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1. Introduction 1.1 Witten's perturbed operators Let M be a closed n-manifold. For any smooth function h on M , Witten [Wit82] introduced a perturbed de Rham differential operator d µ = d + µ dh∧, depending on a parameter µ ∈ R. Endowing M with a Riemmanian metric g, we have a corresponding perturbed codifferential operator δ µ = δ -µ dh , and a perturbed Laplacian ∆ µ = d µ δ µ + δ µ d µ . Since d µ = e -µh d e µh , it defines the same Betti numbers as d. However ∆ µ and the usual Laplacian ∆ have different spectrum in general. In fact, if h is a Morse function and g is Euclidean with respect to Morse coordinates around the critical points, then the spectrum of ∆ µ develops a long gap as µ → +∞, giving rise to the small and large spectrum. The eigenforms of the small/large eigenvalues generate the small/large subcomplex, E µ,sm/la . When h is a Morse function, Witten gave a beautiful analytic proof of the Morse inequalities by analyzing the small spectrum. This was refined by subsequent work of Helffer and Sjöstrand [HS85] and Bismut and Zhang [BZ92,BZ94], showing that, if moreover X := -grad h is a Smale vector field, then the Morse complex (C • , d) of X can be considered as the limit of (E µ,sm , d µ ). More precisely, for certain perturbed Morse complex (C • , d µ ), isomorphic to (C • , d), there is a quasi-isomorphism Φ µ : (E z,sm , d µ ) → (C • , d µ ), defined by integration on the unstable cells of the zero points of X, which becomes an isomorphism for µ 0 and almost isometric as µ → +∞ (after rescaling at every degree). We can replace dh with any real closed 1-form η, obtaining a generalization of the Witten's perturbations, d µ , δ µ and ∆ µ . Now d µ need not be gauge equivalent to d, obtaining new twisted Betti numbers β k µ . However the numbers β k µ have well defined ground values β k No , called the Novikov numbers, which depend upon the de Rham cohomology class [η] ∈ H 1 (M, R). Assume that:

(a) η is a Morse form (it has Morse type zeros), and g is Euclidean with respect to Morse coordinates around the zero points of η.

(Some concepts used in this section are recalled in Sections 3.1 and 5.1.) Then ∆ µ also develops a long gap separating a small spectrum and a large spectrum, and the analysis of the small spectrum gives Morse inequalities for the Novikov numbers. Take any auxiliary vector field X such that:

(b) X has Morse type zeros, and is gradient-like and Smale; and

(c) η is Lyapunov for X, and η and g are in standard form with respect to X.

Then the small complex approaches a perturbed Morse complex of X. We refer to work by Novikov [Nov81,Nov82], Pajitnov [Paj87], Braverman and Farber [BF97], Burghelea and Haller [BH01,BH04,BH08], and Harvey and Minervini [HM06,Min15]. We can similarly define the perturbation d z = d+z η∧ with parameter z = µ+iν ∈ C (µ, ν ∈ R and i = √ -1). Its adjoint is δ z = δ -z η , and we have a corresponding perturbed Laplacian ∆ z = d z δ z +δ z d z . As a first step in our study, we prove extensions of the above results to this case, taking limits as |µ| → ∞, uniformly on ν. First, assuming (a), we get the long gap in the spectrum of ∆ z separating the small and large spectrum, which depends only on µ (Theorem 3.10). Second, assuming (a)-(c), we show that the quasi-isomorphism Φ z : (E z,sm , d z ) → (C • , d z ) becomes an isomorphism for |µ| 0 and almost isometric as |µ| → ∞ (Theorem 5.3). To get that the convergence is uniform on ν, we show a version of a Sobolev inequality for a Sobolev norm defined by ∆ iν , where the constant involved is independent of ν (Proposition 2.2). Then we adapt the arguments of Bismut and Zhang [BZ92,BZ94] (see also [Zha01]).

Zeta invariants of some Morse forms

Let Π ⊥ z and Π 1 z be the orthogonal projections to the images of ∆ z and d z , and let w be the degree involution. We consider the zeta function ζ(s, z) = ζ(s, z, η) := ζ(s, ∆ z , η∧ δ z w) [Gil95,Section 1.12.4]. As a function of s, this is the meromorphic extension to C of the function Tr s (η∧ δ z ∆ -s z Π ⊥ z ) = Tr s (η∧ d -1 z ∆ -s+1 z Π 1 z ), which is well defined and holomorphic for s 0. Then the zeta invariant ζ(1, z) would be a renormalized interpretation of the super-trace of η∧ d -1 z Π 1 z , which is not of trace class by the Weyl's law. However, according to the general theory of zeta functions of operators, ζ(s, z) might have a simple pole at s = 1. To study this zeta function, we decompose it as sum of the terms defined by the contributions from the small/large spectrum, ζ sm/la (s, z) = ζ sm/la (s, z, η). As a function of s, ζ sm (s, z) is always holomorphic on C.

For a class of Morse forms, our first main theorem states that ζ(s, z) is smooth at s = 1 for |µ| 0, and describes the asymptotic behavior of ζ(1, z) as µ → ±∞, uniformly on ν. In fact, since ζ(s, z, η) = -ζ(s, -z, -η) , ζ sm/la (s, z, η) = -ζ sm/la (s, -z, -η) ,

(1.1) it is enough to consider the case where µ 0 and take the limit as µ → +∞. We use the current ψ(M, ∇ M ) of degree n -1 on T M constructed by Mathai and Quillen in [MQ86], depending on the Levi-Civita connection ∇ M . This current is smooth on the complement of the zero section, where it is given by the solid angle. It is also locally integrable, and its wave front set is contained in the conormal bundle in T * T M of the zero section of T M . Since this set does not meet the conormal bundle of the map X : M → T M (assuming (b)), X * ψ(M, ∇ M ) is well defined as a current on M . Assuming (a)-(c), consider the real number

z la = z la (M, g, η) = ˆM η ∧ X * ψ(M, ∇ M ) ,
which is known to be independent of X [BZ92, Proposition 6.1]. Now suppose also that:

(d) for every zero point p of X, the maximum value of the integrals of η along the instantons of X with α-limit {p} only depends on the Morse index k of p.

This maximum value is denoted by -a k for some a k > 0. Let m 1 k denote the dimension of d z (E k-1 z,sm ) for |µ| 0, which is independent of z. Consider also the real number

z sm = z sm (M, g, η, X) = n k=1 (-1) k 1 -e a k m 1 k ,
and let z = z(M, g, η, X) = z sm + z la .

Theorem 1.1. Let M ≡ (M, g) be a closed Riemannian manifold of dimension n. Let η be a closed real 1-form on M satisfying (a).

(i) For µ 0, ζ(s, z) is smooth for s = (1 -k)/2 (k = 0, 1, . . . ), and

ζ(1, z) = lim t↓0
Tr s η∧ d -1 z e -t∆z Π 1 z .

(ii) Let X be a vector field on M satisfying (b)-(c). Then

ζ la (1, z) = z la + O(µ -1/2 )
as µ → +∞, uniformly on ν.

(iii) If moreover (d) holds, then

ζ sm (1, z) = z sm + O(µ -1 )
as µ → +∞, uniformly on ν.

The existence of the limit of Theorem 1.1 (i) is rather surprising because η∧ d -1 z e -t∆z Π 1 z is weakly convergent to η∧ d -1 z Π 1 z . An expression similar to Tr s (η∧ d -1 z e -t∆z Π 1 z ) was used by Mrowka, Ruberman and Saveliev to define a cyclic eta invariant [MRS16]. Theorem 1.1 (iii) shows that z sm and z are also independent of X. Thus X will be omitted in their notation. In the notation of z sm/la and z, we may also omit M or g if they are fixed.

By (1.1), if we take µ → -∞ in Theorem 1.1, we have to replace z sm/la (η) with -z sm/la (-η). Descriptions of -z sm/la (-η) are given in (6.9) and (7.1).

Our second main theorem is about the prescription of z = z(M, g, η) without changing the cohomology class of η.

Theorem 1.2. Let M be a smooth closed manifold of dimension n.

(i) Let X be a vector field satisfying (b). For every ξ ∈ H 1 (M, R) and τ 0, there is some η ∈ ξ and a Riemannian metric g satisfying (a), (c) and (d) with X such that z(M, g, η) = τ . If n is even, this property holds for all τ ∈ R. (ii) Assume M is oriented and n is even. Then, for every ξ ∈ H 1 (M, R) and τ ∈ R, there is some η ∈ ξ, a Riemannian metric g and a vector field X satisfying (a)-(d) such that ±z(M, g, ±η) = τ .

1.3 A distribution associated to some Morse forms A trace formula for simple foliated flows on closed foliated manifolds was conjectured by C. Deninger (see e.g. [Den08]). He was motivated by analogies with a formula in Arithmetics, and previous work of Guillemin and Sternberg [Gui77]. This trace formula is an expression for a Lefschetz distribution in terms of infinitesimal data of the flow at the fixed points and closed orbits. This Lefschetz distribution should be an analogue of the Lefschetz number for the action induced by the flow on some leafwise cohomology, whose value is a distribution on R-the precise definition of these notions is part of the problem. In [ALK02, ALK08], the first two authors proved such a trace formula when the flow has no preserved leaves; see also the contributions [Lei08,Lei14] by the third author. The general case is considerably more involved. In [ALKL20], we propose a solution to this problem using a few additional ingredients. One of them is the b-trace introduced by Melrose [Mel93]. Since the b-trace is not really a trace, it produces an extra term, denoted by Z, in the same way as the eta invariant shows up in Index Theory on manifolds with boundary.

In our trace formula, the term Z is a contribution from the compact leaves preserved by the flow, which depends on the choice of a form defining the foliation and a metric on the ambient manifold. But Z may not be well defined in general; it will be proved that appropriate choices of the form and the metric guarantee its existence. Precisely, we would like to define

Z = Z(M, g, η) = lim µ→+∞ Z µ , (1.2)
in the space of tempered distributions, where Z µ = Z µ (M, g, η) (µ 0) should be a tempered distribution defined by

Z µ , f = - 1 2π ˆ∞ 0 ˆ∞ -∞ Tr s η∧ δ z e -u∆z f (ν) dν du , (1.3)
for any Schwartz function f , where Tr s denotes the supertrace and f the Fourier transform of f . Let δ 0 denote the Dirac distribution at 0 on R. The problem about the definition of Z is solved in our third main theorem for the same class of Morse forms as before.

Theorem 1.3. Let M ≡ (M, g) be a closed Riemannian manifold of dimension n. Let η be a closed 1-form on M satisfying (a), (c) and (d) with some vector field satisfying (b). Then (1.2) and (1.3) define the tempered distribution Z = zδ 0 .

According to Theorems 1.2 and 1.3, we can choose η and g in the trace formula for foliated flows so that Z(M, g, η) = 0 if n is even, or Z(M, g, ±η) = 0 if moreover M is oriented, achieving the original expression of Deninger's conjecture.

It looks clear that extensions of Theorems 1.1 to 1.3 with coefficients in flat vector bundles could be similarly proved. We only consider complex coefficients for the sake of simplicity since this is enough for our application.

1.4 Some ideas of the proofs of Theorems 1.1 to 1.3 Theorem 1.1 (i) follows by using that the derived heat trace invariants up to order n of the elliptic complex d z are independent of z, proved by Gilkey and the first author [ALG20] (Section 4.6).

Consider the meromorphic function

θ(s, z) = -ζ(s, ∆ z , Nw) , (1.4) 
where N is the number operator, and write

θ(s, z) = θ sm (s, z) + θ la (s, z) ,
where

θ sm/la (s, z) = -ζ sm/la (s, ∆ z , Nw) , (1.5)
using the contributions from the small/large spectrum as above. Thus e θ (0,z)/2 is the factor used to define the Ray-Singer metric on det H • z (M ) [BZ92], using a prime to denote ∂ s . We obtain (Corollary 4.16)

ζ la (1, z) = ∂ z θ la (0, z) .
(1.6)

This equality allows us to use the deep relation between the Ray-Singer metric and the Morse metric on det H • z (M ), proved by BZ94]. In this way, using also that Φ z : E z,sm → C • is an isomorphism, we obtain that ζ la (1, z) is asymptotic to z la as µ → +∞ (Section 6.2). This proves Theorem 1.1 (ii).

When η is exact, we show this asymptotic expression of ζ la (1, z) assuming only (a) (Section 4.7), without using (1.6) and the indicated strong result of Bismut-Zhang. Instead, we apply that the index density of the elliptic complex d z is independent of z, proved by Gilkey and the first author [ALG21] and by the authors [ALKL20].

