−K. For n = 0, we simply write Tloc−K and dLGH for T

(n)
loc−K

and d
(n)
LGH. We provide a short proof for the following inequalities.

Lemma 5.4 (Inequalities for d
(n)
GH and d

(n)
LGH). Let n ∈ N. For (T,v), (T ′,v′) ∈ T

(n)
K , we have:

(31) d
(n)
LGH

(

(T,v), (T ′,v′)
)

≤ 1 ∧ 4 d
(n)
GH

(

(T,v), (T ′,v)
)

.

For (T,v), (T ′,v′) ∈ T
(n)
loc−K and s, t ≥ 0, we have:

d
(n)
LGH

(

rt(T,v), rt+s(T
′,v′)

)

≤ 4 d
(n)
LGH

(

(T,v), (T ′,v′)
)

+ s,(32)

d
(n)
GH

(

rt(T,v), rt(T
′,v′)

)

≤ 4 et d
(n)
LGH

(

(T,v), (T ′,v′)
)

.(33)

The map
(

t, (T,v)
)

7→ rt(T,v) is continuous from R+ × T
(n)
loc−K to T

(n)
loc−K (and to T

(n)
K ).

Proof. Equation (31) is a direct consequence of (30) with s = 0 and the definition of d
(n)
LGH.

Equation (32) follows from similar arguments, using also that rt′ ◦ ru = ru ◦ rt′ = rt′∧u. For

t ≤ s, we have 4−1 d
(n)
GH

(

rt(T,v), rt(T
′,v′)

)

≤ d
(n)
GH

(

rs(T,v), rs(T
′,v′)

)

. Integrating with respect
to e−s ds gives (33). The continuity of the map (t, (T,v)) 7→ rt(T ) is a direct consequence
of (32). �

We deduce from (31) and (33) that all the measurable sets of (T
(n)
K , d

(n)
GH) are measurable sets of

(T
(n)
loc−K, d

(n)
LGH), and that a converging sequence in (T

(n)
K , d

(n)
GH) is also converging in (T

(n)
loc−K, d

(n)
LGH).

We also we deduce from (31) that the restriction to T
(n)
K of a continuous function defined on

(T
(n)
loc−K, d

(n)
LGH) is also continuous on (T

(n)
K , d

(n)
GH).

Removing from v some of the pointed vertices (but the root) is continuous, see the next lemma.

For (T,v = (v0 = ̺, . . . , vn)) ∈ T
(n)
loc−K and 0 ∈ A ⊂ {0, . . . , n}, we set:

(34) Π◦,A
n (T,v) = (T,vA) with vA = (vi, i ∈ A).

For simplicity, we shall write Π◦
n for Π◦,A

n when A is reduced to {0}, so that Π◦
n corresponds to

removing all the pointed vertices but the root.

Lemma 5.5 (Removing some pointed vertices is continuous). Let n ∈ N and 0 ∈ A ⊂ {0, . . . , n}.

The map Π◦,A
n from T

(n)
loc−K to T

(k)
loc−K, with k the cardinal of A, is 1-Lipschitz continuous.

Proof. First, notice that the equivalence class of (T,vA) in T
(k)
loc−K does not depend of the choice

of (T,v) in its equivalence class in T
(n)
loc−K. Thus the map Π◦,A

n is well defined from T
(n)
loc−K to

T
(k)
loc−K. It is clearly 1-Lipschitz continuous since a correspondence between the trees (T,v) and

(T ′,v′) is also a correspondence between (T,vA) and (T,v′
A). �

We give an immediate consequence on the continuity of the maps Span and Span◦.

Lemma 5.6 (Continuity of the maps Span and Span◦). Let n ∈ N. The map (T,v) 7→ Span(T,v)

and (T,v) 7→ Span◦(T,v) are 4-Lipschitz continuous from T
(n)
loc−K to T

(n)
loc−K and to Tloc−K re-

spectively.
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Proof. Notice that d
(n)
LGH

(

Span(T,v),Span(T ′,v)
)

= d
(n)
GH

(

Span(T,v),Span(T ′,v)
)

, and thus the

map Span from T
(n)
loc−K to T

(n)
loc−K is 4-Lipschitz continuous, thanks to Lemma 5.2. Then use

Lemma 5.5 on the continuity of Π◦
n and the fact that Span◦ = Π◦

n ◦ Span to conclude. �

Next, we check that rerooting or reordering the pointed vertices is a continuous operation. For
a vector v = (v0, . . . , vn) and a permutation π of {0, . . . , n}, we set vπ = (vπ(0), . . . , vπ(n)).

Remark 5.7. One can see that the map (T,v) 7→ (T,vπ) is an isometry on T
(n)
K . The next lemma

is an extension to locally compact case.

Lemma 5.8 (Permuting the pointed vertices is continuous). Let n ∈ N and let π be a permutation

on {0, . . . , n}. The map (T,v) 7→ (T,vπ) defined on T
(n)
loc−K is continuous.

Proof. First notice that if (T,v) and (T ′,v′) are rooted n-pointed trees belonging to the same

equivalence class of T
(n)
loc−K, so do (T,vπ) and (T ′,v′π). Thus, the map (T,v) 7→ (T,vπ) is indeed

well-defined on T
(n)
loc−K. We shall use the following notation: we denote by r◦t the truncation

rt when one forgets about the pointed vertices (but the root): r◦t = Π◦
n ◦ rt. (Take care that

Π◦
n ◦ rt 6= rt ◦ Π

◦
n.) To prove the continuity of the map, we consider two cases.

1st case: No rerooting, π(0) = 0. In that case, for every t ≥ 0 and every (T,v) ∈ T
(n)
loc−K, we

have that r◦t (T,v) = r◦t (T,v
π) and thus we get that:

d
(n)
LGH

(

(T,vπ), (T ′,v′π)
)

= d
(n)
LGH

(

(T,v), (T ′,v′)
)

.

This trivially implies the continuity of the map.

2nd case: With rerooting, π(k0) = 0 for some k0 6= 0. Let (T,v), (T ′,v′) ∈ T
(n)
loc−K, with

v = (v0 = ̺, . . . , vn) and v′ = (v′0 = ̺′, . . . , v′n), such that d
(n)
LGH

(

(T,v), (T ′,v′)
)

< 1/2. As vk0
and v′k0 are always in correspondence as well as ̺ and ̺′, we have, for every t ≥ 0 that:

∣

∣H(vk0)−H(v′k0)
∣

∣ ≤ 2d
(n)
GH

(

rt(T,v), rt(T
′,v′)

)

.

Multiplying by e−t and integrating yields:

1 ∧
∣

∣H(vk0)−H(v′k0)
∣

∣ ≤ 2d
(n)
LGH

(

(T,v), (T ′,v′)
)

< 1,

and hence:

H(v′k0) ≤ H(vk0) + 1.

We set h0 = H(vk0) + 1. Then, for every t ≥ 0, we have:

r◦t (T,v
π) ⊂ r◦t+h0

(T,v) and thus rt(T,v
π) = rt

(

r◦t+h0
(T,v),vπ

)

,

and the same holds for T ′. Consequently, applying Lemma 5.3, we have:

d
(n)
LGH

(

(T,vπ), (T ′,v′π)
)

≤ 4

∫ +∞

0
dt e−t

(

1 ∧ d
(n)
GH

(

(

r◦t+h0
(T,v),vπ

)

,
(

r◦t+h0
(T ′,v′),v′π

)

))

= 4

∫ +∞

0
dt e−t

(

1 ∧ d
(n)
GH

(

rt+h0(T,v), rt+h0(T
′,v′)

)

)

≤ 4 eh0 d
(n)
LGH

(

(T,v), (T ′,v′)
)

,

where we used for the second inequality that d
(n)
GH

(

(T̃ ,vπ), (T̃ ′,v′π)
)

= d
(n)
GH

(

(T̃ ,v), (T̃ ,v′)
)

for

(T̃ ,v), (T̃ ′,v′) ∈ T
(n)
K . The continuity of the map follows. �
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We shall also consider the set of trees whose root is not a branching vertex:

(35) T
(n),0
loc−K =

{

(T,v) ∈ T
(n)
loc−K : ̺ 6∈ Br(T )

}

.

We shall simply write T
0
loc−K for T

(n),0
loc−K when n = 0.

Lemma 5.9. The set T
(n),0
loc−K is a Borel subset of T

(n)
loc−K.

Proof. For a rooted tree T , we define its diameter by diam (T ) = sup{d(x, y) : x, y ∈ T}. Notice
that H(T ) ≤ diam (T ) ≤ 2H(T ). Clearly the function diam is constant on all equivalent classes

of T
(n)
K and thus of T

(n)
loc−K. If diam (T ) = 2H(T ) < +∞, then we deduce that the root is a

branching vertex. Recall Π◦
n for (34). More generally, we get that:

T
(n),0
loc−K =

⋃

n∈N∗

D1/n with Dt =
{

T ∈ T
(n)
loc−K : diam

(

rt ◦ Π
◦
n(T )

)

= 2t
}

.

Since the functions diam , rt and Π◦
n are continuous, we deduce that Dt is closed, and hence

T
(n),0
loc−K is a Borel subset of Tloc−K. �

We now define the set of discrete trees. We say that a rooted n-pointed tree (T, d,v) is a
discrete tree if T is equal to the tree spanned by its distinguished vertices: T = Span◦(T,v). We
define the set of (equivalence classes of) discrete trees with at most n leaves as:

(36) T
(n)
dis =

{

(T,v) ∈ T
(n)
loc−K : (T,v) = Span(T,v)

}

.

As a direct consequence of the continuity of the map Span we get the following result.

Lemma 5.10. Let n ∈ N. The set of discrete trees T
(n)
dis is a closed subset of T

(n)
K and of T

(n)
loc−K.

We end this section with partial measurability result on the number of vertices at a given
height of a tree.

Remark 5.11. It is immediate to check that the map (T,v) 7→
(

d(vi, vj), i, j ∈ {0, . . . , n}
)

is

injective 1/2-Lipschitz continuous from (T
(n)
loc−K, d

(n)
LGH) to R

(n+1)×(n+1) endowed with the supre-
mum norm (i.e. the maximum of the distances between coordinates). It is also bi-measurable
thanks to Lusin’s theorem from [32] or [11, Exercise 6.10.54 p.60].

Let Tno leaf
loc−K be the set of trees with no leaves:

T
no leaf
loc−K =

{

T ∈ Tloc−K : Lf(T ) = ∅
}

.

For T ∈ T
no leaf
loc−K and t ≥ 0, let Ñt(T ) denotes the finite number of vertices at height t of T :

(37) Ñt(T ) = Card
(

{

x ∈ T : H(x) = t
}

)

.

We have the following result.

Lemma 5.12 (Measurability of Ñt). The set Tno leaf
loc−K is a Borel subset of Tloc−K and the map

(t, T ) 7→ Ñt(T ) is measurable from R+ × T
no leaf
loc−K to N.

Proof. Let t ≥ 0 and let Θn(t) be the set of discrete trees such that all the pointed vertices (but
the root) are leaves at height t:

Θn(t) =
{

T ∈ T
(n)
dis : d(̺, vi) = t and d(vi, vj) > 0 for all i, j ∈ {1, . . . , n}

}

.

Thanks to Remark 5.11, Θn(t) is a Borel set of T
(n)
dis ⊂ T

(n)
K ⊂ T

(n)
loc−K. For T ∈ Tloc−K, we

get that
{

T ′ ∈ T
(n)
dis : Π◦

n(T
′) = T

}

is finite. We deduce from Lusin’s theorem, see [32], that



20 ROMAIN ABRAHAM, JEAN-FRANÇOIS DELMAS, AND HUI HE

Π◦
n restricted to T

(n)
dis is bi-measurable. This implies that the set Π◦

n(Θn(t)) is a Borel subset of

Tloc−K. We deduce that the set of trees with no leaves, Tno leaf
loc−K, which is formally defined by:

T
no leaf
loc−K =

⋂

k∈N∗

⋃

n∈N

r−1
k

(

Π◦
n

(

Θn(k)
)

)

,

is a Borel subset of Tloc−K. We also get that
{

T ∈ T
no leaf
loc−K : Ñt(T ) = n

}

= r−1
t

(

Π◦
n

(

Θn(t)
)

)

; this

implies that the map Ñt is measurable. Since t 7→ Ñt(T ) is non-decreasing and left-continuous,

we deduce that the map (t, T ) 7→ Ñt(T ) is measurable from R+ × T
no leaf
loc−K to N. �

5.4. Grafting a tree on another one. We start by recalling the grafting operation of [2] which
is slightly different from the function Graft which will be introduced in Section 5.9.

Let n, k ∈ N and i ∈ {0, . . . , n} be given. Let (T, d,v) be a locally compact rooted n-pointed
tree with v = (v0 = ̺, . . . , vn) and (T ′, d′,v′) be a locally compact rooted k-pointed tree with
v′ = (v′0 = ̺′, . . . , v′k). We define the tree T ⊛i T

′ as the tree obtained by grafting T ′ on the
i-th distinguished vertex of the tree T . We set v⊛ v′ the concatenation of the vector v and the
vector (v′1, . . . , v

′
k) which is the vector v′ where the coordinate v′0 = ̺′ is removed, and:

T ⊛i T
′ = T ⊔

(

T ′ \ {̺′}
)

,

∀x, x′ ∈ T ⊛i T
′, d⊛(x, x′) =











d(x, x′) if x, x′ ∈ T,

d′(x, x′) if x, x′ ∈ T ′,

d(x, vi) + d′(̺′, x′) if x ∈ T, x′ ∈ T ′,

where ⊔ denotes the disjoint union of two sets. By construction (T ⊛i T
′, d⊛,v⊛ v′) is a locally

compact rooted n+k pointed tree. It is easy to see that the equivalence class of T ⊛iT
′ in T

(n+k)
loc−K

does not depend of the choice of the representatives in the equivalence classes of T and T ′ and

hence the map
(

(T, d,v), (T ′, d′,v′)
)

7→ (T ⊛i T
′, d⊛,v⊛v′) is well defined from T

(n)
loc−K ×T

(k)
loc−K

into T
(n+k)
loc−K. We shall simply write (T ⊛i T

′,v ⊛ v′), or even T ⊛i T
′, for (T ⊛i T

′, d⊛,v ⊛ v′).
The next lemma asserts that this grafting procedure is continuous.

Lemma 5.13 (Continuity of the grafting map). Let n, k ∈ N and i ∈ {0, . . . , n}. The map
(

(T,v), (T ′,v′)
)

7→ (T ⊛i T
′,v ⊛ v′), is continuous from T

(n)
loc−K × T

(k)
loc−K to T

(n+k)
loc−K.

Proof. Let (T1,v1), (T
′
1,v

′
1) ∈ T

(n)
loc−K and (T2,v2), (T

′
2,v

′
2) ∈ T

(k)
loc−K. Set T = T1 ⊛i T2, T

′ =

T ′
1 ⊛i T

′
2, v = v1 ⊛ v2, and v′ = v′

1 ⊛ v′
2.

First suppose that the trees are compact, that is (T1,v1), (T
′
1,v

′
1) ∈ T

(n)
K and (T2,v2), (T

′
2,v

′
2) ∈

T
(k)
K . Let R1 be a correspondence between (elements of the classes) (T1,v1) and (T ′

1,v
′
1) and

let R2 be a correspondence between (elements of the classes) (T2,v2) and (T ′
2,v

′
2). We set

R = R1 ∪ R2 with ̺2 and ̺′2 replaced respectively by vi and v′i. It defines a correspondence
between (T,v) and (T ′,v′). For every (x, x′), (y, y′) ∈ R, we have:

∣

∣d⊛(x, y)− d′⊛(x′, y′)
∣

∣ =

{

∣

∣d1(x, y)− d′1(x
′, y′)

∣

∣ ≤ dist (R1) if (x, x′), (y, y′) ∈ R1,
∣

∣d2(x, y)− d′2(x
′, y′)

∣

∣ ≤ dist (R2) if (x, x′), (y, y′) ∈ R2,
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and if (x, x′) ∈ R1 and (y, y′) ∈ R2, we have:
∣

∣d⊛(x, y)− d′⊛(x′, y′)
∣

∣ =
∣

∣d1(x, vi) + d2(ρ2, y)− d′2(ρ
′
2, y

′)− d′1(x
′, v′i)

∣

∣

≤
∣

∣d1(x, vi)− d1(x
′, v′i)

∣

∣+
∣

∣d2(̺2, y)− d′2(̺
′
2, y

′)
∣

∣

≤ dist (R1) + dist (R2).

This gives:

(38) d
(n+k)
GH

(

(T,v), (T ′,v′)
)

≤ d
(n)
GH

(

(T1,v1), (T
′
1,v

′
1)
)

+ d
(k)
GH

(

(T2,v2), (T
′
2,v

′
2)
)

.

Now consider (T1,v1), (T
′
1,v

′
1) ∈ T

(n)
loc−K and (T2,v2), (T

′
2,v

′
2) ∈ T

(k)
loc−K. Without loss of

generality we assume that H(v′i) ≥ H(vi). Remark that, for every t ≥ 0, we have, with a+ =
max(a, 0):

rt(T,v) = rt(T1,v1)⊛i r(t−H(vi))+(T2,v2).

