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Zeta invariants of Morse forms

Jests A. Alvarez Lépez, Yuri A. Kordyukov and Eric Leichtnam

ABSTRACT

Given a closed real 1-form 7 on a closed Riemannian manifold (M, g), let d, 0, and A,
be the induced Witten’s type perturbations of the de Rham derivative and coderivative
and the Laplacian on differential forms on M, parametrized by z € C, and let ((s, 2)
be the zeta function of s € C given by ((s,2) = Tr*(nAJ.A7®) when Rs > 0. For a
class of Morse forms 7, we prove that ((s,z) is smooth at s = 1 for |Rz| > 0, and
the zeta invariant ((1, z) converges to some z € R as Rz — +o00, uniformly on Jz. We
describe z in terms of the instantons of an auxiliary Smale gradient-like vector field X
and the Mathai-Quillen current on T'M defined by g. Any real cohomology class has a
representative 7 satisfying the needed hypothesis. If n is even, we can prescribe any real
value for z by perturbing g, n and X; if moreover M is oriented, we can also achieve
the same limit as 8z — —oo. This is used to define and describe certain tempered
distributions induced by g and 7. These distributions appear in another publication as
the contributions from the compact leaves preserved by the flow in a trace formula for
simple foliated flows on closed foliated manifolds, which gives a solution to a problem
proposed by C. Deninger.
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1. Introduction

1.1 Witten’s perturbed operators

Let M be a closed n-manifold. For any smooth function h on M, Witten [Wit82] introduced
a perturbed de Rham differential operator d, = d 4+ udhA, depending on a parameter u € R.
Endowing M with a Riemmanian metric g, we have a corresponding perturbed codifferential
operator 0, = 0 — dh,, and a perturbed Laplacian A, = d,0,, + d,d,. Since d,, = e Hh g erh
it defines the same Betti numbers as d. However A, and the usual Laplacian A have different
spectrum in general. In fact, if h is a Morse function and g is Euclidean with respect to Morse
coordinates around the critical points, then the spectrum of A, develops a long gap as u — +o00,
giving rise to the small and large spectrum. The eigenforms of the small/large eigenvalues gener-
ate the small/large subcomplex, E, ¢, /1,- When h is a Morse function, Witten gave a beautiful
analytic proof of the Morse inequalities by analyzing the small spectrum. This was refined by
subsequent work of Helffer and Sjéstrand [HS85] and Bismut and Zhang [BZ92| [BZ94], showing
that, if moreover X := — grad h is a Smale vector field, then the Morse complex (C®,d) of X can
be considered as the limit of (E, ¢m,d,). More precisely, for certain perturbed Morse complex
(C*®,d,), isomorphic to (C®,d), there is a quasi-isomorphism ®,, : (E;sm,d,) — (C®,d,), de-
fined by integration on the unstable cells of the zero points of X, which becomes an isomorphism
for p > 0 and almost isometric as p — +oo (after rescaling at every degree).

We can replace dh with any real closed 1-form 7, obtaining a generalization of the Witten’s
perturbations, d,, 6, and A,. Now d, need not be gauge equivalent to d, obtaining new twisted
Betti numbers ﬁﬁ- However the numbers ﬁ/]j have well defined ground values B{SIO, called the
Novikov numbers, which depend upon the de Rham cohomology class [n] € H!(M,R). Assume
that:

(a) n is a Morse form (it has Morse type zeros), and g is Euclidean with respect to Morse
coordinates around the zero points of 7.

(Some concepts used in this section are recalled in Sections and ) Then A, also develops
a long gap separating a small spectrum and a large spectrum, and the analysis of the small
spectrum gives Morse inequalities for the Novikov numbers. Take any auxiliary vector field X
such that:

(b) X has Morse type zeros, and is gradient-like and Smale; and
(c) nis Lyapunov for X, and 7 and g are in standard form with respect to X.

Then the small complex approaches a perturbed Morse complex of X. We refer to work by
Novikov [Nov81l Nov82|, Pajitnov [Paj87], Braverman and Farber [BE97|, Burghelea and Haller
[BHO1, BHO04, BHOS|, and Harvey and Minervini [HMO06 Min15].

We can similarly define the perturbation d, = d+z nA with parameter z = pu+iv € C (u,v € R
and i = \/—1). Its adjoint is §, = § — zZn., and we have a corresponding perturbed Laplacian
A, =d,0,+06,d,. As a first step in our study, we prove extensions of the above results to this case,
taking limits as |u| — oo, uniformly on v. First, assuming@ we get the long gap in the spectrum
of A, separating the small and large spectrum, which depends only on g (Theorem. Second,
assuming |(a) we show that the quasi-isomorphism @, : (E, ¢m,d.) — (C*®,d;) becomes an
isomorphism for || > 0 and almost isometric as || — oo (Theorem [5.3). To get that the
convergence is uniform on v, we show a version of a Sobolev inequality for a Sobolev norm
defined by A;,, where the constant involved is independent of v (Proposition . Then we
adapt the arguments of Bismut and Zhang [BZ92, [BZ94] (see also [ZhaO1]).
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1.2 Zeta invariants of some Morse forms

Let II} and TI! be the orthogonal projections to the images of A, and d., and let w be the
degree involution. We consider the zeta function ((s, z) = ((s, z,n) := ((s, Az, nAd,w) [Gil95)
Section 1.12.4]. As a function of s, this is the meromorphic extension to C of the function
Trs(nA 6, A °TL) = Tr¥(nAd; LA 5HHIL), which is well defined and holomorphic for Rs > 0.
Then the zeta invariant ((1,z) would be a renormalized interpretation of the super-trace of
nAd; 'L, which is not of trace class by the Weyl’s law. However, according to the general
theory of zeta functions of operators, ((s, z) might have a simple pole at s = 1. To study this zeta
function, we decompose it as sum of the terms defined by the contributions from the small /large
spectrum, (g /1a(8, 2) = Cam/1a(8, 2,1)- As a function of s, (uu(s, 2) is always holomorphic on C.

For a class of Morse forms, our first main theorem states that ((s, z) is smooth at s = 1 for
|| > 0, and describes the asymptotic behavior of ((1,z) as u — +oo, uniformly on v. In fact,
since

4(372777) = _<<37 —Z, _77) ) Csm/la(svz777) = _Csm/la(sa_27_77) ) (11)
it is enough to consider the case where > 0 and take the limit as p — +o0.

We use the current (M, VM) of degree n — 1 on TM constructed by Mathai and Quillen in
[MQ86], depending on the Levi-Civita connection VM. This current is smooth on the complement
of the zero section, where it is given by the solid angle. It is also locally integrable, and its wave
front set is contained in the conormal bundle in T*T'M of the zero section of T'M. Since this set
does not meet the conormal bundle of the map X : M — T'M (assuming @), X*p(M, VM) is
well defined as a current on M. Assuming |(a)H(c), consider the real number

Zlp = Zla(MvgaT]) = / nA X*ZZJ(M’ VM) ’
M
which is known to be independent of X [BZ92, Proposition 6.1].

Now suppose also that:

(d) for every zero point p of X, the maximum value of the integrals of 1 along the instantons
of X with a-limit {p} only depends on the Morse index k of p.

This maximum value is denoted by —aj for some ajp > 0. Let m,lC denote the dimension of
d,(EFL) for || > 0, which is independent of z. Consider also the real number

Z,5m

n

Zsm = Zsm<M7gv777X) = Z(_l)k(l - eak)mllc )
k=1

and let z = z(M, g,m, X) = Zsm + Z1a.

THEOREM 1.1. Let M = (M,g) be a closed Riemannian manifold of dimension n. Let 1 be a
closed real 1-form on M satisfying .

(i) For >0, ((s, z) is smooth for s # (1 —k)/2 (k=0,1,...), and
¢(1,2) = ltiﬁ)l Tr® (17/\ dz_le_mzl_[i) .
(ii) Let X be a vector field on M satisfying [(b)H(c)} Then
Qa(l,2) = 212 + O(H_I/Q)

as [t — 400, uniformly on v.
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(iii) If moreover [(d)| holds, then

Csm(la Z) = Zgm T O(:u_l)
as [t — 400, uniformly on v.

The existence of the limit of Theorem is rather surprising because A d; e t4=11}
is weakly convergent to nAd;'TIl. An expression similar to TrS(nA d;le*tAZHi) was used by
Mrowka, Ruberman and Saveliev to define a cyclic eta invariant [MRS16]. Theorem
shows that zg, and z are also independent of X. Thus X will be omitted in their notation. In
the notation of z, /1, and z, we may also omit M or g if they are fixed.

By (1.1)), if we take p — —oo in Theorem we have to replace zgy, /1, (1) With —Zgy, /1a(—17).
Descriptions of —zgy, /1,(—7) are given in (6.9) and (7.1)).

Our second main theorem is about the prescription of z = z(M, g,n) without changing the
cohomology class of 7.

THEOREM 1.2. Let M be a smooth closed manifold of dimension n.

(i) Let X be a vector field satisfying @ For every ¢ € HY(M,R) and 7 >> 0, there is some
n € £ and a Riemannian metric g satisfying@ and@ with X such thatz(M,g,n) = 7.
If n is even, this property holds for all T € R.

(ii) Assume M is oriented and n is even. Then, for every ¢ € H'(M,R) and 7 € R, there
is some 1 € &, a Riemannian metric g and a vector field X satisfying |(a)H(d)| such that
+z(M,g,+n) =T1.

1.3 A distribution associated to some Morse forms

A trace formula for simple foliated flows on closed foliated manifolds was conjectured by C. Deninger
(see e.g. [Den08]). He was motivated by analogies with a formula in Arithmetics, and previous
work of Guillemin and Sternberg [Gui77]. This trace formula is an expression for a Lefschetz
distribution in terms of infinitesimal data of the flow at the fixed points and closed orbits. This
Lefschetz distribution should be an analogue of the Lefschetz number for the action induced by
the flow on some leafwise cohomology, whose value is a distribution on R—the precise definition
of these notions is part of the problem. In [ALK02, [ALKO0S], the first two authors proved such
a trace formula when the flow has no preserved leaves; see also the contributions [Lei08, Leil4]
by the third author. The general case is considerably more involved. In [ALKTL20], we propose a
solution to this problem using a few additional ingredients. One of them is the b-trace introduced
by Melrose [Mel93]. Since the b-trace is not really a trace, it produces an extra term, denoted by
Z, in the same way as the eta invariant shows up in Index Theory on manifolds with boundary.
In our trace formula, the term Z is a contribution from the compact leaves preserved by the
flow, which depends on the choice of a form defining the foliation and a metric on the ambient
manifold. But Z may not be well defined in general; it will be proved that appropriate choices
of the form and the metric guarantee its existence.

Precisely, we would like to define

Z=7Z(M,g,m) = lim Z,, (1.2)

H—>—+00

in the space of tempered distributions, where Z,, = Z,,(M, g,n) (p > 0) should be a tempered
distribution defined by

Gud) =5 [ [0 seS) fwydvau, (1.3
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for any Schwartz function f, where Tr® denotes the supertrace and f the Fourier transform of f.

Let ¢ denote the Dirac distribution at 0 on R. The problem about the definition of Z is
solved in our third main theorem for the same class of Morse forms as before.

THEOREM 1.3. Let M = (M,g) be a closed Riemannian manifold of dimension n. Let n be a

closed 1-form on M satisfying and @ with some vector field satisfying @ Then (|1.2))
and (1.3) define the tempered distribution Z = zd.

According to Theorems and we can choose 1 and g in the trace formula for foliated
flows so that Z(M, g,n) = 0 if n is even, or Z(M, g, +n) = 0 if moreover M is oriented, achieving
the original expression of Deninger’s conjecture.

It looks clear that extensions of Theorems [L1] to [[.3 with coefficients in flat vector bundles
could be similarly proved. We only consider complex coefficients for the sake of simplicity since
this is enough for our application.

1.4 Some ideas of the proofs of Theorems to

Theorem follows by using that the derived heat trace invariants up to order n of the elliptic
complex d, are independent of z, proved by Gilkey and the first author [ALG20] (Section .

Consider the meromorphic function
0(s,2) = —C(5,Ax, Nw) | (1.4)
where N is the number operator, and write
0(s,z) = Osm(s,2) + O1a(s, 2) ,
where
esm/la(sv Z) = _Csm/la<87 A, NW) ) (15)
using the contributions from the small/large spectrum as above. Thus e?(0:2)/2 ig the factor used
to define the Ray-Singer metric on det H3 (M) [BZ92|, using a prime to denote d;. We obtain
(Corollary |4.16]
(a(1,2) = 0.0,,(0, 2) . (1.6)
This equality allows us to use the deep relation between the Ray-Singer metric and the Morse
metric on det HS (M), proved by Bismut-Zhang [BZ92, [BZ94]. In this way, using also that
®, : E,sm — C*® is an isomorphism, we obtain that (j,(1, z) is asymptotic to zj, as p — +0oo

(Section [6.2)). This proves Theorem

When 7 is exact, we show this asymptotic expression of (j,(1,z) assuming only @ (Sec-
tion, without using and the indicated strong result of Bismut-Zhang. Instead, we apply
that the index density of the elliptic complex d, is independent of z, proved by Gilkey and the
first author [ALG21] and by the authors [ALKI20].

On the other hand, given any & € H'(M,R) and a vector field X satisfying @, we prove
that there is some 1 € £ and a metric g satisfying [(a)] and [(d)| (Theorem [7.1]). This can be
considered as an extension of a theorem of Smale stating the existence of nice Morse functions
[Sma61l, Theorem B] (the case where £ = 0). Its proof is relegated to Appendix |A| because of its
different nature.

The properties |(a)H(d)| are used to give an asymptotic description of d, as u — 400 (Sec-
tion. From this asymptotic description and using that ®, : E, s, — C*® is an isomorphism for
1> 0, we get upper and lower bounds of the nonzero small spectrum of A, (Theorem, which
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are independent of v. This is a partial extension of accurate descriptions of the nonzero small
eigenvalues achieved in the case where 7 is exact and the parameter is real [LPNV13] Mic19].
With the same procedure and using the bounds of the nonzero small spectrum, it also follows
that (sm(1, 2) is asymptotic to zgy, as p — +oo (Section , showing Theorem

Next, by modifying n and X around its zero points of index 0 and n, without changing the

cohomology class of 7, we can achieve any real number as z(n), or as both +z(+n) if M is oriented
and n even (Section . This shows Theorem

If it is possible to switch the order of integration in (|1.3)),

(Z,, f) = / / Tr* (nAd.e —ul: ?) f(v)dudv
/ ltli%lTI' nAd;le*mZHi) fw)dv, (1.7)

then Theorem is an easy consequence of Theorem Thus it only remains to prove that
both and define the same tempered distribution Z,,. This follows from the Lebesgue’s
dominated convergence theorem and Fubini’s theorem (Section [J)). The verification of the hy-
pothesis of the Fubini’s theorem requires the above lower estimate of the nonzero spectrum.

2. Witten’s perturbations

2.1 Preliminaries on the Witten’s perturbations

2.1.1 Basic notation Let M be a closed Riemannian n-manifold. For any smooth Euclidean/Hermitean
vector bundle E over M, let C™(M; E), C*(M;E), L*(M; E), L*(M; E) and H™(M; E) de-
note the spaces of distributional sections that are C™, C*°, L?, L*® and of Sobolev order m,
respectively; as usual, F is removed from this notation if it is the trivial line bundle. Consider

the induced scalar product { , ) and norm || || on L?(M; E), and the induced norm || ||z on
L>*(M; E). Fix also norms, || ||, on every H™(M; E) and || ||cm on C™(M; E) with || || = |lo
and || ||[co = || ||z If P is the orthogonal projection of L?(M; E) to some closed subspace V,

then PL denotes the orthogonal projection to V.

Let TcM = TM®C and T M = T*M®C. The exterior bundle with coefficients in K = R, C is
denoted by Ag = AxM, and let Q(M,K) = C®(M; Ag); in particular, C(M,K) = Q(M,K).
The Levi-Civita connection is denoted by V.= VM. As usual, d and 6 denote the de Rham
derivative and coderivative, and let D = d+6 and A = D? = d§+dd (the Laplacian). Let Z (M, K)
and B(M, K) denote the kernel and image of d in Q(M, K). Thus H*(M,K) = Z(M,K)/B(M,K)
is the de Rham cohomology with coefficients in K. We typically consider complex coefficients, so

we will omit K from all of the above notation just when K = C. Take || ||;, and || ||cm given on
Q(M) by

m m
ladlm = > IID%all,  Nlallom =Y IV al|ze .
k=0 k=0
For any homogeneous linear operator between graded vector spaces, T : V* — W?*, the
notation T}, means its precomposition with the canonical projection of V* to V¥. On any graded
vector space V*, let w and N be the degree involution and number operator; i.e., w = (—1)* and
N =% on V*.
For any n € Q'(M,R) with nf = X € X(M) := C®(M;TM), let Lx and tx denote the
Lie derivative and interior product with respect to X, and let no = —(nA)* = —tx. Using the
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identity C1(T*M) = AM defined by the symbol of filtered algebras, the left Clifford multiplication
by n is ¢(n) = nA\ + na, and the composition of w with the right Clifford multiplication by 7 is
¢(n) = nA—nJ; in particular, ¢(n)* = —c(n) and é(n)* = ¢(n). Recall that, for any h € C*°(M,R),
[D,h] = é(dh) . (2.1)

In the whole paper, unless otherwise indicated, we will use the following notation without
further comment. We use constants C, ¢ > 0 without even mentioning their existence, and their
precise values may change from line to line. We may add subindices or primes to these constants

if needed. We also use a complex parameter z = p+iv € C (u,v € R and i = y/—1). Recall that
0, = (0 —10,)/2 and 0z = (0, +10,)/2.