On the other hand, given any ξ ∈ H 1 (M, R) and a vector field X satisfying (b), we prove that there is some η ∈ ξ and a metric g satisfying (a), (c) and (d) (Theorem 7.1). This can be considered as an extension of a theorem of Smale stating the existence of nice Morse functions [Sma61, Theorem B] (the case where ξ = 0). Its proof is relegated to Appendix A because of its different nature.

The properties (a)-(d) are used to give an asymptotic description of d z as µ → +∞ (Section 7.2). From this asymptotic description and using that Φ z : E z,sm → C • is an isomorphism for µ 0, we get upper and lower bounds of the nonzero small spectrum of ∆ z (Theorem 7.5), which are independent of ν. This is a partial extension of accurate descriptions of the nonzero small eigenvalues achieved in the case where η is exact and the parameter is real [LPNV13,Mic19].

With the same procedure and using the bounds of the nonzero small spectrum, it also follows that ζ sm (1, z) is asymptotic to z sm as µ → +∞ (Section 7.4), showing Theorem 1.1 (iii). Next, by modifying η and X around its zero points of index 0 and n, without changing the cohomology class of η, we can achieve any real number as z(η), or as both ±z(±η) if M is oriented and n even (Section 8). This shows Theorem 1.2.

If it is possible to switch the order of integration in (1.3),

Z µ , f = - 1 2π ˆ∞ -∞ ˆ∞ 0 Tr s η∧ δ z e -u∆z f (ν) du dν = 1 2π ˆ∞ -∞ lim t↓0 Tr s η∧ d -1 z e -t∆z Π 1 z f (ν) dν , (1.7)
then Theorem 1.3 is an easy consequence of Theorem 1.1. Thus it only remains to prove that both (1.3) and (1.7) define the same tempered distribution Z µ . This follows from the Lebesgue's dominated convergence theorem and Fubini's theorem (Section 9). The verification of the hypothesis of the Fubini's theorem requires the above lower estimate of the nonzero spectrum.

Witten's perturbations

2.1 Preliminaries on the Witten's perturbations 2.1.1 Basic notation Let M be a closed Riemannian n-manifold. For any smooth Euclidean/Hermitean vector bundle 

E over M , let C m (M ; E), C ∞ (M ; E), L 2 (M ; E), L ∞ (M ; E)
K = R, C is denoted by Λ K = Λ K M , and let Ω(M, K) = C ∞ (M ; Λ K ); in particular, C ∞ (M, K) = Ω 0 (M, K).
The Levi-Civita connection is denoted by ∇ = ∇ M . As usual, d and δ denote the de Rham derivative and coderivative, and let D = d+δ and ∆ = D 2 = dδ+δd (the Laplacian). Let Z(M, K) and B(M, K) denote the kernel and image of d in Ω (M, K).

Thus H • (M, K) = Z(M, K)/B(M, K)
is the de Rham cohomology with coefficients in K. We typically consider complex coefficients, so we will omit K from all of the above notation just when K = C. Take m and C m given on Ω(M ) by

α m = m k=0 D k α , α C m = m k=0 ∇ k α L ∞ .
For any homogeneous linear operator between graded vector spaces, T : V • → W • , the notation T k means its precomposition with the canonical projection of V • to V k . On any graded vector space V • , let w and N be the degree involution and number operator; i.e., w = (-1) k and N = k on V k .

For any η ∈ Ω 1 (M, R) with η = X ∈ X(M ) := C ∞ (M ; T M ), let L X and ι X denote the Lie derivative and interior product with respect to X, and let η = -(η∧) * = -ι X . Using the identity Cl(T * M ) ≡ ΛM defined by the symbol of filtered algebras, the left Clifford multiplication by η is c(η) = η∧ + η , and the composition of w with the right Clifford multiplication by η is ĉ(η) = η∧-η ; in particular, c(η) * = -c(η) and ĉ(η) * = ĉ(η). Recall that, for any h ∈ C ∞ (M, R),

[D, h] = ĉ(dh) .
(2.1)

In the whole paper, unless otherwise indicated, we will use the following notation without further comment. We use constants C, c > 0 without even mentioning their existence, and their precise values may change from line to line. We may add subindices or primes to these constants if needed. We also use a complex parameter z 

= µ + iν ∈ C (µ, ν ∈ R and i = √ -1). Recall that ∂ z = (∂ µ -i∂ ν )/2 and ∂ z = (∂ µ + i∂ ν )/2.
d z = d + z η∧ , δ z = d * z = δ -z η , D z = d z + δ z = D + µĉ(η) + iνc(η) = D iν + µĉ(η) , ∆ z = D 2 z = d z δ z + δ z d z = ∆ + µH η + iνJ η + |z| 2 |η| 2 = ∆ iν + µH η + µ 2 |η| 2 ,      (2.2)
where, for X = η ,

H η = Dĉ(η) + ĉ(η)D = L * X + L X , J η = Dc(η) + c(η)D = L * X -L X .
Note that H η is of order zero and J η of order one.

As families of operators, d z and δ z are holomorphic and anti-holomorphic functions of z, respectively. More precisely, it follows from (2.2) that

∂ z d z = η∧ , ∂ z δ z = 0 , ∂ z ∆ z = η∧ δ z + δ z η∧ , ∂ z d z = 0 , ∂ z δ z = -η , ∂ z ∆ z = -η d z -d z η . (2.
3)

The operator d z defines an elliptic complex on Ω(M ), whose cohomology is denoted by 

H • z (M
Ω(M ) = ker ∆ z ⊕ im d z ⊕ im δ z ,
(2.5) as topological vector spaces. It induces a Hodge type isomorphism

H • z (M ) ∼ = ker ∆ z .
(2.6)

We also have

ker ∆ z = ker D z = ker d z ∩ ker δ z , im ∆ z = im D z = im d z ⊕ im δ z .
The orthogonal projections of Ω(M ) to ker ∆ z , im d z and im δ z are denoted by Π z = Π 0 z , Π 

d z,k ----→ im d z,k ∆ z,k     ∆ z,k+1 im δ z,k+1 d z,k ----→ im d z,k (2.7)
is commutative-recall that d z,k , δ z,k and ∆ z,k are the compositions of the projection to Ω k (M ) with d z , δ z and ∆ z . The alternate sum of the dimensions

β k z = β k z (M, ξ) = dim H k z (M ) (k = 0, . . . , n) is the Euler characteristic [Far04, Proposition 1.40], k (-1) k β k z = χ(M ) . (2.8)
(This is also a consequence of the index theorem.) For every degree k, β k z is independent of z outside a discrete subset of C, where β k z jumps (Mityagin and Novikov [Nov02, Theorem 1]). This ground value of β k z is called the k-th Novikov Betti number, and will be denoted by

β k No = β k
No (M, ξ). Moreover it will be shown in Section 5.2.2 that

β k z = β k No for |µ| 0 .
(2.9)

(When z is real, this is proved in [Far95, Theorem 2.8], [BF97, Lemma 1.3], [BH04, Proposi- tion 4].) Thus the discrete set of parameters z ∈ C with β k z (M, ξ) > β k No (M, ξ) for some degree k is contained in a strip |µ| C.
By (2.2) and since η is real, for all α ∈ Ω(M ),

d z α = d z ᾱ , δ z α = δ z ᾱ , D z α = D z ᾱ , ∆ z α = ∆ z ᾱ .
(2.10) So conjugation induces C-antilinear R-isomorphisms

H k z (M ) ∼ = H k z (M ) , ker ∆ z,k ∼ = ker ∆ z,k , yielding β k z = β k z .
2.1.3 Case of an exact form When η = dh for some h ∈ C ∞ (M, R), we have the original Witten's perturbations, which satisfy d z = e -zh d e zh = e -iνh d µ e iνh , δ z = e zh δ e -zh = e -iνh δ µ e iνh , D z = e -iνh D µ e iνh , ∆ z = e -iνh ∆ µ e iνh .

(2.11)

Thus the multiplication operator

e zh : (Ω(M ), d z ) → (Ω(M ), d) (2.12)
is an isomorphism of differential complexes, and therefore

H • z (M ) ∼ = H • (M ); thus β k z = β k = β k (M )
(the kth Betti number) in this case. Moreover multiplication by e iνh defines a unitary isomorphism ker ∆ z ∼ = ker ∆ µ .

Interpretation of the closed form as a flat connection

There is a unique flat connection ∇ M ×C on the trivial complex line bundle M × C so that ∇ M ×C 1 = η. The corresponding flat complex line bundle is denoted by L = L η . Note that L zη = L z . Since every L z is canonically trivial as line bundle, it has a canonical Hermitian structure g L z . Let (Ω(M, L z ) = Ω(M ), d L z ) be the de Rham complex with coefficients in L z . Suppose η = dh for a while. Then the horizontal leaves of L z are the graphs of the functions se -zh (s ∈ C). So e zh : L z → L 0 is an isomorphism of flat bundles, which induces an isomorphism of differential complexes,

e zh : (Ω(M ), d L z ) → (Ω(M ), d) .
Comparing with the isomorphism (2.12), we get d L z = d z on Ω(M ). Furthermore, since g L z corresponds to e 2µh g L 0 via the isomorphism e zh : L z → L 0 , it follows that ∇ L z g L z corresponds to

∇ L 0 e 2µh g L 0 = 2µe 2µh dh ⊗ g L 0 , yielding ∇ L z g L z = 2µ dh ⊗ g L z .
(2.13)

A general η is locally exact, and therefore L z can be locally described as above. Thus d z = d L z on Ω(M ) = Ω(M, L z ), and (2.13) gives

∇ L z g L z = 2µη ⊗ g L z .
(2.14) 2.1.5 Perturbed operators on oriented manifolds Using for instance the interpretation of d z given in Section 2.1.4, the mapping (α, β) → α ∧ β induces a bilinear map

H k z (M ) × H l -z (M ) → H k+l (M ), and the mapping (α, β) → α ∧ β induces a sesquilinear map H k z (M ) × H l -z (M ) → H k+l (M ).
Now assume M is oriented. Then the above maps and integration on M define a nondegenerate bilinear pairing

H k z (M ) × H n-k -z (M ) → C, and a nondegenerate sesquilinear pairing H k z (M ) × H n-k -z (M ) → C. Thus β k z = β n-k -z = β n-k -z = β k z .
Let denote the C-linear extension to ΛM of the Hodge operator on Λ R M , which is unitary, and let ¯ denote its C-anti-linear extension. These operators are determined by the conditions ), where vol = 1 is the volume form. The following equalities on Ω k (M ) follow from (2.2) and the usual equalities relating , d, δ, η∧ and η (see e.g. [Roe98, Chapters 1 and 3], [Gil95, Section 1.5.2], [BGV04, Section 3.6]):

α ∧ β = g(α, β) vol = α ∧ ¯ β for α, β ∈ Ω(M
d z = (-1) k δ -z , δ z = (-1) k+1 d -z , ∆ z = ∆ -z , d z ¯ = (-1) k ¯ δ -z , δ z ¯ = (-1) k+1 ¯ d -z , ∆ z ¯ = ¯ ∆ -z .
(2.15)

Then we get a linear isomorphism : ker ∆ z → ker ∆ -z and an anti-linear isomorphism ¯ :

ker ∆ z → ker ∆ -z , inducing a linear isomorphism H k z (M ) ∼ = H n-k -z (M ) and an anti-linear iso- morphism H k z (M ) ∼ = H n-k -z (M ) by (2.6).