Therefore, we have:

d
(n+k)
LGH

(

(T,v), (T ′,v′)
)

=

∫ +∞

0
dt e−t

(

1 ∧ d
(n+k)
GH

(

rt(T,v), rt(T
′,v′)

)

)

=

∫ +∞

0
dt e−t

(

1 ∧ d
(n+k)
GH

(

rt(T1,v1)⊛i r(t−H(vi))+(T2,v2), rt(T
′
1,v

′
1)⊛i r(t−H(v′i))+

(T ′
2,v

′
2)
))

≤

∫ +∞

0
dt e−t

(

1 ∧ d
(n)
GH

(

rt(T1,v1), rt(T
′
1,v

′
1)
)

)

+

∫ +∞

0
dt e−t

(

1 ∧ d
(k)
GH

(

r(t−H(vi))+(T2,v2), r(t−H(v′i))+
(T ′

2,v
′
2)
))

≤ d
(n)
LGH

(

(T1,v1), (T
′
1,v

′
1)
)

+ 4e−H(v′i) d
(k)
LGH

(

(T2,v2), (T
′
2,v

′
2)
)

+H(v′i)−H(vi)

≤ 3 d
(n)
LGH

(

(T1,v1), (T
′
1,v

′
1)
)

+ 4d
(k)
LGH

(

(T2,v2), (T
′
2,v

′
2)
)

,

where we used Equation (38) for the first inequality and Lemma 5.3 for the second one. We are
done. �

Remark 5.14. We shall use a version of the grafting procedure where, instead of grafting on vi,
we shall graft on the branch [[̺, vi]] at height h provided that H(vi) ≥ h.

Let n ∈ N and i ∈ {0, . . . , n} be given. For h ∈ R+ and (T,v) ∈ T
(n)
K , we denote by xi,h

the unique vertex of T that satisfies xi,h ∈ [[̺, vi]] and H(xi,h) = H(vi) ∧ h. Then, the map
(

h, (T,v)
)

7→
(

T, (v, xi,h)
)

is clearly continuous from R+×T
(n)
loc−K to T

(n+1)
loc−K. We then define the

grafting map ⊛i,h by:

(39)
(

h, (T,v), (T ′,v′)
)

7→ T ⊛i,h T
′ = (T ⊛i,h T

′,v ⊛ v′),

as the composition of

[adding the vertex xi,h]:
(

h, (T,v)
)

7→ (T, ṽ) with v = (v0 = ̺, . . . , vn) and ṽ =
(v, xi,h) = (ṽ0 = ̺, . . . , ṽn = vn, ṽn+1 = xi,h),

[grafting]:
(

(T, ṽ), (T ′,v′)
)

7→ (T ⊛n+1 T
′, ṽ ⊛ v′) and

[removing the (n+ 1)-th pointed vertex]: (T ′′ = T ⊛n+1 T
′, ṽ ⊛ v′) 7→ (T ′′,v ⊛ v′).
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Since all those maps are continuous, we get that the map ⊛i,h is continuous (and hence measur-

able) from R+ × T
(n)
loc−K × T

(k)
loc−K to T

(n+k)
loc−K.

We shall also be interested in a grafting on the left or on the right of i ∈ {1, . . . , n}, which
is the same as the grafting (39), but for the order of the coordinates of the vector v ⊛ v′. For
ǫ ∈ {g,d}, we define the grafting map ⊛ǫ

i,h by:

(40)
(

h, (T,v), (T ′,v′)
)

7→ T ⊛
ǫ
i,h T

′ = (T ⊛i,h T
′,vǫ,i),

where, with v = (v0 = ̺, . . . , vn) and v′ = (v′0 = ̺, . . . , v′k), we set:

vg,i = (v0 = ̺, . . . , vi−1, v
′
1, . . . , v

′
k, vi, . . . , vn)

vd,i = (v0 = ̺, . . . , vi, v
′
1, . . . , v

′
k, vi+1, . . . , vn).

Thanks to Lemma 5.8, we deduce from the continuity of the map ⊛i,h, that the maps ⊛ǫ
i,h are

continuous.

We summarize the results from Remark 5.14 in the following lemma.

Lemma 5.15 (Continuity of the grafting maps). Let n, k ∈ N, i ∈ {0, . . . , n} and ǫ ∈ {g,d}.
The maps

(

h, (T,v), (T ′,v′)
)

7→ T ⊛i,h T
′ and

(

h, (T,v), (T ′,v′)
)

7→ T ⊛ǫ
i,h T

′, are continuous

from R+ × T
(n)
loc−K × T

(k)
loc−K to T

(n+k)
loc−K.

5.5. Set of (equivalence classes of) marked trees. We shall consider trees with a marked
infinite branch; for this reason we introduce the notion of marked trees. In this part, we do not
record an order on the marked vertices as in the n-pointed trees.

We say that (T, S, d, ̺) is a marked rooted tree if (T, d, ̺) is a rooted tree and the set of marks
S is a sub-tree of T with the same root (that is ̺ ∈ S) endowed with the restriction of the distance
d. A correspondence between two compact marked rooted trees (T, S, d, ̺) and (T ′, S′, d′, ̺′) is a
set R ⊂ T ×T ′ such that R is a correspondence between (T, d, ̺) and (T ′, d′, ̺′) and R∩ (S×S′)
is also a correspondence between (S, d, ̺) and (S′, d′, ̺′). Then, we set:

d
[2]
GH

(

(T, S), (T ′, S′)
)

= inf
1

2
dist (R),

where the infimum is taken over all the correspondences R between (T, S, d, ̺) and (T ′, d′, S′, ̺′).

An easy extension of [6] gives that d
[2]
GH is a pseudo-distance, and that d

[2]
GH(T, T

′) = 0 if and
only if there exists an isometric one-to-one map ϕ from (T, d) to (T ′, d′) which preserves the

root and which is also one-to-one from S to S′. The relation d
[2]
GH((T, S), (T

′, S′)) = 0 de-

fines an equivalence relation. The set T
[2]
K of equivalence classes of compact marked rooted

trees (T, S, d, ̺) endowed with d
[2]
GH is then a metric Polish space. We simply write (T, S) for

(T, S, d, ̺), and unless specified otherwise, we shall denote also by (T, S) its equivalence class.

Since d
[2]
GH((T, S), (T

′, S′)) ≥ dGH(T, T
′) ∨ dGH(S, S

′), we deduce that the map (T, S) 7→ (T, S)

from T
[2]
K to (TK)

2 (endowed with the maximum distance on the coordinates) is continuous. For

t ≥ 0, we define the truncation function r
[2]
t of a marked rooted tree (T, S, d, ̺) as the marked

rooted tree r
[2]
t (T, S) = (rt(T ), rt(S), d, ̺), where we recall that rt(T ) = {x ∈ T : H(x) ≤ t}. If

(T, S) and (T ′, S′) are in the same equivalence class of T
[2]
K , so are r

[2]
t (T, S) and r

[2]
t (T ′, S′); thus

the function r
[2]
t can be seen as a map from T

[2]
K to itself. Similarly to (30), we have for t, s ≥ 0

and (T, S), (T ′, S′) ∈ T
[2]
K :

(41) d
[2]
GH

(

r
[2]
t (T, S), r

[2]
t+s(T

′, S′)
)

≤ 4 d
[2]
GH

(

(T, S), (T ′, S′)
)

+ s.
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This implies that the map (t, (T, S)) 7→ r
[2]
t (T, S) is continuous from R+ × T

[2]
K to T

[2]
K .

A marked rooted tree (T, S, d, ̺) is locally compact if r
[2]
t (T, S) is a compact marked rooted

tree for all t ≥ 0. Following [6], we consider for two locally compact marked rooted trees (T, S)
and (T ′, S′):

(42) d
[2]
LGH((T, S), (T

′, S′)) =

∫ ∞

0
e−t dt

(

1 ∧ d
[2]
GH

(

r
[2]
t (T, S), r

[2]
t (T ′, S′)

))

.

Furthermore, we have that d
[2]
LGH((T, S), (T

′, S′)) = 0 if and only if there exists an isometric one-
to-one map ϕ from (T, d) to (T ′, d′) which is one-to-one from S to S′ and preserves the roots. Thus

the relation d
[2]
LGH((T, S), (T

′, S′)) = 0 defines an equivalence relation, see [7, Proposition 5.3].

The set T
[2]
loc−K of equivalence classes of locally compact marked rooted trees (T, S, d, ̺) endowed

with d
[2]
LGH is then a metric Polish space. Furthermore, T

[2]
K is an open dense subset of T

[2]
loc−K.

Similar equations to (31), (32) and (33) holds with d
(n)
LGH and d

(n)
GH replaced by d

[2]
LGH and d

[2]
GH. For

future use, let us give the equations corresponding to (32) and (33). For (T, S), (T ′, S′) ∈ T
[2]
loc−K

and s, t ≥ 0, we have:

d
[2]
LGH

(

r
[2]
t (T, S), r

[2]
t+s(T

′, S′)
)

≤ 4 d
[2]
LGH

(

(T, S), (T ′, S′)
)

+ s,(43)

d
[2]
GH

(

r
[2]
t (T, S), r

[2]
t (T ′, S′)

)

≤ 4 et d
[2]
LGH

(

(T, S), (T ′, S′)
)

.(44)

We also we have the following result consequences of (41) and (43).

Lemma 5.16 (Continuity of the truncation map). Let n ∈ N. The map
(

t, (T, S)
)

7→ r
[2]
t (T, S)

is continuous from R+ × T
[2]
K to T

[2]
K and from R+ × T

[2]
loc−K to T

[2]
loc−K (and to T

[2]
K ).

We give in the next lemma an example of a T
[2]
K and T

[2]
loc−K valued function.

Lemma 5.17 (Continuity of Span◦). Let n ∈ N. The map (T, d,v) 7→
(

Π◦
n(T ),Span

◦(T,v), d, ̺
)

from T
(n)
loc−K to T

[2]
loc−K (resp. from T

(n)
K to T

[2]
K ) is injective, bi-measurable and 16-Lipschitz (resp.

4-Lipschitz) continuous.

Proof. We first consider the compact case. Let (T,v) and (T ′,v′) be rooted n-pointed compact
trees and let R be a correspondence between them. Recall the definition of pv in (27) as the

projection on Span◦(T,v) and the correspondence R̃ from (28). We set R[2] = R ∪ R̃. By

construction R[2] is a correspondence between
(

T,Span◦(T,v)
)

and
(

T ′,Span◦(T ′,v′)
)

. From

the proof of Lemma 5.2, we get that dist (R[2]) ≤ 4 dist (R). This directly implies that:

(45) d
[2]
GH

(

(

T,Span◦(T,v)
)

,
(

T ′,Span◦(T ′,v′)
)

)

≤ 4 d
(n)
GH

(

(T,v), (T ′,v′)
)

.

This gives that the map (T, d,v) 7→
(

T,Span◦(T,v), d, ̺
)

from T
(n)
K to T

[2]
K is 4-Lipschitz contin-

uous.
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We now consider the locally compact case. Let (T,v) and (T ′,v′) belong to T
[2]
loc−K. We have:

d
[2]
LGH

(

(

T,Span◦(T,v)
)

,
(

T ′,Span◦(T ′,v′)
)

)

=

∫ ∞

0
e−t dt

(

1 ∧ d
[2]
GH

(

r
[2]
t

(

(T,Span◦(T,v)
)

, r
[2]
t

(

T ′,Span◦(T ′,v′)
)

))

≤ 4

∫ ∞

0
e−t dt

(

1 ∧ d
[2]
GH

(

(

rt(T,v),Span
◦(T,v)

)

,
(

rt(T
′,v′),Span◦(T ′,v′)

)

))

≤ 16

∫ ∞

0
e−t dt

(

1 ∧ d
(n)
GH

(

rt(T,v), rt(T
′,v′)

)

)

= 16 d
(n)
LGH

(

(T,v), (T ′,v′)
)

,

where we used (41) (with T and S replaced respectively by rt(T,v) and Span◦(T,v) and similarly
for T ′ and S′) for the first inequality, and (45) (with (T,v) replaced by rt(T,v)) as well as the
relation Span◦(rt(T,v)) = Span◦(T,v) for the second. This gives that the map (T, d,v) 7→

(T,Span◦(T,v), d, ̺) from T
(n)
loc−K to T

[2]
loc−K is 16-Lipschitz continuous.

Clearly those maps are injective and thus bi-measurable thanks to Lusin’s theorem [32]. �

Remark 5.18. Let us stress that for (T,v) a rooted n-pointed compact tree, the rooted tree

r
[2]
t

(

T,Span◦(T,v)
)

=
(

rt(T ), rt
(

Span◦(T,v)
)

)

and the rooted tree
(

rt(T ),Span
◦
(

rt(T,v)
)

)

=
(

rt(T ),Span
◦(T,v)

)

differ if and only if t is smaller than the height of Span◦(T,v).

Let (T, S, d, ̺) be a marked locally compact rooted tree. To simplify, we shall only write (T, S)
for (T, S, d, ̺). We define the projection of z ∈ T on S, pS(z) ∈ S, as the element of S uniquely
defined by:

[[̺, pS(z)]] = [[̺, z]] ∩ S.

Now, we consider the truncation of a marked tree at a given height, say t, of the marked sub-tree.
For t ≥ 0 and ε ∈ {−,+}, we set:

r
[2],ε
t (T, S) =

(

r
[2],ε
t,1 (T, S), rt(S)

)

with:

r
[2],+
t,1 (T, S) =

{

x ∈ T : H
(

pS(x)
)

≤ t
}

,

r
[2],−
t,1 (T, S) =

{

x ∈ T : H
(

pS(x)
)

< t
}

∪
{

x ∈ S : H(x) = t
}

.

See Figure 1 for an instance of r
[2],ε
t (T, S), where S is an infinite branch. For ε ∈ {+,−}, we also

denote by r
[2],ε
t (T, S) the marked rooted tree

(

r
[2],ε
t (T, S), d, ̺

)

endowed with the restriction of the
distance d and the root ̺. Furthermore, if (T, S) and (T ′, S′) belong to the same equivalence class

of T
[2]
loc−K or T

[2]
K , then so do r

[2],ε
t (T, S) and r

[2],ε
t (T ′, S′). Thus the map

(

t, (T, S)
)

7→ r
[2],ε
t (T, S)

is a well defined map from R+ × T
[2]
loc−K to T

[2]
loc−K for ε ∈ {+,−}.
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Figure 1. Example of restrictions of a tree T with a marked spine S (in bold).

Remark 5.19 (Examples). We give elementary examples. For ε ∈ {+,−} and t > 0, we have

that r
[2],ε
t

(

T, {̺}
)

=
(

T, {̺}
)

and r
[2],−
0

(

T, {̺}
)

=
(

{̺}, {̺}
)

as well as r
[2],+
0

(

T, {̺}
)

=
(

T, {̺}
)

.

We also have for t ∈ R+ that r
[2],ε
t (T, T ) =

(

rt(T ), rt(T )
)

.

Remark 5.20 (The map r
[2],ε
t is not continuous). Let ε ∈ {+,−} and t > 0. The function

r
[2],ε
t is not continuous from T

[2]
loc−K to itself. Indeed take t = 1 without loss of generality and

consider T = [0, 2] and Sδ = [0, δ], with δ ∈ [0, 2], ̺ = 0 and the Euclidean distance. Notice

that
(

[0, 1], [0, 1]
)

= (S1, S1) 6= (T, S1). Then we have that limδ→1 d
[2]
GH

(

(T, Sδ), (T, S1)
)

= 0,

r
[2],ε
1 (T, Sδ) = (T, Sδ) for δ < 1, r

[2],ε
1 (T, Sδ) = (S1, S1) for δ > 1, r

[2],−
1 (T, S1) = (S1, S1) and

r
[2],+
1 (T, S1) = (T, S1).

We have the following measurability result.

Lemma 5.21 (Measurability of some truncation maps). Let ε ∈ {+,−}. The map
(

t, (T, S)
)

7→

r
[2],ε
t (T, S) is measurable from R+ × T

[2]
loc−K to T

[2]
loc−K.

Proof. Let a > 0. For a marked tree (T, S) = (T, S, d, ̺), we define its partial dilatation
Ra(T, S) = (T, S, da, ̺) as the marked tree with da(x, y) = ad

(

x, pS(x)
)

+ d
(

pS(x), pS(y)
)

+

ad
(

y, pS(y)
)

. Intuitively the distances on T are multiplied by a outside S. The equivalence class

of Ra(T, S) in T
[2]
loc−K does not depend of the choice of (T, S) in its equivalence class in T

[2]
loc−K;

so the map Ra is well defined on T
[2]
loc−K to itself. Notice that the map Ra is continuous and

one-to-one with inverse R1/a. It is immediate to check that, for t ≥ 0:

r
[2],−
t = lim

a→0+
R1/a ◦ r

[2]
t ◦Ra.

