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multivariate normal distributions

Hassan Maatouk†1, Xavier Bay‡2 and Didier Rullière‡3

(†) CY Tech Cergy Paris University, Site du Parc, 95011 Cergy, France
(‡) Mines Saint-Etienne, Univ Clermont Auvergne, CNRS, UMR 6158 LIMOS,

Institut Henri Fayol, F - 42023 Saint-Etienne France

Abstract Statistical researchers have shown increasing interest in gener-
ating conditional multivariate normal distributions. In this paper, we discuss
several existing methods for the simulation of multivariate normal distribu-
tion truncated on the intersection of a set of hyperplanes. We also propose
an approach based on the consideration of an orthonormal basis on the set
of constraints. Contrarily to the standard approaches, we do not need to
compute the covariance matrix of the posterior distribution and its decom-
position. The interest of the proposed approach is shown through numerical
examples.

Keywords Conditional Gaussian vectors · hyperplanes · projection · or-
thonormal basis.

1 Introduction

The simulation of conditional multivariate normal (MVN) distributions with
linear equality constraints is widely used in many spatial statistics prob-
lems for computing Monte-Carlo estimators (see [1, 3, 4, 7]). As conditional
simulations are time and memory expensive, an important challenge is the
reduction of computation time through efficient algorithms. For instance, in
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[1], the authors study the settings where conditioning observations are as-
similated batch-sequentially, i.e. one point or batch of points at each stage.
To the best of our knowledge, the Matheron’s update rule has first appeared
in geostatistics [6] and then in astrophysics [5]. The idea is to simulate a
random variable from the unconstrained distribution and then map it to the
set of constraints. In [2], the authors provide a fast and easy-to-implement
simulation algorithm for hyperplane-truncated multivariate normal distribu-
tions. This method can be seen as a Matheron’s update rule. The authors
in [2] generalize the Matheron’s update rule algorithm to efficiently simulate
random variables from a multivariate normal distribution whose covariance
(precision) matrix can be decomposed as a positive-definite matrix minus
(plus) a low-rank symmetric matrix. Their idea is to simulate from a block
diagonal covariance matrix and use the Matheron’s update rule. Recently,
the authors in [8] use the Matheron’s update rule to simulate conditional
Gaussian processes. This method is so-called pathwise conditioning, which
has been applied to global optimization problems. By the Matheron’s up-
date rule, the simulation is based on the full prior distribution without take
into account the reduction of the dimension. Additionally, the researchers
usually use the standard approaches to simulate from the conditional distri-
bution by computing the covariance matrix of the posterior distribution. In
that case, once the conditional covariance matrix calculated, the sampling
procedure does not use the information about the unconditional covariance
matrix: indeed, the existing sampling programs usually take as input the de-
sired mean and covariance matrix. Furthermore, sampling procedures do not
always consider the reduced rank of the conditional (posterior) covariance
matrix.

In the present paper, simulating conditional multivariate normal distri-
bution under linear equality constraints is investigated. We provide a new
formula for simulating conditional Gaussian vectors. The main idea of the
proposed method is to compute the orthonormal basis on the set of con-
straints. Contrarily to the standard approaches, we do not need to compute
the covariance matrix of the posterior distribution and its decomposition.

The article is structured as follows: In Section 2, in the first part the
standard approaches are briefly recalled. In the second part, the theoretical
results of the proposed approach are given. In Section 3, the efficiency and
the performance of the proposed method are investigated. A comparison
with different approaches in terms of stability is included.
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2 Hyperplane-truncated MVN distributions

2.1 Framework

Let X be a vector following a N -dimensional multivariate normal (MVN)
distribution with mean µ and covariance matrix Γ, i.e., X ∼ N (µ,Γ), where
Γ is symmetric and positive-definite. We consider the problem of simulating
the random vector X truncated on the intersection of n < N hyperplanes

{X|AX = b},

where A ∈ Rn×N , b ∈ Rn and Rank(A) = n.