Perturbation of the Sobolev norms

For m ∈ N 0 and ω ∈ Z 1 (M ), define the norm m,ω on H m (M ; Λ) by

α m,ω = m k=0 D k ω α . Proposition 2.1. For all ω ∈ Z 1 (M ) and α ∈ H m (M ; Λ), α m,ω C m m k=0 ω m-k C k α k , α m C m m k=0 ω m-k C k α k,ω .
Proof. We proceed by induction on m. We have 0,ω = . Now take m > 0 and assume these inequalities hold for m -1. For η ∈ Z 1 (M, R) and α ∈ Ω(M ), we have

ĉ(η)α m , c(η)α m C m η C m α m .
(2.16)

Applying these inequalities to the real and imaginary parts of ω, and using the induction hypothesis and (2.2), we get

α m,ω = α + D ω α m-1,ω α + C m-1 m-1 k=0 ω m-1-k C k D ω α k α + C m-1 m-1 k=0 ω m-1-k C k Dα k + C k ω C k α k α + C m-1 m-1 k=0 ω m-1-k C k α k+1 + C k ω C k α k C m m l=0 η m-l C l α l ,
and

α m = α + Dα m-1 α + D ω α m-1 + C m-1 ω C m-1 α m-1 α + C m-1 m-1 k=0 ω m-1-k C k D ω α k,ω + C m-1 ω m-k C k α k,ω α + C m-1 m-1 k=0 ω m-1-k C k α k+1,ω + C m-1 η m-k C k α k,ω C m m l=0 ω m-l C l α l,ω .
Let Z(M, Z) ⊂ Z(M, R) denote the graded subspace of forms that represent cohomology classes in the image of the canonical homomorphism H • (M, Z) → H • (M, R). Recall that we can consider H 1 (M, Z) as a lattice in H 1 (M, R) by the universal coefficient theorem for cohomology. Let θ be the multivalued angle function on S 1 . Then dθ is the angular form on S 1 with ´S1 dθ = 2π. For η ∈ Z 1 (M, R), we have η ∈ 2πZ 1 (M, Z) if and only if there is some smooth map h : M → S 1 such that η = h * dθ (see e.g. [Far04, Lemma 2.1]).

In Proposition 2.1, the dependence of the constants on ω cannot be avoided. For instance, for M = S 1 with the standard metric g = (dθ) 2 , we have

1 m = √ 2π, whereas 1 m,iη = √ 2π m k=0 |ν| k for η = ν dθ (ν ∈ R).
However, the following version of a Sobolev inequality for m,iη involves a constant independent of η.

Proposition 2.2. If m > n/2, for all η ∈ Z 1 (M, R) and α ∈ H m (M ; Λ), α L ∞ C m α m,iη .
Proof. By the Sobolev embedding theorem, we have

C m,iη := sup 0 =α∈Ω(M ) α L ∞ α m,iη > 0 .
Take any η ∈ Z 1 (M, R) and ω ∈ 2πZ 1 (M, Z), and let η = η + ω. Then ω = h * dθ for some smooth function h : M → S 1 . Since the difference between the multiple values of θ at every point of S 1 are in 2πZ, the functions e ±ih * θ are well defined and smooth on M . Moreover, applying (2.11) locally, we get D iη = e -ih * θ D iη e ih * θ . So, for 0 = α ∈ Ω(M ),

α L ∞ = e i h * θ α L ∞ C m,iη e ih * θ α m,iη = C m,iη m k=0 D k iη e ih * θ α = C m,iη m k=0 e -ih * θ D k iη e ih * θ α = C m,iη m k=0 D k iη α = C m,iη α m,iη .
This shows that sup

η ∈η+2πZ 1 (M,Z) C m,iη C m,iη .
(2.17)

Since 2πH 1 (M, Z) is a lattice in H 1 (M, R), there is a compact subset K ⊂ H 1 (M, R) such that K + 2πH 1 (M, Z) = H 1 (M, R) . (2.18) Take a linear subspace V ⊂ Z 1 (M, R) such that the canonical projection V → H 1 (M, R
) is an isomorphism, and let L ⊂ V be the compact subset that corresponds to K. By (2.18),

L + 2πZ 1 (M, Z) = Z 1 (M, R) . (2.19) Moreover L is bounded with respect to C m . Therefore, by Proposition 2.1, for all η ∈ L and α ∈ Ω(M ), α L ∞ C m,0 α m C m α m,iη , yielding sup η∈L C m,iη C m .
(2.20)

The result follows from (2.17), (2.19) and (2.20).

Given η ∈ Z 1 (M, R), we write m,z = m,zη . Proposition 2.1 has the following direct consequence.

Corollary 2.3. For all α ∈ H m (M ; Λ), α m,z C m m k=0 |z| m-k α k , α m C m m k=0 |z| m-k α k,z . Proposition 2.4. For all α ∈ H 1 (M ; Λ), α 1,z C α 1,iν + |µ| α , α 1,iν C α 1,z + |µ| α .
Proof. By (2.2) and (2.16),

α 1,z = α + D z α α + D iν α + C |µ| α C α 1,iν + |µ| α , α 1,iν = α + D iν α α + D z α + C |µ| α C α 1,z + |µ| α .

Small and large complexes

Preliminaries on Morse forms

Recall that a critical point 

p of any h ∈ C ∞ (M,
h -h(p) = 1 2 n j=1 p,j (x j p ) 2 (3.1)
on the domain U p of some coordinates x p = (x 1 p , . . . , x n p ) (centered) at p, called Morse coordinates, where

p,j = -1 if j ind(p) 1 if j > ind(p) . (3.2)
Recall that h is called a Morse function when all of its critical points are nondegenerate. In this case, its critical points form a finite set denoted by Crit(h). The Morse functions form an open and dense subset of C ∞ (M, R) [Hir76, Theorem 6.1.2]. On every U p , we can assume the metric is Euclidean with respect to Morse coordinates:

g = n j=1 (dx j p ) 2 . (3.3) Now take any η ∈ Z 1 (M, R).
A zero p of η is said to be nondegenerate if η = dh η,p around p for some local Morse function h η,p , which is chosen so that h η,p (p) = 0. The index ind(p) of h η,p at p is also called the index of η at p. On the domain U p of Morse coordinates x p = (x 1 p , . . . , x n p ) for h η,p at p, h η,p is given by the right-hand sides of (3.1), and η = n j=1 p,j x j p dx j p .

(3.4)

It is also said that x p = (x 1 p , . . . , x n p ) are Morse coordinates for η at p. With the notation

x - p = (x 1 p , . . . , x k p ) : U p → R k , x + p = (x k+1 p , . . . , x n p ) : U p → R n-k , for k = ind(p), we can write h η,p = 1 2 |x + p | 2 -|x - p | 2 . (3.5)
If all zeros are nondegenerate, then η is called a Morse form. In this case, its zeros form a finite set, X = Zero(η); subsets of X defined by conditions on the index are denoted by writing the conditions as subscripts; for instance, X k , X + and X <k are the subsets of zeros of index k, of positive index, and of index < k, respectively. For any ξ ∈ H 1 (M, R), the Morse representatives of ξ form a dense open subset of ξ, considered as a subspace of Ω 1 (M, R) with the C ∞ topology (see e.g. [Paj06, Theorem 2.1.25]).

From now on, unless otherwise stated, we will use some η ∈ Z 1 (M, R) and a Riemannian metric g on M such that η is a Morse form, and g is Euclidean with respect to Morse coordinates around zero points of η; i.e., η and g satisfy (a) (Section 1.1).

The Hopf index of -η at every p ∈ X k is (-1) k (see Section 5.1.1). Thus, by the Hopf index theorem for -η ,

n k=0 (-1) k |X k | = χ(M ) .
(3.6)

3.2 The small and large spectrum Consider the perturbed operators (2.2) defined by η and g. Recall that X denotes the zero set of η. We can suppose the closures of the domains of Morse coordinates, U p (p ∈ X ), are disjoint from each other, and x p (U p ) = (-4r, 4r) n for some r > 0 independent of p. Let U = p∈X U p .

Denoting also the coordinates of R n by (x 1 p , . . . , x n p ), consider the function h p ∈ C ∞ (R n ) defined by the right-hand side of (3.1) (or (3.5)). Let d p,z , δ p,z , D p,z and ∆ p,z (z ∈ C) denote the corresponding Witten's operators on R n , whose restrictions to (-4r, 4r) n agree via x p with the restrictions of d µ , δ µ , D µ and ∆ µ to U p . Proposition 3.1 See e.g. [Roe98, Chapters 9 and 14], [Zha01,Sections 4.5 and 4.7]. The following holds for µ ∈ R:

(i) We have ∆ p,µ = n j=1 - ∂ ∂x j p 2 + µ 2 (x j p ) 2 + µ p,j [dx j p , dx j p ∧] . (3.7)
Moreover, using multi-index notation,

[dx j p , dx j p ∧]dx J p = dx J p if j ∈ J -dx J p if j / ∈ J .
(ii) ∆ p,µ is a non-negative selfadjoint operator in L 2 (R n ; Λ) with a discrete spectrum, which consists of the eigenvalues

µ n j=1 (1 + 2u j + p,j v j ) , (3.8) 
where u j ∈ N 0 and v j = ±1. For the restriction of ∆ p,µ to k-forms, the spectrum has the additional requirement that exactly k of the numbers v j are equal to 1. In particular, 0 is an eigenvalue of ∆ p,µ with multiplicity 1 (choosing u j = 0 and v j =p,j for all j), and the nonzero eigenvalues are of order µ as µ → +∞. D p,µ is also a selfadjoint operator in L 2 (R n ; Λ) with a discrete spectrum, which consists of the positive and negative square roots of (3.8).

(iii) The kernel of D p,µ and ∆ p,µ is generated by the normalized form

e p,µ = µ π n/4 e -µ|xp| 2 /2 dx 1 p ∧ • • • ∧ dx ind(p) p .
For any z ∈ C with µ > 0, let ∆ p,z = e -iνhp ∆ p,µ e iνhp . Since the operator of multiplication by e -iνhp is unitary, ∆ p,z is also selfadjoint and non-negative in L 2 (R n ; Λ), it has a discrete spectrum with the same eigenvalues and multiplicities as ∆ p,µ , and its kernel is generated by the normalized form e p,z := e -iνhp e p,µ . We will also use the notation

e p,z = x * p e p,z ∈ C ∞ U p ; Λ ind(p) . The function x * p h p ∈ C ∞ (U p ) agrees with h η,p
, which is also denoted by h p in this section.

Fix an even C ∞ function ρ : R → [0, 1] such that ρ = 1 on [-r, r] and supp ρ ⊂ [-2r, 2r]. For every p ∈ X , let

ρ p = ρ(x 1 p ) • • • ρ(x n p ) ∈ C ∞ c (U p ) , (3.9) e p,µ = ρ p a µ e p,µ ∈ C ∞ c U p ; Λ ind(p) , (3.10) e p,z = e -iνhp e p,µ = ρ p a µ e p,z ∈ C ∞ c U p ; Λ ind(p) , (3.11) 
where

a µ = ˆ2r -2r ρ(x) 2 e -µx 2 dx n/2 = π µ n/4
+ O(e -cµ ) , (3.12)

as µ → +∞. The extensions by zero of the forms e p,z to M are also denoted by e p,z . They form an orthonormal basis of a graded subspace

E z ⊂ Ω(M ) with dim E z = |X |. Let P z be the orthogonal projection of L 2 (M ; Λ) to E z ; thus P ⊥ z is the orthogonal projection to E ⊥ z . Remark 3.2.
For the sake of simplicity, most of our results are stated for µ 0 or as µ → +∞, but they have obvious versions for µ 0 or as µ → -∞, as follows by considering -η.

Proposition 3.3. If µ 0 and β ∈ H 1 (M ; Λ) with supp β ⊂ M \ U , then D z β Cµ β .
Proof. This follows like [Zha01, Proposition 4.7], using that H η is of order zero in (2.2). Actually, according to the statement of [Zha01,Proposition 4.7], this inequality would hold with √ µ instead of µ, but its proof clearly shows that using µ is fine.

Proposition 3.4. The following properties hold:

(i) P z D z P z = 0. (ii) If µ 0, α ∈ E z and β ∈ E ⊥ z ∩ H 1 (M ; Λ), then P ⊥ z D z α e -cµ α , P z D z β e -cµ β . (iii) If µ 0 and β ∈ E ⊥ z ∩ H 1 (M ; Λ), then P ⊥ z D z β C √ µ β .
Proof. This follows like [Zha01,Propositions 4.11,4.12 and 5.6]. Property (i) is true because every D z e p,z is supported in U p and has homogeneous components of degree different from ind(p); therefore it is orthogonal to ker ∆ z . The other properties are consequences of Propositions 3.1 and 3.3 and (3.9)-(3.12). According to [Zha01,Proposition 4.11], the inequalities of (ii) hold with 1/µ instead of e -cµ , but its proof shows that indeed e -cµ can be achieved. 

D z e p,z L ∞ e -cµ .
Proof. Apply Propositions 2.2 and 3.5.

Consider the partition of spec ∆ z into its intersections with [0, 1] and (1, ∞), called the small and large spectrum; the term small/large eigenvalues may be also used. Let E z,sm ⊂ Ω(M ) denote the graded finite dimensional subspace generated by the eigenforms of the small eigenvalues, let E z,la = E ⊥ z,sm in L 2 (M ; Λ), and let P z,sm/la be the orthogonal projections to E z,sm/la . Note that E z,sm and E z,la ∩ Ω(M ) are subcomplexes with d z , called the small and large complexes, and the term small/large projection will be used for P z,sm/la . Thus (Ω(M ), d z ) splits into a topological direct sum of the subcomplexes E z,sm and E z,la ∩ Ω(M ), and (2.5) gives

H • (E z,sm , d z ) ≡ H • z (M ) , H • (E z,la ∩ Ω(M ), d z ) = 0 . (3.14)
For any operator B defined on Ω(M ) or L 2 (M ; Λ), let B z,sm/la = BP z,sm/la .