This and Lemma 5.16 imply the measurability of the map
(

t, (T, S)
)

7→ r
[2],−
t (T, S). Then, notice

that lims↓t r
[2],−
s = r

[2],+
t to get the measurability of the map (t, (T, S)) 7→ r

[2],+
t (T, S). �

We end this section by proving (in a very similar way) that the map r
[2]
∗ below, which consists

in cleaning the root, that is, in erasing the bushes at the root of a marked tree is measurable.
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For (T, S) = (T, S, d, ̺) a marked locally compact rooted tree, we set:

r
[2]
∗ (T, S) =

(

r
[2]
∗,1(T, S), S

)

with r
[2]
∗,1(T, S) =

{

x ∈ T : pS(x) 6= ̺
}

∪ {̺}.(46)

We also denote by r
[2]
∗ (T, S) the marked rooted tree

(

r
[2]
∗ (T, S), d, ̺

)

endowed with the restriction
of the distance d and the root ̺. Furthermore, if (T, S) and (T ′, S′) belong to the same equivalence

class of T
[2]
loc−K, then so do r

[2]
∗ (T, S) and r

[2]
∗ (T ′, S′). Thus the map r

[2]
∗ is well-defined from T

[2]
loc−K

to T
[2]
loc−K.

Lemma 5.22 (Measurability of the root cleaning map). The map r
[2]
∗ is measurable from T

[2]
loc−K

to T
[2]
loc−K.

Proof. Let a > 0. For a marked tree (T, S) = (T, S, d, ̺), we define its partial dilatation
R′

a(T, S) = (T, S, d′a, ̺) as the marked tree with d′a(x, y) = Fa(t)d(x, y) if pS(x) = pS(y) with t =
H
(

pS(x)
)

, and otherwise d′a(x, y) = Fa(t)d
(

x, pS(x)
)

+ ad
(

pS(x), pS(y)
)

+Fa(s)d
(

y, pS(y)
)

with

t = H
(

pS(x)
)

, s = H
(

pS(y)
)

, and the function Fa defined for t ≥ 0 by Fa(t) = t∧a+a−2(a− t)+

if a ≤ 1, and Fa(t) = 1/F1/a(at) if a > 1. The equivalence class of R′
a(T, S) in T

[2]
loc−K does not

depend of the choice of (T, S) in its equivalence class in T
[2]
loc−K; so the map R′

a is well defined

on T
[2]
loc−K to itself. Notice that the map R′

a is continuous and one-to-one with inverse R′
1/a. It

is immediate to check that for t > 0:

r
[2]
∗ = lim

a→0+
R1/a ◦ r

[2]
t ◦Ra.

This and Lemma 5.16 imply the measurability of the map r
[2]
∗ . �

5.6. Set of (equivalence classes of ) trees with one infinite marked branch. Let us

denote by T0 = (̺, {̺}) the rooted tree reduced to its root. Notice that r
[2],+
0 (T, S) = {(T0, T0)}

if and only if [[̺, x]]∩S = {̺} implies x = ̺. Let T1 = ([0,∞), d, 0) be the tree consisting of only
one infinite branch. We consider the set (of equivalence classes) of locally compact rooted trees
with one infinite marked branch and its subset of trees whose root is not a branching vertex:

T
spine
loc−K =

{

(T, S) ∈ T
[2]
loc−K : S = T1 in Tloc-K

}

,(47)

T
spine,0
loc−K =

{

(T, S) ∈ T
spine
loc−K : ̺ 6∈ Br(T )

}

.(48)

Lemma 5.23. The sets T
spine
loc−K and T

spine,0
loc−K are Borel subsets of T

[2]
loc−K.

Proof. Consider the projection Π̃ : (T, S) 7→ S from T
[2]
loc−K to Tloc−K, which is by construction

1-Lipschitz and thus continuous. As Tspine
loc−K = Π̃−1

(

{T1}
)

, we get that Tspine
loc−K is Borel.

Notice that for (T, S) ∈ T
spine
loc−K, then, by definition of r

[2],+
t , we get that the root is not a

branching vertex of (T, S) if and only if r
[2],+
0 (T, S) = (T0, T0). Then, the set Tspine,0

loc−K = T
spine
loc−K ∩

(r
[2],+
0 )−1

(

{

(T0, T0)
}

)

is Borel as the map r
[2],+
0 is measurable according to Lemma 5.21. �

We shall be mainly consider elements of T
spine,0
loc−K in what follows. For simplicity, we shall

write T ∗ = (T, S) for an element of Tspine,0
loc−K . For t ≥ 0 and T ∗ = (T, S) in T

spine,0
loc−K , we have

r
[2],+
t (T ∗) =

(

r
[2],+
t,1 (T ), rt(S)

)

where the rooted tree rt(S) is given by
(

[[̺, x]], ̺
)

with x ∈ S
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uniquely characterized by d(̺, x) = t. We shall consider a slight modification of r
[2],+
t on T

spine,0
loc−K ,

say r̃
[2],+
t , where one keeps track only of (̺, x) instead of rt(S):

(49) r̃
[2],+
t (T ∗) =

(

r
[2],+
t,1 (T ), (̺, x)

)

.

It is left to the reader to check that r̃
[2],ε
t is defined on T

spine,0
loc−K and T

(1)
loc−K-valued. Similarly to

Lemma 5.21, we get the following result.

Lemma 5.24. The function (t, T ∗) 7→ r̃
[2],+
t (T ∗) from R+ × T

spine,0
loc−K to T

(1)
loc−K is measurable.

5.7. Another representation for discrete trees. Let n ∈ N be fixed. Let (T,v), with
v = (v0 = ̺, . . . , vn), be a locally compact rooted n-pointed tree. We will decompose the tree
Span(T,v) as a sequence of edges. To do so, we introduce some notations. Let A ⊂ {0, . . . , n}
be non-empty. We set vA = (vi, i ∈ A). We denote by vA the most recent common ancestor of
vA, which is the only element of T such that:

(50) [[̺, vA]] =
⋂

k∈A

[[̺, vk]].

Notice that v{i} = vi. Recall that for x ∈ T , Tx is the sub-tree of T above x and rooted

at x. Let P+
n be the set of all subsets A ⊂ {1, . . . , n} such that A 6= ∅. For A ∈ P+

n , if
TvA ∩ Span◦(T,vAc) 6= ∅ with Ac = {0, 1, 2, · · · , n} \ A, we set wA = vA, otherwise we define
wA ∈ [[̺, vA]] as the only element of T such that:

(51) [[̺,wA]] = Span◦(T,vAc) ∩ Span◦
(

T, (̺,vA)
)

.

Equivalently wA is the only element in [[̺, vA]] such that wA = vA∪{k0} for some k0 ∈ Ac and for
all k ∈ Ac, we have vA∪{k} ∈ [[̺,wA]]. Notice that w{1,...,n} = ̺. We also record the lengths of all
the branches [[wA, vA]]:

(52) Ln(T,v) =
(

ℓA(T,v), A ∈ P+
n

)

with ℓA(T,v) = d(wA, vA).

1 3 2

a

b

Figure 2. A discrete trees spanned by the leaves {1, 2, 3}.

Table 1. Quantities of interest for the discrete tree from Figure 2.

A ⊂ P+
3 {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

vA 1 2 3 a a b a
wA a b b a a a ̺
ℓA d(a, 1) d(b, 2) d(b, 3) 0 0 d(a, b) d(̺, a)
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For instance, we record the quantity of interest in Table 1 for the discrete tree spanned by the
leaves {1, 2, 3} from Figure 2. We can see that each branch of the discrete tree appears (through
their length) once and only once in L3(T,v).

Set v̂ =
(

v̂0 = ̺, (vA, A ∈ P+
n )

)

∈ T 2n , so that (T, v̂) is a locally compact rooted (2n − 1)-
pointed tree with the same root ̺ as T . Notice that all the vertices in v appear in v̂ (possibly
more than once), and that wA also appears in v̂ for all A ∈ P+

n . Recall the set of discrete trees
defined at the end of Section 5.3. The next lemma states that Ln codes continuously for discrete

trees. Set Im (Ln) ⊂ R
P+
n

+ (with R
P+
n

+ = R
2n−1
+ ) for the image of Ln.

Lemma 5.25 (Regularity of the branch lengths as a function of the tree). Let n ∈ N
∗. The map

(T,v) 7→ (T, v̂) is well defined from T
(n)
loc−K to T

(2n−1)
loc−K , and it is continuous. The function Ln is

well defined from T
(n)
loc−K to Im (Ln) ⊂ R

P+
n

+ and is continuous. Furthermore, Im (Ln) is closed

and Ln is a one-to-one bi-measurable map from T
(n)
dis to Im (Ln).

Proof. If (T,v) and (T ′,v′) belong to the same equivalence class in T
(n)
loc−K, then we deduce from

(50) and (51) that (T, v̂) and (T ′, v̂′) belong also to the same equivalence class. This implies

that the function (T,v) 7→ (T, v̂) is well defined from T
(n)
loc−K to T

(2n−1)
loc−K . We deduce from (50)

and (51) that this function is in fact continuous on T
(n)
loc−K. We also get that the function Ln is

well defined from T
(n)
loc−K to R

P+
n

+ .

We shall now precise the image of the function Ln and prove its continuity. Recall x+ =

max(x, 0) denotes the positive part of x ∈ R. We define the function L from R
(n+1)×(n+1)
+ to

R
P+
n

+ by, for d = (dij, 0 ≤ i, j ≤ n) and A ∈ P+
n :

LA(d) =
1

4
inf

{

(

dii′ + dij′ + dji′ + djj′ − 2dij − 2di′j′
)

+
: i, j ∈ A and i′, j′ ∈ Ac

}

,

where Ac = {0, . . . , n} \ A. We also define the function D from R
P+
n

+ to R
(n+1)×(n+1)
+ by, for

ℓ = (ℓA, A ∈ P+
n ) and i, j ∈ {0, . . . , n}:

(53) Dij(ℓ) =
∑

A∈P+
n

ℓA
(

1{i∈A,j 6∈A} + 1{i 6∈A,j∈A}

)

.

The functions L and D are continuous. Consider the closed subset Q(n) of R
(n+1)×(n+1)
+ satisfying

the so-called four-point condition, that is the set of all (dij, 0 ≤ i, j ≤ n) ∈ R
(n+1)×(n+1)
+ such

that:

dij + di′j′ ≤ max(dii′ + djj′,dij′ + dji′) for all i, j, i′, j′ ∈ {0, . . . , n}.

Notice that the four-point condition is also used to characterize metric spaces which are real
trees, see Evans[?]. Then, one can check that the function L is one-to-one from Q(n) to L(Q(n))
with inverse D. We also get that L(Q(n)) is closed (indeed if (ℓk = L(dk), k ∈ N) is a sequence

of elements of L(Q(n)) converging to a limit, say ℓ, then it is bounded and thus the sequence
(dk, k ∈ N) is also bounded. Hence there is a converging sub-sequence, and denote by d its limit

which belongs to Q(n) as this set is closed. Since L is continuous, we get that L(d) = ℓ and thus

ℓ belongs to L(Q(n)), which gives that L(Q(n)) is closed). Since for (T,v) ∈ T
(n)
loc−K, we have that

Ln(T,v) = L
(

d(vi, vj), 0 ≤ i, j ≤ n
)

, we deduce that the function Ln is continuous from T
(n)
loc−K

to L(Q(n)).
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We now prove that Im (Ln) = L(Q(n)) and that Ln is one-to-one from T
(n)
dis to L(Q(n)). Let

ℓ = (ℓA, A ∈ P+
n ) ∈ L(Q(n)). Thus, there exists a sequence d = (dij, 0 ≤ i, j ≤ n) ∈ Q(n)

which satisfies the four-point condition and such that L(d) = ℓ. Since d satisfies the four-point

condition, we get that there exists a discrete tree (T, d,v) ∈ T
(n)
dis such that d(vi, vj) = dij for all

i, j ∈ {0, . . . , n}. This proves that Im (Ln) = L(Q(n)). Then use that L is one-to-one from Q(n)

to L(Q(n)) with inverse D and that two discrete trees (T, d,v) and (T ′, d′,v′) are equal in T
(n)
dis

if and only if d(vi, vj) = d′(v′i, v
′
j) for all i, j ∈ {0, . . . , n} to deduce that Ln is one-to-one from

T
(n)
dis to L(Q(n)) and thus bi-measurable thanks to Lusin’s theorem from [32]. �

5.8. The splitting operator for a pointed tree. We want now to decompose the pointed
tree (T,v) along the branches of Span◦(T,v). We keep notations from Section 5.7.

Let (T,v), with v = (v0 = ̺, . . . , vn), be a locally compact rooted n-pointed tree. Recall
Definition (27) of the projection pv on Span(T,v). For A ∈ P+

n , consider the rooted 1-pointed
tree:

(54) T̂A(T,v) =
(

TA(T,v), (̺A, vA)
)

∈ T
(1)
loc−K,

with root ρA = wA and

TA(T,v) =
{

x ∈ T : pv(x) ∈]]wA, vA]]
}

∪ {wA}.

By construction, we have that ℓA(T,v) = d(̺A, vA).

Notice that ℓA(T,v) = 0 if and only if T̂A(T,v) is reduced to its root, that is,
(

{̺A}, (̺A, ̺A)
)

.

Notice also that ℓA(T,v) > 0 implies that T̂A belongs to T
(1),0
loc−K, the set of trees in T

(1)
loc−K such

that the root is not a branching point (see Definition (35)). We also define the rooted 1-pointed

tree T̂{0}(T,v) ∈ T
(1)
loc−K =

(

T{0}(T,v), (̺, ̺)
)

by:

T{0}(T,v) =
{

x ∈ T : ]]̺, x]] ∩ Span◦(T,v) = ∅
}

,

with root ̺ and distinguished vertex also ̺. If (T,v) and (T ′,v′) belong to the same equivalence

class in T
(n)
loc−K, then we get that T̂A(T,v) and T̂A(T

′,v′) belong also to the same equivalent class

in T
(1)
loc−K for A ∈ Pn = P+

n ∪ {{0}}. Thus, the map Splitn defined on T
(n)
loc−K by:

(55) Splitn(T,v) =
(

T̂A(T,v), A ∈ Pn

)

takes values in
(

T
(1)
loc−K

)2n

. We give an instance of the function Splitn in Figure 3.

Lemma 5.26 (Measurability of the splitting map). Let n ∈ N
∗. The map Splitn from T

(n)
loc−K to

(

T
(1)
loc−K

)2n

is measurable.

Proof. The proof is divided into three steps.

Step 1 : The map T̂{0} is measurable. Let (T,v) ∈ T
(n)
loc−K. By construction, we have that

r
[2],+
0

(

T,Span◦(T,v)
)

=
(

T{0}(T,v), T0
)

. We deduce from Lemma 5.21 on the measurability of

r
[2],ε
t , that the map (T,v) 7→ T̂{0} =

(

T{0}(T,v), (̺, ̺)
)

is measurable.

Step 2 : A measurable truncation function. Let n ≥ 1. Let (T,v) be a rooted n-pointed tree.

Recall the definition of T̂A(T,v) from (54). We set q(T,v) = T̂{1,2,...,n}(T,v) so that q is a map

from T
(n)
loc−K to T

(1)
loc−K. Recall the measurable truncation functions r

[2],+
t and r

[2]
∗ from (49) and

(46), respectively.
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1 3

2

Figure 3. The splitting of the left hand tree with respect to v = {̺, 1, 2, 3}. In
this instance, T{1,2} and T{1,3} are reduced to their own root.

We set:

q′(T,v) = r
[2]
∗ ◦ r

[2],+
d(̺,w{1,...,b})

(

T,Span◦(T,v)
)

.

Thanks to Lemma 5.17, the map (T,v) 7→
(

T,Span◦(T,v)
)

is continuous from T
(n)
loc−K to T

[2]
loc−K.

Thanks to Lemma 5.25 and Remark 5.11, we get that the map (T,v) 7→ d(̺,w{1,...,b}) is contin-

uous from T
(n)
loc−K to R+. Then, use Lemmas 5.21 and 5.22 on the measurability of r

[2],ε
t and r

[2]
∗

to conclude that the map q′ from T
(n)
loc−K to T

[2]
loc−K is measurable and it has the same image as

the map
(

T, (̺, v)
)

7→
(

T, [[̺, v]]
)

from T
(1)
loc−K to T

[2]
loc−K. According to Lemma 5.17 (with n = 1),

this latter map is injective and measurable. Hence the map q, which is the composition of q′ and
this latter map, is measurable.