The following proposition presents the well-known result to compute the
posterior distribution of conditional Gaussian vectors with linear equality
constraints.

Proposition 1 (Posterior distribution). Let X be a vector following a N-
dimensional MVN distribution with mean µ and covariance matrix Γ. Then,
the conditional distribution of X given AX = b is multivariate normal, i.e.,

{X|AX = b} ∼ N (µc, C), where

µc = µ+ ΓA>(AΓA>)−1(b− Aµ)
C = Γ− (AΓ)>(AΓA>)−1AΓ,

with A> the transpose of A.

Proof. The posterior mean µc is done as follows:

µc = E[X|AX = b] = E[X] + Σ>AX,XΣ−1AX,AX(b− E[AX])

= µ+ (AΓ)>(AΓA>)−1(b− Aµ),

where ΣAX,X = Cov(AX,X) = AΓ is the covariance between the vectors AX
and X. Applying Bayes’ rule (see Section 2.1 in [8]), we get

C = Cov (X|AX = b) = ΣX,X − Σ>AX,XΣ−1AX,AXΣAX,X

= Γ− (AΓ)>(AΓA>)−1AΓ.

The standard approach to simulate from N (µc, C) consists of finding a
positive integer k and a scaling matrix S ∈ RN×k such that SS> = C and
using

{X|AX = b} d
= µc + Sε, (1)
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where ε ∼ N (0k, Ik) is a k-dimensional standard normal vector with Ik the
k×k identity matrix. Many scaling matrices can be proposed: as an example,
let O in Rk×k be an orthogonal matrix, it is easy to see that if S is a suitable
scaling matrix, then S̃ = SO is also suitable. Some suitable classical choices
for the scaling matrix are given below. Next section gives the most standard
sampling methods to simulate from the conditional distribution N (µc, C).

2.2 Standard sampling methods

Proposition 2 (Cholesky decomposition). According to previous notations,

{X|AX = b} d
= µc + Lε, (2)

where µc = E[X|AX = b], L is the N × N lower triangle matrix with the
property LL> = C and ε is the N-dimensional standard normal vector. The
lower triangle matrix L is the scaling matrix S in (1).

The truncated version of the Cholesky decomposition (2) can be written
as

{X|AX = b} d
= µc + Lpε̃, (3)

where Lp is the p×N truncated Cholesky lower triangle and ε̃ is the p = N−n
dimensional standard normal vector. In fact, Lp corresponds to the p = N−n
non-zero columns of the lower triangle matrix L.

Proposition 3 (eigendecomposition). According to previous notations,

{X|AX = b} d
= µc + V Λ

1
2 ε, (4)

where µc = E[X|AX = b], ε is a N-dimensional standard normal vector, V =
(v1, . . . , vN) is the N ×N matrix such that the columns are the eigenvectors
of C associated to the eigenvalues λ = (λ1, . . . , λN) and Λ = diag(λ) is a

diagonal matrix. Again, V Λ
1
2 is the scaling matrix S in (1).

The truncated version of the eigendecomposition (4) can be written as

{X|AX = b} d
= µc + VpΛ

1
2
p ε̃, (5)

where Vp = (v1, . . . , vp) is the truncated N × p matrix such that the columns
are the eigenvectors of C associated to the p = N − n non-zero eigenvalues
λp = (λ1, . . . , λp), Λp = diag(λp) and ε̃ is the p = N−n dimensional standard
normal vector.

The previous approaches presented in this section (eigendecomposition
and Cholesky) used a scaling matrix S of the posterior covariance matrix C.
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Now, we will see how simulating {X|AX = b} is possible without computing
the posterior covariance matrix C and its decomposition. The Matheron’s
update rule (MUR), see Theorem 1 in [8], is investigated. Let us briefly recall
this method. Let Z1 and Z2 be jointly Gaussian random variables. Then,
the random variable Z1 conditional on Z2 = β can be expressed as

{Z1|Z2 = β} d
= Z1 + ΣZ1,Z2Σ

−1
Z2,Z2

(β − Z2),

where ΣZ1,Z2 = Cov(Z1, Z2) the covariance between Z1 and Z2. As mentioned
in [8], a key difference with the standard approach is that we now sample
before conditioning, rather than after.