2.1.2 Perturbations defined by a closed real 1-form For any w € Z'(M), we have the Witten’s
type perturbations d,, d,,, Dy, and A, of d, §, D and A. Given p € Z!'(M,R) and z € C, we write
d,=d.y, 0, =06y, D, =D, and A, = A,,. These operators have the following expressions:

d,=d+znN, 6, =d,=96—2zna,
D. =d. + 6, =D + pé(n) +ive(n) = Div + pé(n) , (2:2)
A; = DZ =d0: + 0:dz = At pHy + ivdy + [2PIn]* = Aiy + pHy + %]
where, for X = nf,
Hy = Dé(n) +é(n)D = Lx + Lx ,  Jy=Dc(n) +c(n)D = Lx — Lx .
Note that H, is of order zero and J,, of order one.

As families of operators, d, and J, are holomorphic and anti-holomorphic functions of z,

respectively. More precisely, it follows from (2.2]) that
azdz:n/\7 825z:07 8zAz:77/\5z+5z77/\a }

(2.3)
8de =0, 6552 = —-n4, aEAz = —n4 d, —d; na.

The operator d, defines an elliptic complex on Q(M), whose cohomology is denoted by
H?(M). Since d, has the same principal symbol as d, it is a generalized Dirac complex and
A, a generalized Laplacian [BGV04], Definition 2.2]. If § = 1+ dh for some h € C*°(M,R), then
the multiplication operator

e (M), dg) — (M), dsy) (2.4)

~

is an isomorphism of differential complexes, and therefore it induces an isomorphism H?3,(M) =
H?,(M). Thus the isomorphism class of H$(M) only depends on & := [n] € H'(M,R) and z € C.
By ellipticity, D, and A, have a discrete spectrum, and there is a Hodge type decomposition

Q(M) =ker A, ®imd, &imd, , (2.5)
as topological vector spaces. It induces a Hodge type isomorphism
H(M) =kerA, . (2.6)
We also have
ker A, = ker D, =kerd, Nkerd,, imA,=imD, =imd, ®im, .

The orthogonal projections of Q(M) to ker A,, imd, and im 6, are denoted by IT, = 19, I} and
Hz, respectively; thus HZL = Hi + Hg. The restrictions d, : imd, — imd,, J, : imd, — im §, and



JESUS A. ALVAREZ LOPEZ, YURI A. KORDYUKOV AND ERIC LEICHTNAM

D, :im D, — im D, are topological isomorphisms, and therefore the compositions d; T, §_ 1112
and D;'TI+ are defined and continuous on Q(M). Moreover the diagram

. dz,k .
imo, 1 —— imd,
Az,kl lAz,kH (2.7)

. dz,k .
imo, 1 — imd,

is commutative—recall that d, j, . and A, ; are the compositions of the projection to Qk(M
with d,, 8, and A,. The alternate sum of the dimensions ¥ = p¥(M, &) = dim H¥(M) (k =
0,...,n) is the Euler characteristic [Far04, Proposition 1.40],

D (1FBE = x(M) . (2.8)

k

(This is also a consequence of the index theorem.) For every degree k, ﬂf is independent of z
outside a discrete subset of C, where ¥ jumps (Mityagin and Novikov [Nov(2, Theorem 1]).
This ground value of ﬁf is called the k-th Novikov Betti number, and will be denoted by ﬁ{{}o =
BE (M, ). Moreover it will be shown in Section that

B =B for |u/>0. (2.9)

(When z is real, this is proved in [Far95, Theorem 2.8], [BF97, Lemma 1.3], [BHO4, Proposi-
tion 4].) Thus the discrete set of parameters z € C with 8%(M, &) > pX (M, &) for some degree
k is contained in a strip |u| < C.

By (2.2)) and since 7 is real, for all o € Q(M),
dzi()é = dg@ N 5270[ = 525[ s DZOé = Dg@ N Aza = Ag@ . (210)

So conjugation induces C-antilinear R-isomorphisms
HE(M)= HE (M), kerA, ;= kerAsy,,
yielding ¥ = pE.

2.1.3 Case of an exact form When n = dh for some h € C*°(M,R), we have the original
Witten’s perturbations, which satisfy

dz — e—zhdezh _ e—iuh d# eiuh ’ 52 — eéhée—éh — e—iuh 5# eil/h ,
D. = efil/hD eiuh A, = efthA eiuh
z = 1% ) z — 1% .
Thus the multiplication operator
e (M), d,) — (M), d) (2.12)

is an isomorphism of differential complexes, and therefore H?(M) = H*(M); thus gF = gF =
B¥(M) (the kth Betti number) in this case. Moreover multiplication by e*” defines a unitary
isomorphism ker A, = ker A,

(2.11)

2.1.4 Interpretation of the closed form as a flat connection There is a unique flat connection
VM*C on the trivial complex line bundle M x C so that VM*®1 = 5. The corresponding flat
complex line bundle is denoted by £ = £,. Note that L., = L*. Since every L* is canonically
trivial as line bundle, it has a canonical Hermitian structure g~ . Let (Q(M, £?) = Q(M),d~")
be the de Rham complex with coefficients in L.



ZETA INVARIANTS OF MORSE FORMS

Suppose n = dh for a while. Then the horizontal leaves of £* are the graphs of the functions
se”*" (s € C). So e*" : £ — L0 is an isomorphism of flat bundles, which induces an isomorphism
of differential complexes,

e (QM),d") = (M), d) .
Comparing with the isomorphism (2.12)), we get d*° = d, on Q(M). Furthermore, since g~

corresponds to ezf‘hgﬁo via the isomorphism e* : £2 — £°, it follows that V£° ¢~ corresponds
to

VE (e2gE") = 2ue™h dh @ g~ |
yielding
VE G5 =2udh ® ¢~ . (2.13)
A general 7 is locally exact, and therefore £ can be locally described as above. Thus d, = d*°
on QM) = Q(M, L), and (2.13]) gives
VE ¢ = 2un @ g~ . (2.14)

2.1.5 Perturbed operators on oriented manifolds Using for instance the interpretation of d,
given in Section the mapping («, 8) + a A B induces a bilinear map H*(M) x H' (M) —
H*+!(M), and the mapping (a, ) + a A § induces a sesquilinear map HY(M) x H' (M) —
HEH ( M) )

Now assume M is oriented. Then the above maps and integration on M define a nondegenerate
bilinear pairing H*(M) x H"*(M) — C, and a nondegenerate sesquilinear pairing H¥(M) x
H"-F(M) — C. Thus gf = "% = gn;* = pb.

Let x denote the C-linear extension to AM of the Hodge operator x on Ag M, which is unitary,
and let * denote its C-anti-linear extension. These operators are determined by the conditions

aAxB = g(a,B) vol = a A%

for a, B € Q(M), where vol = «1 is the volume form. The following equalities on Q¥(M) follow
from ([2.2) and the usual equalities relating x, d, §, n/A and 7. (see e.g. [Roe98, Chapters 1 and 3],
[Gil95] Section 1.5.2], [BGV04, Section 3.6]):

dZ*: (71)16* 5727 z*:(*l)k—i_l* dfg, AZ*Z*A—E,
_ _ (2.15)
d.% = (~1)f %_. A

Then we get a linear isomorphism % : ker A, — ker A_; and an anti-linear isomorphism * :
ker A, — ker A_,, inducing a linear isomorphism HF(M) = H"Z*(M) and an anti-linear iso-
morphism HF(M) = H"*(M) by [2.6).

2.2 Perturbation of the Sobolev norms
For m € Ny and w € Z1(M), define the norm || || on H™(M;A) by

m
lallme =Y || Dhe -
k=0

PROPOSITION 2.1. For all w € Z'(M) and o € H™(M; A),

m m
—k —k
lelmew < Cin Y Iwlge ladls llalm < Cn Y- Iwlge ok -
k=0 k=0
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Proof. We proceed by induction on m. We have || [lo. = | ||. Now take m > 0 and assume these
inequalities hold for m — 1. For n € Z}(M,R) and a € Q(M), we have

le(m)etllm, le(m)allm < Crallnllem llotflm - (2.16)

Applying these inequalities to the real and imaginary parts of w, and using the induction hy-
pothesis and (2.2)), we get

m—1

el = lledl + 1 Dwetllm-1 < e + Cmor Y llwllfi =" | Duclly
k=0

< llafl+ G Z g ~* (1Dl + Crllwll cxllex)
k
< lall + G Z lwllgw = (ledllrsr + Crllwll e llolx)

< sz Inlig " el
=0

and

lalm = llall + [1Dallm-1 < llafl + | Dwatllm—1 + Crpywllgm=1 [letllm—1

k —k
< laff + G- 12 lwollgw ' Dl + Crnallwolig "l )
k=0
m—
<llall + Cm1 Y (lwllg ek + Crallnllg®
k=0

<Cm ZIIWH el - O

Let Z(M,Z) C Z(M,R) denote the graded subspace of forms that represent cohomology
classes in the image of the canonical homomorphism H®(M,Z) — H®(M,R). Recall that we can
consider H'(M,Z) as a lattice in H'(M,R) by the universal coefficient theorem for cohomology.
Let 6 be the multivalued angle function on S'. Then df is the angular form on S' with fSl df = 2.
For n € Z'(M,R), we have € 2nZ'(M,7Z) if and only if there is some smooth map h : M — S!
such that n = h*df (see e.g. [Far04, Lemma 2.1]).

In Proposition the dependence of the constants on w cannot be avoided. For instance,
for M = S' with the standard metric g = (d6)?, we have ||1|,, = V2, whereas ||1|/,n =
V21 Y7 [v|F for n = vdf (v € R). However, the following version of a Sobolev inequality for
| llm,in involves a constant independent of 7.

,_a

)

PROPOSITION 2.2. If m > n/2, for alln € ZY(M,R) and o € H™(M; A),
ledlzoe < Crmlla|m,in -

Proof. By the Sobolev embedding theorem, we have

Coig = sup 1L

> 0.
0#£a€Q(M) [ etl[m,in

10
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Take any € Z'(M,R) and w € 2rZ'(M,Z), and let ¥ = 1 4+ w. Then w = h*df for
some smooth function h : M — S!. Since the difference between the multiple values of 6 at
every point of S! are in 277, the functions e**"? are well defined and smooth on M. Moreover,
applying locally, we get D;,y = e "0 D, e"?. So, for 0 # a € Q(M),

1h* ih*

eaHm,m

m m
ih* ik -
= Ymyin E HDfn e Ha” = Cm,in g He ih eDfn eth 9@”
k=0 —

laflzoe = e Pall L < Cinjinlle

m
= Conin 3 IDEsall = Coninllllm iy -
k=0

This shows that

sup Crniy < Crin - (2.17)
n'en+2xZ1(M,Z)

Since 2mH'(M,7) is a lattice in H'(M,R), there is a compact subset K C H'(M,R) such
that
K +2rHY(M,Z) = H'(M,R) . (2.18)

Take a linear subspace V' C Z'(M,R) such that the canonical projection V' — H*(M,R) is an
isomorphism, and let L C V' be the compact subset that corresponds to K. By ([2.18)),

L+2rZY(M,Z) = Z'(M,R) . (2.19)

Moreover L is bounded with respect to || ||cm. Therefore, by Proposition for all n € L and
a € Q(M),

[l zee < Cmollallm < Crmlledm,in »

yielding
sup Cr,in < Cpy (2.20)
neL
The result follows from (2.17)), (2.19)) and (2.20)). O
Given n € ZY(M,R), we write || |m,> = || |lm,2n. Proposition has the following direct
consequence.

COROLLARY 2.3. For all « € H™(M;A),
m m
ledlim,z < Con )L™ Fllalle s Nalm < Cm Y 2™ *llallk,: -
k=0 k=0
PROPOSITION 2.4. For all o € HY(M;A),

ladlve < Cllallia +lulllall) sl < C(lle

Proof. By (2:2) and (2.16),

12+ [ulled]) -

vz = lledl + [Pzl < llafl + [|Diwall + Clulllaf

< | < C(lledlvi + lullel) ,
el = lledl + [ Dwell < llafl + [ Deall + Clplllell <

(lellrz + [ullled)) - ©

Q Q

11
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3. Small and large complexes

3.1 Preliminaries on Morse forms

Recall that a critical point p of any h € C*°(M,R) is called nondegenerate if Hess, h is a non-
degenerate symmetric bilinear form on 7, M. The index of Hessy h, denoted by ind(p), is called
the index of h at p. By the Morse lemma [Mil63, Lemma 2.2], this means that

n

1

h=hp) = 5> ep;(w})? (3.1)
j=1
on the domain U, of some coordinates x;,, = (xll,, . ,x;j) (centered) at p, called Morse coordinates,

where

—1 if j <ind(p)
€pj = { (3.2)

1 if j > ind(p) .

Recall that h is called a Morse function when all of its critical points are nondegenerate. In
this case, its critical points form a finite set denoted by Crit(h). The Morse functions form an
open and dense subset of C*°(M,R) [Hir76, Theorem 6.1.2]. On every U,, we can assume the
metric is Euclidean with respect to Morse coordinates:

n

g=> (dx])*. (3.3)

Jj=1

Now take any n € Z'(M,R). A zero p of 7 is said to be nondegenerate if n = dh,, , around p
for some local Morse function h,, ,, which is chosen so that h, ,(p) = 0. The index ind(p) of Ay,
at p is also called the index of  at p. On the domain U, of Morse coordinates x, = (m},, Cey Ty)
for hyp at p, hyp is given by the right-hand sides of , and

n
n= Z em’xi dxg) . (3.4)
j=1
It is also said that x), = (x}o, . ,a;g) are Morse coordinates for n at p. With the notation

xy = (2, .., 2h) U, 5 RF 2 = (2!

ny . n—k
p D »p D P ,...,.%'p).Up—)R s

for k = ind(p), we can write
1 _
hyp = 5(’1’;’2 - ’% ’2) . (3.5)

If all zeros are nondegenerate, then 7 is called a Morse form. In this case, its zeros form a
finite set, X = Zero(n); subsets of X’ defined by conditions on the index are denoted by writing
the conditions as subscripts; for instance, Xy, Ay and X are the subsets of zeros of index k, of
positive index, and of index < k, respectively. For any & € H'(M,R), the Morse representatives
of ¢ form a dense open subset of £, considered as a subspace of Q!(M,R) with the C* topology
(see e.g. [Paj06, Theorem 2.1.25]).

From now on, unless otherwise stated, we will use some € Z'(M,R) and a Riemannian
metric g on M such that 7 is a Morse form, and ¢ is Euclidean with respect to Morse coordinates
around zero points of 7; i.e., n and g satisfy @ (Section [1.1J).

The Hopf index of —nf at every p € Ay, is (—1)* (see Section |5.1.1]). Thus, by the Hopf index

12
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theorem for —nf,
n

D (=DM = x(M) . (3.6)

k=0

3.2 The small and large spectrum

Consider the perturbed operators defined by n and g. Recall that X denotes the zero set
of 1. We can suppose the closures of the domains of Morse coordinates, U, (p € X), are disjoint
from each other, and z,(Up,) = (—4r,4r)" for some r > 0 independent of p. Let U = (¢ Up.

Denoting also the coordinates of R™ by (x,...,z7), consider the function h, € C®(R")
defined by the right-hand side of (3.1)) (or (3.5))). Let d}, ,, 9, ., D,, ., and A}, , (z € C) denote the

corresponding Witten’s operators on R", whose restrictions to (—4r,4r)" agree via x, with the
restrictions of d,,, 6, D,, and A, to U,,.

PROPOSITION 3.1 See e.g. [Roe98, Chapters 9 and 14|, [Zha0ll Sections 4.5 and 4.7]. The fol-
lowing holds for i € R:

(i) We have
n o \2 ) . .
AL =S (_ (a?) +12(20)2 + ey ldad dxg,/\]) . (3.7)
p

Moreover, using multi-index notation,

j=1

dmg ifjed

dad 5, dad Ndx! =
(o, ANl {—dagg ifj¢T.

(ii) A, is a non-negative selfadjoint operator in L?(R™; A) with a discrete spectrum, which
consists of the eigenvalues

n
1> (1 +2uj + epjvj) (3.8)

j=1
where u; € Ny and v; = £1. For the restriction of A;W to k-forms, the spectrum has the
additional requirement that exactly k of the numbers v; are equal to 1. In particular, 0 is
an eigenvalue of A;,u with multiplicity 1 (choosing u; = 0 and v; = —e¢p; for all j), and
the nonzero eigenvalues are of order | as i — +0o0. D}’% u 1s also a selfadjoint operator in
L?(R™; A) with a discrete spectrum, which consists of the positive and negative square roots

of .