Step 3 : Conclusion. Let A ⊂ {1, . . . , n} be non-empty. Notice that T̂A is the image of (T,v)
by: the expansion procedure (T,v) 7→ (T, v̂) from the first part of Lemma 5.25, the rerooting
at wA from Lemma 5.8, the reducing procedure from Lemma 5.5 where one forgets about all
wA′ and vA′ for A′ ⊂ Ac, and then the function q from Step 2. This implies that the function

(T,v) 7→ T̂A(T,v) is measurable from T
(n)
loc−K to T

(1)
loc−K. �

5.9. The grafting procedure. Let n ∈ N
∗. Let ℓ = (ℓA, A ∈ P+

n ) ∈ Im (Ln). According to

Lemma 5.25, there exists a unique (up to the equivalence in T
(n)
K ) rooted n-pointed discrete tree

(S,v) (that is S = Span◦(S,v)) such that Ln(S,v) = ℓ. Recall vA and wA defined in Section 5.7
for A ∈ P+

n so that:

(56) S =
⋃

A∈P+
n

[[wA, vA]],

where the sets (]]wA, vA[[, A ∈ P+
n ) are pairwise disjoint.
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Recall that Tspine,0
loc−K denotes the set (of equivalence classes) of locally compact rooted trees with

one infinite marked branch such that the root is not a branching vertex. Let T ∗ = (T ∗
A, A ∈ P+

n )

be a family of elements of equivalence classes in T
spine,0
loc−K . Then, we define the tree (T,v) =

Graftn(ℓ, T
∗), where T is the tree S with that the branches ]]wA, vA]] are replaced by the trees

given by the first component of r
[2],+
ℓA

(T ∗
A) (where the second component has been identified to

[[wA, vA]]).

We now provide a more formal construction of Graftn(ℓ, T
∗). Let ℓ ∈ Im (Ln), and consider

the rooted n-pointed discrete tree (S,v) = L−1
n (ℓ) ∈ T

(n)
dis and v = (v0 = ̺, . . . , vn). Set v̂ =

(v̂0 = ̺, (vA, A ∈ P+
n )) ∈ T 2n , with vA the most recent common ancestor of (vi, i ∈ A) defined in

(50). Thus, we get that (S, v̂) ∈ T
(2n−1)
dis is a rooted (2n − 1)-pointed discrete tree with the same

root ̺ as S.

In a first step, we build by a backward induction an “increasing” sequence of discrete trees
(

(Sk,vk), k ∈ {0, . . . , 2n − 1}
)

such that (Sk,vk) ∈ T
(k)
dis with root ̺. We set (S2n−1,v2n−1) =

(S, v̂). Recall that x is a leaf of a tree T with root ̺ if x ∈ [[̺, y]] ⊂ T implies y = x. Assume
that (Sk+1,vk+1) is defined for some k ≥ 0. We endow the sets P+

n and Pn = P+
n ∪

{

{0}
}

with

the lexicographical order, so that the maximum of the subset of P+
n is well-defined. We set:

Ak+1 = max
{

A ∈ P+
n , vA ∈ vk+1 and vA is a leaf of (Sk+1,vk+1)

}

.

Then, we define vk as the sequence vk+1 where vAk+1
has been removed (notice that the first

element of vk is still the root ̺), and we set (Sk,vk) = Span(S,vk) ∈ T
(k)
dis . We also set Bk =

max{B ∈ Pn : vB = wAk+1
}. By construction, vBk

= wAk+1
belongs to the sequence vk and is

therefore an element of v for some index, and, with a slight abuse of notation, we simply denote
this index by Bk. We have, using the grafting operation from Section 5.4 that:

(57) (Sk+1,vk+1) = (Sk,vk)⊛Bk
[0, ℓAk+1

],

where the equality holds in T
(k+1)
loc−K (and in T

(k+1)
dis ) and by convention [0, t] denotes the discrete

1-pointed tree
(

[0, t], (0, t)
)

with root 0. Notice that ℓAk+1
= 0 if and only if Span◦(S,vk) =

Span◦(S,vk+1). Eventually, notice that (S0,v0) =
(

{̺}, ̺
)

is the rooted tree reduced to its
root ̺ = v{0} and B0 = {0}. Let us stress, that in Section 5.4, the vector vk+1 is obtained by
adding the distinguished vertex ℓAk+1

of [0, ℓAk+1
] to vk. However here we identify [0, ℓAk+1

] with
[[vBk

= wAk+1
, vAk+1

]] and add the distinguished vertex vAk+1
to vk in order to obtain vk+1.

For instance, we give in Table 2 the sequences (Ak, 1 ≤ k ≤ 2n − 1) and (Bk, 0 ≤ k ≤ 2n − 2)
for the tree of Figure 2.

Table 2. The sequences (Ak+1, 0 ≤ k ≤ 6), (Bk, 0 ≤ k ≤ 6) and (ℓAk+1
, 0 ≤ k ≤

6) for the tree of Figure 2.

k 0 1 2 3 4 5 6
Ak+1 {1, 2} {1, 2, 3} {1, 3} {1} {2, 3} {2} {3}
Bk {0} {1, 3} {1, 2} {1, 2, 3} {1, 2, 3} {2, 3} {2, 3}
ℓAk+1

d(̺, a) 0 0 d(1, a) d(a, b) d(2, b) d(3, b)

Remark 5.27. The family
{

Ak, k ∈ {1, 2n−1}
}

is exactly equal to P+
n . Furthermore the sequence

ℓ ∈ Im (Ln) ⊂ R
2n−1
+ provides implicitly two unique ordered sequences A(ℓ) =

(

Ak, k ∈ {1, 2n −

1}
)

(of all elements of P+
n ) and B(ℓ) = (Bk, k ∈ {0, 2n − 2}) (of elements of Pn = P+

n ∪ {{0}}),
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and an “increasing” way to built L−1
n (ℓ) recursively by adding at step k ∈ {0, 2n−2} a branch of

length ℓAk+1
(and graft it on vBk

chosen among vk). It is obvious from the construction that if
ℓ and ℓ′ are two sequences in Im (Ln) with the same zeros (that is, ℓA = 0 if and only if ℓ′A = 0),
then we have A(ℓ) = A(ℓ′) and B(ℓ) = B(ℓ′). Thus, the sets A(ℓ) and B(ℓ) are implicitly coded
by the zeros of ℓ.

In a second step, given A(ℓ) and B(ℓ) from Remark 5.27 and a sequence T ∗ = (T ∗
A, A ∈ Pn

+)

in T
spine,0
loc−K , we build by a forward induction an “increasing” sequence of marked locally compact

trees
(

(Tk,vk), k ∈ {0, . . . , 2n − 1}
)

such that (Tk,vk) belongs to T
(k)
loc−K, has root ̺, and the

components of the vector vk can be ranked as the root ̺ = v{0} and (vAi
, 1 ≤ i ≤ k). Recall also

the truncation function r̃
[2],+
t given in (49). We set (T0,v0) =

(

{̺}, ̺
)

and for k ∈ {0, 2n − 2}:

(58) (Tk+1,vk+1) = (Tk,vk)⊛Bk
r̃
[2],+
ℓAk+1

(T ∗
Ak+1

),

where the distinguished vertex of r̃
[2],+
ℓAk+1

(T ∗
Ak+1

) is identified with vAk+1
(and its root with vBk

).

Then, we set:

(59) Graftn(ℓ, T
∗) = (T2n−1,v) with v = (v{k}, 0 ≤ k ≤ n).

Figure 4. Example of a replacement of the branch ]]w{1,...,n}, v{1,...,n}]].
Upper left: The tree S with the branch ]]w{1,...,n}, v{1,...,n}]] in bold.
Upper right: The branch ]]w{1,...,n}, v{1,...,n}]] replaced by the first component of

the marked tree r
[2],+
ℓ{1,...,n}

(T ∗
{1,...,n}).

Lower: The tree T ∗
{1,...,n} with its marked infinite branch.

It is easy to check that the equivalence class of (T2n−1,v) in T
(n)
loc−K does not depend on the

choice of T ∗ = (T ∗
A, A ∈ P+

n ) in their own equivalence class. Thus, the map Graftn defined by:

(ℓ, T ∗) 7→ Graftn(ℓ, T
∗)

is well defined from Im(Ln) ×
(

T
spine,0
loc−K

)P+
n

to T
(n)
loc−K. The main result of this section is the

measurability of the map Graftn.
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Lemma 5.28 (Measurability of the grafting map). Let n ∈ N
∗. The map Graftn from Im (Ln)×

(

T
spine,0
loc−K

)P+
n

to T
(n)
loc−K is measurable.

Proof. For J ⊂ Pn
+, we write IJ =

{

ℓ ∈ Im (Ln) : ℓA = 0 if and only if A ∈ J
}

. Thus, the

closed set Im (Ln) of R
Pn
+

+ can be written as the union of IJ over all the subsets J of Pn
+.

Furthermore, the sets (IJ , J ⊂ Pn
+) are Borel sets (as Im (Ln) is a Borel set), and they are

pairwise disjoint. Thanks to Remark 5.27, the maps ℓ 7→ A(ℓ) and ℓ 7→ B(ℓ) are constant over
IJ . We deduce from Equation (59) and recursion (58), Lemma 5.13 on the continuity of the

grafting procedure and Lemma 5.24 on the measurability of (t, T ) 7→ r̃
[2],+
t (T ) that the function

Graftn from IJ×
(

T
spine,0
loc−K

)P+
n

to T
(n)
loc−K is measurable (as long as IJ is not empty). Since there is

a finite number of such sets IJ , we deduce that the function Graftn from Im (Ln)×
(

T
spine,0
loc−K

)P+
n

to T
(n)
loc−K is measurable. �

Remark 5.29. Since the map Ln is continuous one-to-one from T
(n)
dis to Im (Ln), we deduce that

the map:

(T, T ∗) 7→ Graftn
(

Ln(T ), T
∗
)

from T
(n)
dis ×

(

T
spine,0
loc−K

)P+
n

to T
(n)
loc−K is measurable. Without ambiguity, we shall simply write

Graftn(T, T
∗) for Graftn

(

Ln(T ), T
∗
)

.

Remark 5.30. Intuitively, the maps Graftn and Splitn should be the inverse one of the other. More

precisely, we have the following result. For every (T, (̺, v)) ∈ T
(1)
loc−K, we define the tree Sp(T ) =

(T ′, S′) ∈ T
spine,0
loc−K by T ′ = Π◦

1 (T ⊛1 [0,∞)) with the marked spine S = Π◦
1 ([[̺, v]] ⊛1 [0,∞)).

Then then we have, for every (T,v) ∈ T
(n),0
loc−K (that is, the root of T is not a branching vertex,

see Definition (35)), that the following equality hold in T
(n)
loc−K:

(60) Graftn

(

Spann(T,v),Sp
(

Splitn(T,v)
)

)

= (T,v),

where Sp(TA, A ∈ Pn) = (Sp(TA), A ∈ P+
n ).

5.10. A measure associated with trees in T
spine,0
loc−K or T

(1)
loc−K. Recall T0 = ({̺}, ̺) ∈ Tloc−K

is the tree reduced to its root. We define

T
∗
loc−K = Tloc−K \ {T0}(61)

endowed with the distance:

d∗LGH(T, T
′) = dLGH(T, T

′) +
∣

∣H(T )−1 −H(T ′)−1
∣

∣ .

Clearly (T∗
loc−K, d

∗
LGH) is Polish with the topology induced by the topology on Tloc−K (as H

is continuous on Tloc−K), and for all ε > 0, the sets BT∗
loc−K

(ε) = {T ∈ T
∗
loc−K : H(T ) ≥ ε}

are closed and bounded. Furthermore, every bounded set is a subset of BT
∗
loc−K

(ε) for ε > 0

small enough. Set E = R+ × T
∗
loc−K endowed with the distance dE((u, T ), (u

′, T ′)) = |u −
u′| + d∗LGH(T, T

′), so that (E, dE) is a Polish space. Every bounded set of E is a subset of
BE(ε) = [0, ε−1]×BT∗

loc−K
(ε) for ε > 0 small enough. We define M(E), the set of point measures

on E which are bounded on bounded sets, that is finite on BE(ε) for all ε > 0. We say that a
sequence (Mn, n ∈ N) of elements of M(E) converges to a limit M, if limn→∞Mn(f) = M(f)
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for all continuous functions on E with bounded support. According to [14, Proposition 9.1.IV]
the space M(E) is Polish and the Borel σ-field is the smallest σ-field such that the application
M 7→ M(A) is measurable for every Borel set A of E.

We build a tree from a point measure M =
∑

i∈I δ(hi,Ti) ∈ M(E) by grafting Ti at height hi on
an infinite spine. Recall the infinite spine T1 = ([0,∞), 0) endowed with the Euclidean distance

is an element of Tspine,0
loc−K ⊂ Tloc−K. For T ∈ Tloc−K, let (T̃ , d, ̺) denote a rooted locally compact

tree in the equivalent class T . With obvious notation, we define the tree T ′ as follow:

T ′ = T̃1 ⊔i∈I (T̃i \ {̺i}),

∀x, x′ ∈ T ′, d(x, x′) =



















di(x, x
′) if x, x′ ∈ T̃i, i ∈ I

|x− x′| if x, x′ ∈ T̃1,

di(x, ̺i) + |hi − x| if x ∈ T̃i, x
′ ∈ T̃1, i ∈ I,

di(x, ̺i) + dj(x
′, ̺j) + |hi − hj | if x ∈ T̃i, x

′ ∈ T̃j with i 6= j, i, j ∈ I,

where ⊔ denotes the disjoint union. By construction T ′ is a tree rooted at ̺ = ̺1, the root of T̃1.
Because M is finite on bounded sets of E, it is not difficult to check that T ′ is locally compact. It

is easy to see that the equivalence class of Tree(M) = (T ′, T̃1) in T
[2]
loc−K does not depend of the

choice of the representatives in the equivalence classes of T1 and Ti for i ∈ I. Hence, identifying
Tree(M) with its equivalence class, we get that the map Tree is well defined from M(E) into

T
[2]
loc−K.

Lemma 5.31 (Regularity of the map Tree). The map Tree from M(E) to T
[2]
loc−K (or T

spine
loc−K) is

continuous.

Proof. We only give the principal arguments of the proof. Let (Mn, n ∈ N) a sequence of point
measures, elements of M(E), which converges to M. Let ε > 0 be fixed such that M(∂BE(ε)) =
0. For n large enough, we have Mn(BE(ε)) = M(BE(ε)) and the atoms of Mn in BE(ε)
converge to the atoms of M in BE(ε). Using correspondence between the representations of
the atoms, and similar arguments as in the proof of Lemma 5.13, we deduce that the distance

between Tree(Mn) and Tree(M) (in T
[2]
loc−K) is small if ε > 0 is small (to prove this statement

in detail, one can use the distance on M(E) given in [13, Equation (A2.6.1)]). This means that

limn→∞ d
[2]
LGH(Tree(Mn),Tree(M)) = 0, and thus the map Tree is continuous on T

[2]
loc−K. �

We shall now prove that the restriction of the map Tree to a subset of M(E) is injective and
bi-measurable. For this reason, we consider the subset of Tloc−K of (equivalence classes of) trees
not reduced to its root and such that the root is not a branching vertex (recall Definitions (61)
and (35) with n = 0):

(62) T
0,∗
loc−K = T

∗
loc−K ∩ T

0
loc−K.

As a direct consequence of Lemma 5.9, T0,∗
loc−K is a Borel subset of Tloc−K and thus of T∗

loc−K. In
particular, the following subset of M(E) is a Borel set:

M̃(E) =
{

M ∈ M(E) : M
(

R+ × (T0,∗
loc−K)

c
)

= 0
}

.

We now introduce a map M from T
spine
loc−K to M(E) as follow. Let T ∗ = (T, T1) be a rooted

locally compact tree with an infinite marked spine. In particular, we have T1 ⊂ T and T1 is
equivalent to ([0,∞), d, 0). Let (T ◦

i , i ∈ I) be the family of the connected components of T \ T1.
For every i ∈ I, let us denote by xi the MRCA of T ◦

i , that is, the unique point of T1 such that
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for every x ∈ T ◦
i , [[̺, x]] ∩ T1 = [[̺, xi]]. We then set Ti = T ◦

i ∪ {xi} viewed as a locally compact
tree rooted at xi. Then, we define the point measure M(T ∗) on R+×T

∗
loc−K ⊂ R+×Tloc−K by:

M(T ∗) =
∑

i∈I

δ(H(xi),Ti).

As M(T ∗) does not depends on the representatives chosen in the equivalence class of T ∗ in

T
spine
loc−K, we deduce that M : T ∗ 7→ M(T ∗) is a map from T

spine
loc−K to M(E). We now give the

main result of this section.

Proposition 5.32 (Regularity of the maps Tree and M). The map M is bi-measurable from

T
spine
loc−K to M̃(E) with M̃(E) = Im(M). The map Tree is bi-measurable from M̃(E) to T

spine
loc−K.

Furthermore, the map Tree◦M is the identity map on T
spine
loc−K and M ◦Tree is the identity map

on M̃(E).

Proof. By construction, the roots of all the trees Ti in the point measure M(T ∗) are not branch-

ing vertices, so that M(T ∗) belongs to M̃(E) ⊂ M(E). We also get by construction that
Tree(M(T ∗)) = T ∗. This implies that M is injective and thus bi-measurable thanks to Lusin’s
theorem [32].

We also have by construction that M ◦ Tree(M) = M for M ∈ M̃(E). This implies that

Im(M) = M̃(E) and also that Tree restricted to M̃(E) is injective and thus bi-measurable thanks
to Lusin’s theorem. �

We extend the map T ∗ 7→ M(T ∗) to T
(1)
loc−K in the following way. For

(

T,v = (̺, v1)
)

∈ T
(1)
loc−K,

we graft the infinite spine T1 on v1 and consider the rooted locally compact tree with an infinite

marked spine Sp(T ) ∈ T
spine
loc−K defined in Remark 5.30. Then, we define M(T,v) as M(Sp(T )).