Applying the previous result to simulate {X|AX = b}, where Z1 = X
and Z2 = AX, we get the following result.

Proposition 4 (Matheron’s update rule). Let X ∼ N (µ,Γ), then

{X|AX = b} d
= X + ΓA>(AΓA>)−1(b− AX). (6)

Algorithm 1: Sampling scheme by Matheron’s update rule of X ∼
N (µ,Γ) given AX = b.

• sample w ∼ N (µ,Γ);

• return X = w + ΓA>(AΓA>)−1(b− Aw).

2.3 Alternative method to the spectral decomposition

Let F = {x ∈ RN : Ax = b} be the intersection set of n affine hyperplanes
and directed by the vector space F0 = {x ∈ RN : Ax = 0n}, where 0n =
(0, . . . , 0)> ∈ Rn.

Since the matrix A is of rank n, we need p = N − n linear coordinates
to describe F and to represent the conditional vector X ∈ RN given AX =
b. The simple idea is to choose the Euclidean coordinates associated to
the eigendecomposition or spectral representation of the truncated MVN
distribution of X given AX = b. To be more precise, let us consider the
truncated density function fT of the random vector X ∈ RN given AX = b.
From Proposition 1, we already known the posterior mean µc = E[X|AX = b]
of this distribution and we can write fT as

fT (x) = k exp

(
−1

2
(x− µc)>Γ−1(x− µc)

)
, for x ∈ F ,
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where k is a normalization constant (on F ). Note that the quadratic term in
fT is given by the same covariance matrix Γ of the unconditional distribution
of X ∼ N (µ,Γ).

Now, let B be the (symmetric) matrix associated to the orthogonal pro-
jection on F0. As x−µc ∈ F0, we get B(x−µc) = x−µc, for any x ∈ F and
the alternative formula

fT (x) = k exp

(
−1

2
(x− µc)>BΓ−1B(x− µc)

)
,

for the truncated density function. By the spectral decomposition of the
(symmetric) matrix BΓ−1B, we get

BΓ−1B = Ω∆Ω>,

where Ω>Ω = Ip, the (p× p) identity matrix, and ∆ = diag( 1
σ2
1
, . . . , 1

σ2
p
) the

diagonal matrix of non zero eigenvalues.
As a result, we obtain the nice representation for the conditional vector

X given AX = b:

{X|AX = b} d
= µc +

p∑
k=1

σkεkΩk,

where Ω1, . . . ,Ωp are the column vectors of Ω or the first p eigenvectors
of BΓ−1B and ε1, . . . , εp are independent normal N (0, 1) coordinates. This
result is summarized in the following theorem.

Theorem 2.1 (Proposed sampling scheme). According to previous notations,
define

B = IN − A>(A>A)−1A

to be the matrix of the orthogonal projection on F0 = ker(A). The (sym-
metric) semi-positive matrix BΓ−1B is of rank p and admits the following
eigendecomposition

BΓ−1B = Ω∆Ω>,

where Ω>Ω = Ip and ∆ = diag( 1
σ2
1
, . . . , 1

σ2
p
) with σ2

p ≥ . . . ≥ σ2
1 > 0. The

conditional vector X ∼ N (µ,Γ) given AX = b is given by

{X|AX = b} d
= µc + ΩΣε̃, (7)

where Ω = (Ω1, . . . ,Ωp) ∈ RN×p, ε̃ = (ε1, . . . , εp)
> ∈ Rp is the p dimensional

standard normal vector and Σ = diag(σ1, . . . , σp) is the p×p diagonal matrix.
The matrix ΩΣ is the scaling matrix S in (1).
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Proof. We have B2 = B and B> = B. For any x ∈ ker(A),

Bx = (IN − A>(A>A)−1A)x = x.