(iii) The kernel of Dj, , and Aj, , is generated by the normalized form

4 .
o = (&)”/ e HlTn2/2 4o A LA gy ind®)
T P P :
For any z € C with p > 0, let A} = e~ hPA;WeW o Since the operator of multiplication

by e~™"» is unitary, A/ is also selfadjoint and non-negative in L?(R";A), it has a discrete

p7z
spectrum with the same eigenvalues and multiplicities as A;, ,» and its kernel is generated by the
normalized form e, , := e W hPe]’m - We will also use the notation

I — ¥l € Coo(Up;Aind(p)) .

€pz = TpCpz

The function xyh, € C°°(Up) agrees with hy, ,, which is also denoted by hy, in this section.

13
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Fix an even C* function p : R — [0, 1] such that p =1 on [—r,r] and supp p C [—2r, 2r]. For
every p € X, let

pp = plap) - play) € C(Uy) , (3.9)
epy = Zp ¢ € C(Uy; ™)) (3.10)
n
epr =€ Ve, = Z—p e, . € C(Uy; AMIP)) | (3.11)
n

where

ay = < / i plz)’e dx) - (Dm +0(e ), (3.12)

—2r
as u — +oo. The extensions by zero of the forms e, . to M are also denoted by e, .. They
form an orthonormal basis of a graded subspace E, C Q(M) with dim E, = |X|. Let P, be the
orthogonal projection of L2(M;A) to E.; thus P; is the orthogonal projection to E;-.
Remark 3.2. For the sake of simplicity, most of our results are stated for > 0 or as u — +o0,
but they have obvious versions for u < 0 or as p — —oo, as follows by considering —n.

PROPOSITION 3.3. If 1 >> 0 and B € H'(M; A) with supp 8 C M \ U, then

DBl = Cp | -

Proof. This follows like [Zha0ll, Proposition 4.7], using that H,, is of order zero in ({2.2]). Actually,
according to the statement of [ZhaOIl, Proposition 4.7], this inequality would hold with ,/z instead
of u, but its proof clearly shows that using u is fine. O

ProprosITION 3.4. The following properties hold:
(i) P,D,P, =0.
(i) If u>0,a € E, and B € E- N H'(M;A), then

|PFD.all <e*|all, [P.D.AIl <e || .
(iii) If p>> 0 and 8 € EX N HY(M;A), then
1PD.8l > Cyu |8 -

Proof. This follows like [ZhaOll, Propositions 4.11, 4.12 and 5.6]. Property is true because
every De,  is supported in U, and has homogeneous components of degree different from ind(p);
therefore it is orthogonal to ker A,. The other properties are consequences of Propositions
and B.3]and (3.9)—(3.12)). According to [ZhaO1l Proposition 4.11], the inequalities of[(ii)] hold with
1/p instead of e~“*, but its proof shows that indeed e~ can be achieved. O

PRrROPOSITION 3.5. For all m € Ny, if > 0, then

|D-epcllm ||D ep,znm T
Proof. From Proposition Em, - and , we get
B Pp o ik 1 n/4A ,
D.e,. =D, <au - ) =e Pau<4) e(dpp)ey, ,, - (3.13)

Thus the stated estimate of ||Deyp, ;||m, is true by (3.10) and (3.12)), and since dp, = 0 around p.
(When v = 0, this is indicated in [Zha0ll Eq. (6.17)].)

By (2.11] - for all £k € Ng and p € &, the form D *,De,p . is the extension by zero of the form
e~ Whe Dk D wep,u o1 Up. Then the stated estimate of ||Dzep,z||m7w follows from the case v = 0. [

14
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COROLLARY 3.6. If u > 0, then

[Dzep.zllpoe < e™ .

Proof. Apply Propositions [2.2] and [3.5 O

Consider the partition of spec A, into its intersections with [0, 1] and (1, c0), called the small
and large spectrum; the term small/large eigenvalues may be also used. Let E, ¢, C (M) denote
the graded finite dimensional subspace generated by the eigenforms of the small eigenvalues, let
E,1a = EL,, in L2(M;A), and let P, sm/1a be the orthogonal projections to E, g, /1,- Note that

Z,sm

E. sm and E, 1, NQ(M) are subcomplexes with d., called the small and large complezes, and the
term small/large projection will be used for P, ¢ n,. Thus (©(M),d.) splits into a topological
direct sum of the subcomplexes E, ¢ and E, 1, N (M), and ([2.5) gives

H*(E.sm,d;) =H; (M), H*(E,1aNQ(M),d,)=0. (3.14)
For any operator B defined on Q(M) or L?(M;A), let B, sm/1a = BP. sm 1a-
ProprosITION 3.7. For allm € Ng, > 0 and o € E,,
o = Pz sme|lm,in < e H|lall .

Proof. This follows like [Zha0l, Lemma 5.8 and Theorem 6.7], using || ||, instead of || ||,. The
following are the main steps of the proof.

Let S' = {w € C | |w| = 1}. With the argument of the proof of [ZhaO1l, Eq. (5.27)], using
Proposition we get that, for all & € H'(M;A), w € St and p > 0,

l(w = Dz)all = Clla] -

Thus w — D, : H*(M;A) — L?(M; A) has a bounded inverse and, for all 3 € L?(M;A), w € S
and p > 0,
[(w— D)7 8l <C7HB] - (3.15)

On the other hand, arguing like in the proof of [ZhaOll Eq. (6.18)], it follows that, for all
v € H™(M;A), w €S and pu>> 0,

1V lmiv < Con (1w = D)y gy + V10 + 1) -
Continuing by induction on m € Ny, we obtain
m
k—
Il < Con (101 + 3 1w = D)) -
k=1
In other words, for all 3 € H™ Y(M;A),

l(w = D)8, 5, < Con (™[ (0 = D718 + 32 i 1Bl ) -
k=1

Applying (3.15)) to this inequality, we get
w0~ D)7 8|5 < Contt™ 1Bl - (3.16)
Then, by Proposition 3.5

|(w— D) D.ey.|| = O(e ") (3.17)

m,iv

15
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as 1 — 400, uniformly on w € S!. But, endowing S! with the counter-clockwise orientation,
basic spectral theory gives (see e.g. [DS88al Section VII.3])

1 _ -
1 - _
=5 8 w(w— D) 'D.e,., dw . (3.18)
The result follows using (3.17)) in (3.18]). O

COROLLARY 3.8. For >0 and o € E,,
oo = Pz sme|| e < e”|lal] .

Proof. Apply Propositions [2.2] and
Alternatively, the proof of Proposition can be modified as follows to get this result (some
step of this alternative argument will be used later). Iterating (3.16)), we get

(w = D)7, < Crap™ V™25
for all 3 € L?(M;A). Then, by Proposition

l(w = D)8 o < CHOMI2) ] (3.19)
Thus, by Proposition 3.5
[(w = D2) "' Daep| oo = O (™)
as p — +o00. Finally, apply this expression in . O
COROLLARY 3.9. If > 0, then P, 4, : E, — E, g, Is an isomorphism; in particular, dim E, g, =
|X| and dim E¥ | = |X].
Proof. The result follows from Proposition for m = 0 like [ZhaOl, Proposition 5.5]. O

When p > 0, (3.6) also follows from Corollary (2.8) and (3.14]).
THEOREM 3.10 Cf. [BHO1, Theorem 3]. We have
spec A, C [0, efc‘“‘] U [C’|,u|,oo) .

Proof. We can assume p > 0 according to Remark By Propositions and for all
a€FE,,

HDsz,smaH < ”DzaH + HDZ(a - Pz,sma)H < HDzaH + Ha - PZ,smaHLz
< ||P Daall + Clulla = Pogmall + [la = Prsmall1i)
< (e7 + C(pe " + e=)) ||al| .
Hence, by Corollary for all 8 € E, ¢m,
0 < (A, B) = IDBIP < e [IB]1* .
This shows that
spec A, N[0,1] C [0,e™%] . (3.20)
Now let ¢ € E, 1, N HY(M;A), and write « = P,¢ € E, and 8 = P}¢ € B n HY(M;A). By
Proposition [3.7]
la? = (. ¢) = (@ = Prsma, 6) < [la = Pomall|9]l < e [la[l¢] ,

16
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yielding
all < e "|lo]l .

So

18] = ll¢ —all = ¢l = llall = (1 —e~)[|] .
Then, by Proposition [3.4]

ID26|| > || D25]| = [|D2al| = | P D25l — e |lall

> Cyu|Bll — e~ [oll = (Cyu(l —e~) —e )|l -

Therefore, for all ¢ € E, o, N H'(M;A),
(A:6,0) = ID:|1* = Cullg|)* -

This proves that

spec A, N (1,00) C [Cu,o0) . (3.21)
The inclusions (3.20) and (3.21]) give the result for x> 0. But, in those inclusions, we can
take ¢ and C' so small that, if one of them is not true for some p > 0, then Cp < e™. O

3.3 Ranks of some projections in the small complex
Recall that (Hi)sm’k, Hi am and Hg «m denote the orthogonal projections to the images of
A smks Az sm k—1 and 52751;1,;9;1, respec]civély. Let m g, mik and mgk. be the corresponding ranks
(or traces) of these projections. They satisfy

Mmag=mi,+ms,, miog=ml, =0, miy=ml;,, (3.22)
where the last equality is true because d. : imd, — imd, is an isomorphism. For x> 0, we have
mz,k,mjz’k < |Xk| by Corollary and .

LeEMMA 3.11. The numbers mi i are determined by the numbers m .

Proof. This follows from (3.22)) with an easy induction argument on k. O
LEMMA 3.12. We have m, ; = |X;| — 8.
Proof. This is a consequence of ([2.5)), (3.14) and Corollary O

COROLLARY 3.13. Tr¥((I1} )sm) = O.

Proof. By , and Lemma
Te* (T2 )sm) = (=) X] = Y (1) BE = x(M) — x(M) = 0. O

k k
LEMMA 3.14. If M is oriented, then, for k =0,...,n,

1 2 2
Mz = M—zn-k =M—zn-k, Myp=M_53p, m_,n—k -
Proof. This is true because, by (2.15)),
i 1 1 2
(Hz )sm,k * =% (H_g)sm,n—k ) Hz smk* = *H—Z,sm,n—k )

(Hj_)sm,k; =% (Hj__z)sm,nfk 5 Hl ,k; = ;HQ z,smn—=k * O

COROLLARY 3.15. For |pu| > 0, m, and mik only depend on |Xy| and the class & = [n] €
H'(M,R).

17
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Proof. Apply (2.9) and Lemmas and O

By Corollary we write my, = m, , and m{c = mi , for |p| > 0.

COROLLARY 3.16. ’I‘rs(Hg,Sm) =0 if M is oriented, n is even and p > 0.

Proof. By Corollaries and and Lemma [3.14] and since n is even,
TrS(Hl ):—TrS(H2 ):—Trs(l_I]L ) O

Z,sm Z,sm z,sm

3.4 Asymptotic properties of the small projection

Notation 3.17. Consider a function f(x) > 0 (z > 0). When referring to vectors in Banach spaces,
the order notation O(f(|u|)) (& — £o0) will be used for a family of vectors v = v(z) (z € C) with
llv(2)|| = O(f(|p])). This notation applies e.g. to bounded operators between Banach spaces. We
may also consider this notation when the Banach spaces depend on z.

PROPOSITION 3.18. For every 7 € R, on L?(M;A), as ju — 400,
P, sm = P, + O(e—CN) =P, smP:trsmPrsm + O(,U_z) = P.irsm+ O(M_l) .

Proof. By Corollary for 1 > 0, the elements P, gne, . (p € X) form a base of E, ¢. Applying
the Gram-Schmidt process to this base, we get an orthonormal base €, .. By Proposition

Ep=€p.+O(eH) . (3.23)
This gives the first equality of the statement: for any o € L?(M;A),

Poa=Y (a,epz)epz= Y (,6p:)épz +O0(e)|all = Pogma+ O(e™ )| .
peEX peX

Since the sets U, (p € X') are disjoint one another, for p # ¢ in X,
(€p,z€q,247) = 0. (3.24)
On the other hand, by (3.9)—(3.12), we can also assume
(epzr €pzir) = <€_whp€p,uv e_whpep,u+f> = (€p.us pputr)

n/4
— M< ppe 12y =Gt/ 4 0 (cmem)

/2
(e + )™ [ 2o, e
= — 72 /ne (nt+7/2) |2y day + O (e™)
+ 7))/4 . N
T 0l ) =14 0(7) (3.25)

where di), = dx, ... dz] = vol(z,). Combining (3.23) for z and z + 7 with (3.24) and (3.25)), we
obtain

Potrsmepz = Z<ép,zr €q.z+7)qztr = Z<ep,za eq+7)eq 47 + O™ )
qeEX qeX

= epoir T O(72) = Epoir +O(u?) . (3.26)
Repeating (3.26)) interchanging the roles of z and z + 7, we get

Pz,sszJrT,smép,z = Pz,srnép,er‘r + O(N_2) = ép,z + O(M_Q) .

18



ZETA INVARIANTS OF MORSE FORMS

This gives the second equality of the statement: for any a € L?(M; A),

P sma = Z(a, €p,2)epz = PromPoyrom Z(a, €p,2)Cp,z T O(/fz) o]
pEX peX

= Iz sm® + O(:U’72) ||a|| .

By (29).

125,z = Epztrll” = lepal® — 2R%(Ep,z, Epotr) + lpatrll® = 2 = 2R(Prrsmép,z, pyoer)
=2 = 2R(€p,trs Epotr) + O(M_Q) = O(N_2) )
which means
Ep:=Epoyr +O(u1) . (3.27)
The last stated equality follows from (3.26)) and (3.27): for any a € L?(M; A),

P, smov = Z(a, €p,2)€p> = Z(a, €p,2t7)patr + O(/fl)a =Pireme+ O(/fl)a . ]
pEX peEX

COROLLARY 3.19. For every 7 € R, on L?>(M;A),

doyrsm — Ao r Prsm = O(M_l) (b — +00) .

Proof. Since d,, = d, + TnA, it follows from Theorem that d.,, is bounded on E, ¢, +
E. 4+ sm, uniformly on p > 0. Hence, by Proposition

dz+7',sm - derTPz,sm = derT(PerT,sm - Pz,sm) = O(/«L_l) . O

PROPOSITION 3.20. On L?(M;A),

Pz,sm A, A Pz,sm = O(,Uzil/2) (M — —I—OO) .

Proof. Let o € L?(M; AF) and p € X}1. Using multi-index notation, write o = ZIJ ey, daz; on
U, with ay € L2(Up). Let J; = {1,...,k+11\{j} (j = 1,...,k+1). By Proposition (3-10)
and (B.11)),

k+1

1 P Jj —ivh —plzp?/2 5.1 k+1

MAa,ep,) = T E () ded Aday’ e ppe ulapl*/ day A Ndayth)
j=1

e J o p=ivhy ) —plap|2/2
=(-1) a—z (aga), e " pye”Henl/2)
14 j=1

Hence
1 k+1 ' ' , 1 k+1 . ,
i asen)l < o= 3 [asse gy 2) < flal =3 e o (329
j=1 Jj=1
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and

prwie_ulxp‘Q/ZH = </ (Pp(xp)x%)ze_mpr VOl(xp))1/2
U,

P

( 2r 2 2 ? 1 2r 2 n-1
/Qrp(w) z%e dx) </2r p(y)e dy)

2r 5 1 2r 5 n—1
(/ rle HT da:)2</ e M dy) : —i—O(e*c”)
2r 2r

- (2;)1/2 (Z)n/4 +O0(e M)

By (3-12), (3:28) and (3:29).
[(n A a,ep:)] = lall O(u=?) .
Since

P.(nNa) = Z (nAa, ep,z>€P,Z )
PEXk11

it follows that
1P-(n A o)l = flal| O(u™"7?) .
This shows that P, nA = O(/flﬂ), yielding P, ¢m nA = O(/fl/2) by Proposition
On the other hand, for ¢ € A},
n
nNAeq.= %e‘“"”ﬂzﬂ Z xé dmé A dazé A A d:c'; .
K j=k+1
So
1 n 1/2
. o 2
InAeqzll = a( Z / (pq(wq)xfl)ze el V01($Q)> 5
#\j=k+1”Va
which becomes O(,ufl/ 2) like in the previous part of the proof. Since
N\ P,a = Z (a,eqz)nNeqs,
qEXy

we get nA\ P, = O(u‘l/Q), yielding nA P, sm = O(,u_l/Q) as before.

3.5 Derivatives of the small projection

(3.29)

Remark 3.21. For reasons of brevity, most of the results about derivatives are stated for 9,,
which may be simply denoted with a dot. But there are obvious versions of those results for 0z

with analogous proofs.

PROPOSITION 3.22. We have

rank 0, P, gm < 2|X| (1>0), 0,P.om = O(,u_l/Q) (b — +00) .

Proof. By (2.3) and Theorem for 1> 0 and every w € S', a standard computation gives

9. ((w — Dz)_l) = (w—D,)'nA(w—D,)7 L.