From the continuity of the grafting procedure, see Lemma 5.13 and the continuity of Π◦
1, see

Lemma 5.5, and the measurability of the map M, we deduce that the map (T,v) 7→ M(T,v),
which we still denote byM is measurable. In fact, we have the stronger following result. Consider
the set of (equivalence class of) n-pointed rooted locally compact tree such that the root is not
a branching vertex and the pointed vertices are not equal to the root:

(63) T
(n),0,∗
loc−K =

{

(T,v) ∈ T
(n),0
loc−K : d(̺, vi) > 0 for all i ∈ {1, . . . , n}

}

,

where v = (̺, v1, . . . , vn). According to Lemma 5.9 and Remark 5.11, the set T
(n),0,∗
loc−K is a Borel

subset of T
(n)
loc−K. Recall from (62) that the Borel set T

0,∗
loc−K is the set of (equivalence class

of) 1-pointed rooted locally compact trees such that the root is not a branching vertex and the
pointed vertex is not equal to the root.

Corollary 5.33 (Recovering (T,v) from M(T,v)). The following map from T
(1)
loc−K to R+ ×

M(E) defined by:

(T,v) 7→
(

d(̺, v),M(T,v)
)

is measurable and its restriction to T
(1),0,∗
loc−K is injective and bi-measurable.

Proof. Set M
∗(E) =

{

M ∈ M(E) : M
(

{0} × T
∗
loc−K

)

= 0
}

. For M ∈ M
∗(E), we get that

Tree(M) belongs to T
spine,0
loc−K . So, we can define the map g on R+ × M

∗(E) by g(a,M) =

Graft1
(

[0, a],Tree(M)
)

, where the tree [0, a] has root 0 and pointed vertex a. Thanks to the
continuity of the grafting procedure, see Lemma 5.28 and of the function Tree, see Lemma 5.31,
we deduce that g is continuous.
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Let (T,v) ∈ T
(1),0,∗
loc−K. As the root of T is not a branching vertex, we get that M(T,v) belongs

to M
∗(E), and thus g

(

d(̺, v),M(T,v)
)

, where v = (̺, v), is well defined and in fact equal to

(T,v) thanks to (60) with n = 1. This implies that the map (T,v) 7→
(

d(̺, v),M(T,v)
)

defined

on T
(1),0,∗
loc−K is injective, and thus bi-measurable by Lusin’s theorem [32]. �

We extend this result to n-pointed trees. Recall from (55) that, for (T,v) ∈ T
(n)
loc−K, we have

Splitn(T,v) =
(

T̂A(T,v), A ∈ Pn

)

and set MA[T,v] = M
(

T̂A(T,v)
)

for A ∈ P+
n .

Corollary 5.34 (Recovering (T,v) from the MA[T,v]). The following map from T
(n)
loc−K to

T
(n)
dis ×M(E)P

+
n defined by:

(T,v) 7→
(

Spann(T,v),
(

MA[T,v], A ∈ P+
n

)

)

is measurable and its restriction to T
(n),0,∗
loc−K is injective and bi-measurable.

Proof. Using the measurability of the functions Span from T
(n)
loc−K to T

(n)
loc−K (see Lemma 5.6),

Ln from T
(n)
loc−K to R

P+
n

+ (see Lemma 5.25), Splitn from T
(n)
loc−K to

(

T
(1)
loc−K

)2n

(see Lemma 5.26)

and the map (T,v) 7→ M(T,v) from T
(1)
loc−K to M(E) (see Corollary 5.33), we deduce that the

following map, say g1, from T
(n)
loc−K to T

(n)
loc−K ×

(

R+ ×M(E)
)P+

n is measurable:

g1 : (T,v) 7→
(

Span(T,v),
(

(ℓA(T,v),MA[T,v]), A ∈ P+
n

)

)

.

Notice that (T,v) ∈ T
(n),0,∗
loc−K implies that T̂{0} is reduced to its root. Using the measurable

functions Graftn and the map defined in Corollary 5.33, we easily deduce that g1 restricted to

T
(n),0,∗
loc−K is injective and thus bi-measurable by Lusin’s theorem [32]. Since Ln(T,v) is also equal

to Ln

(

Span(T,v)
)

, we deduce that the following map g2, from T
(n)
loc−K to T

(n)
loc−K × M(E)P

+
n is

measurable:

g2 : (T,v) 7→
(

Span(T,v),
(

MA[T,v], A ∈ P+
n

)

)

.

Furthermore, its restriction to T
(n),0,∗
loc−K is also injective and thus bi-measurable. �

6. Backbone decomposition

6.1. A discrete random tree constructed by successive grafts.

6.1.1. A random tree. In this section, for a ≥ 0, we denote by
(

[0, a], (̺ = 0, a)
)

∈ T
(1)
dis the

(equivalent class of the) tree [0, a] endowed with the usual distance on R, rooted at ̺ = 0 and
pointed at a; and when there is no possible confusion we simply denote it by [0, a].

Let t > 0 and let ν be a probability measure on [0, t]. Let ξ = (ξk, k ∈ N
∗) be a sequence

of independent random variables with distribution ν and let
(

(Kk, εk), k ∈ N
∗
)

be a sequence
of independent random variables independent of the sequence ξ, with Kk uniformly distributed
on {1, . . . , k} independent of εk uniformly distributed on {g,d}. For every integer n ≥ 2, we

set (ξ
(n)
1 , . . . , ξ

(n)
n−1) the increasing order statistic of (ξ1, . . . , ξn−1). Then we define the family of

pointed trees
(

(T
(n)
1 ,v

(n)
1 ), . . . , (T

(n)
n ,v

(n)
n )

)

, with (T
(n)
k ,v

(n)
k ) ∈ T

(k)
dis , recursively by:

• T
(n)
1 = [0, t], that is, (T

(n)
1 ,v

(n)
1 ) =

(

[0, t], (0, t)
)

∈ T
(k)
dis ⊂ T

(1)
loc−K.
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• For every k ∈ {1, . . . , n− 1}, conditionally given the random variable (T
(n)
k ,v

(n)
k ) in T

(k)
dis ,

we define the T
(k+1)
loc−K-valued random variable (T

(n)
k+1,v

(n)
k+1) by grafting a branch of length

t − ξ
(n)
k+1 uniformly on the left or on the right of a uniformly chosen vertex among the

k vertices of T
(n)
k at level ξ

(n)
k+1, and the new leaf (which is, as all the other leaves, at

level t) is added to the vector recording the pointed vertices. Formally, using the grafting
procedure (39) from Remark 5.14, we set:

(64) (T
(n)
k+1,v

(n)
k+1) = (T

(n)
k ,v

(n)
k )⊛

εk+1

Kk,ξ
(n)
k+1

[

0, t− ξ
(n)
k+1

]

·

According to Lemma 5.15 the grafting procedure is continuous and thus measurable, we

deduce that (T
(n)
k ,v

(n)
k ) is a T

(k)
K -valued random variable for every 1 ≤ k ≤ n.

By construction, we also get that (T
(n)
k ,v

(n)
k ) belongs to T

(k)
dis , and is thus a T

(k)
dis -valued random

variable, for all k ∈ {1, . . . , n}. To simplify the notations, we set Tn = (T
(n)
n ,v

(n)
n ) for the T

(n)
K -

valued (and T
(n)
dis -valued) random variable. By construction, we also get that Tn is a planar tree

with the leaves v1, . . . , vn ranked from left to right, where v
(n)
n = (v0 = ̺, . . . , vn).

Recall that for a rooted tree T , L T denotes its length measure; and we simply write L when
there is no ambiguity. Informally, for x ∈ T chosen according to L (dx), we denote by T ⊛x [0, a]
the tree T on which a segment of length a is grafted at the vertex x. It is possible to make
this construction in a measurable way, in this direction see for example [8, Equation (1.6)] and
Section 3 therein. As we shall consider the discrete tree Tn for T , we refer to Remark 6.2 below
for a direct proof. The next lemma relates the distributions of Tn and of Tn+1; its proof is given
in the next section.

Lemma 6.1. Let t ≥ 0. Assume that the probability distribution ν has a positive density fdens
with respect to the Lebesgue measure on [0, t]. For n ∈ N

∗, G a measurable non-negative function

defined on T
(n+1)
dis , and ε a {g,d}-valued uniform random variable independent of Tn, we have:

(65) E

[
∫

Tn

L (dx) fdens
(

H(x)
)

G
(

Tn ⊛
ε
x

[

0, t−H(x)
]

)

]

=
n+ 1

2
E
[

G
(

Tn+1

)]

.

Remark 6.2. We comment on the left-hand side of (65), and more precisely we check that the
integral I =

∫

Tn
L (dx) fdens(H(x))G

(

Tn ⊛ε
x [0, t −H(x)]

)

is a non-negative random variable.

Recall that Tn = (T
(n)
n ,v

(n)
n ). Then, we can write I as follows:

I =

n
∑

k=1

∫ t

ξ
(n)
k−1

dh fdens(h)G
(

Tn ⊛
ε
k,h [0, t− h]

)

,

with the convention that ξ
(n)
0 = 0. Therefore, using the continuity of the grafting function,

see Lemma 5.15, we obtain that I is a non-negative real-valued random variable, and thus its
expectation is well defined.

6.1.2. Proof of Lemma 6.1. The proof is based on two technical lemmas. We first consider the
case t = 1 and ν the uniform distribution on [0, 1]. Let us denote by Tunif

n for Tn when ν is the
uniform distribution on [0, 1].
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Lemma 6.3. For n ∈ N
∗, G a measurable non-negative functional defined on T

(n+1)
dis , and ε a

{g,d}-valued uniform random variable independent of Tunif
n , we have:

(66) E

[

∫

Tunif
n

L (dx)G
(

Tunif
n ⊛

ε
x

[

0, t−H(x)
]

)

]

=
n+ 1

2
E

[

G
(

Tunif
n+1

)

]

.

Remark 6.4. From (66), we see n+1
2 is just the mean length of Tunif

n .

Proof. To simplify notation, we write Tn for Tunif
n . We give a proof by induction. For n = 1, this

is a direct consequence of the construction of T2 = T
(2)
2 from T

(2)
1 = T1 = [0, 1] given by (64).

Let n ∈ N
∗ and assume that (66) holds for n replaced by any k ∈ {1, . . . , n − 1}. We will use

for the proof a special representation of planar binary trees. Let T be a compact planar binary
tree rooted at ̺, with all leaves at height 1. Let us denote by x its lowest branching vertex, set
h = H(x) and set T̃ g (resp. T̃ d) the left (resp. right) sub-tree above x. In our settings, we have:

h = H(x) and T =
(

[[̺, x]]⊛x T̃
g
)

⊛
d
x T̃

d =
(

[[̺, x]]⊛x T̃
d
)

⊛
g
x T̃

g,

where one remove the vertex x from the pointed vertices after the graftings. For convenience, we
consider the scaled left and right trees T g = (1− h)−1T̃ g and T d = (1− h)−1T̃ d, so that T g and
T d are rooted bounded binary planar trees with all their leaves at height 1. We call (h, T g, T d)
the decomposition of T according to its lowest branching vertex.

Let (ξ
(n+1)
1 ,Tg

n+1,T
d
n+1) be the decomposition ofTn+1 according to its lowest branching vertex

(which is indeed at height ξ
(n+1)
1 by construction). Denote by In+1 the number of leaves of Tg

n+1.
Using a Pólya urn starting with two balls of color g and d, we get that, by construction, In+1

is the number of balls of color g in the urn after n draws. Thus In+1 is uniform on {1, . . . , n}

and independent of ξ
(n+1)
1 . Notice that if U is a uniform random variable on [0, 1], for every

h ∈ (0, 1), conditionally given {U ≥ h}, the random variable (1− h)−1(U − h) is still uniformly

distributed on [0, 1]. This gives that, conditionally on {ξ
(n+1)
1 = h} and {In+1 = i}, the two trees

Tg
n+1 and Td

n+1 are independent and distributed respectively as Ti and Tn+1−i.

We consider a measurable non-negative functional G defined on the space of rooted compact
binary planar trees with a finite number of leaves, all of them at height 1 of the form:

(67) G(T ) = g1(h) g2(T
g) g3(T

d),

where the gi’s are measurable non-negative functionals and (h, T g, T d) is the decomposition of T
according to its lowest branching vertex. Setting fj(i) = E [gj(Ti)] for j ∈ {2, 3}, we have since

ξ
(n+1)
1 is distributed according to a β(1, n) distribution:

E [G(Tn+1)] =

(
∫ 1

0
g1(h)n(1− h)n−1 dh

)

1

n

n
∑

i=1

f2(i)f3(n + 1− i)

=

(
∫ 1

0
g1(h) (1 − h)n−1 dh

) n
∑

i=1

f2(i)f3(n+ 1− i).(68)

On the other hand, let (ξ
(n)
1 ,Tg

n,Td
n) be the decomposition of Tn according to its lowest

branching vertex. Let x ∈ Tn and set h = H(x).
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• If h < ξ
(n)
1 , the decomposition of Tn⊛

g
x [0, 1−h] according to its lowest branching vertex

is given by (h, [0, 1], (1 − h)−1T′
n) where T′

n is as the tree Tn but for its lowest branch

whose length is ξ
(n)
1 − h instead of ξ

(n)
1 . Notice that the shapes of the tree T′

n and Tn

are the same. Then using again the property of conditioned uniform random variables,

we deduce that conditionally on {ξ
(n)
1 ≥ h}, the tree (1 − h)−1T′

n is distributed as Tn.
Thus, we get:

(69) E

[
∫

Tn

1
{H(x)<ξ

(n)
1 }

L (dx)G
(

Tn ⊛
g
x [0, 1 − h]

)

]

= E

[

∫ ξ
(n)
1

0
g1(h) dh

]

f2(1)f3(n).

By symmetry, we have:

(70) E

[
∫

Tn

1
{H(x)<ξ

(n)
1 }

L (dx)G
(

Tn ⊛
d
x [0, 1 − h]

)

]

= E

[

∫ ξ
(n)
1

0
g1(h) dh

]

f2(n)f3(1).

• For x ∈ T̃g
n, the decomposition of Tn⊛

ε
x [0, 1−h] according to its lowest branching vertex

is given by (ξ
(n)
1 , (1 − h)−1T ′,Td

n), where T ′ = T̃g
n ⊛ε

x [0, 1 − h]. Notice that the length

measure on the tree Tg
n is obtained by scaling by (1− ξ

(n)
1 )−1 the length measure on Tn

restricted to T̃g
n. We deduce that:

E

[
∫

Tn

1{x∈T̃g
n}

L
Tn(dx)G

(

Tn ⊛
ε
x [0, 1 − h]

)

]

= E

[

g1(ξ
(n)
1 )g3(T

d
n)

∫

Tn

1{x∈T̃g
n}

L
Tn(dx) g2

(

(1− ξ
(n)
1 )−1

(

T̃g
n ⊛

ε
x [0, 1 −H(x)]

)

)

]

= E

[

g1(ξ
(n)
1 )g3(T

d
n)

∫

T
g
n

(1− ξ
(n)
1 )L T

g
n(dy) g2

(

Tg
n ⊛

ε
y

[

0, 1 −H(y)
]

)

]

= E

[

(1− ξ
(n)
1 )g1(ξ

(n)
1 )

] 1

n− 1

n−1
∑

i=1

f3(n− i)E

[
∫

Ti

L
Ti(dy) g2

(

Ti ⊛
ε
y

[

0, 1−H(y)
]

)

]

.

where we used the distribution of (Tg
n,Td

n) conditionally on ξ
(n)
1 and In for the last

equality. Using that, by induction, (66) holds for n = i, we get:

(71) E

[
∫

Tn

1{x∈T̃g
n}

L (dx)G
(

Tn ⊛
ε
x [0, 1− h]

)

]

= E

[

(1− ξ
(n)
1 )g1(ξ

(n)
1 )

] 1

n− 1

n−1
∑

i=1

i+ 1

2
f2(i+ 1) f3(n− i)

= E

[

(1− ξ
(n)
1 )g1(ξ

(n)
1 )

] 1

n− 1

n
∑

i=2

i

2
f2(i) f3(n− i+ 1).
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• By symmetry, for x ∈ T̃d
n, we get:

(72) E

[
∫

Tn

1{x∈T̃d
n}

L (dx)G(Tn ⊛
ε
x [0, 1 − h])

]

= E

[

(1− ξ
(n)
1 )g1(ξ

(n)
1 )

] 1

n− 1

n
∑

i=2

i

2
f3(i) f2(n− i+ 1)

= E

[

(1− ξ
(n)
1 )g1(ξ

(n)
1 )

] 1

n− 1

n−1
∑

i=1

n− i+ 1

2
f2(i) f3(n− i+ 1).