Additionally, for any x ∈ ker(A)⊥ = Im(A>), there exists u ∈ Rn such that
x = A>u and

Bx = (IN−A>(A>A)−1A)(A>u) = A>u−A>(A>A)−1AA>u = A>u−A>u = 0.

Thus, B is the orthogonal projection on the ker(A) = F0. The matrix BΓ−1B
is symmetric semi-positive and of rank p = N − n since B is the orthogonal
projector on ker(A) which is of dimension p = N − n.

The probability density function (pdf) of the vector X ∼ N (µ,Γ) is

f(x) = k exp

(
−1

2
(x− µ)>Γ−1(x− µ)

)
, ∀x ∈ RN .

For any x ∈ F = {x ∈ RN : Ax = b} and µc = E[X|AX = b], we
have x − µc ∈ F0 since x and µc are in F (i.e., Ax = Aµc = b). Let
q(x) = (x− µ)>Γ−1(x− µ), thus

q(x) = (x− µc + µc − µ)>Γ−1(x− µc + µc − µ)

= (x− µc)>Γ−1(x− µc) + 2(x− µc)Γ−1(µc − µ) + (µc − µ)>Γ−1(µc − µ).

From Proposition 1, we have

Γ−1(µc − µ) = Γ−1(ΓA>(AΓA>)−1(b− Aµ))

= A>(AΓA>)−1(b− Aµ).

Thus,

〈x− µc, A>(AΓA>)−1(b− Aµ)〉 = 〈A(x− µc), (AΓA>)−1(b− Aµ)〉 = 0,

since x− µc ∈ F0, where 〈., .〉 represents the scalar product. Finally, we get
the pdf of {X|AX = b} as follows

fT (x) = k′ exp

(
−1

2
(x− µc)>Γ−1(x− µc)

)
, ∀x ∈ F,

where k′ is a normalization constant. Now, for any x ∈ F , we have (x−µc) ∈
F0. Thus, B(x − µc) = (x − µc). Therefore, the truncated pdf can be
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reformulated as

fT (x) = k′ exp

(
−1

2
(x− µc)>BΓ−1B(x− µc)

)

= k′ exp

−1

2
(x− µc)>Ω


1
σ2
1

0

. . .

0 1
σ2
p

Ω>(x− µc)


= k′ exp

(
−1

2

p∑
k=1

y2k
σ2
k

)
,

where (y1, . . . , yp)
> = Ω>(x−µc) the euclidean coordinates of (x−µc) in the

basis (Ω1, . . . ,Ωp) of F0. Finally, the pdf fT corresponds to the vector

X = µc +

p∑
k=1

σkεkΩk = µc + ΩΣε,

where Ω = (Ω1, . . . ,Ωp) ∈ RN×p, ε = (ε1, . . . , εp)
> ∈ Rp is the p dimensional

standard normal vector and Σ = diag(σ1, . . . , σp).

The result proved in the Theorem 2.1 is very interesting in terms of sim-
ulation. It can be seen as an efficient and exact way to simulate hyperplane-
truncated multivariate normal distributions.

Remark 1. The proposed approach is easy to-implement and can be extended
to simulate truncated Gaussian vectors restricted to convex sets. Contrary to
the standard approaches, we do not need to compute the covariance matrix
C of the posterior distribution. Additionally, it is specially efficient when the
unconditional matrix Γ admits some special structure that makes it easy to
invert.

Remark 2. In fact, the proposed approach is the eigendecomposition of the
hyperplane-truncated MVN distribution. From Equations (5) and (7), we get
respectively

C =
(
VpΛ

1
2
p

)(
VpΛ

1
2
p

)>
= VpΛpV

>
p , where V >p Vp = Ip and

C = (ΩΣ)(ΩΣ)> = ΩΣ2Ω>, where Ω>Ω = Ip.