20

(3.30)



ZETA INVARIANTS OF MORSE FORMS

Then, by (3.15)), 0, ((w - Dz)*l) defines an operator on L?(M; A), bounded uniformly on w € S!
and z € C. By (3.15)) and Proposition we also get

Pz,la/smaz((w - Dz)il) Pz,sm/la = (w - Dz)ilpz,la/sm nA Pz,sm/la(w - Dz)il = O(M71/2) )
uniformly on w € S!.
On the other hand, applying again basic spectral theory, we obtain
1

P,sm = —
S o Ja

(w—D,) ' dw

for p > 0, yielding
1

P _-
2o g

9:((w—D,) ") dw, (3.31)

which defines an operator on L?(M; A), bounded uniformly on z.

Using that P, gy, is an orthogonal projection, the argument of the proof of [BGV04, Propo-
sition 9.37] shows that

Pz,sm = Pz,lapz,smpz,sm + Pz,smpz,smpz,la . (332)
So rank Pz7sm < 2rank P, g < 2|X| by Corollary and

. 1 _
P,sm = o / Pz,laaz((w - Dz) 1) P, sm dw
™ Js1

1 - —
+ By o Pz,smaZ((w - D,) 1) P, 1o dw = O(M 1/2) 0

LEMMA 3.23. Forallp e X,

n gl o
Dzepz = 8 2 +0(e™) Jepz  (p— +00).

Proof. Using integration by parts, and since p is an even function and p’ vanishes on [—r, |, we
obtain

2r 1 27
/2 p<$)2$26_lm2 dx = 3/, (2p(z)p (z)x + p(av)Q)e_’”2 dx

= () ot (333

So

()= (T roem ) o
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It also follows from Proposition [3.1][(iii)] (3.10), (3.12) and (3.34) that

. 1 2
Opepyu =0 (,Op —ulepl?/2 dx A - /\da;;,nd(p)> = <8ﬂ<a>au — ‘xg)ep#
ay "

nolapl e
= <4u - g +O(e “)>ep,u : (3.35)
So, by (B-11),
n |:I"p|2 —Clt :
Opep,> = L2 +O0(e™ ) |eps, Ovep, = —ihpep, . (3.36)
Then the result follows using (3.5)). ]

ProprosITION 3.24. For allp € &,

10:(Dzep,z)|[Le = O(e™*) (1 — +00) .
Proof. From ([3.13]), we get

1
ay

(M>n/4 (dpp)Ouep

. 1 /m\n/4
_ —ivhy, = ( A
hpe pau (,u> c(dpp)ep7u>. (3.37)
By (3.12) and (3.34),
1 /m\% 1\ /m\% i1
3#(%(;) )= aﬂ(aﬂ)@ T 7 G)
_ P (NE(TYE L nm (TNETL T L many — ek
N 4/;(71') <M) 412 ( > (7T> +0(e™™) = 0(e™™) . (3.38)
The result follows applying Proposition [3.1][(iii)] (3.10), (3.12)), (3.35) and (3.38) to (3.37), and
using that dp, = 0 around p. O

ProrosiTION 3.25. For every p € X,

Ha (P, 2,sm€p,z — ep,z)HLOO = O(e—cu) (,u — —|—OO) .
Proof. By (3.18),
1 - _
O-Posen: =€) = 5 [ w710:((w = D)) Ducy-du

w_l(w — Dz)_lﬁz(Dzep,z) dw

2mi
Now apply (3.19)), (3.30)), Corollary and Proposition O

4. Zeta invariants of Morse forms

4.1 Preliminaries on asymptotic expansions of heat kernels

Let A be a positive semi-definite symmetric elliptic differential operator of order a, and B a
differential operator of order b; both of them are defined in C*°(M;E) for some Hermitian
vector bundle E over M. Then Be™*4 is a smoothing operator with Schwartz kernel K;(z,y) in
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C>(M?; EXE*) (omitting the Riemannian density vol(y) of the second factor). On the diagonal,
there is an asymptotic expansion (as ¢ | 0) [Gil95, Lemma 1.9.1], [BGV04, Theorem 2.30],

o0

Ky(z,z) ~ > ezt (4.1)

=0
where ¢; € C*°(M; E ® E*) is locally computable in terms of the jets of the local coefficients of
A and B. Hence the function

h(t) = Tr (Be ™) = / tr Ki(x, x) vol(x)
M

has an asymptotic expansion

h(t) ~ Y a0t (4.2)
=0
where
a; = / treg(x) vol(x) . (4.3)
M

Given any A > 0, let P4 ) be the spectral projection of A corresponding to [0, A]; thus Pj‘-)\
is the spectral projection corresponding to (A, 00). By ellipticity, P is of finite rank, and
Be_tAPA,\ is a smoothing operator defined for all ¢ € R. Take any orthonormal frame ¢1, ..., ¢x
of im Py y, consisting of eigensections with corresponding eigenvalues 0 < A\ < --- < A < A
Then the Schwartz kernel Hy(z,y) of Be *“AP4 , (t > 0) is given by

Hy(w,y) =Y e ™ (Bd;)(x) @ ¢;(y) ,
j=1

using the identity E = E* given by the Hermitian structure. Thus H(z,y) is defined for all
t € R and smooth. So
Tr(Be Py ) = / tr Hy(x, z) vol(x) .
M
In particular, for ¢t = 0, we have

K

Ho(z,2) = ) (B¢;)(x) ® ¢;(x) , (4.4)
j=1
Tr(BPyy) = /M tr Ho(x, z) vol(z) . (4.5)

The Schwartz kernel of Be *AP{, is Ki(z,y) = Ki(z,y) — Hi(z,y) (t > 0), which has an
asymptotic expansion

Ruw,2) ~ 3 & (a)ti-n-/e (4.6)
=0
where the first n + b sections €; are given by
. el(x) ifl<n+b
ér) = :
eil(r) — Ho(x,z) ifl=n+b.

Then the function

ha(t) = Tr (Be " Py ) = Tr (Be ™) — Tr(Be Py ) (4.7)
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has an asymptotic expansion

where the first n + b coefficients a; are given by

itl<n+b

“ . (4.9)
a—Tr(BPsy) ifl=n+b.

ax; =

Consider also smooth families of such operators, { A} and { B}, for € in some parameter space.
Then Tr(Bee*“*) is smooth in (¢, €), and we add e to the above notation writing for instance

Ki(x,y,€), ei(z,€), h(t,e), ai(e), Ki(z,y,€), éxi(z,€), BA(t,e) and ay;(e) in ., ., .
and . The operator B.P4, ) may not be smooth in e when some non-constant spectral
branch of {A.} reaches the value A. If the values of the non-constant spectral branches of {A¢}
stay uniformly away from A, then hy(t,€) is smooth in (¢, €).

4.2 Preliminaries on zeta functions of operators

PROPOSITION 4.1 See e.g. [Gil95, Theorems 1.12.2 and 1.12.5], [BGV04), Propositions 9.35-9.37].
The following holds:

(i) For every A > 0, there is a meromorphic function (s, A, B,\) on C such that, for Rs > 0,
1 & ~
C(S, A, B, )\) = TI' (BA_SPX)\) = m / ts_lh/\(t) dt . (410)
b S 0

(ii) The meromorphic function I'(s)((s, A, B, \) has simple poles at the points s = (n+b—1)/a,
for | € Ng with a; # 0. The corresponding residues are a;, and (s, A, B, \) is smooth away
from these exceptional values of s.

(iii) For u> XA >0, let A\; < --- < A\ denote the eigenvalues of A in (A, u|, taking multiplicities
into account, and let 11, ...,y be corresponding orthonormal eigensections. Then, for all
S,

k
(s, A, B, 1) = ((s, A, B,A) = > A *(Bibj, ) -
j=1

(iv) For smooth families {A.} and {B} of such operators, if the non-constant branches of
eigenvalues of { A¢} stay uniformly away from the value A, then ((s, A¢, B, A) is smooth in
(s,€) away from the exceptional values of s given in [(ii)|

(v) Consider the conditions of [(iv)| for € in some open neighborhood of 0 in R. If Ay and By
commute, then

aeC(S7 Aea BE’ )\) ‘6
where the dot denotes O..

=0 — C(Sa AOa BO) )‘) - SC(S + ]-a AOa AOB()) )‘> )

The last expression of (&.10) is the Mellin transform of the function hy(t) divided by I'(s).
This function ((s, A, B, A) is called the zeta function of (A, B,\). If B =1 or A = 0, they may
be omitted from the notation.

We will also use ((s, A, B, \) when B is not a differential operator, with the same definition.
Then the asymptotic expansion (4.8) and the properties stated in Proposition need to be
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checked. With this generality, we can write
((s,A,B,\) = ((s,A,BPz,) = ((s,A, Py,B) ,
and we have
C(s,A,B) =((s,A,BPs ) +((s,A,B,\) .
The function ((s, A, BP4 ) is always defined and holomorphic on C because P4 ) is of finite
rank.

In particular, when A is A, or A, (k =0,...,n) and B is another operator in L?(M;A),
we will use ((s, A, B, \) if it is defined. We get

C(S, Az, B) = Csm(sa Az, B) + Cla(sa A, B) )
where, with the notation of Section
Csm/la(57 A, B) = C(S, A, Bz,sm/la) :

These are the contributions from the small/large spectrum to (s, A, B), which are called the
small/large zeta functions of (A,, B).

4.3 Zeta invariants of Morse forms

By Proposition as a function of s, ((s,A,,nA D,w) is meromorphic on C. Moreover, for
Rs > 0,

C(s,A,,nA\ Dyw) = Tr* (7]/\ DZAQSHj‘) =Tr" (77/\ 5ZA;sHi)
= T¢* (nA DI PATSTILT) = Te* (pAdZ P AZSTLY)

using that nA d, and nA §; ! change the degree of homogeneous forms. So, when (s, A, nA D,w)
is regular at s = 1, the value ((1,A,,nA D,w) is a renormalized version of the super-trace of
nAd; I, which is called the zeta invariant of (M, g,n) for the scope of this paper. Unfortunately,
according to Proposition and since I'(s) is regular at s = 1, {(s, A, nA D,w) might have
a simple pole at s = 1. It will be shown that we can choose 7 in the given class ¢ € H'(M,R)
such that (s, A,,nA D,w) is regular at s = 1 for u > 0. To achieve this task, we consider its
decomposition into small/large zeta functions (Section ,

C(S7 Az777/\ DzW) = Csm(sy Az777/\ DzW) + Cla(sy Azﬂ?/\ DzW> .

The values (g 1a(1, Az, nA D.w) will be called the small/large zeta invariant of (M, g,n), if they
are defined—(sp (1, Az, nA D,w) is always defined.

4.4 Heat invariants of perturbed operators

—tA —tAL g

For k = 0,...,n, the Schwartz kernels of e™*?#+ and e . lak are denoted by K 1 +(x,y)

and K 2 kt(x,y), respectively. Their restrictions to the diagonal have asymptotic expansions (as

t10),

oo
K () ~ Y e, 2)t0172
1=0

o)
Ko g, ) ~ Y G, )t 2 (4.11)
1=0
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where e (x,2) is locally given by smooth expressions involving z and the jets of the local
coefficients of g and 7. Take u > 0 so that P, }, depends smoothly on z (Theorem [3.10) and
dim EZ7 = | X (Corollary . Thus éy, (z, z) also depends smoothly on z (Section |4.1)). Then

pi(z,2) = e (T, 2) ifl <n 1)
T, exn(z,2) — Hypolz,x) ifl=n,

where H, +(z,y) is the Schwartz kernel of e tBzk . sm,k, Which is defined for all ¢ € R and
smooth. According to Section the corresponding functions

hi(t,z) = Tr (e_mzv’f) , ﬁk(t, z)="Tr (e_tA%’“Pz,lan) ,

have asymptotic expansions

Zakl t=m)/2 Zakl (l n)/2 (4.13)
where, by 7- ) and (| -,

ag(z) = / tr® eg i (x, z) vol(zx) , (4.14)
M

- - ag l(Z) ifl<n

ak(z) = / tr® €y (z, z) vol(z) = ’ ] (4.15)
M agi(z) — | X fl=n.

Consider the operators e B2y and e 1A= P, 1aw, whose respective Schwartz kernels are
n n
Ko i(z,y) = Z(—l)sz,k,t(l“ay) ;o Kai(z,y) = Z(—l)kK@k,t(%y) :
k=0 k=0

We have induced asymptotic expansions
o0 " [e.e]
~ Z 61 l n)/2 Kz,t(a;,x) ~ Zél(‘r’ Z)t(lfn)/2 7
=0

where

(—l)kekyl(x,z) , ez, 2) = (—l)kém(x,z) .
k=0 k=0
The corresponding functions,

NE

ez, z) =

have asymptotic expansions
s ~ oo
ht,z) ~ > a(2)t 2t 2) ~ Y a ()t

where

ai(z) =) (—Dfari(z), alz) =) (-1 far(2) .
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THEOREM 4.2 [ALG21], Theorem 1.5], [ALKL20]. We have:
(i) e(x,z) =0 for l < n; and,
(ii) ifn is even, then e,(z,z) = e(M, VM) (z).

Remark 4.3. Actually, [ALG21, Theorem 1.5] gives Theorem when z is real. But, since the
functions e;(z,z) have local expressions, we can assume 7 is exact. Then the result can be

extended to non-real z using ([2.11).

4.5 Derived heat invariants of perturbed operators
For k=0,...,nand j =1,2, let

h(t,z) = Tr (e7"B4IE ), hf(t,2) = Tr (e "84I | L)

LEMMA 4.4. We have

k n
hi,(t,2) h2 t,z) k “Phy(t,z —1)T k1 (¢, 2) .
k+1 q
p=0 q=k+1

Proof. This follows by induction on k, using that
hé(tv Z) = h%(t7 Z) =0, hk(t> Z) = hllv(ta Z) + hi(tv Z) ) hi(tv z) = hllc+1(ta Z) .
The last equality holds because (2.7 is commutative. O

Let

W (t,z) =Y (~1)FR(t,2) = Tr® (e "2+11) |

k=0
W(t,z) = (DRt 2) = T ("I )
k=0
Thus
h(t,z) = h'(t,z) + h2(t,z) , h(t,z) = h*(t, 2) + h2(t, 2) . (4.16)

COROLLARY 4.5. We have h(t,z) = 0.
Proof. This is a direct consequence of Lemma and (4.16)). O

COROLLARY 4.6. We have

n

(1Y R (t,z) =) (—1)Fkh(t, z) = Te* (Ne "2-117)
k=0

Proof. By Lemma [.4] and Corollary [£.5]

Pt 2) = SO (-DF ST (-1 R hg () = S (~1)%(q + D2, 2)
k=0 q=k q=0
= h(t,2) + 3 (~1)ghy(t,2) = 3 (~1)qhy(t,2) . O
q=0 q=0
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Applying (4.13) and Lemma we get
o
hi(t, z) Zakl . h(tz) ~ Zag(z)t(l_”)/2 : (4.17)
1=0

where

This a}(z) is sometimes called the derived heat invariant of A, [GS77], [RS71], [Gil95,
page 181], [ALG20].

For pn > 0, Lemma Corollaryand (4.17)) have obvious versions for ﬁi (t,z) and hi(t, z),
with the similar proofs. The coefficients of the corresponding asymptotic expansions are denoted
by aj ,(z) and @] (z).

THEOREM 4.7 [ALG20, Theorem 1.3 (1b)]. For alll < n, a(z) and a}(z) are independent of z.

Remark 4.8. Again, [ALG20, Theorem 1.3 (1b)] gives Theorem in case of af (z) for real z, but
this can be extended for non-real z like in Remark Then the case of a; (z) follows from (4.15).
In Theorem [4.7, the case of a; (z) is true for any n € Z!(M,R).

Remark 4.9. Theorem |4.2|and the case of a} (z) in Theorem [4.7] . 7|hold for any n € Z*(M,R) (there
is no need of other condlmons) This is also true for all properties of Sections and |4.5] - concern-

1ng(110((27k7t()$ 2Y), ek, 2), hi(t, 2), h(t, 2), h(t,2), h](t z), ag(2), ai(2), ak,l( 2), (s, A, TEw)

4.6 Regularity
By (4.8]), we have an asymptotic expansion of the form

Tr® (n/\Dze_tAz zla Zbl ll=n=1)/2 (4.18)

LEMMA 4.10. The function (ja(s, Az, nA\ D.w) has a simple pole at every s = (n +1—1)/2 with

by(2) # 0, for 1 <1< n and for even/odd | > n+2 if n is even/odd, whose residue is bj(z), and it
is smooth away from these values of s. Moreover the value of (1,(s, A,,n\ D,w) at every regular
point s = (n+1—1)/2, forodd 1 > n+1, is (I —n — 1) b(2).

Proof. By Proposition~ the product I'(s)Cia(s, Az, nA D,w) has a simple pole at every
s=(n+1-1)/2 with b;(z) # 0 (I € Np), whose residue is b;(z), and (ja(s, A, nA D,w) is smooth
away from these exceptional values of s. Then the result follows because I'(s) has a simple pole
at every point s = —k (k € Ng), whose residue is (—1)¥/k!, and it is smooth on C\ (-Np). O

By Corollary and using the notation and , we get
(=1)7¢(s, AL, TEwW) = 6(s, 2) ,
(—1) Comyta(s, Az, TUW) = O 1a(s, 2) - (4.19)
Thus the following result follows like Lemma
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LEMMA 4.11. The function (1,(s, Az, IILw) has a simple pole at every s = (n—1)/2 with a; (z) # 0,
for 1 <1< n—1 and for odd/even | > n+ 1 if n is even/odd, whose residue is a} (z), and it is
smooth away from these values of s. Moreover the value of (1.(s, A,, IIlw) at every regular point
s=(n—1)/2, forevenl >n, is (I — n)!a} (z).