Proposition 3.7. For all m ∈ N 0 , µ 0 and α ∈ E z , α -P z,sm α m,iν e -cmµ α .

Proof. This follows like [Zha01, Lemma 5.8 and Theorem 6.7], using m,iν instead of m . The following are the main steps of the proof.

Let

S 1 = { ω ∈ C | |ω| = 1 }.
With the argument of the proof of [Zha01, Eq. (5.27)], using Proposition 3.4, we get that, for all α ∈ H 1 (M ; Λ), w ∈ S 1 and µ 0,

(w -D z )α C α .
Thus w -D z : H 1 (M ; Λ) → L 2 (M ; Λ) has a bounded inverse and, for all β ∈ L 2 (M ; Λ), w ∈ S 1 and µ 0,

(w -D z ) -1 β C -1 β . (3.15)
On the other hand, arguing like in the proof of [Zha01,Eq. (6.18)], it follows that, for all γ ∈ H m (M ; Λ), w ∈ S 1 and µ 0,

γ m,iν C m (w -D z )γ m-1,iν + µ γ m-1,iν + γ .
Continuing by induction on m ∈ N 0 , we obtain

γ m,iν C m µ m γ + m k=1 µ k-1 (w -D z )γ m-k,iν .
In other words, for all

β ∈ H m-1 (M ; Λ), (w -D z ) -1 β m,iν C m µ m (w -D z ) -1 β + m k=1 µ k-1 β m-k,iν .
Applying (3.15) to this inequality, we get

(w -D z ) -1 β m,iν C m µ m β m-1,iν . (3.16)
Then, by Proposition 3.5,

(w -D z ) -1 D z e p,z m,iν = O e -cmµ
(3.17) as µ → +∞, uniformly on w ∈ S 1 . But, endowing S 1 with the counter-clockwise orientation, basic spectral theory gives (see e.g. [DS88a, Section VII.3])

P z,sm e p,z -e p,z = 1 2πi ˆS1 (w -D z ) -1 -w -1 e p,z dw = 1 2πi ˆS1 w -1 (w -D z ) -1 D z e p,z dw . (3.18)
The result follows using (3.17) in (3.18).

Corollary 3.8. For µ 0 and α ∈ E z ,

α -P z,sm α L ∞ e -cµ α .
Proof. Apply Propositions 2.2 and 3.7.

Alternatively, the proof of Proposition 3.7 can be modified as follows to get this result (some step of this alternative argument will be used later). Iterating (3.16), we get

(w -D z ) -1 β m,iν C m µ (m+1)m/2 β , for all β ∈ L 2 (M ; Λ). Then, by Proposition 2.2, (w -D z ) -1 β L ∞ Cµ (m+1)m/2 β . (3.19)
Thus, by Proposition 3.5,

(w -D z ) -1 D z e p,z L ∞ = O e -cmµ
as µ → +∞. Finally, apply this expression in (3.18).

Corollary 3.9. If µ 0, then P z,sm : Proof. We can assume µ 0 according to Remark 3.2. By Propositions 2.4, 3.4 and 3.7, for all α ∈ E z ,

E z → E z,
D z P z,sm α D z α + D z (α -P z,sm α) D z α + α -P z,sm α 1,z P ⊥ z D z α + C(µ α -P z,sm α + α -P z,sm α 1,iν ) e -cµ + C µe -c 0 µ + e -c 1 µ α .
Hence, by Corollary 3.9, for all

β ∈ E z,sm , 0 ∆ z β, β = D z β 2 e -cµ β 2 . This shows that spec ∆ z ∩ [0, 1] ⊂ 0, e -cµ . (3.20) Now let φ ∈ E z,la ∩ H 1 (M ; Λ), and write α = P z φ ∈ E z and β = P ⊥ z φ ∈ E ⊥ z ∩ H 1 (M ; Λ). By Proposition 3.7, α 2 = α, φ = α -P z,sm α, φ α -P z,sm α φ e -c 0 µ α φ , yielding α e -c 0 µ φ . So β = φ -α φ -α 1 -e -c 0 µ φ .
Then, by Proposition 3.4,

D z φ D z β -D z α P ⊥ z D z β -e -cµ α C √ µ β -e -cµ φ C √ µ 1 -e -c 0 µ -e -cµ φ .
Therefore, for all

φ ∈ E z,la ∩ H 1 (M ; Λ), ∆ z φ, φ = D z φ 2 Cµ φ 2 .
This proves that

spec ∆ z ∩ (1, ∞) ⊂ [Cµ, ∞) . (3.21)
The inclusions (3.20) and (3.21) give the result for µ 0. But, in those inclusions, we can take c and C so small that, if one of them is not true for some µ 0, then Cµ e -cµ .

3.3 Ranks of some projections in the small complex Recall that (Π ⊥ z ) sm,k , Π 1 z,sm,k and Π 2 z,sm,k denote the orthogonal projections to the images of ∆ z,sm,k , d z,sm,k-1 and δ z,sm,k+1 , respectively. Let m z,k , m 1 z,k and m 2 z,k be the corresponding ranks (or traces) of these projections. They satisfy Lemma 3.12. We have

m z,k = m 1 z,k + m 2 z,k , m 1 z,0 = m 2 z,n = 0 , m 2 z,k = m 1 z,k+1 , (3.22 
m z,k = |X k | -β k z .
Proof. This is a consequence of (2.5), (3.14) and Corollary 3.9.

Corollary 3.13. Tr s ((Π ⊥ z ) sm ) = 0. Proof. By (2.8), (3.6) and Lemma 3.12,

Tr s (Π ⊥ z ) sm = k (-1) k |X k | - k (-1) k β k z = χ(M ) -χ(M ) = 0 . Lemma 3.14. If M is oriented, then, for k = 0, . . . , n, m z,k = m -z,n-k = m -z,n-k , m 1 z,k = m 2 -z,n-k = m 2 -z,n-k . Proof. This is true because, by (2.15), (Π ⊥ z ) sm,k = (Π ⊥ -z ) sm,n-k , Π 1 z,sm,k = Π 2 -z,sm,n-k , (Π ⊥ z ) sm,k ¯ = ¯ (Π ⊥ -z ) sm,n-k , Π 1 z,sm,k ¯ = ¯ Π 2 -z,sm,n-k . Corollary 3.15. For |µ| 0, m z,k and m j z,k only depend on |X k | and the class ξ = [η] ∈ H 1 (M, R).
Proof. Apply (2.9) and Lemmas 3.11 and 3.12. By Corollary 3.15, we write m k = m z,k and m j k = m j z,k for |µ| 0.

Corollary 3.16. Tr s (Π j z,sm ) = 0 if M is oriented, n is even and µ 0.

Proof. By Corollaries 3.13 and 3.15 and Lemma 3.14, and since n is even,

Tr s Π 1 z,sm = -Tr s Π 2 z,sm = -Tr s Π 1 z,sm .
3.4 Asymptotic properties of the small projection Notation 3.17. Consider a function f (x) > 0 (x > 0). When referring to vectors in Banach spaces, the order notation O(f (|µ|)) (µ → ±∞) will be used for a family of vectors

v = v(z) (z ∈ C) with v(z) = O(f (|µ|))
. This notation applies e.g. to bounded operators between Banach spaces. We may also consider this notation when the Banach spaces depend on z.

Proposition 3.18. For every τ ∈ R, on L 2 (M ; Λ), as µ → +∞,

P z,sm = P z + O e -cµ = P z,sm P z+τ,sm P z,sm + O µ -2 = P z+τ,sm + O µ -1 .
Proof. By Corollary 3.9, for µ 0, the elements P z,sm e p,z (p ∈ X ) form a base of E z,sm . Applying the Gram-Schmidt process to this base, we get an orthonormal base ẽp,z . By Proposition 3.7, ẽp,z = e p,z + O e -cµ .

(3.23)

This gives the first equality of the statement: for any α ∈ L 2 (M ; Λ),

P z α = p∈X α, e p,z e p,z = p∈X α, ẽp,z ẽp,z + O e -cµ α = P z,sm α + O e -cµ α .
Since the sets U p (p ∈ X ) are disjoint one another, for p = q in X , e p,z , e q,z+τ = 0 .

(3.24)

On the other hand, by (3.9)-(3.12), we can also assume e p,z , e p,z+τ = e -iνhp e p,µ , e -iνhp e p,µ+τ = e p,µ , e p,µ+τ Proposition 3.20. On L 2 (M ; Λ),

= (µ(µ + τ )) n/4 π n/2 ρ p e -µ|xp| 2 /2 , ρ p e -(µ+τ )|xp| 2 /2 + O e -cµ = (µ(µ + τ )) n/4 π n/2 ˆRn e -(µ+τ /2)|xp| 2 dx p + O e -cµ = (µ(µ + τ )) n/4 (µ + τ /2) n/2 + O e -cµ = 1 + O µ -2 , ( 3 
P z,sm η∧, η∧ P z,sm = O µ -1/2 (µ → +∞) .
Proof. Let α ∈ L 2 (M ; Λ k ) and p ∈ X k+1 . Using multi-index notation, write α = |J|=k α J dx J p on U p with α J ∈ L 2 (U p ). Let J j = {1, . . . , k+1}\{j} (j = 1, . . . , k+1). By Proposition 3.1 (iii), (3.10) and (3.11),

η ∧ α, e p,z = - 1 a µ k+1 j=1 α J j x j p dx j p ∧ dx J j p , e -iνhp ρ p e -µ|xp| 2 /2 dx 1 p ∧ • • • ∧ dx k+1 p = (-1) j 1 a µ k+1 j=1 α J j x j p , e -iνhp ρ p e -µ|xp| 2 /2 . Hence | η ∧ α, e p,z | 1 a µ k+1 j=1 α J j , e -iνhp ρ p x j p e -µ|xp| 2 /2 α 1 a µ k+1 j=1
ρ p x j p e -µ|xp| 2 /2 , (3.28) and

ρ p x j p e -µ|xp| 2 /2 = ˆUp (ρ p (x p )x j p ) 2 e -µ|xp| 2 vol(x p ) 1/2 = ˆ2r -2r ρ(x) 2 x 2 e -µx 2 dx 1 2 ˆ2r -2r ρ(y) 2 e -µy 2 dy n-1 2 = ˆ2r -2r
x 2 e -µx 2 dx 1 2

ˆ2r

-2r

e -µy 2 dy n-1 2

+ O e -cµ = 1 (2µ) 1/2 π µ n/4
+ O e -cµ .

(3.29) By (3.12), (3.28) and (3.29),

| η ∧ α, e p,z | = α O µ -1/2 . Since P z (η ∧ α) = p∈X k+1
η ∧ α, e p,z e p,z , it follows that

P z (η ∧ α) = α O µ -1/2 .
This shows that P z η∧ = O µ -1/2 , yielding P z,sm η∧ = O µ -1/2 by Proposition 3.18.

On the other hand, for q ∈ X k ,

η ∧ e q,z = ρ q a µ e -µ|xp| 2 /2 n j=k+1 x j q dx j q ∧ dx 1 q ∧ • • • ∧ dx k q .
So η ∧ e q,z = 1 a µ n j=k+1 ˆUq (ρ q (x q )x j q ) 2 e -µ|xp| 2 vol(x q )

1/2 , which becomes O µ -1/2 like in the previous part of the proof. Since

η∧ P z α = q∈X k
α, e q,z η ∧ e q,z , we get η∧ P z = O µ -1/2 , yielding η∧ P z,sm = O µ -1/2 as before.

Derivatives of the small projection

Remark 3.21. For reasons of brevity, most of the results about derivatives are stated for ∂ z , which may be simply denoted with a dot. But there are obvious versions of those results for ∂ z with analogous proofs.