Summing (69) times P(ε = g) = 1/2, (70) times P(ε = d) = 1/2, (71) and (72), and using that

ξ
(n)
1 has distribution β(1, n − 1) so that:

E

[

∫ ξ
(n)
1

0
g1(h) dh

]

=
1

n− 1
E

[

(1− ξ
(n)
1 )g1(ξ

(n)
1 )

]

=

∫ 1

0
g1(h)(1 − h)n−1 dh,

we deduce that:

E

[
∫

Tn

L (dx)G
(

Tn ⊛
ε
x

[

0, 1 −H(x)
]

)

]

=

(
∫ 1

0
g1(h)(1 − h)n−1 dh

) n
∑

i=1

n+ 1

2
f2(i)f3(n+ 1− i).

Thanks to (68), we deduce that (66) holds for G given by (67). Then use a monotone class
argument to conclude that (66) holds for any measurable non-negative G. This concludes the
proof by induction. �

We now consider t ≥ 0 and assume that the probability distribution ν has a positive density
fdens with respect to the Lebesgue measure on [0, t]. Let F denote the cumulative distribution
function of ν. By the assumptions on fdens, F is one to one from [0, t] onto [0, 1] and its inverse
F−1 is continuous. For a compact rooted real tree (T, d, ̺), we define:

∀x ∈ T, Hfdens(x) = F−1(H(x)),

∀x, y ∈ T, dfdens(x, y) = Hfdens(x) +Hfdens(y)− 2Hfdens(x ∧ y).

The scaling map Rfdens : (T, d, ̺) 7−→ (T, dfdens , ̺) is then well-defined from {T ∈ TK : H(T ) ≤ 1}
to TK. We shall now prove it is continuous.

Lemma 6.5. The map Rfdens from {T ∈ TK, H(T ) ≤ 1} to TK is continuous.

Proof. Let ε > 0. As F−1 is uniformly continuous with our assumptions, there exists δ > 0 such
that, for every x, y ∈ [0, 1]:

|x− y| < δ =⇒
∣

∣F−1(x)− F−1(y)
∣

∣ ≤
ε

2
·

Let T, T ′ ∈ TK with H(T ) ≤ 1 and H(T ′) ≤ 1 such that dGH(T, T
′) < δ/8. Then, there

exists a correspondence R between (elements in the equivalence classes) T and T ′ such that
dist (R) ≤ 2dGH(T, T

′) + δ/4 < δ/2.
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For every (x, x′), (y, y′) ∈ R, we have:

∣

∣dfdens(x, y)− d′fdens(x′, y′)
∣

∣ =
∣

∣Hfdens(x) +Hfdens(y)− 2Hfdens(x ∧ y)−Hfdens(x′)

−Hfdens(y′) + 2Hfdens(x′ ∧ y′)
∣

∣

≤
∣

∣

∣
F−1

(

H(x)
)

− F−1
(

H(x′)
)

∣

∣

∣
+

∣

∣

∣
F−1

(

H(y)
)

− F−1
(

H(y′)
)

∣

∣

∣

+ 2
∣

∣

∣
F−1

(

H(x ∧ y)
)

− F−1
(

H(x′ ∧ y′)
)

∣

∣

∣
.

As (x, x′) ∈ R, we have
∣

∣H(x) − H(x′)
∣

∣ ≤ dist (R) < δ and consequently,
∣

∣

∣
F−1

(

H(x)
)

−

F−1
(

H(x′)
)

∣

∣

∣
< ε/2. Similarly, we have

∣

∣

∣
F−1

(

H(y)
)

− F−1
(

H(y′)
)

∣

∣

∣
< ε/2. We also have:

∣

∣H(x ∧ y)−H(x ∧ y)
∣

∣ =
1

2

∣

∣H(x) +H(y)− d(x, y) −H(x′)−H(y′) + d′(x′, y′)
∣

∣

≤
1

2

∣

∣H(x)−H(x′)
∣

∣+
1

2

∣

∣H(y)−H(y′)
∣

∣+
1

2

∣

∣d(x, y) − d′(x′, y′)
∣

∣

≤
3

2
dist (R)

< δ.

This gives
∣

∣

∣
F−1

(

H(x ∧ y)
)

− F−1
(

H(x′ ∧ y′)
)

∣

∣

∣
< ε/2.

To conclude, we have distfdens(R) < 2ε which implies that dfdensGH (T, T ′) < ε. This gives the

continuity of the map Rfdens. �

We now prove Lemma 6.1. Recall that Tn denotes the trees constructed with the probabil-
ity measure ν(dx) = fdens(x) dx and Tunif

n the trees constructed with the uniform distribution
on [0, 1] as studied in the first step. By construction, for all n ∈ N

∗, the random variables
Rfdens(Tunif

n ) and Tn have the same distribution. Notice also that, for every T ∈ TK and every
non-negative measurable function g on R+ × Tloc−K, we have:

∫

T
L

T (dy) g
(

H(y), T
)

=

∫

Rfdens(T )
L

Rfdens (T )(dx) fdens
(

Hfdens(x)
)

g
(

Hfdens(x), Rfdens(T )
)

.

Let G be a measurable non-negative functional defined on the space of rooted compact binary
planar trees with a finite number of leaves, all of them at height t. We first have:

E

[
∫

Tn

L
Tn(dx) fdens

(

H(x)
)

G
(

Tn ⊛
ε
x

[

0, t−H(x)
]

)

]

= E

[

∫

Rfdens (Tunif
n )

L
Rfdens(Tunif

n )(dx) fdens
(

Hfdens(x)
)

G
(

Rfdens(Tunif
n )⊛ε

x

[

0, t−Hfdens(x)
]

)

]

= E

[

∫

Tunif
n

L
T

unif
n (dy) G ◦Rfdens

(

Tunif
n ⊛

ε
y

[

0, 1−H(y)
]

)

]

.

Applying Lemma 6.1, and then that Rfdens(Tunif
n+1) and Tn+1 have the same distribution, we get

the result.
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6.1.3. An infinite tree with no leaves. Let fint be a positive locally integrable function on [0,+∞).
Let S be a Poisson point measure on R+ with intensity fint(t) dt. We denote by (ξi, i ≥ 1) the
increasing sequence of the atoms of S and by N the process

(

Nt = S
(

[0, t]
)

, t ≥ 0
)

.
Let (εn, n ≥ 1) be independent random variables uniformly distributed on {g,d} and let

(Kn, n ≥ 1) be independent random variables uniformly distributed on {1, 2, . . . , n} respectively,
all these variables being independent and independent of S.

We define a tree-valued process (Tt, t ≥ 0) where, for every t ≥ 0, the random tree Tt has
height t and Nt + 1 leaves, all of them at this height t. Before going into this construction, we
first define a function Growthn on rooted n-pointed trees. We define Growthn((T,v), h) as the
tree obtained by grafting on all the pointed vertices of T a branch of length h and pointing the
new leaves with the order naturally induced by v. Set An = {0, n + 1, . . . , 2n}. Formally, we
have:

Growthn
(

(T,v), h
)

= Π◦,An

2n

(

(

(

T,v)⊛1 [0, h]
)

⊛2 [0, h]
)

· · ·⊛n [0, h]

)

,

where Π◦,An

2n , defined in (34), removes the first n pointed vertices: for (T,v) ∈ T
(2n)
loc−K, we have

Π◦,An

2n (T,v) = (T,v′), with v = (v0 = ̺, v1, . . . , v2n) and v′ = (v′0 = ̺, v′1 = vn+1, . . . , v
′
n = v2n).

Thanks to the continuity of the grafting procedure (see Lemma 5.15) and the continuity of Π◦,An

2n

(see Lemma 5.5), we get that Growthn is a continuous map from T
(n)
loc−K to itself.

We can now construct the process (Tt, t ≥ 0) inductively. For 0 ≤ t ≤ ξ1, we set Tt =
(

[0, t], (0, t)
)

and Nt = 0.
Let n ∈ N

∗ and assume that (Tξn ,vn) is a tree of height ξn with n leaves, all of them at height
ξn and pointed (i.e. the vector vn is composed of the root of Tξn and all its leaves). Then, we
define the process on (ξn, ξn+1] by setting, for every t ∈ (ξn, ξn+1],

Tt = Growthn(Tξn , t− ξn)⊛
εn
Kn,ξn

[0, t− ξn] and Nt = n.

Standard properties of Poisson processes give the following result.

Lemma 6.6. For every n ≥ 1 and every t > 0, conditionally given Nt = n − 1, the tree Tt is
distributed as the tree Tn of Section 6.1.1 associated with the density fdens on [0, t] given by:

(73) fdens(u) =
fint(u)

F (t)
1[0,t](u) with F (t) =

∫ t

0
fdens(u) du.

Recall the definition of the function Π◦
n which removes the pointed vertices. It is easy to see

that the process
(

Π◦
Nt+1(Tt), t ≥ 0

)

satisfies the Cauchy property in Tloc−K as rs
(

Π◦
Nt+1(Tt)

)

=

rs
(

Π◦
N ′

t+1(Tt′)
)

for every s ≤ t ≤ t′. Thus this sequence converges a.s. in Tloc−K, and we write:

(74) T
ske = lim

t→+∞
Π◦

Nt+1(Tt).

The tree Tske is a Tloc−K-valued random variable which has no leaves and thus belongs to T
no leaf
loc−K,

and the process
(

Tske
t = rt(T

ske), t ≥ 0
)

is distributed as the process
(

Π◦
Nt+1(Tt), t ≥ 0

)

. The

tree Tske will serve as a backbone for the description of the genealogical tree of the conditioned
CSBP.

We present now an ancillary result which is a consequence of Lemma 6.1 on two tree-valued
processes that have the same one-dimensional marginal.

We first consider the process (Tt, t ≥ 0) associated with the intensity fint ≡ 1, that is, fint(t) =
1 for all t ≥ 0. Then we construct a sequence t = (tn, n ≥ 1) of increasing real trees, with

tn ∈ T
(n)
K for every n ≥ 1, all of them of height 1. Let (εk, k ≥ 1) be independent random
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variables uniformly distributed on {g,d}. We define the sequence t by induction by setting first

t1 =
(

[0, 1], (0, 1)
)

. Let n ≥ 1 and assume that (tn,vn) is a tree of T
(n)
K with height 1 and with

n leaves all of them at height 1. Conditionally given tn, let Vn+1 be a random element on tn
uniformly chosen according to the length measure; that is Vn+1 is distributed according to the
measure cn L , with L the length measure on tn and the normalization cn = 1/L (tn). Notice
that Vn+1 is a.s. not a leaf nor the root of tn. Then we set:

tn+1 = tn ⊛
εn+1

Vn+1

[

0, 1 −H(Vn+1)
]

.

In particular, for every measurable nonnegative function G, we have:

(75) E
[

G(tn+1)| t1, . . . , tn, εn+1

]

=

∫

tn

L (dx)

L (tn)
G
(

tn ⊛
εn+1
x

[

0, 1−H(x)
]

)

.

Recall the measurable function Ñt from Definition (37) which records the number of vertices
at level t of a tree without leaves. We have the following result.

Proposition 6.7. Let n ≥ 1 and fint ≡ 1. For all measurable non-negative functional G defined

on T
(n)
dis , we have, with L the length measure on tn:

(76) E

[

G(T1)
∣

∣

∣
N1 = n− 1

]

=
2n−1

n!
E

[

G(tn)

n−1
∏

k=1

L (tk)

]

,

and for all measurable non-negative functional G defined on TK (or on Tloc−K):

(77) E

[

G(Tske
1 )

∣

∣

∣
Ñ1(T

ske) = n
]

= E

[

G ◦ Π◦
n(T1)

∣

∣

∣
N1 = n− 1

]

.

Proof. By construction, we have that the process
(

(

Tske
t , Ñt(T

ske)
)

, t ≥ 0
)

is distributed as the

process
(

(

Π◦
Nt+1(Tt), Nt + 1

)

, t ≥ 0
)

. This gives (77).

We now prove (76) by induction. Thanks to Lemma 6.6, conditionally given N1 = n− 1, the
tree T1 is distributed as Tunif

n . For n = 1, we have Tunif
n = t1 = ([0, 1], (0, 1)) hence Equation

(76) holds. Let us suppose that (76) holds for some n ≥ 1. Applying Lemma 6.1, one gets:

E
[

G(Tunif
n+1)

]

=
2

n+ 1
E

[

L (Tunif
n )

∫

Tunif
n

L T
unif
n (dx)

L Tunif
n (Tunif

n )
G
(

Tunif
n ⊛

ε
x

[

0, 1 −H(x)
]

)

]

.

Now we apply the induction assumption for the right-hand side of the previous equation to get:

E
[

G(Tunif
n+1)

]

=
2

n+ 1

2n−1

n!

[

L
tn(tn)

∫

tn

L tn(dx)

L tn(tn)
G
(

tn ⊛
εn+1
x

[

0, 1−H(x)
]

)

n−1
∏

k=1

L
tn(tk)

]

=
2n

(n+ 1)!
E

[

G(tn+1)
n
∏

k=1

L
tn+1(tk)

]

by definition of the tree tn+1 and by (75). This gives that (76) holds with n replaced by n+ 1.
This concludes the proof by induction. �
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6.2. Brownian CRTs and Kesten trees. Brownian CRTs are random trees in Tloc−K that
code for the genealogy of continuous-state branching processes.

Before recalling the definition of such trees, we give some additional notations. For a locally
compact rooted tree t, we define the population at level a as the sub-set:

Zt(a) = {u ∈ t, H(u) = a}.

We denote by (t(i),∗, i ∈ I) the connected components of the open set t \ ra(t). For every i ∈ I,

let ̺i be the MRCA of t(i),∗, which is equivalently characterized by [[̺, ̺i]] = ∩u∈t(i),∗[[̺, u]]; notice

that ̺i ∈ Zt(a). We then set t(i) = t(i),∗ ∪ {̺i} so that t(i) is a locally compact rooted tree with
root ̺i, and we consider the point measure on Zt(a)× Tloc−K:

N t

a =
∑

i∈I

δ(̺i,t(i)).

We then recall the definition of the excursion measure N
θ for β > 0 θ ≥ 0 associated with a

Brownian CRT from [19]. There exists a measure N
θ on TK (and hence on Tloc−K) such that:

(i) Existence of a local time. For every a ≥ 0 and for Nθ[dT ]-a.e. T , there exists a finite
measure Λa on T such that
(a) Λ0 = 0 and, for every a > 0, Λa is supported on ZT (a).
(b) For every a > 0, Nθ[dT ]-a.e., we have {Λa 6= 0} = {H(T ) > a}.
(c) For every a > 0, Nθ[dT ]-a.e., we have for every continuous function ϕ on T :

〈Λa, ϕ〉 = lim
ε→0+

1

cθε

∫

N T
a (du,dT ′)ϕ(u)1{H(T ′)≥ε}

= lim
ε→0+

1

cθε

∫

N T
a−ε(du,dT

′)ϕ(u)1{H(T ′)≥ε}.

(ii) Branching property. For every a > 0, the conditional distribution of the point measure
N T

a (du,dT ′), under the probability measure N
θ[dT |H(T ) > a] and given ra(T ), is that

of a Poisson point measure on ZT (a)× Tloc−K with intensity Λa(du)N
θ[dT ′].

(iii) Regularity of the local time process. We can choose a modification of the process
(Λa, a ≥ 0) in such a way that the mapping a 7−→ Λa is N

θ[dT ]-a.e. continuous for the
weak topology of finite measures on T .

(iv) Link with CSBP. Under Nθ[dT ], the process (〈ΛT
a , 1〉, a ≥ 0) is distributed as a CSBP

under its canonical measure with branching mechanism:

ψ(λ) = βλ2 + 2βθλ, λ ≥ 0.

We now extend the definition of the measure N
θ (only on Tloc−K) for θ < 0 by a Girsanov

transformation, following [7]. For t ≥ 0, set Gt = σ(rt(T )) and Zt = Λt(T ), the latter notation
is consistent with Section 2.2. The CSBP process Z = (Zt, t ≥ 0) is Markov with respect to the
filtration (Gt, t ≥ 0). For θ < 0 and t > 0, we set:

(78) N
−θ[dT ]|Gt

= e2θZt N
θ[dT ]|Gt

.

Then properties (i) to (iv) still hold for every θ ∈ R. This Girsanov transformation is consistent
with the Girsanov transformation of CSBP given by (14). Let us stress that the measure N

θ on
Tloc−K depends also on the parameter β > 0.

The so-called Kesten tree with parameters (β, θ) ∈ R
∗
+×R+ can be defined as the genealogical

tree associated with the continuous-state branching process with the same parameters, con-
ditioned on non-extinction (see for instance [28]). This latter process can also be defined by
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adding to the initial process a particular immigration. We use this second approach to extend
the definition of the Kesten tree for θ < 0.

Using our framework, the Kesten tree with parameters (β, θ) ∈ R
∗
+ × R is the random tree

T ∗ = Tree(M) (see Section 5.10 for the definition of the map Tree), with M(dh,dT ) a Poisson
point measure on E = R+ × T

∗
loc−K with intensity 2β1{h>0}dhN

θ[dT ]. The Kesten tree belongs

a.s. to the space T
spine,0
loc−K .