According to Lemmas and Ca(s,A,,mA D,w) and (a(s, A,, IIlw) are smooth at
s =0 [See67], but they might have a simple pole at s = 1.

ProrosiTiON 4.12. We have
0:Gia(s, Az, IEW) = —sCla(s + 1, Az, nA Daw) -
Proof. Recall that a dot may be used to denote d,. Like in ,
Ty, = (L) TTLL o Ind 4+ T2 TTE (T ) (4.20)

z,la z,la z,Jattz la z,Jattz la z,la
Therefore, for s > 0,
Cla(sa sz Hiw) =Tr® (ﬂi,laA;SHi,la) =0,
yielding (ja (s, AZ,HiW) = 0 for all s because this is a meromorphic function of s. Hence, since

A, and II! | w commute, Proposition (v)| give

0.Ca(5, AL, TIEw) = —sQa(s + 1, AL, AT w) = —s Tr® (AZA;S*IH;J&) .
Next, by (2.3)),

AZl_[;la = (77/\ 52 + 52 nA)HiJa =N 621—[;71& + 52 nA H;,la . (421)
But, since ITL6, = 0,
Tr® (6. A AP TIL,) = — T (pA A5 TIL,6.) = 0. (4.22)

Combining (4.6))—(4.22) and Proposition we get
0:Qa(s, AZ,HiW) = —sTr® (77/\ 5ZA2571H1 ) = —sTr® (77/\ DZA;‘g*lHl )

z,la z,la

= —5Qa(s+1,A,,nA D,w) . O
THEOREM 4.13. For p > 0, (a(s, Az, nA D,w) is smooth on C\ ((1 — Np)/2).
Proof. By Lemma it is enough to prove that (j.(s,A,,nA D,w) is regular at s = s, =
(n+1—1)/2 for I <n— 1, which means b;(z) = 0.

First, take [ < n — 2. By Lemmas and Theorem [£.7, and Proposition for
p >0,

0= 81 (2) = —(s1 = Dbi(2) .
Thus by(z) = 0 because 5; — 1 = (n — 1 —1)/2 > 0.

Next, take | = n—1. (The previous argument does not apply in this case because s,—1—1 = 0.)
By Theorem [£.7 and Lemma for p >0,

(")ZQa(O,AZ,HiW) = azd,ll(z) =0.

So there is a holomorphic function ¢,(s), defined around s = 0 and depending smoothly on z,
such that

aZCla(sa Aza Hiw) = S¢Z(S) .
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Hence, by Proposition
(Z)z(s) = _Cla(s +1,A,,nA DZW) )

obtaining that (j,(s, A,,nA D,w) is regular at s = s,,—1 = 1.

From now on, we use the simpler notation

((s,2) = ((s,A2,mA\ Dyw) Csm/la(sv z) = Csm/la(sv Az, A Dyw) .
We may also add 7 to this notation, writing ((s, z,7) and (g /1a(s, 2,7)-

COROLLARY 4.14. If ®s > 1/2 and p>> 0, then

Cal(s, 2z) = F(ls) /OOO A Vo (77/\ D,e A= 2713) dt |
where the integral is absolutely convergent.
Proof. By Lemma m Theorem and , for >0,
Tr® (nA D,e~tA: 2 la) = O(t_1/2) (t—0).
Moreover there is some ¢ > 0 such that

Tr® (nA Dze_tAszJa) =0 (t—00).

(4.23)

(4.24)

So the stated integral is absolutely convergent for Rs > 1/2, defining a holomorphic function of

s on this half-plane. Then the stated equality is true because it holds for Rs > 0.

COROLLARY 4.15. For > 0,

G(1,2) = Tr* (A D2 (I )sm)
Qa(l,2) = 1&161 Tr® (17/\ Dz_le_mz z,la) )

¢(1,z) = l}fg Tr® (nA Dz_le_tAZHZL) .

Proof. By Corollary (4.23) and (4.24)), and since
T (nA D letA: 1a) = O(e™)  (t = 00),

we get,

o0

[o¢]
Qa(l,2) = / Tr® (77/\ D,e tA szla) du = ltig Tr® (n/\ D,e tA PzJa) du
0 t

= 1&(1)1 TS (17/\ Dz_le_mz Pz71a) .

O]

The expressions of ((1,z) and (gn(1,z) follow from the expression of (j5(1,z) and Proposi-

tion

Theorem and Corollary give Theorem
COROLLARY 4.16. If 11 > 0, then (1.6) is true.

Proof. Apply Proposition and Theorem
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4.7 The case of exact forms

Let us consider the special case where n = dh for a Morse function h. These results will be
extended later, but the arguments are much simpler in this case, with weaker conditions and less
ingredients.

LEMMA 4.17. For > 0,
Tr® (77/\d ! sm) =-Tr (h (HzL)sm) )
Tr® (nAd; le—tAsqq! la) =-Tr°(h et 2 Ja)
Tr* (nAd; te "2 10L) = — T (he '2410F) .

Proof. We prove the first equality, the other ones being analogous. Since nA = [d, h],

S (A T ) = T ([ds, B 42 T ) = T (d R T ,) = T (RdadZ T )
= —Tv® (hd; "I, ds) — Te® (RIIL )
= —Tr* (hd;'d. 112 Sm) Te* (R 11} )
= =T (W12 ,) = Te* (AL ) = = T° (B (113 )sm) - O

Remark 4.18. The last equality of Lemma does not require any condition on 1 or g (h can
be any smooth real-valued function).

COROLLARY 4.19. For i > 0,
CSIH(L ) =-Tr" ( ( ) ) ’
Cla(L = = hm Tr® ( e A z,la) )

¢(1,2) = —hmTr (he tAZHj‘) .

Proof. Apply Corollary and Lemma @ O
COROLLARY 4.20. The value (3 (1, z) is uniformly bounded on z for p > 0.

Proof. The operator h (IT1)gy is uniformly bounded and, for g > 0, has uniformly bounded
rank. So Tr®(h (1T} )gm) is umformly bounded on z for x> 0, and therefore the result follows
from Corollary O

COROLLARY 4.21. If i > 0, then ((1, 2), Gsm1a(1,2) € R.

Proof. We consider the case of ((1,z), the other cases being similar. By Corollary it is
enough to prove that Tr(he *=TI}) € R. This is true because, taking adjoints,

r° (he P TIE) = T (Tfe 2= h) = Tr® (hItet2:) = Tr® (he tA:IIL) . O

COROLLARY 4.22. If M is oriented, n is even and || > 0, then
((1,2) =¢(1,-2) =C(1,—2) = ¢(1,2) ,
Csm/la(l’ Z) = Csm/la(lv _2) = Csm/la(17 _Z) = Csm/la(L 2) :

Proof. We prove the case of (yn(1,2), the other cases being similar. By (2.15) and since n is
even,

T (B (I Jom) = Tr* (% A (T )am) = Te® (5 A (T o * )
= Tr® (%1 xh (I1E)sm) = T0° (A (114, )sm) -
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Thus the first equality of the statement follows by Corollary The second equality follows
with a similar argument, using * instead of x. The third equality is a consequence of the other
ones. 0

THEOREM 4.23. The following limit holds uniformly on v:

lim (1, 2) = — /M he(M,¥M) vol+ 3 (— 1)@ h(p)

H—>—+00
peEX

Proof. By (4.11)), (4.12]), Theorem and Corollary for p >0,

Ga(1,2) = —lim T¢* (h e_tAZPZJa) = —/ h(z) tr® €, (z, z) vol(x)
t}0 M
= —/ h(z) tr° ey (z, z) vol(z) + Tr*(hP; sm)
M
- _ / he(M, VM) vol + TS (hP, gm) -
M

According to Corollary the elements P, gme, . (p € X') form a base of Eism when 1 > 0.
Applying the Gram-Schmidt process to this base, we get an orthonormal frame €, , (p € X) of

E. sm. By Proposition for m = 0 and (3.9)—(3.12)), we get

METOOW €p,z €q,z) = MEIEOOW%,Z? €q,z) = h(p)dpq -

Hence
n

lim Tr*(hPogm) =Y _(-1)" Y h(p). O

H—>=+00
k=0 pEXk

5. The small complex vs the Morse complex

5.1 Preliminaries on Smale vector fields

5.1.1 Vector fields with Morse type zeros Let X be a real smooth vector field on M with
flow ¢ = {¢'}. Let X = Zero(X) denote the set of zeros of X (or rest points ¢). It is said that a
zero p of X is of Morse type with (Morse) index of ind(p) if, using the notation (3.2)),

n
.0
X==> o, — (5.1)
j=1 dxp
on the domain U, of some coordinates x;,, = (x;,, e ,x;j) at p, also called Morse coordinates. This

condition means that X = — grad, hx , on Uy, where hx , and g are given on U), by the right-hand
side of and . The coordinates ), used in are not unique; that expression is invariant
by taking positive multiples of the coordinates (contrary to the expressions , and )
But ind(p) is independent of x,,. If , and hold with the same coordinates, then n
and g are said to be in standard form with respect to X around p. In this case, Cn and Cg (C > 0)
are also in standard form with respect to X around p; indeed, Cn, X and Cg satisfy ,
and with the coordinates \chp. When ¢ is defined on M, if n and g are in standard form
with respect to X around every p € X, then n and g are said to be in standard form with respect
to X. This concept is also applied to any Morse function h on M referring to dh and g. The
reference to g may be omitted in this terminology.
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The vector field X is fixed in most of the paper and plays an auxiliary role. Unless otherwise
indicated, we assume from now on that X has Morse type zeros. Then X is finite, and the sets
Xy, Xy and Xy are defined like in Section

5.1.2 Stable and unstable manifolds For k=0,...,n and p € Xy, the stable/unstable mani-
folds of p are smooth injective immersions, Lljf : W;E — M, where the images L;)t(W;:) consist of
the points satisfying ¢'(x) — p as t — 400, and the manifolds VVpJr and W are diffeomorphic to
R and R¥, respectively [Sma63, Theorem 9.1]. In particular, p € L;,t(Wpi), and the maps L;_
and ¢, meet transversely at p. Let pt = (Li)*l(p). Assume every U, is connected, and let Upi be

P

the connected component of (Lff)_l(Up) that contains p*. The restriction L;)t : U;t — (:c;)t)_l(O)

is a diffeomorphism, and therefore (Upi, xﬁﬁf) is a coordinate system of W;E centered at pT.

5.1.3 Gradient-like vector fields Given a Morse function h on M in standard form with
respect to X, we have X = —grad, h on M for some Riemannian metric g if and only if Xh <0
on M\ X [BFK10, Lemma 2.1], [Laul2l, Section 6.1.3]; in this case, X is said to be gradient-like
(with respect to k). If X is gradient-like, then the maps ;7 are embeddings [Sma60b, Lemma 3.8],
[BEK10, Lemma 2.2], and their images cover M [Sma61l Lemma 1.1], [BEK10, Corollary 2.5].
Thus, in this case, we will write Wpi = L;}t(WI;t) and p* = p, and L; becomes the inclusion map.

Unless otherwise indicated, we also assume in the rest of the paper that X is gradient-like.

5.1.4 Smale vector fields X 1is said to be Smale if VVpJr h W, for all p,¢g € X. In this
case, M(p,q) := W, NW is a ¢-saturated smooth submanifold of dimension ind(p) —ind(g). In
particular, M(p, p) = {p}, and define T (p,p) = 0. If p # ¢, then the induced R-action on M(p, q)
is free and proper, and therefore the orbit space T (p,q) := M(p,q)/R is a smooth manifold of
dimension ind(p) — ind(q) — 1. The elements of 7 (p,q) are the (unparameterized) trajectories
with a-limit {p} and w-limit {¢}, which are oriented by X. If ind(p) < ind(q), then T (p,q) = 0. If
ind(p)—ind(q) = 1, then T (p, ¢) consists of isolated points, each of them representing a trajectory
in M. Let T =, jex T(p;q), and

.= U 7o, "=UT . T=UT"
k=0

leind(p)fl PEX

The elements of 77 are called instantonsl]

Unless otherwise indicated, besides the above conditions, we assume from now on that X is
Smale; i.e., we assume @ (Section . Thus the a- and w-limits of the orbits of X are zero
points [Sma61, Theorem B and Lemma 1.1].

5.1.5 Lyapunov forms Anyn € Z'(M,R) is said to be Lyapunov for X if n(X) < 0 on M\ X
[BHOS8| Definition 2.3]. By @, every class in H'(M,R) has a representative n which is Lyapunov
for X and n! = —X for some Riemannian metric g on M, with 1 and ¢ in standard form with
respect to X [BHO4, Proposition 16 (i)], [BHO8, Observations 2.5 and 2.6], [HMO6, Lemma 3.7],
[Laul2l, Section 6.1.3]. Moreover X can be C*°-approximated by gradient-like Smale vector fields
that agree with X around X [BHOS8, Proposition 2.4] (this follows from [Sma61, Theorem A]). A
well known consequence is that, for any Morse function A, there is a C°°-dense set of Riemannian
metrics g on M such that —grad, h is Smale; this density is also true in the subspace of metrics

!Sometimes, the elements of 7 are called instantons, and the elements of 7+ proper instantons [Bot8S].
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that are Euclidean with respect to Morse coordinates on given neighborhoods of the critical
points.

5.1.6 Completion of the unstable manifolds

PRroOPOSITION 5.1 [BZ92), Appendix by F. Laudenbach, Proposition 2], [Lat94, Chapter 2], [Bur97,
Theorem 2.1], [BHOIl, Theorem 1], [BFK10, Theorem 4.4], [Laul2, Sections A.2 and A.8], [Minl15)
Corollary 2.3.2]. The following holds for every p € X} (k=0,...,n):

(i) W, is a C' submanifold with conic singularities (in the sense of [BZ92, Appendix by
F. Laudenbach, Section a)] and [Laul2, Appendix A.1]) and a Whitney stratified subspace.
Its strata are the submanifolds W~ for ¢ € X< with T (p,q) # (). As a consequence, W~
has finite volume, and
Wy, nW, ¢ | W,
$€X<k
if ¢ # p in X}; in particular, p ¢ Wy .
(ii) There is a compact k-manifold with corner /Wp_ whose l-cornerﬂ (0<1<k)is

l
aw, = |_| ( T(‘]jh%’)) x Wy, .
(qo,-.,q1)E{p}xxt ~j=1

In particular, the interior of /M?p_ is 80Wp_ =W, , and the set T (p,q) is finite if ¢ € X} _1.

A

(iii) There is a smooth map i : /W?p* — M whose restriction to every component of 81Wp*

P
in is given by the factor projection to W, ; in particular, i, = t, on W, . Moreover

ip « W, — Wy is a stratified map.

By Proposition we can choose the open sets U, (p € X, k =0,...,n) so small that
Uy NWg =0if g # pin Ay.

For every q € Xx_1 and v € T (p,q), the closure 4 in M is a compact oriented submanifold
with boundary of dimension one, and 95 = {p, ¢}. We may also consider 7 as the closure of 7 in
W

P

5.2 Preliminaries on the Morse complex

5.2.1 The Morse compler Fix an orientation O, of every unstable manifold W, (p € A},
k = 0,...,n), which can be also considered as an orientation of /I/I?p*. Then W = (Wp*, 0, )
defines a current of dimension k£ on M, also denoted by W, ; namely, for a € QF(M),

W)= [ o= [ Gy

Let 61(9; be the orientation of 81/1/171; induced by O, like in the Stokes’ theorem. The

restriction of 010, to every component T (p, q) x W~ (¢ € &) of 61Wp* is of the form Op ;@O
for a unique orientation O, 4 of T(p,q). If k¥ = k — 1, then O, can be represented by a unique
function €,4 : T(p,q) — {*+1}; combining these functions, we get a map € : 7' — {£1}. By

?In the sense of [Mel96] Section 1.1.8].
3The union of the interiors of the boundary faces of codimension 1.
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the descriptions of alﬁp* and i, : 01/1/171; — M, and by the Stokes’ theorem for manifolds with
corners, we have [BZ92, Appendix by F. Laudenbach], [HM06, Remark 1.9], [BEK10, Theorem 3.6
and Proposition 5.3], [Laul2, Section 6.5.3]

oW, = > (V) Wy . (5.2)
q€Xk_1, €T (p,q)

Thus the currents W~ (p € X) generate over C a finite dimensional subcomplex (Ce(X, W ™),0)
of the complex (Q(M)’,9) of currents on M, called the Morse complez. The simpler notation
Coe = Co(X) = Co(X,W™) may be also used. Moreover Cq < (M)’ induces an isomorphisnﬁ
Ho(Co,0) = Ho(M,C) [Thod9, [Sma60al, [Mil65] (see also [Flo89, [Sch93l, [Sch99], [HS85, Theo-
rem 0.1], [BZ92, Appendix by F. Laudenbach, Proposition 7], [Laul2, Section 6.6.5]).