Proposition 3.22. We have

rank ∂ z P z,sm 2|X | (µ 0) , ∂ z P z,sm = O µ -1/2 (µ → +∞) .
Proof. By (2.3) and Theorem 3.10, for µ 0 and every ω ∈ S 1 , a standard computation gives

∂ z (w -D z ) -1 = (w -D z ) -1 η∧ (w -D z ) -1 . (3.30)
Then, by (3.15), ∂ z (w -D z ) -1 defines an operator on L 2 (M ; Λ), bounded uniformly on w ∈ S 1 and z ∈ C. By (3.15) and Proposition 3.20, we also get

P z,la/sm ∂ z (w -D z ) -1 P z,sm/la = (w -D z ) -1 P z,la/sm η∧ P z,sm/la (w -D z ) -1 = O µ -1/2 ,
uniformly on w ∈ S 1 .

On the other hand, applying again basic spectral theory, we obtain

P z,sm = 1 2πi ˆS1 (w -D z ) -1 dw for µ 0, yielding Ṗz,sm = 1 2πi ˆS1 ∂ z (w -D z ) -1 dw , (3.31)
which defines an operator on L 2 (M ; Λ), bounded uniformly on z.

Using that P z,sm is an orthogonal projection, the argument of the proof of [BGV04, Proposition 9.37] shows that Ṗz,sm = P z,la Ṗz,sm P z,sm + P z,sm Ṗz,sm P z,la .

(3.32)

So rank Ṗz,sm 2 rank P z,sm 2|X | by Corollary 3.9, and

Ṗz,sm = 1 2πi ˆS1 P z,la ∂ z (w -D z ) -1 P z,sm dw + 1 2πi ˆS1 P z,sm ∂ z (w -D z ) -1 P z,la dw = O µ -1/2 .
Lemma 3.23. For all p ∈ X ,

∂ z e p,z = n 8µ - |x + p | 2 2 + O(e -cµ ) e p,z (µ → +∞) .
Proof. Using integration by parts, and since ρ is an even function and ρ vanishes on [-r, r], we obtain ˆ2r

-2r ρ(x) 2 x 2 e -µx 2 dx = 1 2µ ˆ2r -2r (2ρ(x)ρ (x)x + ρ(x) 2 )e -µx 2 dx = 1 2µ π µ 1 2 + O(e -cµ ) . (3.33) So ∂ µ a µ = ∂ µ ˆ2r -2r ρ(x) 2 e -µx 2 dx n 2 = - n 2 ˆ2r -2r ρ(x) 2 e -µx 2 dx n 2 -1 ˆ2r -2r ρ(x) 2 x 2 e -µx 2 dx = - n 2 π µ n 4 -1 2 1 2µ π µ 1 2 + O(e -cµ ) = - n 4µ π µ n 4 + O(e -cµ ) .
Hence, by (3.12),

∂ µ 1 a µ = - ∂ µ a µ a 2 µ = n 4µ π µ n 4 µ π n 2 + O(e -cµ ) = n 4µ µ π n 4 + O(e -cµ ) . (3.34)
It also follows from Proposition 3.1 (iii), (3.10), (3.12) and (3.34) that Then the result follows using (3.5).

∂ µ e p,µ = ∂ µ ρ p a µ e -µ|xp| 2 /2 dx 1 p ∧ • • • ∧ dx ind(p) p = ∂ µ 1 a µ a µ - |x p | 2 2 e p,µ = n 4µ - |x p | 2 2 + O(e -cµ )
Proposition 3.24. For all p ∈ X ,

∂ z (D z e p,z ) L ∞ = O(e -cµ ) (µ → +∞) .
Proof. From (3.13), we get

∂ z (D z e p,z ) = 1 2 e -iνhp ∂ µ 1 a µ π µ n/4 ĉ(dρ p )e p,µ + e -iνhp 1 a µ π µ n/4 ĉ(dρ p )∂ µ e p,µ -h p e -iνhp 1 a µ π µ n/4
ĉ(dρ p )e p,µ . (3.37) By (3.12) and (3.34),

∂ µ 1 a µ π µ n 4 = ∂ µ 1 a µ π µ n 4 - nπ 4a µ µ 2 π µ n 4 -1 = n 4µ µ π n 4 π µ n 4 - nπ 4µ 2 π µ n 4 -1 µ π n 4 + O(e -cµ ) = O(e -cµ
) .

(3.38)

The result follows applying Proposition 3.1 (iii), (3.10), (3.12), (3.35) and (3.38) to (3.37), and using that dρ p = 0 around p.

Proposition 3.25. For every p ∈ X ,

∂ z (P z,sm e p,z -e p,z ) L ∞ = O(e -cµ ) (µ → +∞) .
Proof. By (3.18),

∂ z (P z,sm e p,z -e p,z ) = 1 2πi ˆS1 w -1 ∂ z (w -D z ) -1 D z e p,z dw + 1 2πi ˆS1 w -1 (w -D z ) -1 ∂ z (D z e p,z ) dw .
Now apply (3.19), (3.30), Corollary 3.6 and Proposition 3.24.

Zeta invariants of Morse forms

Preliminaries on asymptotic expansions of heat kernels

Let A be a positive semi-definite symmetric elliptic differential operator of order a, and B a differential operator of order b; both of them are defined in C ∞ (M ; E) for some Hermitian vector bundle E over M . Then Be -tA is a smoothing operator with Schwartz kernel K t (x, y) in C ∞ (M 2 ; E E * ) (omitting the Riemannian density vol(y) of the second factor). On the diagonal, there is an asymptotic expansion (as t ↓ 0) [Gil95, Lemma 1.9.1], [BGV04, Theorem 2.30],

K t (x, x) ∼ ∞ l=0 e l (x)t (l-n-b)/a , (4.1)
where e l ∈ C ∞ (M ; E ⊗ E * ) is locally computable in terms of the jets of the local coefficients of A and B. Hence the function

h(t) = Tr Be -tA = ˆM tr K t (x, x) vol(x)
has an asymptotic expansion

h(t) ∼ ∞ l=0 a l t (l-n-b)/a , (4.2) 
where

a l = ˆM tr e l (x) vol(x) . (4.3)
Given any λ 0, let P A,λ be the spectral projection of A corresponding to [0, λ];

thus P ⊥ A,λ
is the spectral projection corresponding to (λ, ∞). By ellipticity, P A,λ is of finite rank, and Be -tA P A,λ is a smoothing operator defined for all t ∈ R. Take any orthonormal frame φ 1 , . . . , φ κ of im P A,λ , consisting of eigensections with corresponding eigenvalues 0

λ 1 • • • λ κ λ.
Then the Schwartz kernel H t (x, y) of Be -tA P A,λ (t 0) is given by

H t (x, y) = κ j=1
e -tλ j (Bφ j )(x) ⊗ φ j (y) , using the identity E ≡ E * given by the Hermitian structure. Thus H t (x, y) is defined for all t ∈ R and smooth. So Tr(Be -tA P A,λ ) = ˆM tr H t (x, x) vol(x) .

In particular, for t = 0, we have

H 0 (x, x) = κ j=1 (Bφ j )(x) ⊗ φ j (x) , (4.4) Tr(BP A,λ ) = ˆM tr H 0 (x, x) vol(x) . (4.5)
The Schwartz kernel of Be

-tA P ⊥ A,λ is K t (x, y) = K t (x, y) -H t (x, y) (t > 0)
, which has an asymptotic expansion

K t (x, x) ∼ ∞ l=0 ẽl (x)t (l-n-b)/a , (4.6)
where the first n + b sections ẽl are given by ẽl (4.9)

(x) = e l (x) if l < n + b e l (x) -H 0 (x, x) if l = n + b .
Consider also smooth families of such operators, {A } and {B }, for in some parameter space. Then Tr(B e -tA ) is smooth in (t, ), and we add to the above notation, writing for instance K t (x, y, ), e l (x, ), h(t, ), a l ( ), K t (x, y, ), ẽλ,l (x, ), hλ (t, ) and ãλ,l ( ) in (4.1), (4.2), (4.6) and (4.8). The operator B P A ,λ may not be smooth in when some non-constant spectral branch of {A } reaches the value λ. If the values of the non-constant spectral branches of {A } stay uniformly away from λ, then hλ (t, ) is smooth in (t, ).

Preliminaries on zeta functions of operators

Proposition 4.1 See e.g. [Gil95, Theorems 1.12.2 and 1.12.5], [BGV04, Propositions 9.35-9.37]. The following holds:

(i) For every λ 0, there is a meromorphic function ζ(s, A, B, λ) on C such that, for s 0, (v) Consider the conditions of (iv) for in some open neighborhood of 0 in R. If A 0 and B 0 commute, then

ζ(s, A, B, λ) = Tr BA -s P ⊥ A,λ = 1 Γ(s) ˆ∞ 0 t s-1 hλ (t) dt .
∂ ζ(s, A , B , λ) =0 = ζ(s, A 0 , Ḃ0 , λ) -sζ(s + 1, A 0 , Ȧ0 B 0 , λ) ,
where the dot denotes ∂ .

The last expression of (4.10) is the Mellin transform of the function hλ (t) divided by Γ(s). This function ζ(s, A, B, λ) is called the zeta function of (A, B, λ). If B = 1 or λ = 0, they may be omitted from the notation.

We will also use ζ(s, A, B, λ) when B is not a differential operator, with the same definition. Then the asymptotic expansion (4.8) and the properties stated in Proposition 4.1 need to be The function ζ(s, A, BP A,λ ) is always defined and holomorphic on C because P A,λ is of finite rank.

In particular, when A is ∆ z or ∆ z,k (k = 0, . . . , n) and B is another operator in L 2 (M ; Λ), we will use ζ(s, A, B, λ) if it is defined. We get

ζ(s, ∆ z , B) = ζ sm (s, ∆ z , B) + ζ la (s, ∆ z , B) ,
where, with the notation of Section 3.2,

ζ sm/la (s, ∆ z , B) = ζ(s, ∆ z , B z,sm/la ) .
These are the contributions from the small/large spectrum to ζ(s, ∆ z , B), which are called the small/large zeta functions of (∆ z , B). z Π 1 z , which is called the zeta invariant of (M, g, η) for the scope of this paper. Unfortunately, according to Proposition 4.1 (ii) and since Γ(s) is regular at s = 1, ζ(s, ∆ z , η∧ D z w) might have a simple pole at s = 1. It will be shown that we can choose η in the given class ξ ∈ H 1 (M, R) such that ζ(s, ∆ z , η∧ D z w) is regular at s = 1 for µ 0. To achieve this task, we consider its decomposition into small/large zeta functions (Section 4.2),

Zeta invariants of Morse forms

By Proposition 4.1 (i), as a function of s, ζ(s, ∆ z , η∧ D z w) is meromorphic on C. Moreover, for s 0, ζ(s, ∆ z , η∧ D z w) = Tr s η∧ D z ∆ -s z Π ⊥ z = Tr s η∧ δ z ∆ -s z Π 1 z = Tr s η∧ D -1 z ∆ -s+1 z Π ⊥ z = Tr s η∧ d -1 z ∆ -s+1 z Π 1 z ,
ζ(s, ∆ z , η∧ D z w) = ζ sm (s, ∆ z , η∧ D z w) + ζ la (s, ∆ z , η∧ D z w) .
The values ζ sm/la (1, ∆ z , η∧ D z w) will be called the small/large zeta invariant of (M, g, η), if they are defined-ζ sm (1, ∆ z , η∧ D z w) is always defined.

Heat invariants of perturbed operators

For k = 0, . . . , n, the Schwartz kernels of e -t∆ z,k and e -t∆ z,k P z,la,k are denoted by K z,k,t (x, y) and K z,k,t (x, y), respectively. Their restrictions to the diagonal have asymptotic expansions (as t ↓ 0), (4.11) where e k,l (x, z) is locally given by smooth expressions involving z and the jets of the local coefficients of g and η. Take µ 0 so that P z,la,k depends smoothly on z (Theorem 3.10) and dim E k z,sm = |X k | (Corollary 3.9). Thus ẽk,l (x, z) also depends smoothly on z (Section 4.1). Then

K z,k,t (x, x) ∼ ∞ l=0 e k,l (x, z)t (l-n)/2 , K z,k,t (x, x) ∼ ∞ l=0 ẽk,l (x, z)t (l-n)/2 ,
ẽk,l (x, z) = e k,l (x, z) if l < n e k,n (x, z) -H z,k,0 (x, x) if l = n , (4.12)
where H z,k,t (x, y) is the Schwartz kernel of e -t∆ z,k P z,sm,k , which is defined for all t ∈ R and smooth. According to Section 4.2, the corresponding functions

h k (t, z) = Tr e -t∆ z,k , hk (t, z) = Tr e -t∆ z,k P z,la,k ,
have asymptotic expansions

h k (t, z) ∼ ∞ l=0 a k,l (z)t (l-n)/2 , hk (t, z) ∼ ∞ l=0 ãk,l (z)t (l-n)/2 , (4.13)
where, by (4.3)-(4.5) and (4.9),

a k,l (z) = ˆM tr s e k,l (x, z) vol(x) , (4.14) ãk,l (z) = ˆM tr s ẽk,l (x, z) vol(x) = a k,l (z) if l < n a k,l (z) -|X k | if l = n .
(4.15)

Consider the operators e -t∆z w and e -t∆z P z,la w, whose respective Schwartz kernels are

K z,t (x, y) = n k=0 (-1) k K z,k,t (x, y) , K z,t (x, y) = n k=0 (-1) k K z,k,t (x, y) .
We have induced asymptotic expansions

K z,t (x, x) ∼ ∞ l=0 e l (x, z)t (l-n)/2 , K z,t (x, x) ∼ ∞ l=0 ẽl (x, z)t (l-n)/2
, where

e l (x, z) = n k=0 (-1) k e k,l (x, z) , ẽl (x, z) = n k=0
(-1) k ẽk,l (x, z) .