Thus, as eigenvalues are ordered here, we get Σ2 = Λp.

In Algorithm 2, the different steps to simulate the hyperplane-truncated
MVN distribution {X|AX = b} using the proposed method are shown.
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Algorithm 2: Proposed sampling scheme of X ∼ N (µ,Γ) given AX =
b.
Initialization:
µ; A; b; Γ; N ; n; p
Projection on F0:
B = IN − A>(AA>)−1A
Spectral decomposition of BΓ−1B:
Ω̃ is the matrix of p eigenvectors of BΓ−1B
Ω = BΩ̃
1
σ2 = (1/σ2

1, . . . , 1/σ
2
p) the p non-zero eigenvalues of BΓ−1B

µc = µ+ ΓA>(AΓA>)−1(b− Aµ)
Simulation:
ε ∼ N (0p, Ip)
X = µc + ΩΣε, avec Σ = diag(σ).

Illustrative example in two-dimensional case We consider the case

when N = 2 and n = 1. Let X =
(
X1 X2

)>
be a zero-mean bivariate

Gaussian vector with covariance matrix the identity (i.e., Γ = I2). The aim
is to simulate X ∼ N (0,Γ) given AX = b. Let b = 1 and A =

(
1 1

)
. In

that case, we get

µc = E[X|AX = b] =
(
0.5 0.5

)>
C = Cov(X|AX = b) = Γ− (AΓ)>(AΓA>)−1AΓ =

(
0.5 −0.5
−0.5 0.5

)

.
M(S)

1

1

x_1

x_2

0

S

Figure 1: Illustration of the proposed method in two dimensional case.

From Theorem 2.1, we deduce that {X|AX = b} d
= µc + Ωε̃, where

ε̃ ∼ N (0, 1) and Ω is the orthonormal basis of the straight line x1 + x2 = 1.
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We deduce that Ω =
(√

2
2
−
√
2
2

)>
(see Figure 1). Thus X =

(
X1 X2

)>
=(

0.5 +
√
2
2
ε 0.5−

√
2
2
ε
)>

.

−2 −1 0 1 2 3

−
2

0
1

2
3

X1

X
2

−2 −1 0 1 2

−
1

0
1

2
3

X1

X
2

Figure 2: The density function together with the conditional bivariate normal
distribution using the proposed approach (left) and the standard one (right).

In Figure 2, we illustrate the density function together with the condi-
tional bivariate normal distribution using the proposed approach (left) and
the standard one via the eigendecomposition (right). The black points rep-

resent 5,000 random variables X =
(
X1 X2

)>
verifying X1 + X2 = 1 and

the gray dashed-lines represent the associated probability density functions.

3 Simulation study

The aim of this section is to study the performance of the proposed method.
We illustrate the theoretical results on numerical experiments. In this section,
the elements of µ, A and b are sampled from N (0, 1). The unconditional
covariance matrix Γ is generated as follows: let c be the Matérn covariance
function with regularity parameter ν = 5/2:

c(x, y) = η2

(
1 +

√
5|x− y|
θ

+
5(x− y)2)

3θ2

)
exp

(
−
√

5
|x− y|
θ

)
,

where θ and η are fixed to 0.2 and 10 respectively. Let u1, . . . , uN be an
uniform subdivision of [0, 1] such that u1 = 0 < u2 < . . . < uN = 1. Then
Γj,` = c(uj, u`), for all j, ` = 1, . . . , N .

In all graphics, Cholesky and Eigen refer to the naive Cholesky decom-
position (2) and eigendecomposition (4) respectively. However, T Chol and
T Eigen refer to the truncated version of the Cholesky decomposition (3)
and eigendecomposition (5) respectively. Finally, MUR represents the Math-
eron’s update rule (6).
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Figure 3: The numerical error AX − b using different approaches.