The dual Morse complex is the dual (C*(X,W™),d) of (C,,d); namely, C*(X,W~) =
(Cr)* = C* (k = 0,...,n). We will usually denote C* = C*(X) = C*(X,W~). Moreover
boldface notation will be used for elements of C*® and operators on C*. Let e, (p € X') denote
the elements of the canonical base of C®, determined by e,(q) = d,4, using the Kronecker delta.
Then, for ¢ € Xj_1,

de;= > e(y)ep. (5.3)

pEXy, vE€T (p,q)

5.2.2 The perturbed Morse complex Take any n € Z'(M,R) defining a class & € H'(M,R)
(there is no need of any condition on 7 or g in Sections to . For reasons of brevity,
write n(y) = f7 n for every v € T1. According to [BHOI, BH04, BHOS|, (C*®, d) has an analog of
the Witten’s perturbation, (C*,d, = d.,) (z € C), where, for ¢ € X1 (k=1,...,n),

d.e, = S e(y)eMe, . (5.4)
PpEXL, YE€T (p,q)

If n = dh for some h € C®°(M,R), then d, = e *"de*" on C* because 1(y) = h(q) — h(p) for
pE Xy, ¢ € Xy and v € T(p, q); here, e**" also denotes the operator of multiplication by the
restriction of this function to X'. It will be said that (C®,d,) (z € C) is the perturbed dual Morse
complex defined by X and 7. A perturbation (C,,d?) is similarly defined, adding the factor e*7(?)
to the terms of the right-hand side of ([5.2)).

Since W, (p € Xy, k =0,...,n) is diffeomorphic to R*, there is a unique hy,p € C> (W, ,R)
such that/\h;p(ﬁ_) = 0 and dh, , = (1,)"n. Indeed h,, has a smooth extension iL,;’p to /Wp_
because W, is contractile. By Proposition for all ¢ € X1 and v € T(p,q), we have

~
A

by (7, 47) = n(7), yielding
hog = hyp—n(y) on W ={y} x W, CaW, .

According to [BHO1], Proposition 4], [BH04, Proposition 10], [BHOS8| Propositions 2.15 and 2.16
and Section 6.2], a sujective homomorphism of complexes,

o, : (QUM),d,) — (C*,d,),

4 Actually, He(M, Z) is isomorphic to the homology of the complex of free Abelian groups generated by the currents
W, .
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is defined by
) = [ o= [ iy,
Wy Wy
Moreover ®, is a quasi-isomorphism for all z € C [BZ92, Proposition 1 in the Appendix by

F. Laudenbach| (see also [BZ92, Theorem 2.9], [BZ94, Theorem 1.6], [BHOS, Proposition 2.17
and Section 6.2]). Then, by (3.14), the same is true for

Q. (E,sm,d;) = (C*,d,) .

Since direct adaptation of [BHO4, Appendix A] shows that, for £ = 0,...,n, dim Hk(C‘,dz) is
independent of z € C with |u| > 0, we get (2.9).

5.2.3 Morse complex with coefficients in a flat vector bundle With more generality [BZ92,
Section 1c)], for a flat vector bundle F', we may consider (C*(X, W~ F),d"), where CK(X, W, F) =
@pGXk F,, and d”e (e € F,, ¢ € Xj_1) is defined like in the right-hand side of , replacing e,
with the parallel transport of e along 1. This is the dual of the complex (C,(X, W, F*),0"),
where Cy (X, W™, F*) = @, cx, I}, and orf (f e FJ, p € &) is defined like in the right-hand
side of , replacing W~ with the parallel transport of f along 4. A homomorphism

oF = X (M, F),d) — (C*(X, W, F),d")
can be defined like @, using the isomorphism

(W, () F) = (W, ) & F,

given by the parallel transport of (i,)*F. With this generality, ®F is also induces a quasi-
isomorphism [BZ92, Theorem 2.9]. If F' = L7 (Section [2.1.4)), then

(C*(x,W~,£%),d5) =(C*d.), " =0,.

5.2.4 Hodge theory of the Morse complex Consider the Hermitian scalar product on C*®
so that the canonical base e, (p € &) is orthonormal. All operators induced by d, and this
Hermitian structure are called perturbed Morse operators. For instance, besides d,, we have the
perturbed Morse operators

§.=d:, D,=d.+4,, A,=D?=d.8,.+6.d,.

In particular, it will be said that A, is the perturbed Morse Laplacian, and its eigenvalues will be
called perturbed Morse eigenvalues. If z = 0, we omit the subscript “z” and the word “perturbed”.

From (5.4), we easily get
d.ep = Z e#1Ve () e, (5.5)

q€Xk—1, vET (p,q)
for p € A).. We also have

C®*=kerA, dimd, ®imé, ,
ker A, =kerD, =kerd,Nkerd,, imA,=imD,=imd,®imd, .
The orthogonal projections of C® to ker A, imd, and im d§, are denoted by II, = Hg, H and

T12, respectively. The compositions d; 'TI', §; 'TI? and D 'TI' are defined like in Section
and there is an obvious version of the commutative diagram (2.7)).

36



ZETA INVARIANTS OF MORSE FORMS

5.3 The small complex vs the Morse complex

Our main objects of interest are the form n € Z!(M;R) and the Riemannian metric g; X plays
an auxiliary role. Unless otherwise indicated, assume from now on that 7 is Lyapunov for X, and
n and g are in standard form with respect to X; i.e., we assume besides @ and @ Since
every ¢ € H'(M,R) is Lyapunov for X by @, we can choose some 1 € £ and ¢ satisfying @

and
For every p € X, consider the functions h,,;, hx p, h, , and iL; p» defined in Sections

n,p
and Since 7 and g are in standard form with respect to X, we have hy,;, = hx j, on Uy, and

hyp = by = —%]a:;]z (5.6)
on U, . From now on, the simpler notation hy, = hyp = hxp, h, = h,, and izg = l};,p will be
used. Since 7 is Lyapunov for X,

h, <0 on W_ \{p}. (5.7)
Consider the notation of Section Let J, : C* — E, be the C-linear isometry given

by J.(e,) = ep., and let ¥, = P, 4,J, : C* — E, gy, which is an isomorphism for p > 0

(Corollary [3.9)). By Proposition
[.el = (1+O0(e")) el (1~ +o0)

for all e € C*®. Using polarization (see e.g. [Kat95, Section 1.6.2]) and conjugation, this means
that, as u — 400,

ViU, =1+0(e”*), ¥ =1+0(e"%). (5.8)

Notation 5.2. Consider functions u(z) and v(z) (2 € C) with values in Banach spaces. The
notation u(z) =g v(z) (@ — £0o0) means

u(z) = v(z) + O(e_c‘“‘) (b — £00) .

We may also consider this asymptotic relation when the Banach spaces also depend on z.

THEOREM 5.3 Cf. [BZ94, Theorem 6.11], [Zha0ll, Theorem 6.9], [BHO1, Theorem 4]. For every
TER, as u — +oo,

Cpr Wz =0 <M —|—7TT/2)N/2 (:i)n/4 '

Proof. We adapt the proof of [ZhaOll, Theorem 6.9] to the case of complex parameter. For every
p € X,

.1 Ve, = Y ey /A_ TR () P, e - (5.9)
qEX Wy

Then the result follows by checking the asymptotics of these integrals.
In the case ¢ = p, by (5.7) and Corollary

/A G (7Y (Py g — e =0 0.

p
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But, by Proposition (13-9)—(3.12)) and (/5.6)),
/A_ e(z-&-T)ﬁ; (Z;)*ep,z _ /A e(z-i—T)ﬁ; (Z;)*(e_il/hpep“u) — //\_ e(,LL-i-T)ﬁZ (Z;)*ep,p,

P WP_ Wp
1 2r 5 k
- —(2pt7)*/2
= </—2r p(x)e d:z;)
. T k/2 /"L n/4 —cp
- u+T/2> (5)" (t+ o). (5.10)

(When 7 = 0, the last equality is the same as [ZhaOll, Eq. (6.30)].)
For ¢ # p in A&}, since e,, = 0 on Wiq_ because U, N Wiq_ = () (Section , like in the
previous case, we get

/A e ()P, ey, <0 0 . 0
Wi

COROLLARY 5.4. For every T € R, if u > 0, then ®.,; : E, 5, — C® is an isomorphism.

Proof. Apply Theorem and Corollary O
Remark 5.5. The argument of the proof of Theorem [5.3] shows that
N/2—n/4
o, J, = (%) +0(e™™*) (p— 400) .

So @, : E, — C* is an isomorphism for p > 0 (see also [BHO8, Lemma 5.2]).

Let

~ N/2—n/4
.= (%) U, :C* = Eyam .

COROLLARY 5.6. Consider \f'?; : B, sm — C*®. As 1 — 400,

b= () o), = (4) o).

Proof. This is a direct consequence of (5.8]). O

COROLLARY 5.7. For any 7 € R, consider @, : E, ¢y — C*. As p — +o0,

~ N/2 ~ N/2
(I)Z+T\Ij2 =0 ( K ) ) \Ilz¢'z+7 =0 < K ) .

pw+T/2 p+T/2
Proof. The first relation is a restatement of Theorem The second relation follows by conju-
gating the first one by ¥, and using Corollary O

COROLLARY 5.8. As u — +00, (f,;l =0 ®, on E, 5.
Proof. By Corollaries and on E, ¢,
Ul =g U0, B, = 0, . O
In the rest of this section, we consider @, : E, i, — C*® unless otherwise indicated.

COROLLARY 5.9. As u — +00,

7r>an/2

. 7\ N—n/2
1, =, (f ) .
1

R S (;
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Proof. We show the first relation, the other one being similar. By Corollaries [5.6] and [5.8] on
EZ,SH’U

_ 13 =~ = 1 T N*?’L/2
®rD, =<0 (P71 T = (83) 70 = (,07) 7 = (;) . O
COROLLARY 5.10. As p — +o0,
~ N—n/2
o (2)
T
Proof. By Corollaries [5.7] and [5.9]
- N—n/2 - N—n/2
\yzxo(ﬁ) nxlz@@*ﬁo(ﬁ) "ot 0
T 7r
COROLLARY 5.11. For every T € R, as u — +o0,
_ N/2
D, PoyrsmVse =0 <M +MT/2) + O(M_l) :
Proof. By Corollaries and and Proposition [3.18
- _ - N/2
q)Z'FTPZ‘f'T,Sm\IIZ = (I)z-‘r'r(Pz-i-T,sm - Pz,sm)q/z + (I)Z-H'\Ilz =0 O(,Ulil) + <N +MT/2> .
COROLLARY 5.12. As p — +o0,
dz,srn =0 CI;ZdZQZ ) 5z,sm =0 CI;Z&Z@Z .
Proof. By Theorem and Corollary
dz,sm =0 \T’zq)zdz,sm = \izdzq)z .
Now, taking adjoints and using Corollaries and we obtain
Srsm = @ gm0 <0 1,6, 0, . O

The orthogonal projections of C* to the subspaces @, (ker A, ¢,), @, (im d; ¢ ) and P, (im J, gm)
i
are denoted by I, H . and H , respectively. The inclusion ®,(imd, ) C imd,

I, = .10 . (5.11)

COROLLARY 5.13. For j =0,1,2, as p — 400,

(I)Zni,sm =0 HZ(I)Z,SIH ) sz,sm =0 \I’ZH,Z(I)Z,SIU ) Hi,sm\llz =0 \IJ Hz ,sm
~ 2
Proof. We only prove the case of IL,, the other cases being similar. Let o 1,...,0;,, be an
orthonormal frame of 4, (EfgLnll) So ®,a1,...,P.a,,, is a base of ¢, (Ef;q}l) for g > 0 by

Corollary [5.4] Applying the Gram-Schmidt process to this base, we get an orthonormal base
f.1,...,f.p. of ®.0.(EFLL). By Corollary [5.9]

7\ k—n/2
<(I)zaz,aaq)zaz,b> =0 (;)

ab »
for 1 <a,b<p,. So
k/2—n/4
fz,a =0 (%) (I)zaZ,a .
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Hence, by Corollary for any B € EF

z,sm>

Pz

p=
~ 9 H

]-_'[(PZ = q:)Z 7fzafzax (7 q)Z 7¢Z ZG,@Z zZ,a
220 = Y (@B Eeadfea o (B) T Y (@28, B20:0) 020

a=1 a=1

m
=0 Z<ﬁa O‘z,a>q)zaz,a = q)zng,smﬁ .
a=1

)k—n/Q

This shows the first relation of the statement because dim E* < 00. Then the other stated

Z,5m

relations follow using Corollaries and O

According to Corollary in the following corollaries, we take ;1 > 0 so that ®, : F, o, — C*®
is an isomorphism.

COROLLARY 5.14. As p — +o0,

N—n/2
(@) et = (£)
™

71D =, <H)N_n/2 _

Y z z
T
Proof. By Corollary for e € CF with |le|| = 1,
_ N\ k/2—n/4 B o k/2—n/4
el =0 (£)7 " fotzte] = (£)7

yielding the first stated relation. The second one has a similar proof. O

COROLLARY 5.15. As u — +o0,

(I)zx()(;) oL, U, = @7L.

z

Proof. By Corollaries [5.9 and

ot = 020,01 =, (; LU, = 0,0,00 = d7L 0

~1 ~
COROLLARY 5.16. We have II, = I1. for p>> 0, and Hz =0 T2 as p — +oo.

~1
Proof. Since ®(imd, ¢n) = imd, for g > 0, we get IT, = .

To prove ﬁz =¢ IT? as ;1 — 400, consider the notation of the proof of Corollary We have
Qzq =004 (a=1,...,p.) for some base f.1,...,B:p, of imd, g ;. Hence, by Corollaries
and .12

(I)zaz,a = (I)z(szﬁz,a =0 (I)Z\Pzézq)zﬁz,a =0 6z(bzﬁz,a 5 (5.12)
and 0.9.6.1,...,0.9.5.,, is a base of imd, 1. Applying the Gram-Schmidt process to this
base, we get an orthonormal base g 1,...,8.p, of imd, ;1 satisfying g., <o f., by .
Then, for any e € C* with |le| = 1,

Pz Pz

~2
Hze = Z<e, gz,a>gz,a =0 Z(ea fz,a>fz,a = Hze . O

a=1 a=1
COROLLARY 5.17. We have
dz,srn = (I)z_ldzq)z,sm 5 d_l Hl = H2 <I>_1d;1<I>ZH1

Z,sm- " z,sm zZ,sm > 2 zZ,sm *
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Proof. The first equality follows like the first relation of Corollary using ®_ ! instead of 0,
To prove the second one, take any o € imd, . Since

d 12, &7 1d] 10,0 =d.d'd] 1P = @ 1d.d ' P.a =«

zZ,sm 2

with 112, ®;1d;1®,a € im 6, s, We obtain

Z,sm ~— 2
m @ 'd; .0 =d} . O

zZ,sm 2 Z,5m

5.4 Derivatives of some homomorphisms
THEOREM 5.18. As y — +o0,

n N\ /m\N/2—n/4
0.(0.0,),0:(0.0.) = (— - ~)(Z .
( ), 0=( ) =0 <8u 4,u> <M>
Proof. By (5.9),
0,(D,Vep) = Z eq</A H;ezmj (ig )" Pz smep,= —i—/A eZEq(Zq)*az(Pz,smep,z)> , (5.13)
qEX}, Wf; W‘;

for every p € X, (k=0,...,n). We estimate each of these integrals.
Like in the proof of Theorem [5.3] we get, for any ¢ # p in A},

—

Wy

hy € ()" (Pasm — 1)ep,: =0 0, (5.14)

/A hy €4 (57 ) Pegmepz =0 0 - (5.15)
-
Moreover, by Proposition (13-9)—(3.12) and (3.33)),

~ - k 2r k—1 ,op

D 2a,u —2r —2r

k (W)SZ _
S +O(e™ M) . (5.16)
dp\p
On the other hand, by (5.7) and Proposition ,
/A e*ha (Zq_)*az(Pz’smep’z —ep2) =00,
Wy
for all ¢ € Xj. In the case ¢ = p, by (5.10) and Lemma
i n - _—
//\ eth ( p) azep,z — (@ + 0(6 C,LL)) //\ eth (Lp )*ep,z

Wy

k_n
n (77) 274 —c
=—|- +O(e™ ). 5.17
- (%) (517)
In the case ¢ # p, using Lemma and arguing again like in the proof of Theorem we get
/A e (7Y Dseps =0 0 (11— +00) . (5.18)
Wy

Now the result for 9, follows from (5.13)—(5.16)), (5.17) and (5.18]).
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If we consider 0z, the proof has to be modified as follows. In the expression analogous to ,
the first term of the right-hand side must be removed. In the analogue of Lemma [3.23] we get
|z,, | instead of |:E;;|2 by and (3.36). So 9:(®.¥.) has the same final expression as 0,(®. V)
by . O

THEOREM 5.19. As p — 400,
9. (w2 w, )=, 0; (W2, = 0(u1/?) .