The corresponding functions,

h(t, z) = Tr s e -t∆z = n k=0 (-1) k h k (t, z) , h(t, z) = Tr s e -t∆z P z,la = n k=0 (-1) k hk (t, z) ,
have asymptotic expansions

h(t, z) ∼ ∞ l=0 a l (z)t (l-n)/2 , h(t, z) ∼ ∞ l=0 ãl (z)t (l-n)/2 ,
where

a l (z) = n k=0 (-1) k a k,l (z) , ãl (z) = n k=0
(-1) k ãk,l (z) .

Theorem 4.2 [ALG21, Theorem 1.5], [ALKL20]. We have:

(i) e l (x, z) = 0 for l < n; and, (ii) if n is even, then e n (x, z) = e(M, ∇ M )(x).

Remark 4.3. Actually, [ALG21, Theorem 1.5] gives Theorem 4.2 when z is real. But, since the functions e l (x, z) have local expressions, we can assume η is exact. Then the result can be extended to non-real z using (2.11).

Derived heat invariants of perturbed operators

For k = 0, . . . , n and j = 1, 2, let

h j k (t, z) = Tr e -t∆ z,k Π j z,k , hj k (t, z) = Tr e -t∆ z,k Π j z,la,k .
Lemma 4.4. We have

h 1 k+1 (t, z) = h 2 k (t, z) = k p=0 (-1) k-p h p (t, z) = n q=k+1
(-1) q-k-1 h q (t, z) .

Proof. This follows by induction on k, using that

h 1 0 (t, z) = h 2 n (t, z) = 0 , h k (t, z) = h 1 k (t, z) + h 2 k (t, z) , h 2 k (t, z) = h 1 k+1 (t, z) . The last equality holds because (2.7) is commutative. Let h j (t, z) = n k=0 (-1) k h j k (t, z) = Tr s e -t∆z Π j z ,
hj (t, z) = n k=0 (-1) k hj k (t, z) = Tr s e -t∆z Π j z,la .

Thus

h(t, z) = h 1 (t, z) + h 2 (t, z) , h(t, z) = h1 (t, z) + h2 (t, z) . (4.16)
Corollary 4.5. We have h(t, z) = 0.

Proof. This is a direct consequence of Lemma 4.4 and (4.16).

Corollary 4.6. We have

-(-1) j h j (t, z) = n k=0 (-1) k kh k (t, z) = Tr s Ne -t∆z Π ⊥ z .
Proof. By Lemma 4.4 and Corollary 4.5,

h 1 (t, z) = n k=0 (-1) k n q=k (-1) q-k h q (t, z) = n q=0
(-1) q (q + 1)h q (t, z)

= h(t, z) + n q=0 (-1) q qh q (t, z) = n q=0
(-1) q qh q (t, z) .

Lemma 4.11. The function ζ la (s, ∆ z , Π 1 z w) has a simple pole at every s = (n-l)/2 with ã1 l (z) = 0, for 1 l n -1 and for odd/even l n + 1 if n is even/odd, whose residue is ã1 l (z), and it is smooth away from these values of s. Moreover the value of ζ la (s, ∆ z , Π 1 z w) at every regular point s = (n -l)/2, for even l n, is (l -n)! ã1 l (z).

According to Lemmas 4.10 and 4.11, ζ la (s, ∆ z , η∧ D z w) and ζ la (s, ∆ z , Π 1 z w) are smooth at s = 0 [See67], but they might have a simple pole at s = 1. Proposition 4.12. We have

∂ z ζ la (s, ∆ z , Π 1 z w) = -sζ la (s + 1, ∆ z , η∧ D z w) .
Proof. Recall that a dot may be used to denote

∂ z . Like in (3.32), Π1 z,la = Π 1 z,la ⊥ Π1 z,la Π 1 z,la + Π 1 z,la Π1 z,la Π 1 z,la ⊥ . (4.20)
Therefore, for s 0,

ζ la (s, ∆ z , Π1 z w) = Tr s Π1 z,la ∆ -s z Π 1 z,la = 0 , yielding ζ la (s, ∆ z , Π1
z w) = 0 for all s because this is a meromorphic function of s. Hence, since ∆ z and Π 1 z,la w commute, Proposition 4.1 (i),(v) give

∂ z ζ la (s, ∆ z , Π 1 z w) = -sζ la (s + 1, ∆ z , ∆z Π 1 z w) = -s Tr s ∆z ∆ -s-1 z Π 1 z,la . Next, by (2.3), ∆z Π 1 z,la = (η∧ δ z + δ z η∧)Π 1 z,la = η∧ δ z Π 1 z,la + δ z η∧ Π 1 z,la . (4.21) But, since Π 1 z δ z = 0, Tr s δ z η∧ ∆ -s-1 z Π 1 z,la = -Tr s η∧ ∆ -s-1 z Π 1 z,la δ z = 0 . (4.22)
Combining (4.6)-(4.22) and Proposition 4.1 (i), we get

∂ z ζ la (s, ∆ z , Π 1 z w) = -s Tr s η∧ δ z ∆ -s-1 z Π 1 z,la = -s Tr s η∧ D z ∆ -s-1 z Π 1 z,la = -sζ la (s + 1, ∆ z , η∧ D z w) . Theorem 4.13. For µ 0, ζ la (s, ∆ z , η∧ D z w) is smooth on C \ ((1 -N 0 )/2).
Proof. By Lemma 4.10, it is enough to prove that ζ la (s, ∆ z , η∧ D z w) is regular at s = s l = (n + 1 -l)/2 for l n -1, which means bl (z) = 0. First, take l n -2. By Lemmas 4.10 and 4.11, Theorem 4.7, and Proposition 4.12, for µ 0,

0 = ∂ z ã1 l+1 (z) = -(s l -1) bl (z) . Thus bl (z) = 0 because s l -1 = (n -1 -l)/2 > 0.
Next, take l = n-1. (The previous argument does not apply in this case because s n-1 -1 = 0.) By Theorem 4.7 and Lemma 4.11, for µ 0,

∂ z ζ la (0, ∆ z , Π 1 z w) = ∂ z ã1 n (z) = 0 .
So there is a holomorphic function φ z (s), defined around s = 0 and depending smoothly on z, such that

∂ z ζ la (s, ∆ z , Π 1 z w) = sφ z (s) .
Hence, by Proposition 4.12,

φ z (s) = -ζ la (s + 1, ∆ z , η∧ D z w) , obtaining that ζ la (s, ∆ z , η∧ D z w) is regular at s = s n-1 = 1.
From now on, we use the simpler notation

ζ(s, z) = ζ(s, ∆ z , η∧ D z w) , ζ sm/la (s, z) = ζ sm/la (s, ∆ z , η∧ D z w) .
We may also add η to this notation, writing ζ(s, z, η) and ζ sm/la (s, z, η).

Corollary 4.14. If s > 1/2 and µ 0, then

ζ la (s, z) = 1 Γ(s) ˆ∞ 0 t s-1 Tr s η∧ D z e -t∆z P z,la dt ,
where the integral is absolutely convergent.

Proof. By Lemma 4.10, Theorem 4.13 and (4.18), for µ 0,

Tr s η∧ D z e -t∆z P z,la = O t -1/2 (t → 0) . (4.23)
Moreover there is some c > 0 such that

Tr s η∧ D z e -t∆z P z,la = O(e -ct ) (t → ∞) . (4.24)
So the stated integral is absolutely convergent for s > 1/2, defining a holomorphic function of s on this half-plane. Then the stated equality is true because it holds for s 0.

Corollary 4.15. For µ 0, Proof. Apply Proposition 4.12 and Theorem 4.13.

ζ sm (1, z) = Tr s (η∧ D -1 z (Π ⊥ z ) sm ) , ζ la (1, z) = lim

The case of exact forms

Let us consider the special case where η = dh for a Morse function h. These results will be extended later, but the arguments are much simpler in this case, with weaker conditions and less ingredients.

Lemma 4.17. For µ 0,

Tr s η∧ d -1 z Π 1 z,sm = -Tr s h (Π ⊥ z ) sm , Tr s η∧ d -1 z e -t∆z Π 1 z,la = -Tr s h e -t∆z P z,la , Tr s η∧ d -1 z e -t∆z Π 1 z = -Tr s h e -t∆z Π ⊥ z .
Proof. We prove the first equality, the other ones being analogous. Since η∧ = [d, h],

Tr s η∧ d -1 z Π 1 z,sm = Tr s [d z , h] d -1 z Π 1 z,sm = Tr s d z h d -1 z Π 1 z,sm -Tr s h d z d -1 z Π 1 z,sm = -Tr s h d -1 z Π 1 z,sm d z -Tr s h Π 1 z,sm = -Tr s h d -1 z d z Π 2 z,sm -Tr s h Π 1 z,sm = -Tr s h Π 2 z,sm -Tr s h Π 1 z,sm = -Tr s h (Π ⊥ z ) sm .
Remark 4.18. The last equality of Lemma 4.17 does not require any condition on η or g (h can be any smooth real-valued function).

Corollary 4.19. For µ 0,

ζ sm (1, z) = -Tr s h (Π ⊥ z ) sm , ζ la (1, z) = -lim t↓0 Tr s h e -t∆z P z,la , ζ(1, z) = -lim t↓0 Tr s h e -t∆z Π ⊥ z .
Proof. Apply Corollary 4.15 and Lemma 4.17.

Corollary 4.20. The value ζ sm (1, z) is uniformly bounded on z for µ 0.

Proof. The operator h (Π ⊥ z ) sm is uniformly bounded and, for µ 0, has uniformly bounded rank. So Tr s (h (Π ⊥ z ) sm ) is uniformly bounded on z for µ 0, and therefore the result follows from Corollary 4.19.

Corollary 4.21. If µ 0, then ζ(1, z), ζ sm/la (1, z) ∈ R.
Proof. We consider the case of ζ(1, z), the other cases being similar. By Corollary 4.19, it is enough to prove that Tr s (h e -t∆z Π ⊥ z ) ∈ R. This is true because, taking adjoints,

Tr s h e -t∆z Π ⊥ z = Tr s Π ⊥ z e -t∆z h = Tr s h Π ⊥ z e -t∆z = Tr s h e -t∆z Π ⊥ z . Corollary 4.22. If M is oriented, n is even and |µ| 0, then ζ(1, z) = ζ(1, -z) = ζ(1, -z) = ζ(1, z) , ζ sm/la (1, z) = ζ sm/la (1, -z) = ζ sm/la (1, -z) = ζ sm/la (1, z) .
Proof. We prove the case of ζ sm (1, z), the other cases being similar. By (2.15) and since n is even,

Tr s h (Π ⊥ z ) sm = Tr s -1 h (Π ⊥ z ) sm = Tr s -1 h (Π ⊥ z ) sm = Tr s -1 h (Π ⊥ -z ) sm = Tr s h (Π ⊥ -z ) sm .
Thus the first equality of the statement follows by Corollary 4.19. The second equality follows with a similar argument, using ¯ instead of . The third equality is a consequence of the other ones.