6.3. Backbone decomposition. The decomposition of a (sub)critical Brownian CRT T ac-
cording to a spine [[∅, x]], where x ∈ T is a leaf picked at random at level t > 0, that is according
to the local time Λt(dx), is given in Theorem 4.5 in [19]. In our setting, it can be rephrased in

the next theorem. Recall that, for t > 0, the (discrete) 1-pointed tree [0, t] ∈ T
(1)
loc−K denotes

the segment [0, t] endowed with the Euclidean distance, with the root 0 and the distinguished

vertex t. Recall that Tspine,0
loc−K defined in Section 5.6 is the set of locally compact rooted trees with

one infinite marked branch such that the root is not a branching vertex. From Remark 5.29, we

recall that informally the 1-pointed tree (T, (̺, v1)) = Graft1([0, t], T
∗), with T ∗ ∈ T

spine,0
loc−K is the

tree where the marked branch has been cut at height t (the part above t being removed), and
the cut marked branch is identified with [0, t], so that the root ̺ of T is identified with 0 and the
distinguished vertex v1 of T is also identified with t.

Theorem 6.8 ([19]). Let β > 0, θ ≥ 0 and t > 0. Let T ∗ be under E a Kesten tree with

parameter (β, θ). For every non-negative measurable functional F on T
(1)
loc−K (or T

(1)
K ), we have,

with ̺ the root of T :

(79) N
θ

[
∫

T
Λt(dv)F

(

T , (̺, v)
)

]

= e−2βθt
E
[

F
(

Graft1([0, t],T
∗)
)]

.

We extend this result to the super-critical case θ < 0.

Corollary 6.9. Let β > 0, θ ∈ R and t > 0. Let T ∗ be under E a Kesten tree with parameter

(β, θ). For every non-negative measurable functional F on T
(1)
loc−K, Equation (79) holds.

Proof. We first to prove (79) for functionals F of the form:

(80) F (T,v) = e−〈Φ,M(T,v)〉,

where (T,v) ∈ T
(1)
loc−K and Φ is a continuous non-negative function with bounded support defined

on R+ × T
∗
loc−K (with T

∗
loc−K = Tloc−K \ {T0} where T0 ∈ Tloc−K is the tree reduced to its root,

see Section 5.10). And the measureM(T,v) on R+×T
∗
loc−K is defined at the end of Section 5.10.

For simplicity, we simply write (T , v) for the 1-pointed tree (T , (̺, v)). Let θ > 0. Using (78),
we have for every s > t that:

N
−θ

[
∫

T
Λt(dv) e

〈Φ,Mrs(T ,v))〉

]

= N
θ

[
∫

T
Λt(dv) e

2θZs−〈Φ,M(rs(T ,v))〉

]

.
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We apply then (79) to get:

N
−θ

[
∫

T
Λt(dv) e

−〈Φ,M(rs(T ,v))〉

]

= e−2βθt
E

[

e2θZs F (rs(Graft1([0, t],T
∗))

]

= exp

{

−2βθt− 2β

∫ t

0
daNθ

[

1− e−Φ(a,rs−a(T ))+2θZs−a

]

}

= exp

{

−2βθt− 2β

∫ t

0
da

(

N
−θ

[

1− e−Φ(a,rs−a(T ))
]

+ N
θ
[

1− e2θZs−a

])

}

= exp

{

2βθt− 2β

∫ t

0
daN−θ

[

1− e−Φ(a,rs−a(T ))
]

}

,

where we used the definition of the Kesten tree for the second equality, (78) again for the third
one, and that N

θ
[

1− e2θZa
]

= u(−2θ, a) = −2θ, see (4) and (7), for the last one. As Φ has
bounded support, we get taking s large enough:

N
−θ

[
∫

T
Λt(dv) e

−〈Φ,M(T ,v)〉

]

= exp

{

2βθt− 2β

∫ t

0
daN−θ

[

1− e−Φ(a,T )
]

}

.

Then the result follows from the definition of the Kesten tree, that is (79) holds for F given
by (80).

Recall T
(n),0,∗
loc−K defined in (63) is the Borel subset of T

(1)
loc−K of the trees such that the root is

not a branching vertex and the pointed vertex is distinct from the root. The map:

(T,v) 7→
(

d(̺, v),M(T,v)
)

,

with v = (̺, v), defined on T
(n),0,∗
loc−K is injective and bi-measurable, see Corollary 5.33. Furthermore

the set T
(n),0,∗
loc−K is of full measure with respect to the distribution of (T ,v) under Nθ[dT ] Λt(dv),

with v = (̺, v), as N
θ-a.e. the root of T is not a branching vertex and d(̺, v) = t > 0. Thus,

as t > 0 is fixed, we get that (T , v) is a measurable function of M(T , v). We then conclude by
the monotone class theorem that Equation (79) holds for any non-negative measurable function

F defined on T
(n)
loc−K. �

Let β > 0, θ ∈ R and t > 0. Recall c̃θt = (2θ)/(1 − e−2βθt) defined in (3). We consider the
probability measure on [0, t]:

(81) ν(ds) =
2βθ e2βθs

e2βθt−1
1[0,t](s) ds = β c̃t(θ) e

−2βθ(t−s) 1[0,t](s) ds.

Let (Tn,vn) be, under P
θ,t, the tree of T

(n)
dis defined in Section 6.1.1 associated with the measure

ν and t > 0 (recall that all the distinguished vertices from vn but the root are at distance t
from the root). The following theorem is a generalization of Theorem 6.8 when picking n leaves
uniformly at random at level t.

Theorem 6.10. Let β > 0, θ ∈ R, t > 0 and n ∈ N
∗. For every non-negative measurable

function F defined on T
(n)
loc−K, we have:

(82) N
θ

[
∫

T n

Λ⊗n
t (dv∗)F (T ,v)

]

= n!
(

c̃θt

)1−n
e−2βθt

E
θ,t

[

[F
(

Graftn
(

(Tn,vn),T
∗
)

)]

,
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where v = (̺,v∗) ∈ T n+1, with ̺ the root of T , and T ∗ = (T ∗
A , A ∈ P+

n ) is under P
θ,t a family

of independent Kesten trees with parameter (β, θ), independent of Tn.

Proof. We prove Formula (82) by induction. For n = 1, as T1 = [0, t] (with root ̺ = 0 and
distinguished vertex v1 = t), this is Corollary 6.9.

Let k ∈ N
∗. Recall the maps Lk, from (52) in Section 5.7, and Splitk from (55) in Section 5.8.

For (T,v) ∈ T
(k)
loc−K and A ∈ P+

k , we write MA[T,v](dh,dt) for the measure M(T̂A(T,v)) on

E = R+ × T
∗
loc−K, where (T̂A(T,v), A ∈ Pk) = Splitk(T,v) and the measure M(T,v) is defined

at the end of Section 5.10. We also recall the notation (ℓA(T,v), A ∈ P+
k ) = Lk(T,v), and notice

that ℓA(T,v) = 0 implies that MA[T,v] = 0. Let n ∈ N
∗ and (ΦA, A ∈ P+

n ) be a family of
non-negative measurable functions defined on E. Let f be a bounded non-negative measurable

function defined on T
(n)
loc−K (or more simply on T

(n)
dis ). We shall first prove (82) for a non-negative

function F defined on T
(n)
loc−K of the form:

F (T,v) = f(Span(T,v)) exp
{

−
∑

A∈P+
n

〈

ΦA,MA[T,v]
〉

}

.

Let n ≥ 2 and suppose that (82) holds for n − 1. For k ∈ {1, . . . , n}, we denote by T [k] =

Span(T ,vk) ∈ T
(k)
loc−K, where vk = (v0 = ̺,v∗

k) and v∗
k = (v1, . . . , vk); and we simply write M

[k]
A

for MA[T ,vk] and ℓ
[k]
A for ℓA(T ,vk), so that under Nθ[dT ] ℓ⊗n

t (dv∗):

F (T ,vn) = f(T [n]) exp
{

−
∑

A∈P+
n

〈

ΦA,M
[n]
A

〉

}

.

We also write v
[k]
A and w

[k]
A for vA and wA from (50) and (51) with (T,v) replaced by (T [k],vk);

and thus we have ℓ
[k]
A = d(w

[k]
A , v

[k]
A ).

Similarly, under E
θ,t, for k ≥ 2, we write also M̂

[k]
A for the measure M(T ∗

A) restricted to

[0, ℓA(Tk)] × T
∗
loc−K, v̂

[k]
A and ŵ

[k]
A for vA and wA from (50) and (51) with (T,v) replaced by

(Tk,vk), and ℓ̂
[k]
A = d(ŵ

[k]
A , v̂

[k]
A ) = ℓA(Tk). For n ≥ 2, simply writing Tn for (Tn,vn), we have:

F
(

Graftn(Tn,T
∗)
)

= f(Tn) exp
{

−
∑

A∈P+
n

〈

ΦA,M̂
[n]
A

〉

}

.

Using the definition of Kesten tree via Poisson point measures and the definition of the function
Graftn, we obtain in particular that:

(83) E
θ,t
[

F
(

Graftn(Tn,T
∗)
)

]

= E
θ,t

[

F ′(Tn)
]

,

where

(84) F ′(Tn) = f(Tn) exp

{

− 2β
∑

A∈P+
n

∫ ℓ̂
[n]
A

0
daNθ

[

1− e−ΦA(a,T )
]

}

.

Recall (27). Set pn = pvn−1(vn) for the projection of vn on T [n−1]. Since N
θ-a.e. pn 6= ̺, we

deduce that there exists N
θ-a.e. a unique (random) B ∈ P+

n−1 such that pn ∈]]w
[n−1]
B , v

[n−1]
B ]] ⊂

T [n−1], and write hn = d(pn, w
[n−1]
B ). Recall the function Tree, defined in Section 5.10 just before

Lemma 5.31, from M(E) into T
[2]
loc−K and the projection Π̃ from T

[2]
loc−K to Tloc−K, defined just
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before Lemma 5.23, which forgets about the marked sub-tree defined in Section 5.6. We simply
write Tree′ = Π̃ ◦ Tree. On the one hand, we have:

T [n] = T [n−1]
⊛minB,H(pn)

[

0, t−H(pn)
]

,

ℓ
[n−1]
B = ℓ

[n]
B + ℓ

[n]
B∪{n},(85)

M
[n−1]
B = M

[n]
B∪{n} +M

[n]
B (·+ hn, ·) + δ(

hn,Tree′
(

M
[n]
{n}

));

and, to fix notation, we shall write:

M
[n−1]
B = MB [T ,vn−1] =

∑

i∈IBn−1

δ
h
[n−1],B
i ,T

[n−1],B
i

.

On the other hand, for A ∈ P+
n−1 and A 6= B, we have:

B ⊂ A =⇒ M
[n−1]
A = M

[n]
A∪{n}, M

[n]
A = 0, ℓ

[n−1]
A = ℓ

[n]
A∪{n} and ℓ

[n]
A = 0,(86)

A ∩B ∈ {∅, A} =⇒ M
[n−1]
A = M

[n]
A , M

[n]
A∪{n} = 0, ℓ

[n−1]
A = ℓ

[n]
A and ℓ

[n]
A∪{n} = 0,(87)

A ∩B 6∈ {∅, B,A} =⇒ M
[n−1]
A = M

[n]
A = M

[n]
A∪{n} = 0 and ℓ

[n−1]
A = ℓ

[n]
A = ℓ

[n]
A∪{n} = 0.(88)

It is also easy to rebuild (M
[n]
A , A ∈ P+

n ) from (M
[n−1]
A , A ∈ P+

n−1) and vn.

Set

Fn = N
θ

[
∫

T n

Λ⊗n
t (dv∗

n)F
(

T ,vn

)

]

.

Considering that T
[n−1],B
i is a subset of T , we have:

Fn = N
θ

[

∫

T n−1

Λ
⊗(n−1)
t (dv∗

n−1)
∑

B∈P+
n−1

∑

i∈IBn−1

∫

T
[n−1],B
i

ℓt(dvn)F (T ,vn)

]

= N
θ

[

∫

T n−1

Λ
⊗(n−1)
t (dv∗

n−1)

∑

B∈P+
n−1

∑

i∈IBn−1

ΓB

(

T [n−1],H(w
[n−1]
B ),M

[n−1]
B,i ,H(w

[n−1]
B ) + h

[n−1],B
i ,T

[n−1],B
i

)

× exp

{

−
∑

A∈P+
n−1\{B}

〈

1{B⊂A} ΦA∪{n} + 1{A∩B=∅ or A}ΦA,M
[n−1]
A

〉

}

]

,

where the measure M
[n−1]
B,i is the measure M

[n−1]
B but for the atom at (h

[n−1],B
i ,T

[n−1],B
i ):

M
[n−1]
B,i = M

[n−1]
B − δ

(h
[n−1],B
i ,T

[n−1],B
i )

,

and, for (T,w) ∈ T
(n−1)
loc−K, (T

′, ̺′) ∈ Tloc−K, ν ∈ M(E) and h′ ≥ h ≥ 0:

ΓB

(

(T,w), h, ν,h′, T ′
)

= f
(

T ⊛minB,h′ [0, t− h′]
)

exp
{

−〈ΦB,h′−h, ν〉
}

×

∫

T ′

Λt−h′(dv) exp

{

−
〈

Φ{n},M
(

T ′, (̺′, v)
)

〉

}

,
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with:

(89) ΦB,h′′(s, t) = 1{s≤h′′}ΦB∪{n}(s, t) + 1{s>h′′}ΦB(s− h′′, t).

For B ∈ P+
n−1, using the notation M̂

[n]
B =

∑

i∈ÎBn−1
δ
(ĥ

[n−1],B
i ,T̂

[n−1],B
i )

, we set for i ∈ ÎBn−1:

M̂
[n−1]
B,i = M̂

[n−1]
B − δ(

ĥ
[n−1],B
i ,T̂

[n−1],B
i

).

We deduce from the induction assumption (i.e. Equation (82) with n − 1 instead of n) and
the definition of Kesten tree, with Fn = (n− 1)!(c̃θt )

2−n e−2βθtGn that:

Gn = E
θ

[

∑

B∈P+
n−1

∑

i∈ÎBn−1

ΓB

(

Tn−1,H(ŵ[n−1],B),M̂
[n−1]
B,i ,H(ŵ[n−1],B) + ĥ

[n−1],B
i , T̂

[n−1],B
i

)

× exp

{

−
∑

A∈P+
n−1\{B}

〈

1{B⊂A} ΦA∪{n} + 1{A∩B=∅ or A} ΦA,M̂
[n−1]
A

〉

}

]

.

Since for A ∈ P+
n−1, the random measure M(T ∗

A, ℓ̂
[n−1]
A )(dh′,dT ′) is conditionally given ℓ̂

[n−1]
A a

Poisson point measure on [0, ℓ̂
[n−1]
A ]×Tloc−K with intensity 2βdh′ Nθ[dT ′], we deduce from Palm

formula that:

Gn = E
θ

[

∑

B∈P+
n−1

2β

∫ ℓ̂
[n−1]
B

0
dr

∫

N
θ[dT ] ΓB

(

Tn−1,H(ŵ
[n−1]
B ),M̂

[n−1]
B ,H(ŵ

[n−1]
B ) + r,T

)

× exp

{

−
∑

A∈P+
n−1\{Bx}

〈

1{Bx⊂A}ΦA∪{n} + 1{A∩Bx=∅ or A} ΦA,M̂
[n−1]
A

〉

}

]

= E
θ

[

2β

∫

Tn−1,t

L (dx)

∫

N
θ[dT ] ΓBx

(

Tn−1,H(ŵ
[n−1]
Bx

),M̂
[n−1]
Bx

,H(x),T
)

× exp

{

−
∑

A∈P+
n−1\{Bx}

〈

1{Bx⊂A}ΦA∪{n} + 1{A∩Bx=∅ or A} ΦA,M̂
[n−1]
A

〉

}

]

,

where Bx is the only element B of P+
n−1 such that x belongs to the branch B of Tn−1: x ∈

]]ŵ
[n−1]
B , v̂

[n−1]
B ]], where, as Tn−1 is discrete, we recall that Splitn−1(Tn−1) =

(

[[ŵ
[n−1]
A , v̂

[n−1]
A ]], A ∈

Pn−1

)

with Pn−1 = P+
n−1 ∪

{

{0}
}

. Using (82) again for n = 1 (or Corollary 6.9) gives:

∫

N
θ[dT ] ΓB(Tn−1,t, h, ν,h

′,T ) = f
(

Tn−1 ⊛minB,h′ [0, t − h′]
)

e−〈Φh′−h,ν〉

× exp

{

−2βθ(t− h′)− 2β

∫ t−h′

0
daNθ

[

1− e−Φ{n}(a,T )
]

}

.