Proof. We only show the case of 0,. Consider P, g, : B, — E, 4, whose adjoint is P, : F, gy —
E.. Then, since J, : C* — E, is an isometry,
qu\yz - (Pz,stz)*Pz,stz - J;IPsz,stz .
It follows that, for every p € &y (kK =0,...,n),
VIV.ep = Z (P:smép,z, €q,2)€q -
qEX},

Therefore

az(\l’z‘llz)ep = Z (<az(Pz,sm)ep,27 6q,z> + <Pz,smaz(ep,z), 6q,z> + <Pz,sm€p,27 82(€q,z)>)eq .
qEXy

Then, by Propositions and Lemma and its analogue for 03,

1
0.(VV,)e, = O(,LL_I/Q) + (% - §<|33;_|2€p,z7 eP,Z>>eP + O(e_cu)

n 1 _
= (@ - §<|x;‘2€pmenz>>ep + O(:“ 1/2) .

But, by (3.12)) and (3.33)),

Geolepnens) = ([ pwpeseaz) ") [ ot d
pl €pz; Epz) = _QTP _QTZ/PZJ € Y
_n—k/m\2 —ep
Hence
. n n—k/m\s _ _
0.(V20.)e, = (@— o (;)Q)e,,JFO(M 12) = O (= 1?) |

yielding the stated expression for 0, (\Ilz\llz)
Now, arguing like in the proof of and using , we get
3z((‘1’§‘1’z)*1) = _(‘IJZ‘IIZ)ilaZ(‘I’z\IIZ)(‘I'quZ)il
— —(1+0(e )0 () (14 0(e)) = O /%) .0

6. Asymptotics of the large zeta invariant

6.1 Preliminaries on Quillen metrics

6.1.1 Case of a finite dimensional complexr All vector spaces considered here are over C. For
a line A, its dual A* is also denoted by A~L. For a vector space V of finite dimension, let det V =
AV V. For a graded vector space V* of finite dimension, let det V*® = Q). (det 1743 [l
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Now consider a finite dimensional cochain complex (V'*,d), whose cohomology is denoted by
H*(V). Then there is a canonical isomorphism [KMT76], [BGS88| Section 1 a)]

det V* = det H*(V) . (6.1)

Given a Hermitian metric on V* so that the homogeneous components V* are orthogonal one
another, the corresponding norm || ||y« on V'* induces a metric || ||get e on det V®, which corre-
sponds to a metric || ||get gre(v) on det H* (V) via (6.1)).

On the other hand, consider the induced Laplacian, (0 = (9 + 9*)% = 09* + 9*9, whose kernel
is a graded vector subspace H®. Then finite dimensional Hodge theory gives an isomorphism
H*(V) = H*, which induces an isomorphism

det H*(V) = det H® . (6.2)

The restriction of || ||ye to H® induces a metric || ||get 7+ on det H*®, which corresponds to another

metric | [qet gre(v) on det H*(V') via (6.2).
Let [0’ denote the restriction OJ : im0 — im . For s € C, let

0(s) = 0(s,0) = — TS (N(T') %) . (6.3)

(Do not confuse the superscript “s” of the supertrace with the complex variable s.) This defines
a holomorphic function on C. Then the above metrics on det H*(V') satisfy [BGS88, Proposi-
tion 1.5], [BZ92, Theorem 1.1], [BZ94, Theorem 1.4]

| Naet zre vy = | laet zreirye? @72 (6.4)
If H*(V) = 0, then det H*(V) = C is canonically generated by 1, and we have [|1{|get gre(v) =
¢?(0/2 Using the orthogonal projection II' : V' — im 9, we can write (6.3) as

0(s) = —Tr° (O)~°10") . (6.5)

Let (17', 5) be another finite dimensional cochain complex, endowed with a Hermitian metric
so that the homogeneous components are orthogonal to each other, and let ¢ : (V,9) — (17‘, 5)
be an isomorphism of cochain complexes, which may not be unitary. Then (see the proof of
[BZ94 Theorem 6.17])

. 2
log (””“H‘”) — Tv*(log(6°$)) - (6.6)

I laet 12 (v

6.1.2 Case of an elliptic complex Some of the concepts of Section [6.1.1] extend to the case
where V* = C*°(M; E®), for some graded Hermitian vector bundle E® over M, and 0 is an
elliptic differential complex of order one. Then det H*(V') is defined because dim H*(V) < oo.
Moreover Hodge theory for the Laplacian [J gives the isomorphism . Thus at least the norm
| ldet 7ro(v) is defined in this setting. Now the expression only defines 0(s) = 6(s,[d) when
Rs > n/2, but it has a meromorphic extension to C, denoted in the same way; indeed,
becomes

0(s) =6(s,0) = —((s,00,Nw) ,
for ®s > n/2, and therefore this equality also holds for the meromorphic extensions. Furthermore
0(s) is smooth at s = 0 [See67], and 6'(0) can be considered as a renormalized version of the
super-trace of the operator Nlog(()'), which is not of trace class. Thus the right-hand side of
is defined in this way and plays the role of an analytic version of the metric || ||get fr+(v), Which
is not directly defined. This kind of metrics were introduced by D. Quillen [Qui85| for the case
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of the Dolbeault complex. The expression also holds in this case for s > 0; in fact, it
becomes

0(s) = —C(s,D,le) ,
where this zeta function can be shown to define a meromorphic function on C, even though IT*
is not a differential operator, and this equality holds as meromorphic functions.

6.1.3 Reidemeister, Milnor and Ray-Singer metrics Let F be a flat vector bundle over M,
defined by a representation p of 1M, and let V¥ denote its covariant derivative. Consider a
smooth triangulation K of M and the corresponding cochain complex C*(K, F') with coefficients
in F', whose cohomology is isomorphic to H®*(M, F) via the quasi-isomorphism

Q(M; F) = C*(K,F) = Co(K, F*)*

defined by integration of differential forms on smooth simplices. Given a Hermitian structure g%’
on F, we get an induced metric on C*(K, F'), and the concepts of Section can be applied. In
this case, the left-hand side of (6.4) is called the Reidemeister metric, denoted by || [|§ He (M, F)"

If VEgF¥ = 0 (p is unitary) and H®*(M,F) = 0, then the Reidemeister torsion 7p/(p) is
defined using K, and it is a topological invariant of M [Fra35l Rei35l, [dR50]. Moreover 7/ (p) =
1%, fre(a,F) 1S the exponential factor of the right-hand side of (6.4) [RS71, Proposition 1.7]. If

we only assume Vg =0, then || |} . (M, 18 still a topological invariant of M.

Next, given a vector field X on M satisfying@ consider the complex (C*(—X, W~ F),d"),
whose cohomology is also isomorphic to H®(M, F') via the quasi-isomorphism

O QM F) = C* (=X, W™, F) = Co(=X, W™, F*)*

This complex has a metric induced by g, like in Section 2| and the concepts of Section
can be also applied. In this case, the left-hand side of (6.4 - is called the Milnor metmc denoted
by || |IM det e (a1, F)> a0d the metric factor of the right-hand side of (6.4) is denoted by | [} det He(M.F):

If V¥ g¥ =0, then | HdetH' M.F) = | HdetH'(M,F) [Mil66, Theorem 9.3].

Finally, the concepts of Section can be applied to (Q(M, F),d"), whose cohomology
is again H*(M, F'). In this case, the right-hand side of (6.4]) is called the Ray-Singer metric,
denoted by | |55 . (> and the metric factor of the right-hand side of (6.4) is denoted by
| RS e,y 1 H® (M, F) = 0, then the exponential factor of the right-hand side of (6.4) is called
the analytic torsion or Ray-Singer torsion, denoted by Tas(p). These concepts were introduced
by Ray and Singer [RS71], who conjectured that Ths(p) = Tas(p) if VFg¥ = 0 and H*(M, F) = 0,
and || |]§eStH.(M m = [ pe () @ssuming only that VFg! = 0. Independent proofs of this
conjecture were given by Cheeger [Che79] and Miiller [M78]. Actually, this equality still holds if
the induced Hermitian structure g4°*¥ on det F is flat [M93)].

In the case where g4°* ¥ is not assumed to be flat, Bismut and Zhang [BZ92, [BZ94] extended
the above results by introducing an additional term. The first ingredient of this extra term is the
1-form

0(F,g") =tr ((¢")'VFg"), (6.7)
which vanishes if and only if g¢*¥ is flat. Moreover 6(F, g*") is closed and its cohomology class
of O(F,g") is independent of the choice of ¢* [BZ92, Proposition 4.6]; this class measures the
obstruction to the existence of a flat Hermitian structure on det F'.

Let e(M, VM) be the representative of the Euler class of M given by the Chern-Weil theory
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using g™, and let ¥ (M, VM) be the current of degree n — 1 on TM constructed in [MQS6] (see
also [BGS90, Section 3|, [BZ92, Section 3], [BHOG, Section 2|, [BHO8, Section 4]). Identify the
image of the zero section of TM with M, and identify the conormal bundle of M in T'M with
T*M. Let dp; be the current on T'M defined by integration on M, and let m : TM — M be
the vector bundle projection. Since M may not be oriented, the form e(M, VM) is valued in the
orientation line bundle o(M) of M, and the currents are the elements of Q(M,o(M))’.

PROPOSITION 6.1 Bismut-Zhang [BZ92, Theorem 3.7]. The following holds:
(i) For any smooth function A : TM — R*, under the mapping v +— \v, ¥(M, VM) is changed
into (1) (M, V).
(ii) The current 1 (M,V™) is locally integrable, and its wave front set is contained in T*M
(thus (M, VM) is smooth on TM \ M).
(iii) The restriction of —(M, VM) to the fibers of TM \ M coincides with the solid angle defined
by g™
(iv) We have
dip(M, VM) = 7*e(M, VM) — 6, .
Remark 6.2. In Proposition observe that andare compatible because e(M, VM) = 0 if
n is odd. By the restriction of ¢)(M, VM) to TM\ M is induced by a smooth differential

form on the sphere bundle which transgresses e(M, VM) (such a differential form was already
defined and used in [Che44]).

THEOREM 6.3 Bismut-Zhang [BZ92, Theorem 0.2], [BZ94, Theorem 0.2]. We have

2
(””dHMF) - / 6(F,g") A X"p(M, V).
M

(N Feeryes

Remark 6.4. By |(b)l X = — grad, h for some Morse function & and some Riemannian metric g
on M, which may not be the given metric ¢™. If we fix h, the right-hand side of the equality
in Theorem is independent of the choice of X satisfying X = —grady h for some g [BZ92,
Proposition 6.1].

Theorem will be applied to the case of the flat complex line bundle £* with a Hermitian
structure g~ (Section [2.1.2)). By (2.14) and (6.7),

(L%, g% ) =2un . (6.8)

6.2 Asymptotics of the large zeta invariant
We prove Theorem here. With the notation of Section consider the meromorphic

function (s, z) = 0(s,A,), also defined in (1.4), as well as its components 60, /1.(s, z) defined
in (T.5). Consider also the current (M, VM) of degree n — 1 on T'M (Section [6.1.3)). By Propo-

sition

- Zla(_n) - (_1)nzla(n) . (69)
Notation 6.5. Let =i be defined like <q in Notation using O(|p|~'/2) instead of O(e~cll).

Take some Morse function h on M such that Xh < 0 on M \ X, and h is in standard form
with respect to X. Then X = —grad,, h for some Riemannian metric g’ (Section |5.1.3)), which
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may not be the given metric g. Consider the flat complex line bundle Lgj,_ ., with the Hermitian
structure gfar—=n (Section [2.1.2). Note that df‘g{z” =d_.,on C*(=X, W™, Lgp—zp) = C*(—X).
So, by , Theorem and Remark

1185 £ _car
“i” =~ [ (@ =) A XLV, (6.10)
E ler e ar M
where H® (M) = H*,, (M). With the notation of Section let
RS, RS 9
I e ny = 118G ae qane™ 72
By (6.4),
RS
” HdetH' M) ” Hdetj'{rr: (M) 07,(0,—2)
= (6.11)
E lder 7+ an P lder e ar

By and Corollary [5.4] for 11> 0,

(II laer e (a1 ) ‘ |
— | =—Tr*(log(®* ,@_.)) = — Tt* (log (V_1&* ,&_.¥_.))
I et e o

=—Tr* (log (V*,0_,) " H(®_,U_,)"®_,V_,)). (6.12)

From and Theorems |5.3] m E 5.18 and [5.19] m, we obtain
N\ e

. n_N
((\I/*—z\p—z)_l((I)—zq/—z)*q)—z\p—z) = (;) + O(e_cu)

and
O (W0 ) (@ .V )"0 . 0_)
=0, ((W*W_) ) (P, )" W_, + (U* 0_,) 1 (9:(P_.V_,))"d_,¥_,
+ (U0 )TN (P W) 0.(P T )

- (O(u1/2) +(+0() (f - 2'\'M>> (DN-Z -
_ (owz) (5 QNM)) ()" F o).
So
0. To* (log (P2, W_.) (@, T_.)"_.V_.))

— T ((\11*; )TN @ U ) DW ) L (UL T (D) W)

=0+ 1 (1= 5) + O(e™) = 0(u17)..

Then, by (6:12),

RS,sm

I Fet 7re
d, log M O(,u_l/2) _ (6.13)

I l3er e

By taking the derivative with respect to z of both sides of (6.10)), and using (6.11]), (6.13]) and
Corollary we get (1a(1, —2) =<1 2j5- Then Theorem follows because zj, is independent
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of z.

Remark 6.6. In the case where n = dh, Theorem agrees with Theorem In fact, by
Proposition [6. 1] m Theorem u and the Stokes formula,

Ga(1,2) =<1 —/ h X*dip(M, VM) = / h X*(r*e(M, VM) — )

/he(M VM) 4+ (1) P n(p) |
M

pEX

7. Asymptotics of the small zeta-invariant

7.1 Condition on the integrals along instantons
Let

My =My(n, X) = —max{n(y) |veT,} (pei;),
My = Mg(n,X)=min M, (k=1,...,n).

peEXy

Thus @ means that M, = My, for all k = 1,...,n and p € A}. The following result will be
proved in Appendix [A]

THEOREM 7.1. For every £ € Hl(M,R) and numbers ap, = --- > a1 >0oray = --- > a, >0,
there is some n € &, satisfying @ and with the given X and some metric g, such that
My, X)=ay forallk=1,...,n and p € X}.

Remark 7.2. If € # 0, for p € &, ¢ € Xy and v,6 € T(p,q) C T, the period (¢,707") =
n(v) — n(d) may not be zero. Hence it may not be possible to get n(y) = —ay for all y € 7;717
contrary to the case where £ = 0.

From now on, we assume 7 satisfies @, besides @ and By Theorem this is possible
for any prescription of the class & = [] € HY(M, R). Let ax = My (n, X) (k=1,...,n). Then —
also satisfies [(a)} [(c)] and [(d)] with —X and g, and My(—n, —X) = ap_k+1. So, by Corollary

n

— () = = S (~1)F(1 = ek )m} (7.1)

k=1

LEMMA 7.3. Suppose M is oriented and n is even. Then

n

Zgm = Z(fl)ke“kmk .

k=1

If moreover all numbers ay, are equal one another, then zs,, = 0.
Proof. Use Lemma and Corollary O

7.2 Asymptotics of the perturbed Morse operators
Consider the notation of Section u 5.2.2 By (5.4] .,

dz,k—lze_akz( k—1 T zk 1) (72)
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for k=1,...,n, where
dj,_ieq = Z e(v)ep (7.3)
PEXy, €T (p,q), n(v)=—ax
d7,_ieq = > e e(y)e,, , (7.4)

pEXy, YT (p,9), n(v)<—ax

for ¢ € Xj_1. Observe that
e d, 1 =dj_y +O0(e™) (1 — +00). (7.5)

So

djdj,_; = Hm el®rta d, yd, 1 =0.

Hence the operator d’ = >, d} on C® satisfies (d’)?> = 0. Taking adjoints in (7.2)-(7.4), or
using ([5.5)), we also get

8.k =€ (&) + 5;’7,6) , (7.6)
for k=1,...,n, where
lep = > () e, (7.7)
q€X,—1, vET (p,9), n(v)=—ak
5’2’7kep = Z ef(ak+n(v))€(7)eq ’ (7.8)

q€Xk—1, YET (P,q), n(V)=—ax
for p € &). Moreover yields
e, =08, +0(e ) (u— +00). (7.9)
Let & =Y, 8, = (d')*, and let
D'=d+¢, A'=D)2=d¢+dd.
We have
C* =kerA’®imd @imd’,
imA’=imD' =imd ®imé’, ker A’ =kerD’ =kerd Nkerd’ .

The orthogonal projections of C® to ker A’, imd’ and im 8’ are denoted by II' = IT'?, IT’! and
IT'2, respectively. Like in Sections and the composition (d')~'TI'! is defined on C®.
From (|7.5)) and (7.9)), we easily get that, as u — +oo0,

I, =T +0(e™") (j=0,1,2), (7.10)
e (dygom1) T = (djy) T+ O(e7) (7.11)

By and , onimé,; +imd, j_1,
A, =e 2 A 4 O(e”CutIr) (1 — +00) (7.12)

PROPOSITION 7.4. For k = 0,...,n and p > 0, the spectrum of A, on imé,; +imd,_; is
contained in an interval of the form

[Ce2ami Cle™2mi]  (C' > C) .