Theorem 4.23. The following limit holds uniformly on ν:

lim µ→+∞ ζ la (1, z) = -ˆM h e(M, ∇ M ) vol + n p∈X (-1) ind(p) h(p) .
Proof. By (4.11), (4.12), Theorem 4.2 and Corollary 4.19, for µ 0,

ζ la (1, z) = -lim t↓0 Tr s h e -t∆z P z,la = -ˆM h(x) tr s ẽn (x, z) vol(x) = -ˆM h(x) tr s e n (x, z) vol(x) + Tr s (hP z,sm ) = -ˆM h e(M, ∇ M ) vol + Tr s (hP z,sm ) .
According to Corollary 3.9, the elements P z,sm e p,z (p ∈ X ) form a base of E k z,sm when µ 0. Applying the Gram-Schmidt process to this base, we get an orthonormal frame ẽp,z (p ∈ X ) of E z,sm . By Proposition 3.7 for m = 0 and (3.9)-(3.12), we get 5. The small complex vs the Morse complex 5.1 Preliminaries on Smale vector fields 5.1.1 Vector fields with Morse type zeros Let X be a real smooth vector field on M with flow φ = {φ t }. Let X = Zero(X) denote the set of zeros of X (or rest points φ). It is said that a zero p of X is of Morse type with (Morse) index of ind(p) if, using the notation (3.2),

X = - n j=1 p,j x j p ∂ ∂x j p (5.1)
on the domain U p of some coordinates x p = (x 1 p , . . . , x n p ) at p, also called Morse coordinates. This condition means that X = -grad g h X,p on U p , where h X,p and g are given on U p by the right-hand side of (3.1) and (3.3). The coordinates x p used in (5.1) are not unique; that expression is invariant by taking positive multiples of the coordinates (contrary to the expressions (3.1), (3.3) and (3.4)). But ind(p) is independent of x p . If (3.3), (3.4) and (5.1) hold with the same coordinates, then η and g are said to be in standard form with respect to X around p. In this case, Cη and Cg (C > 0) are also in standard form with respect to X around p; indeed, Cη, X and Cg satisfy (3.3), (3.4) and (5.1) with the coordinates √ Cx p . When g is defined on M , if η and g are in standard form with respect to X around every p ∈ X , then η and g are said to be in standard form with respect to X. This concept is also applied to any Morse function h on M referring to dh and g. The reference to g may be omitted in this terminology.

The vector field X is fixed in most of the paper and plays an auxiliary role. Unless otherwise indicated, we assume from now on that X has Morse type zeros. Then X is finite, and the sets X k , X + and X <k are defined like in Section 3.1. 5.1.2 Stable and unstable manifolds For k = 0, . . . , n and p ∈ X k , the stable/unstable manifolds of p are smooth injective immersions, ι ± p : W ± p → M , where the images ι ± p (W ± p ) consist of the points satisfying φ t (x) → p as t → ±∞, and the manifolds W + p and W - p are diffeomorphic to R n-k and R k , respectively [Sma63, Theorem 9.1]. In particular, p ∈ ι ± p (W ± p ), and the maps ι + p and ι - p meet transversely at p. Let p ± = (ι ± p ) -1 (p). Assume every U p is connected, and let U ± p be the connected component of (ι ± p ) -1 (U p ) that contains p ± . The restriction ι ± p :

U ± p → (x ± p ) -1 (0) is a diffeomorphism, and therefore (U ± p , x ± p ι ± p ) is a coordinate system of W ± p centered at p ± .
5.1.3 Gradient-like vector fields Given a Morse function h on M in standard form with respect to X, we have X = -grad g h on M for some Riemannian metric g if and only if Xh < 0 on M \ X [BFK10, Lemma 2.1], [Lau12,Section 6.1.3]; in this case, X is said to be gradient-like (with respect to h). If X is gradient-like, then the maps ι ± p are embeddings [Sma60b, Lemma 3.8], [BFK10, Lemma 2.2], and their images cover M [Sma61, Lemma 1.1], [BFK10, Corollary 2.5]. Thus, in this case, we will write W ± p = ι ± p (W ± p ) and p ± = p, and ι ± p becomes the inclusion map. Unless otherwise indicated, we also assume in the rest of the paper that X is gradient-like. 5.1.4 Smale vector fields X is said to be Smale if W + p W - q for all p, q ∈ X . In this case, M(p, q) := W + p ∩ W - q is a φ-saturated smooth submanifold of dimension ind(p) -ind(q). In particular, M(p, p) = {p}, and define T (p, p) = ∅. If p = q, then the induced R-action on M(p, q) is free and proper, and therefore the orbit space T (p, q) := M(p, q)/R is a smooth manifold of dimension ind(p) -ind(q) -1. The elements of T (p, q) are the (unparameterized) trajectories with α-limit {p} and ω-limit {q}, which are oriented by X. If ind(p) ind(q), then T (p, q) = ∅. If ind(p)-ind(q) = 1, then T (p, q) consists of isolated points, each of them representing a trajectory in M . Let T = p,q∈X T (p, q), and

T 1 p = q∈X ind(p)-1 T (p, q) , T 1 k = p∈X k T 1 p , T 1 = n k=0 T 1 k .
The elements of T 1 are called instantons. 1 Unless otherwise indicated, besides the above conditions, we assume from now on that X is Smale; i.e., we assume (b) (Section 1.1). Thus the α-and ω-limits of the orbits of X are zero points [Sma61, Theorem B and Lemma 1.1]. By (b), every class in H 1 (M, R) has a representative η which is Lyapunov for X and η = -X for some Riemannian metric g on M , with η and g in standard form with respect to X [BH04, Proposition 16 (i)], [BH08, Observations 2.5 and 2.6], [HM06, Lemma 3.7], [Lau12,Section 6.1.3]. Moreover X can be C ∞ -approximated by gradient-like Smale vector fields that agree with X around X [BH08, Proposition 2.4] (this follows from [Sma61, Theorem A]). A well known consequence is that, for any Morse function h, there is a C ∞ -dense set of Riemannian metrics g on M such that -grad g h is Smale; this density is also true in the subspace of metrics that are Euclidean with respect to Morse coordinates on given neighborhoods of the critical points. (i) W - p is a C 1 submanifold with conic singularities (in the sense of [BZ92, Appendix by F. Laudenbach, Section a)] and [Lau12,Appendix A.1]) and a Whitney stratified subspace. Its strata are the submanifolds W - q for q ∈ X <k with T (p, q) = ∅. As a consequence, W - p has finite volume, and

Lyapunov forms Any

η ∈ Z 1 (M, R) is said to be Lyapunov for X if η(X) < 0 on M \X [BH08, Definition 2.3].

Completion of the unstable manifolds

W - q ∩ W - p ⊂ x∈X <k W - x if q = p in X k ; in particular, p / ∈ W - q . (ii) There is a compact k-manifold with corners 2 W - p whose l-corner 3 (0 l k) is ∂ l W - p = (q 0 ,...,q l )∈{p}×X l l j=1 T (q j-1 , q j ) × W - q l .
In particular, the interior of

W - p is ∂ 0 W - p = W - p , and the set T (p, q) is finite if q ∈ X k-1 . (iii) There is a smooth map ι- p : W - p → M whose restriction to every component of ∂ l W - p in ( 
ii) is given by the factor projection to W - q l ; in particular, ι-

p = ι - p on W - p . Moreover ι- p : W - p → W - p is a stratified map.
By Proposition 5.1 (i), we can choose the open sets U p (p ∈ X k , k = 0, . . . , n) so small that U p ∩ W - q = ∅ if q = p in X k . For every q ∈ X k-1 and γ ∈ T (p, q), the closure γ in M is a compact oriented submanifold with boundary of dimension one, and ∂γ = {p, q}. We may also consider γ as the closure of γ in W - p .

5.2 Preliminaries on the Morse complex 5.2.1 The Morse complex Fix an orientation O - p of every unstable manifold W - p (p ∈ X k , k = 0, . . . , n), which can be also considered as an orientation of

W - p . Then W - p ≡ (W - p , O - p ) defines a current of dimension k on M , also denoted by W - p ; namely, for α ∈ Ω k (M ), W - p , α = ˆW - p α = ˆ W - p (ι - p ) * α . Let ∂ 1 O - p be the orientation of ∂ 1 W - p induced by O - p like in the Stokes' theorem. The restriction of ∂ 1 O - p to every component T (p, q) × W - q (q ∈ X k ) of ∂ 1 W - p is of the form O p,q ⊗ O - q
for a unique orientation O p,q of T (p, q). If k = k -1, then O p,q can be represented by a unique function p,q : T (p, q) → {±1}; combining these functions, we get a map : T 1 → {±1}. By the descriptions of ∂ 1 W - p and ιp : ∂ 1 W - p → M , and by the Stokes' theorem for manifolds with corners, we have [BZ92, Appendix by F. Laudenbach], [HM06, Remark 1.9], [BFK10, Theorem 3.6 and Proposition 5.3], [Lau12, Section 6.5.3]

∂W - p = q∈X k-1 , γ∈T (p,q) (γ) W - q .
(5.2)

Thus the currents W - p (p ∈ X ) generate over C a finite dimensional subcomplex (C • (X, W -), ∂) of the complex (Ω(M ) , ∂) of currents on M , called the Morse complex. The simpler notation Sma60a,Mil65] (see also [Flo89,Sch93,Sch99], [HS85, Theorem 0.1], [BZ92, Appendix by F. Laudenbach, Proposition 7], [Lau12, Section 6.6.5]).

C • = C • (X) = C • (X, W -) may be also used. Moreover C • → Ω(M ) induces an isomorphism 4 H • (C • , ∂) ∼ = H • (M, C) [Tho49,
The dual Morse complex is the dual

(C • (X, W -), d) of (C • , ∂); namely, C k (X, W -) = (C k ) * ≡ C X k (k = 0, . . . , n). We will usually denote C • = C • (X) = C • (X, W -).
Moreover boldface notation will be used for elements of C • and operators on C • . Let e p (p ∈ X ) denote the elements of the canonical base of C • , determined by e p (q) = δ pq , using the Kronecker delta. Then, for q ∈ X k-1 ,

de q = p∈X k , γ∈T (p,q) (γ) e p .
(5.3)

5.2.2

The perturbed Morse complex Take any η ∈ Z 1 (M, R) defining a class ξ ∈ H 1 (M, R) (there is no need of any condition on η or g in Sections 5.2.2 to 5.2.4). For reasons of brevity, write η(γ) = ´γ η for every γ ∈ T 1 . According to [BH01, BH04, BH08], (C • , d) has an analog of the Witten's perturbation, (C

• , d z = d zη ) (z ∈ C), where, for q ∈ X k-1 (k = 1, . . . , n), d z e q = p∈X k , γ∈T (p,q)
(γ)e zη(γ) e p .

(5.4)

If η = dh for some h ∈ C ∞ (M, R), then d z = e -zh de zh on C • because η(γ) = h(q) -h(p) for p ∈ X k , q ∈ X k-1 and γ ∈ T (p, q); here, e ±zh also denotes the operator of multiplication by the restriction of this function to X . It will be said that (C • , d z ) (z ∈ C) is the perturbed dual Morse complex defined by X and η. A perturbation (C • , ∂ z ) is similarly defined, adding the factor e zη(γ) to the terms of the right-hand side of (5.2).

Since

W - p (p ∈ X k , k = 0, . . . , n) is diffeomorphic to R k , there is a unique h - η,p ∈ C ∞ (W - p , R) such that h - η,p (p -) = 0 and dh - η,p = (ι - p ) * η. Indeed h - η,p
has a smooth extension ĥη,p to W - p because W - p is contractile. By Proposition 5.1 (ii), for all q ∈ X k-1 and γ ∈ T (p, q), we have ĥη,p (γ, q-) = η(γ), yielding ĥη,q ≡ ĥ-

η,p -η(γ) on W - q ≡ {γ} × W - q ⊂ ∂ 1 W - p .
According to [BH01, Proposition 4], [BH04, Proposition 10], [BH08, Propositions 2.15 and 2.16 and Section 6.2], a sujective homomorphism of complexes,

Φ z : (Ω(M ), d z ) → (C • , d z ) , is defined by Φ z (ω)(p) = ˆW - p e zh - η,p ω = ˆ W - p e z ĥ- η,p (ι - p ) * ω .
Moreover Φ z is a quasi-isomorphism for all z ∈ C [BZ92, Proposition 1 in the Appendix by F. Laudenbach] (see also [BZ92, Theorem 2.9], [BZ94, Theorem 1.6], [BH08, Proposition 2.17 and Section 6.2]). Then, by (3.14), the same is true for

Φ z : (E z,sm , d z ) → (C • , d z ) .
Since direct adaptation of [BH04, Appendix A] shows that, for k = 0, . . . , n, dim H k (C • , d z ) is independent of z ∈ C with |µ| 0, we get (2.9).