With x chosen according to the length measure L (dx) on Tn−1, the tree Tn−1⊛minBx,H(x)

[

0, t−

H(x)
]

is obtained by grafting a branch of length t − H(x) at x on Tn−1 and thus will simply

be denoted as Tn−1 ⊛x

[

0, t −H(x)
]

(see also Remark 6.2 for similar notation). Therefore, we
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obtain:

Gn = E
θ

[

2β

∫

Tn−1

L (dx) f
(

Tn−1 ⊛x

[

0, t−H(x)
]

)

exp
{

−2β
(

t−H(x)
)

}

× exp

{

−2β
∑

A∈P+
n−1\{Bx}

1{Bx⊂A}

∫ ℓ̂
[n−1]
A

0
daNθ

[

1− e−ΦA∪{n}(a,T )
]

}

× exp

{

−2β
∑

A∈P+
n−1\{Bx}

1{A∩Bx=∅ or A}

∫ ℓ̂
[n−1]
A

0
daNθ

[

1− e−ΦA(a,T )
]

}

× exp

{

−2β

∫ H(x)−H
(

w
[n−1]
Bx

)

0
daNθ

[

1− e−ΦBx∪{n}(a,T )
]

}

× exp

{

−2β

∫ H
(

v
[n−1]
Bx

)

−H(x)

0
daNθ

[

1− e−ΦBx (a,T )
]

}

× exp

{

−2β

∫ t−H(x)

0
daNθ

[

1− e−Φ{n}(a,T )
]

}

]

.

We deduce from Lemma 6.1 with the density:

fdens(s) =
2βθ e2βθs

e2βθt−1
1[0,t](s) = c̃θt β e−2βθ(t−s) 1[0,t](s)

that for a non-negative measurable function F ′′ defined on T
(n)
loc−K (or T

(n)
dis ):

E
θ,t

[

2β

∫

Tn−1

L (dx)F ′′
(

Tn−1 ⊛x [0, t−H(x)]
)

e−2βθ(t−H(x))

]

= (c̃θt )
−1 nEθ,t

[

F ′′(Tn)
]

.

Using similar equations as (85), (86), (87) and (88) stated with Tn instead of (T ,vn) as well as
an obvious choice of F ′′, we obtain that:

Gn = (c̃θt )
−1 nEθ,t

[

F ′(Tn)
]

,

where F ′(Tn) is given by (84). Then, we deduce from (83) that:

Gn = (c̃θt )
−1 nEθ,t

[

F
(

Graftn(Tn,T
∗)
)

]

.

This gives:

N
θ

[
∫

T n

Λ⊗n
t (dv∗

n)F (T ,v)

]

= Fn = (n− 1)!(c̃θt )
2−n e−2βθtGn

= n!
(

c̃θt

)1−n
e−2βθt

E
θ,t
[

F
(

Graftn(Tn,T
∗)
)

]

.

Thus, Equation (82) holds for the functionals F we considered.

Recall that T
(n),0,∗
loc−K is the Borel subset of T

(n)
loc−K of the trees such that the root is not a

branching vertex and the point vertices (but the root) are distinct from the root. The map:

(T,v) 7→
(

Span(T,v),
(

MA[T,v], A ∈ P+
n

)

)
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defined on T
(n),0,∗
loc−K is one-to-one onto its image and bi-measurable, see Corollary 5.34. Fur-

thermore the set T
(n),0,∗
loc−K is of full measure with respect to the distribution of (T ,v) under

N
θ[dT ] Λ⊗n

t (dv∗), with v = (̺,v∗), as N
θ-a.e. the root of T is not a branching vertex. Thus,

(T ,v) is a measurable function of
(

T [n],
(

M̂
[n]
A , A ∈ P+

n

)

)

. We then conclude by the monotone

class theorem that Equation (82) holds for any non-negative measurable function F defined on

T
(n)
loc−K. �

6.4. Main result. Let β > 0, θ, α ∈ R+ and let Sα,θ be a Poisson point measure on [0,∞) with
intensity measure fint(t) dt, where:

(90) fint(t) = αβ e2βθt, t ≥ 0.

We first consider the case α > 0. Denote by (ξi, i ∈ N
∗) the increasing sequence of jumping times

of the inhomogeneous Poisson process (Nα,θ
t = Sα,θ([0, t]), t ≥ 0). We consider the T

(n)
dis -valued

random variable Tξn of Section 6.1.3 for n ≥ 1 associated to fint. In particular, recall that, for
every n ≥ 1, Tξn is a discrete tree with n pointed leaves, where all of them are at height ξn.

For every n ≥ 1, let T n,∗ = (TA, A ∈ P+
n ) be a family of independent Kesten trees with

parameter (β, α), independent of the tree Tξn . We defined the random marked tree:

T (n) =
(

Π◦
n(T̃

(n)),Span◦(T̃ (n))
)

with T̃ (n) = Graftn (Tξn ,T
n,∗) .

Thanks to Lemma 5.17 and Lemma 5.28 on the measurability of the grafting function, we

deduce that T (n) is a T
[2]
loc−K-valued random variable. The family of the distributions of the

T
[2]
loc−K-valued random trees (T (n), n ≥ 1) is consistent in the sense that, for every n ≥ 1 and

every t ≤ ξn, r
[2]
t (T (n))

(d)
= r

[2]
t (T (n+1)). It is in particular a Cauchy sequence in T

[2]
loc−K, and we

denote by (T α,θ,Tα,θ) its limit which is thus a T
[2]
loc−K-valued random variable. By construction,

Tα,θ and Tske have the same distribution. This construction is a formal way to define the tree
obtained by grafting on the infinite discrete tree Tske (which serves as a backbone) at xi a tree
Ti where ((xi,Ti), i ∈ I) are the atoms of a Poisson point measure of intensity L (dx)Nθ(dT ),
where L is the length measure on Tske.

For α = 0, we simply define (T ∅,θ,T0,θ) as the Kesten tree with parameter (β, α).

We then define the T
[2]
loc−K-valued random process

(

(T α,θ
t ,Tα,θ

t ), t ≥ 0
)

by setting:

T α,θ
t = rt(T

α,θ) and T
α,θ
t = rt(T

α,θ
t ),

that is (T α,θ
t ,Tα,θ

t ) = r
[2]
t

(

(T α,θ,Tα,θ)
)

. Recall the Tloc−K-valued random variable T is under Nθ

a LÃ©vy tree; and we write Tt = rt(T ). We now give the main result of this section.

Proposition 6.11. Let β ∈ R
∗
+, θ, α ∈ R+ and t > 0. For every non-negative measurable

functional F on Tloc−K (or TK), we have:

E

[

F
(

T α,θ
t

)]

= N
θ
[

F (Tt) M
α,θ
t

]

.

Proof. We first consider the case α > 0. Let us fix t > 0, and write Nt for N
α,θ
t . Recall that

Ñt(T
α,θ), the number of vertices of the tree Tα,θ at level t is distributed as Nt + 1. Using

Lemma 5.12 on the measurability of Ñt, we get that F
(

T α,θ
t

)

1{Ñt(Tα,θ)=n} is a well defined

non-negative random variable.
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Let (Tn, n ≥ 0) be the sequence of trees defined in Section 6.1.1 associated with the function:

(91) fdens(s) = β c̃t(θ) e
−2βθ(t−s) 1[0,t](s).

We have, with Graft◦k = Π◦
k ◦Graftk:

E

[

F
(

T α,θ
t

)]

=
∑

n∈N

E

[

F
(

T α,θ
t

) ∣

∣

∣
Ñt(T

α,θ) = n+ 1
]

P(Nα,θ
t = n)

=
∑

n∈N

E

[

F
(

rt
(

Graft◦n+1(Tt,T
n+1,∗)

)

) ∣

∣

∣
Nα,θ

t = n
] (α/cθt )

n e−α/cθt

n!

=
∑

n∈N

E

[

F
(

rt
(

Graft◦n+1(Tn+1,T
n+1,∗)

)

)] (α/cθt )
n e−α/cθt

n!
,

where we used that Ñt(T
α,θ) is distributed as Nα,θ

t + 1 for the first equality, that conditionally

on Ñt(T
α,θ) = n+ 1, the random variable T α,θ

t is distributed as rt
(

Graft◦n+1(Tt,T
n+1,∗)

)

condi-

tionally on Nα,θ
t = n and that Nα,θ

t is distributed as a Poisson process with intensity α at time

1/cθt (see Lemma 4.2) for the second one, that Tt conditionally on Nα,θ
t = n is distributed as

Tn+1 with fint and fdens in (73) given by (90) and (91) (see Lemma 6.6) for the last one. Recall
that rt and Π◦

n+1 is measurable. Using Theorem 6.10 and that ν(ds) in (81) is exactly fdens(s) ds
with fdens given by (91), we have:

E
[

F
(

rt
(

Graft◦n+1(Tn+1,T
n+1,∗)

))]

=

(

c̃θt
)n

e2βθt

(n+ 1)!
N
θ

[
∫

T n+1

Λ
⊗(n+1)
t (dv∗)F

(

rt ◦ Π
◦
n+1(T ,v)

)

]

=

(

c̃θt
)n

e2βθt

(n+ 1)!
N
θ

[
∫

T n+1

Λ
⊗(n+1)
t (dv∗)F (Tt)

]

=

(

c̃θt
)n

e2βθt

(n+ 1)!
N
θ
[

Zn+1
t F (Tt)

]

,

as Zt = Λt(1) is the total local time of T at level t. Thus, using the definition of Mα,θ
t in (12),

we obtain:

E

[

F
(

T α,θ
t

)]

=
∑

n∈N

(

c̃θt
)n

e2βθt

(n+ 1)!
N
θ
[

Zn+1
t F (Tt)

] (α/cθt )
n e−α/cθt

n!
= N

θ
[

F (Tt) M
α,θ
t

]

.

The simpler case α = 0, which is left to the reader, can also be handled in a similar way. �

As a conclusion, we deduce the following result for α > 0.

Theorem 6.12. Let α, β > 0, θ ∈ R. Assume that the function a is such that as t→ ∞ :

at ∼

{

αβ2t2, if θ = 0;

α(2θ)−2 e2β|θ|t, if θ 6= 0.

For every non-negative measurable function F on TK and s > 0, we have:

lim
t→∞

N
θ [F (Ts) |Zt = at] = E

[

F
(

T α,|θ|
s

)]

.
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Proof. Clearly, Proposition 3.5 still holds if Hs is Gs = σ(rs(T )) measurable, that is Hs =
F (Ts) with F non-negative defined on Tloc−K, and Zt is the total local time of T at level t, see
Section 6.2. We deduce that:

lim
t→∞

N
θ[F (Ts)|Zt = at] = N

|θ|
[

F (Ts)M
α,|θ|
s

]

= E

[

F (T α,|θ|
s )

]

,

where we used Proposition 6.11 for the last equality. �

Similarly, we also get the following result for α = 0. Recall that T 0,θ is a Kesten tree with
parameter (β, θ).

Theorem 6.13. Let β > 0, θ ∈ R. Assume that the function a is positive such that as t→ ∞:

at =

{

o(t2), if θ = 0;

o(e2β|θ|t) if θ 6= 0.

For every non-negative measurable function F on TK and s > 0, we have:

lim
t→∞

N
θ [F (Ts) |Zt = at] = E

[

F
(

T 0,|θ|
s

)]

.
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Index of notation

Trees and pointed trees

- T , t, T, T : generic notations for trees (or
class of equiv. trees).

- d: generic distance on a tree.

- ̺: generic notation for the root of trees.

- H(x) = d(̺, x): height of the vertex x.

- H(T ): height of the tree T .

- Tx: subtree of T above the vertex x ∈ T .

- [[x, y]]: the branch joining the vertices x to y.

- T0: the rooted tree reduced to its root.

- T1: the rooted infinite branch.

- L or L T : length measure on the tree T .

- v = (v0 = ̺, v1, . . . , vn): generic notation for
pointed vertices of a tree.

- (T,v) a (or a class of equiv. of) rooted n-
pointed tree.

- (T, S) = (T, S, d, ̺) a (or a class of equiv. of)
marked tree with ̺ ∈ S ⊂ T .

Grafting a tree on a tree

- (T ⊛i T
′,v ⊛ v′), also denoted by T ⊛i T

′, is
the tree obtained by grafting T ′ on T at the
pointed vertex vi ∈ T and identifying the root
̺′ of T ′ with vi. The pointed vertices v ⊛ v′

are the concatenation of the pointed vertices
v of T and the pointed vertices v′ (but for the
root) of T ′.

- T ⊛i,h T
′, is the tree obtained by grafting T ′

on T at level h on the branch [[̺, vi]].

- T ⊛ǫ
i,h T

′, with ǫ ∈ {g,d}, same as above but

for the pointed vertices of T ′ which are in-
serted on the left (if ǫ = g) or on the right of
vi (if ǫ = d).

Spanning and truncation

- Span◦(T,v): the discrete rooted sub-tree of
T spanned by the pointed vertices v.

- Span(T,v): the rooted tree (Span◦(T,v),v)
with the pointed vertices v.

- The map Π◦
n removes the pointed vertices

(but the root) from an n-pointed tree:
Π◦

n(T,v) = (T, ̺). Thus:

Π◦
n(Span(T,v)) = Span◦(T,v).

- rt(T,v): the tree T truncated at level t with
the spanned tree Span◦(T,v), and the pointed
vertices v.

- r
[2]
t , r

[2],+
t , r

[2],−
t , r

[2]
∗ , r̃

[2],+
t : various trunca-

tion on marked trees (see Sect. 5.5 and 5.6).

Splitting and grafting

- Ln(T,v) record the lengths of all the branches
of the subtree Span(T,v) spanned by the n
pointed vertices:

Ln(T,v) = (ℓA(T,v), A ∈ P+
n ),

with P+
n the set of all subsets A ⊂ {1, . . . , n}

such that A 6= ∅.

- Splitn(T,v) record the subtrees of T associ-
ated to all the branches of Span(T, bv):

(92) Splitn(T,v) =
(

T̂A(T,v), A ∈ Pn

)

with Pn = P+
n ∪ {{0}}.

- Graftn(T
′, (T ∗

A, A ∈ P+
n )): replace the

branches labeled by A, of the discrete n-
pointed tree T ′ by the trees T ∗

A with a
marked infinite branch cut at the length
ℓA(T,v). (The discrete tree (T ′,v′) can be
coded/replaced by Ln(T

′,v′).)

- Intuitively, we have for (T,v) a n-pointed
tree whose root is not a branching vertex
(see (60)):

(T,v) = Graftn

(

Spann(T,v),Splitn(T,v)
)

.
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Set of (equiv. classes of) trees

- TK set of (equiv. classes of) rooted compact
trees.

- T
(n)
K set of (equiv. classes of) rooted n-

pointed compact trees; T
(0)
K = TK.

- d
(n)
GH the distance on T

(n)
K ; d

(0)
GH ≡ dGH.

- Tloc−K set of (equiv. classes of) rooted loc.
compact trees.

- T
∗
loc−K = Tloc−K\{T0}.

- T
0
loc−K subset of Tloc−K of trees whose root is

not a branching vertex.

- T
0,∗
loc−K = T

0
loc−K ∩ T

∗
loc−K.

- T
(n)
loc−K set of (equiv. classes of) rooted n-

pointed loc. compact trees; T
(0)
loc−K = Tloc−K.

- d
(n)
LGH the distance on T

(n)
loc−K; d

(0)
LGH ≡ dLGH.

- T
(n),0
loc−K subset of T

(n)
loc−K of trees whose root is

not a branching vertex.

- T
(n),∗
loc−K subset of T

(n)
loc−K of trees whose all

pointed vertices (but the root) are distinct
from the root.

- T
(n),0,∗
loc−K = T

(n),0
loc−K ∩ T

(n),∗
loc−K.

- T
(n)
dis subset of T

(n)
K ⊂ T

(n)
loc−K of discrete trees.

- T
[2]
loc−K set of (equiv. classes of) rooted loc.

compact marked trees.

- T
spine
loc−K subset of T

[2]
loc−K of marked trees (T, S)

such that S = T1, with T1 the infinite branch.

Trees with a marked branch and point
measures

- M(E) set of point measures on E = R+ ×
T
∗
loc−K which are bounded on bounded sets

of E.

- Tree : M(E) → T
spine
loc−K maps the measure

M =
∑

i∈I δhi,Ti
to the marked tree (T, T1),

with the rooted tree T obtained by grafting
the trees Ti on the rooted infinite branch T1
at level hi.

- M : T
spine
loc−K → M(E) maps the marked

tree (T, T1) to the measure
∑

i∈I δhi,Ti
where

Ti\{̺i} are the connected component of T\T1
with root ̺i ∈ T1 and hi = d(̺, ̺i), where ̺
is the common root of T and T1.

- M is also defined on T
(1)
loc−K.

Reconstruction results

- With Id the identity map:

Tree ◦M = Id on T
spine
loc−K,

M ◦ Tree = Id on M̃(E) = Im(M).

- (T,v) ∈ T
(1),0,∗
loc−K can be recovered in a measur-

able way from (d(̺, v),M(T,v)).

- (T,v) ∈ T
(n),0,∗
loc−K can be recov-

ered in a measurable way from
(Spann(T,v), (MA[T,v], A ∈ P+

n )), where

MA[T,v] = M(T̂A(T,v)), with T̂A(T,v) ∈

T
(1)
loc−K defined by the splitting operation

in (92).

✂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

References

[1] R. Abraham, A. Bouaziz, and J.-F. Delmas. Very fat geometric Galton-Watson trees. ESAIM Probab. Stat.,
24:294–314, 2020.

[2] R. Abraham and J.-F. Delmas. Williams’ decomposition of the Lévy continuum random tree and simultaneous
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