Let us first consider the numerical errors obtained by the different sam-
pling methods. In Figure 3, the boxplot of the numerical errors AX−b using
the proposed method and the standard approaches are shown for one hundred
simulations. The data dimension N is fixed to 50 and the dimension of the
set of constraints n = 8. On our experiments, despite numerical errors are
really small, the proposed method is always numerically more precise. Let us
mention that the MUR is more stable than eigen and Cholesky decomposi-
tions with and without truncation. In the Cholesky decomposition, a nugget
effect of order 10−10 has been added for computing the lower triangles L and
Lp in order to avoid computation problems with the software and program
used (chol function in R).

A comparison between the different approaches in terms of computational
time is know investigated. The unconditional covariance matrix Γ is the
N × N identity matrix. A variety of settings is considered, the variation of
sample size as well as the dimension of the set of constraints n = N − p.
To do this, let X ∈ RN be a Gaussian vector with mean µ and covariance
matrix Γ generated as previously. The goal is to simulate X ∼ N (µ,Γ) given
AX = b.

The computation time of simulating hyperplane truncated MVN distri-
butions averaged over ten random trials is shown in Figure 4. The number
of hyperplane constraints and data dimension N are fixed at n = 300 and
N = 500 respectively. The number of samples increases from 5,000 to 50,000.
It is clear that, when the number of samples is high, the proposed approach
has a clear advantage over other naive approaches (left panel). In the right
panel of Figure 4, the proposed approach has been compared to the truncated
version of Cholesky and eigendecomposition. The MUR has been removed
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Figure 4: Average time of simulating hyperplane-truncated MVN samples
over ten random trials, where the number of constraints and the data dimen-
sion are fixed to n = 300 and N = 500 respectively.

to see clearly the slight difference between the truncated eigen (T Eigen),
the truncated Cholesky (T Chol) and the proposed approach. So, in terms
of computational time, on this experiment, T Eigen, T Chol and proposed
exhibit a good performance.
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Figure 5: Average time of simulating hyperplane-truncated MVN samples
over ten random trials, where the number of constraints n increases.

Now, we investigate the case when the number of constraints increases. In
Figure 5, the data dimension N and the samples are fixed to 500 and 10,000
respectively. The dimension of the constraints set is equal to 30%,60%,80%
and 90% of the data dimension. In the left panel, the proposed approach has
been compared to standard naive approaches. As mentioned in [2], when the
covariance matrix of X is non-diagonal, the MUR has no advantage com-
pared to Cholesky composition. This fact has been confirmed in Figure 5
(left panel). Contrary to Matheron’s update rules, naive Cholesky and naive
eigendecomposition, the computation time decreases when the dimension of
set of constraints n increases. This is because, we simulate from p = N − n
dimensional standard multivariate normal distributions instead of the full
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N -dimensional MVN distribution. In the right panel of Figure 5, the pro-
posed approach has been compared to the truncated version of Cholesky and
eigendecomposition. The MUR has been removed to see clearly the slight
difference between the truncated eigen (T Eigen), the truncated Cholesky
(T Chol) and the proposed approach. Again, the proposed approach outper-
forms the naive approaches in terms of computational time. However, in this
experiment, there is no large difference by comparison with the truncated
version of eigendecomposition and Cholesky.

4 Conclusion

In this paper, simulating Gaussian vectors truncated on the intersection of
a set of hyperplanes is investigated. First, the standard naive approaches
and their truncated version are briefly recalled. Second, a new approach is
developed: we provide an exact method based on constructing the projection
of an orthonormal basis on the set of constraints. This is done using a new
formula for simulating conditional Gaussian vectors. The performance of the
proposed algorithm has been investigated using numerical simulations. The
proposed model gives precise results in terms of stability compared to stan-
dard approaches. It is specially efficient when the number of samples and/or
the dimension of constraints n is high as well as when the unconditional
matrix Γ admits some special structure that makes it easy to invert.
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