Proof. The positive eigenvalues of A’ are contained in an interval [Co, Cj] (C} = Cy > 0).
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By (7.12), for 1> 0 and e € imd, ;, +imd, ;_1,
(Ae,e) > 2% (Ale e) — Cre”2atoi| |2

> (Coe—Zaku _ Crle—(Qak—f—c)u) ”eH2 ,
(ALe,e) < 2™ (Ale e) + Cre”Paton| |2

Z
< (C(l)e—Qak,u + Cle—(Qak-i-c)u) HeH2 _

Then result follows taking 0 < C' < Cjy and C’ > Cj. O

7.3 Estimates of the nonzero small spectrum

THEOREM 7.5. If 1 > 0, the spectrum of A, gy on im 6, gy + imd, gm p—1 is contained in an
interval of the form

[Cpe™2%H C' ek (C" > C) .

Proof. By the commutativity of , for every eigenvalue A of A g on im o, gm i +imd, gm p—1,
there are normalized M-eigenforms, e € imd, gy 1 and e € im d;smk—1, 5O that d.e = AL/2¢!
and d,¢/ = A\/2¢. Hence the maximum and minimum of the spectrum of A, gm on imo, gm g +
imd, gmk—1 18 ||dzsmp—1]* and Hd;;mkflﬂi’sm’kH’Q, respectively. Similarly, the maximum and
minimum of the spectrum of A, on imé, ; +imd, ;g is ||d, x—1]|? and ||d;,1€711—1i7k||_2, respec-
tively. Then the result follows from Corollaries and and Proposition [7.4

”dZ,srn,lfle2 < H(I),Z_,IICHQHdZ,kflH_zuq’zsm,kle_Q

k—n/2 k—1-n/2
<((B) + o)) cpern((5) +0(em)
™ 7
< C/H€—2aku ,
[ty PP = Y 1S 8 S SN

WV

((Z)k_l_"/ = o(efcu))coe*%kﬂ((ﬁ)k_”/ g O(e™"))

T
> Cpe 2%+ O
7.4 Asymptotics of the small zeta invariant
Theorem is proved here.
Notation 7.6. Let <3 be defined like < in Notation using O (|| ™) instead of O(e~clHl).

THEOREM 7.7. As u — +o0,

nA d;lngsm,k =y £(1 — e™)I1}

z,smyk *

Proof. Consider the notation of Sections and ﬂ By Corollary and ((5.11)),

1 T =l T iyl T ol T oy Ll
I o =0 VAL @, g = WILIL @, oy = VIL P, oy — U, (IL,) TLL®. o,
But (ﬁi)LHi = 0 if © > 0 by Corollary |5.16| Hence
l_Ii,sm =0 lflzniq)z,sm . (7.13)

For brevity, let R, = P,_1 sm P, sm On L?(M;A), and S, = @Z\Ifz_l and T, = @Z_le_l,sm\TlZ
on C*. By (7.5)—(7.11), (7.13]), Propositions and Corollaries
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5.13] [5.15] and [5.17 and Theorem [7.5]
I, o €T B g <3 € TTTD g = e () T
=9 ¢* RV, S.d}_To(d}_ ) ‘TP, o
= e R, U, 1d}_T.(d}_1) 'TI'®, o
=2 eak@Z,ld%_sz( ;9—1)_1H;clq)z,sm
=2 eak(Ivjz—leak(Z_l)dz—l,k—sze_akzd;}c_1Hi7k®z,sm

T -1 1
= \I’zfldz—l,k—szdz7k_1HZ7kq)z,sm

~ ~2 ~1
- -1
—~0 \Ilz—ldzfl,kfszHZk_ldz’k,lHqu)z,sm

T 2 I 4-1 1
—~0 \Ilz—ldzfl,kfl(I)z—lpz—l,smHngfl\I/zdz’k_lq)zn

z,sm
=0 U, _1d &, P, 2, ®;'a7l @It
~0 Fz—1Uz-1k—1%2-14L2-1smlly k1% 2 z,k—1> 2 zsm
I -1 1 _ —1771
= \I/z—l(I)z—ldzfl,sm,kfldz’sm,k_lnz,sm,k —~0 dZ—ldz Hz,sm,k: .
Therefore

AT = (dy —dy_q)d ML <o (1 — e)ITL O
nna, zsmk — \Uz z—1)%z lzsmk 2 € z,smk *

Theorem follows from Corollaries and and Theorem
Remark 7.8. Theorem agrees with Corollaries to by (7.1) and Lemma

8. Prescription of the asymptotics of the zeta invariant

We prove Theorem [[.2] here. By Theorem [7.1] given a >> 0, there is some 79 € £ and some metric
g satisfying @ and @With the given X, and so that My(no, X) =a for all k =1,...,n. Using
the notation of Section we are going to modify 79 only in every U, for p € Xy U X,.

Fix any € > 0 such that, for every p € Xy U A}, the open ball B(p, 3¢) is contained in U,. Let

V= |J B, V= |J B®?2e).

peXOUXn pEXOUXn
Take a smooth function o : [0,3¢] — [0, 1] so that
o' <0, o(0,e])=1, o(263€)=0.

Let f; € C*(M,R) (j = 0,n) be the extension by zero of the combination of the functions
o(2]) € C(B(p, 36),R) (p € &;). We have

deC‘/;/\‘/Jv fj(‘/J)Zlv fJ(M\V;/):Oa Xfo=20, Xf,<0.

For any cp, ¢, > 0, let n = n(co,cn) = no — codfo + ¢, dfy,. This closed 1-form satisfies @
and @ with X and g, and we have

Mi(n,X)=a+co, Mp(n,X)=a+cn, Mp(m,X)=a (1<k<n).
Hence, by Corollary
Zsn (1) = Zsm (10) = €*(e® — Ly + (=1)"e(1 — e )m,, . (8.1)
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By e(M, VM) =0 on every U, (p € X). So, using the Stokes formula,
1)~ anlo) = [ (codfo — cndf) A X UM, TV
= [ (eadn = cofi) X w31, 5)
= [ (Gt = cofo) €T = 3 (<10 gy = cofo) )

peX
= co|Xo| = (=1)"cn|Xn] | (82)
Combining and , we obtain
2(n) — z(o) = (e — L)ymy + (=1)"e(1 — ™ )my, + colXo| — (—1)"¢calXn| . (8:3)

So, if n is even (respectively, odd), given any 7 € R (respectively, 7 > 0), we get z(n(co,cn)) =T
for some cg, ¢, > 0 since |Xy|, | X,| > 0 by [(b)}

Now assume M is oriented and n is even. Then z(ny) = —z(—n9) by and Lemma
Using local changes of X and applying [Sma61, Lemmas 1.1 and 1.2], we can increase |Xy| or
|X,] as much as desired. So we can assume |Xp| — |X,| € (7 — z(n0)) - RT and mg, m,, > 0 by

Lemma yielding mi,m. > 0 by (3.22). Moreover m! = m} by (3.22) and Lemma
Thus, taking ¢y = ¢, =: ¢, the expression (8.3) becomes

z(n) — z(m0) = (|| — |nl) -

Hence z(n) = 7 for some ¢ > 0.

9. The switch of the order of integration

The proof of Theorem is given in this section. Let S be the Schwartz space on R. Recall
that the space of tempered distributions is the continuous dual space &', with the topology of
uniform convergence on bounded sets. Suppose first that is used as definition of Z,. By
Theorem the expression defines a tempered distribution Z,, for u > 0. Moreover, using
also the formula of the inverse Fourier transform, we get, for f € S,

(Zu, f) = / C(L,2) f dy—>— Oo!]E(y)dy:zf(O),

—00

as 4 — +oo, uniformly on v. For every C' > 0, this convergence is also uniform on f € § with
lfW)],[v?f(v)] < C. So Z, — 28y in &’ as u — +o0. To get Theorem it only remains to
prove the following.

THEOREM 9.1. Both (1.3) and (1.7) define the same tempered distribution Z,, for j >> 0.

ProPOSITION 9.2. For 1> 0,t >0 and f € S,

/_Z /t ) | Te® (A 8, 4%)

Proof. By [DS88h, Corollary X1.9.8 and Lemma X1.9.9 (d)],
’Trs (77/\ 526—qu) < —ul\, . < |InA| ’(gze—qu )
= |Inllze= Tr ((d=6.)"%e"4%) < [lnl|ze= Tr (AL2e78%)

|f ()| dudy < oo .
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where | |; denotes the trace norm. Hence
[ee]
/ ‘ Tr® (A 5Z€—qu) du
t

The operator (I 4+ D?)~% is of trace class for any N > n. Therefore
Tr (A7Y2e8118) < (1 + D) ™N|,||(T + DN AT 2e 211t ||
By Corollary and Theorem for > 0 and o € L?(M;A),

o0
< |yn|yLoo/t Tr (AY2e7"2%) du = ||n||pe Tr (A Y/ 2e 144111

H(I—I_D2)NAZ_1/2e_tAZHi_aH

< COHAfl/QeftAZnJ_ 01’2‘2N||A 1/2 tAzHJ_

a”QN aH2NZ

_ C2|z|2NZ HDkA 1/2 tAZHJ_aH < Oy |Z’2NZ k/g HA 1/2HJ_aH
k=0
< LY (14 +N)e® o] |

Thus, since f € S,

/_Z /too | T (A 5.e744%)

Proof of Theorem [9.1] Using Theorem and Proposition to apply the Lebesgue’s domi-
nated convergence theorem and Fubini’s theorem, we compute

F(v)| du dv

< Clnllz=|(T + D>, (1 +tN)eC“/ 122N f ()| dv < 0. O

1 [ - 1 o P
") lf;iﬁ)l T (nA d;le*mzﬂi) fv)dv = 5 ltlfn T (nA d;le*mzﬂi) f(v)dv
= %I;fg/ / T (nAdze” )f(l/)d’LLdI/
= 27T1t1¢%1/ / T (nA 0 e uA )f(u) dv du

= / / T (nA (5z€7UAZ) fw)dvdu . O
2m 0 —00

Appendix A. Integrals along instantons

Theorem is proved here. We show the case where a,, > --- > a; > 0. Then the case where
ay = --- = ap > 0 follows by using —X and —¢.

By [Sma61, Theorem B]|, there is some Morse function h on M such that h(X;) = {k}
(k=0,...,n), Xh < 0on M\ X, and h is in standard form with respect to X; in particular,
Critg(h) = Xj. Now we proceed like in the proof of [BH04, Proposition 16 (i)]. Since X is finite,
there is some 7' € £ such that n = 0 on some open neighborhood U, of every p € X. Let
Uk = Upex, Up and U = |, Uy. We can assume h(Uy) C (k—1/4,k+1/4) forallk =0,...,n
If C' > 0, then the representative " :=n' + C dh of £ satisfies ”"(X) <0 on M \ X.

For k=0,...,n,let IjE C R be the closed interval with boundary points k+1/4 and k+1/2.
Since there are no crltlcal values of h in I p every T =h"(I ,f) is compact submanifold with
boundary of dimension n, every E =h Y k£1/ 2) is a closed submanifold of codimension 1,
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FIGURE 1. A representation of the sets T:, E,f, T]:;l and T, ,, taking Xy = {p}.

and there are identities T,;t = Zf X I,ét given by z = (71’]::({]}), h(z)) (x € T,;t), where ﬂ,:f(a:) is
the unique point of Zf that meets the ¢-orbit of x. Of course, 3" = Ekil (k=1,...,n) and
Ty =%y =T;f =%} = 0. (See Figure[])

We have 37t (W) for p € Xy Let KFf = 57 N (W) and K;7 = U,cx, K, which
are closed submanifolds of Ef; K, is of codimension k in 3", and K ,j of codimension n — k in
Z; Since the a- and w-limits of the orbits of X are zero points, the orbit of ¢ through every
point € ¥ \ K;” meets &, \ K, at a unique point ¢y (z) := ¢™®(z) (r4(x) > 0). This
defines a diffeomorphism ¢, : 5 \ K, — £\ K, and a smooth function 7, : ¥ \ K} — RT.
Moreover the sets K;E (p € &) have corresponding open neighborhoods VpjE in Ef, with disjoint
closures, such that ¢ (V," \ K;f) =V, \ K, . Take smooth functions A¥ (p € X}) on X" so that
0 <AF <1, supp Ay C V5, A =1 on K, and Af = ¢fA, on 5\ K" Moreover let

Te=h"'k—1/2k+1/2), K, =Ti0 (o (W) Ui, (W),
V,={¢'(2) |z € V;/ \ K, 0<t<m(a) JUK,,

K= |JK,, Vi=J V., My=h"((—00,k+1/2).
PEX} PEX}

Thus M = fo U---uT k- Note that T) L agd My, are compact submanifolds WiEh boundary of
dimension n, and every V), (respectively, K},) is open (respectively, closed) in Tj. We also get
smooth functions \, (p € A}) on T} determined by the condition \,(¢'(z)) = Ay () for all

z € ¥\ K and 0 < t < 7(2). They satisfy 0 < A, < 1, supp \, C V,, and A, = 1 on K,
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Let

Ap=max{[f(N 7€ T} (peXi),

Ap=maxA4, (k=1,...,n), A=max{4,...,4,}.
PEX

We can suppose C > A and a; > C + A > 0. For p € &}, ¢ € Xx_1 and v € T (p,q), we have
dh(y) = h(q) —h(p) = —1.

Therefore
0>0"(v)=17'(y) +Cdh(y) =2 ~-A-C>—a; (y€T. (A1)
Claim 1. For kK =0,...,n, there is a smooth function f; on M such that
dfx(X) <0, (A.2)
supp dfi, C Mj, , (A.3)
max{ (" +dfi)() |7 €T} =—ar (pe X, 1<I<k), (A4)
(" + dfy)(0) > —ax (6 € Tiyy) - (A.5)

The statement follows directly from Claim [1] taking n = 1" + df,,. So we only have to prove
this assertion.

We proceed by induction on k. For k = 0, we choose fo = 0. Then (A.4)) is vacuous, (A.2)
and (A.3)) are trivial, and (A.5)) is given by (A.1]).

Now take any k > 1 and assume f_; is defined and satisfies (A.2)—(A.5)). Let

by = —max{ (" +dfi-1)(v) |7 €T} (pe€X), (A.6)

bi :min{bp |lpe X}
For every p € X}, we have b, < ar—1 < aj because f_; satisfies (A.5)). So there is a smooth
function h, on I, such that (h,)" > 0, h, = 0 around k — 1/2, and h, = a; — b, around
k — 1[4. Let illj be the function on V,~ ><~Ik_ C X, x I, =T, given by ﬁ;(w,s) = hlz(s). We
have h,” = 0 around V," x {k—1/2} anth; = a; — by around V” x {k —~1/4}. Thus h,, has a
smooth extension to V;, also denoted by h,, which is equal to a — b, on 'V}, \ T}, . The function
)\ h on V can be extended by zero to get a smooth function on Tk, also denoted by )\ h . Let
h,; =2 e, )\ h on Tj.

On the other hand, let pi be a smooth function on I,j such that pj, > 0, pr = 0 around
k+1/4, and pr = 1 around k + 1/2. Let pg be the smooth function on T,j = Z; X I,j given by
r(x,s) = pr(s), and let

hie = hy (1= pr) + (ax — bi)pr
on T;". This smooth function is equal to l~f around X x {k 4+ 1/4}, and is equal to ay — by,
around X, x {k+1/2} = X . So the functions, h on Tj, \ T,/ and h+ on T;", can be combined
to produce a smooth function hy. on Tk Since hy = 0 around >, and hy = aj, — by, around E

there is a smooth extension of hy, to M, also denoted by Ry, Wthh is constant on M \ Tk

Let fr = fr_1 + hyx on M. This smooth function satisfies because fr_1 satisfies ,
and X induces the opposite of the standard orientation on every fiber {z} x I = I ,;t of TkjE
(x € Ei) It also satisfies and (A.4)) for p € Xy with 1 <1 <k because fi_; satisfies these

properties and dhy, is supported in the interior of Tk
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Next, take any p € Xk, ¢ € Xx—1 and v € T(p,q) C 7;)1. We have y N T, = {z} x I for
some x € K, N K; CX, = 2;717 and the orientation of y N7, agrees with the opposite of the
standard orientation of {z} x I, = I,". Then

(" +dfi) () = (0 + dfi—1 + dhy) (7) < ~bp + Ay (@) (7)

:—bp—/ldhg:—bp—(ak—bp):—ak.

Here, the equality holds when the maximum of is achieved at 7. Hence f, also satisfies (A.4])
for p € A}

Finally, take any p € Xj, u € X1 and § € T (u,p) C T,} C 7761“ Thus 6 N T} = {y} x L7
for some y € K;r NK, C Z;: = ¥, and the orientation of § N T,:r agrees with the opposite of
the standard orientation of {y} x I, = I,". Then

(" +dfi)(6) = (1" + dfx—1 + dhi,)(8) = 0" (8) + dh;f (5)

= 0)+ () = (=) [ o= '®) + Ry )by 1) + b=

k

=1"(0) + ar — by + b — ax =n"(6) + b — by = 1"(d) > —ax ,
where the second equality is true because fr_1 satisfies (A.3)), and the last inequality holds

by (A.1). So fi satisfies ((A.5|).
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