5.2.3

Morse complex with coefficients in a flat vector bundle With more generality [BZ92, Section 1c)], for a flat vector bundle F , we may consider (C • (X, W -, F ), d F ), where C k (X, W -, F ) = p∈X k F p , and d F e (e ∈ F q , q ∈ X k-1 ) is defined like in the right-hand side of (5.3), replacing e p with the parallel transport of e along γ-1 . This is the dual of the complex (C

• (X, W -, F * ), ∂ F * ), where C k (X, W -, F * ) = p∈X k F * p , and ∂ F f (f ∈ F * p , p ∈ X k
) is defined like in the right-hand side of (5.2), replacing W - q with the parallel transport of f along γ. A homomorphism

Φ F = Φ X,F : (Ω(M, F ), d) → C • (X, W -, F ), d F
can be defined like Φ z , using the isomorphism

Ω • W - p , (ι - p ) * F ∼ = Ω • W - p ⊗ F p
given by the parallel transport of (ι - p ) * F . With this generality, Φ F is also induces a quasiisomorphism [BZ92, Theorem 2.9]. If F = L z (Section 2.1.4), then

C • (X, W -, L z ), d L z ≡ (C • , d z ) , Φ L z ≡ Φ z .
5.2.4 Hodge theory of the Morse complex Consider the Hermitian scalar product on C • so that the canonical base e p (p ∈ X ) is orthonormal. All operators induced by d z and this Hermitian structure are called perturbed Morse operators. For instance, besides d z , we have the perturbed Morse operators

δ z = d * z , D z = d z + δ z , ∆ z = D 2 z = d z δ z + δ z d z .
In particular, it will be said that ∆ z is the perturbed Morse Laplacian, and its eigenvalues will be called perturbed Morse eigenvalues. If z = 0, we omit the subscript "z" and the word "perturbed". From (5.4), we easily get

δ z e p = q∈X k-1 , γ∈T (p,q)
e zη(γ) (γ) e q ,

(5.5) for p ∈ X k . We also have

C • = ker ∆ z ⊕ im d z ⊕ im δ z , ker ∆ z = ker D z = ker d z ∩ ker δ z , im ∆ z = im D z = im d z ⊕ im δ z .
The orthogonal projections of C • to ker ∆ z , im d z and im δ z are denoted by Π z = Π 0 z , Π 1 z and Π 2 z , respectively. The compositions d -1 z Π 1 , δ -1 z Π 2 and D -1 z Π ⊥ are defined like in Section 2.1.2, and there is an obvious version of the commutative diagram (2.7).

The small complex vs the Morse complex

Our main objects of interest are the form η ∈ Z 1 (M ; R) and the Riemannian metric g; X plays an auxiliary role. Unless otherwise indicated, assume from now on that η is Lyapunov for X, and η and g are in standard form with respect to X; i.e., we assume (c) besides (a) and (b). Since every ξ ∈ H 1 (M, R) is Lyapunov for X by (b), we can choose some η ∈ ξ and g satisfying (a) and (c).

For every p ∈ X , consider the functions h η,p , h X,p , h - η,p and ĥη,p defined in Sections 3.1, 5.1.1 and 5.2.2. Since η and g are in standard form with respect to X, we have h η,p = h X,p on U p , and

h - η,p = h η,p = - 1 2 |x - p | 2
(5.6) on U - p . From now on, the simpler notation h p = h η,p = h X,p , h - p = h - η,p and ĥp = ĥη,p will be used. Since η is Lyapunov for X, h - p < 0 on W - p \ {p} .

(5.7)

Consider the notation of Section 5.2.2. Let J z : C • → E z be the C-linear isometry given by J z (e p ) = e p,z , and let Ψ z = P z,sm J z : C • → E z,sm , which is an isomorphism for µ 0 (Corollary 3.9). By Proposition 3. We may also consider this asymptotic relation when the Banach spaces also depend on z.

Theorem 5.3 Cf. [BZ94, Theorem 6.11], [Zha01, Theorem 6.9], [BH01, Theorem 4]. For every τ ∈ R, as µ → +∞,

Φ z+τ Ψ z 0 π µ + τ /2 N/2 µ π n/4
.

Proof. We adapt the proof of [Zha01,Theorem 6.9] to the case of complex parameter. For every p ∈ X k , Φ z+τ Ψ z e p = q∈X k e q ˆ W - q e (z+τ ) ĥ- q (ι - q ) * P z,sm e p,z .

(5.9)

Then the result follows by checking the asymptotics of these integrals.

In the case q = p, by (5.7) and Corollary 3.8, ˆ W - p e (z+τ ) ĥ- p (ι - p ) * (P z,sm -1)e p,z 0 0 .

Hence, by Corollary 5.9, for any

β ∈ E k z,sm , Π 2 z Φ z β = pz a=1 Φ z β, f z,a f z,a 0 µ π k-n/2 pz a=1 Φ z β, Φ z α z,a Φ z α z,a 0 m a=1 β, α z,a Φ z α z,a = Φ z Π 2 z,sm β .
This shows the first relation of the statement because dim E k z,sm < ∞. Then the other stated relations follow using Corollaries 5.6, 5.7 and 5.9.

According to Corollary 5.4, in the following corollaries, we take µ 0 so that Φ z : E z,sm → C • is an isomorphism.

Corollary 5.14. As µ → +∞,

(Φ -1 z ) * Φ -1 z 0 µ π N-n/2 , Φ -1 z (Φ -1 z ) * 0 µ π N-n/2
. Proof. By Corollary 5.9, for e ∈ C k with e = 1,

Φ -1 z e 0 µ π k/2-n/4 Φ z Φ -1 z e = µ π k/2-n/4
, yielding the first stated relation. The second one has a similar proof.

Corollary 5.15. As µ → +∞,

Φ * z 0 π µ N-n/2 Φ -1 z , Ψ z 0 Φ -1 z .
Proof. By Corollaries 5.9 and 5.14,

Φ * z = Φ * z Φ z Φ -1 z 0 π µ N-n/2 Φ -1 z , Ψ z = Ψ z Φ z Φ -1 z 0 Φ -1 z .
Corollary 5.16. We have Π

1 z = Π 1 z for µ 0, and Π 2 z 0 Π 2 z as µ → +∞.
Proof. Since Φ z (im d z,sm ) = im d z for µ 0, we get Π

1 z = Π 1 z . To prove Π 2 z 0 Π 2
z as µ → +∞, consider the notation of the proof of Corollary 5.13. We have α z,a = δ z β z,a (a = 1, . . . , p z ) for some base β z,1 , . . . , β z,pz of im d z,sm,k . Hence, by Corollaries 5.7, 5.9 and 5.12,

Φ z α z,a = Φ z δ z β z,a 0 Φ z Ψ z δ z Φ z β z,a 0 δ z Φ z β z,a ,
(5.12) and δ z Φ z β z,1 , . . . , δ z Φ z β z,pz is a base of im δ z,k+1 . Applying the Gram-Schmidt process to this base, we get an orthonormal base g z,1 , . . . , g z,pz of im δ z,k+1 satisfying g z,a 0 f z,a by (5.12). Then, for any e ∈ C k with e = 1,

Π 2 z e = pz a=1
e, g z,a g z,a 0 pz a=1 e, f z,a f z,a = Π 2 z e .

Corollary 5.17. We have

d z,sm = Φ -1 z d z Φ z,sm , d -1 z,sm Π 1 z,sm = Π 2 z,sm Φ -1 z d -1 z Φ z Π 1 z,sm .
Proof. The first equality follows like the first relation of Corollary 5.12, using Φ -1 z instead of Ψ z . To prove the second one, take any α ∈ im d z,sm . Since

d z Π 2 z,sm Φ -1 z d -1 z Φ z α = d z Φ -1 z d -1 z Φ z α = Φ -1 z d z d -1 z Φ z α = α with Π 2 z,sm Φ -1 z d -1 z Φ z α ∈ im δ z,sm , we obtain Π 2 z,sm Φ -1 z d -1 z Φ z α = d -1 z,sm α .

Derivatives of some homomorphisms

Theorem 5.18. As µ → +∞,

∂ z (Φ z Ψ z ), ∂ z (Φ z Ψ z ) 0 n 8µ - N 4µ π µ N/2-n/4
. Proof. By (5.9),

∂ z (Φ z Ψ z e p ) =
q∈X k e q ˆ W - q ĥq e z ĥ- q (ι - q ) * P z,sm e p,z + ˆ W - q e z ĥ- q (ι - q ) * ∂ z (P z,sm e p,z ) , (5.13) for every p ∈ X k (k = 0, . . . , n). We estimate each of these integrals. Like in the proof of Theorem 5.3, we get, for any q = p in X k , ˆ W - p ĥp e z ĥ- p (ι - p ) * (P z,sm -1)e p,z 0 0 , (5.14) ˆ W - q ĥq e z ĥ- q (ι - q ) * P z,sm e p,z 0 0 .

(5.15) Moreover, by Proposition 3.1 (iii), (3.9)-(3.12) and (3.33), ˆ W - p ĥp e z ĥ- p (ι - p ) * e p,z = -

k 2a µ ˆ2r -2r ρ(x)e -µx 2 /2 dx k-1 ˆ2r -2r ρ(x)x 2 e -µx 2 /2 dx = - k 4µ π µ k 2 -n 4 + O(e -cµ
) .

(5.16)

On the other hand, by (5.7) and Proposition 3.25 , ˆ W - q e z ĥ- q (ι - q ) * ∂ z (P z,sm e p,z -e p,z ) 0 0 , for all q ∈ X k . In the case q = p, by (5.10) and Lemma 3.23, ˆ

W - p e z ĥ- p (ι - p ) * ∂ z e p,z = n 8µ + O(e -cµ ) ˆ W - p e z ĥ- p (ι - p ) * e p,z = n 8µ + O(e -cµ ) π µ k 2 -n 4 + O(e -cµ ) = n 8µ π µ k 2 -n 4 + O(e -cµ
) .

(5.17)

In the case q = p, using Lemma 3.23 and arguing again like in the proof of Theorem 5.3, we get ˆ W - q e z ĥ- q (ι - q ) * ∂ z e p,z 0 0 (µ → +∞) .

(5.18)

Now the result for ∂ z follows from (5.13)-(5.16), (5.17) and (5.18).

If we consider ∂ z , the proof has to be modified as follows. In the expression analogous to (5.13), the first term of the right-hand side must be removed. In the analogue of Lemma 3. 

∂ z (Ψ * z Ψ z ) ±1 , ∂ z (Ψ * z Ψ z ) ±1 = O µ -1/2 .
Proof. We only show the case of ∂ z . Consider P z,sm : E z → E z,sm , whose adjoint is

P z : E z,sm → E z . Then, since J z : C • → E z is an isometry, Ψ * z Ψ z = (P z,sm J z ) * P z,sm J z = J -1 z P z P z,sm J z . It follows that, for every p ∈ X k (k = 0, . . . , n), Ψ * z Ψ z e p =
q∈X k P z,sm e p,z , e q,z e q .

Therefore

∂ z (Ψ * z Ψ z )e p = q∈X k
∂ z (P z,sm )e p,z , e q,z + P z,sm ∂ z (e p,z ), e q,z + P z,sm e p,z , ∂ z (e q,z ) e q .

Then, by Propositions 3.18 and 3.22, Lemma 3.23 and its analogue for ∂ z , 

∂ z (Ψ * z Ψ z )e p = O µ -1/2 + n 8µ - 1 2 |x + p | 2 e p,
(n -k) ˆ2r -2r y 2 ρ(y) 2 e -µy 2 dy = n -k 2µ π µ n 2 + O e -cµ . Hence ∂ z (Ψ * z Ψ z )e p = n 8µ - n -k 4µ π µ n 2 e p + O µ -1/2 = O µ -1/2 ,
yielding the stated expression for ∂ z Ψ * z Ψ z ). Now, arguing like in the proof of (3.30) and using (5.8), we get

∂ z (Ψ * z Ψ z ) -1 = -(Ψ * z Ψ z ) -1 ∂ z (Ψ * z Ψ z )(Ψ * z Ψ z ) -1 = -1 + O e -cµ O µ -1/2 1 + O e -cµ = O µ -1/2 .
6. Asymptotics of the large zeta invariant 6.1 Preliminaries on Quillen metrics 6.1.1 Case of a finite dimensional complex All vector spaces considered here are over C. For a line λ, its dual λ * is also denoted by λ -1 . For a vector space V of finite dimension, let det V = dim V V . For a graded vector space V • of finite dimension, let det

V • = k (det V k ) (-1) k .
Now consider a finite dimensional cochain complex (V • , ∂), whose cohomology is denoted by H

• (V ). Then there is a canonical isomorphism [KM76], [BGS88, Section 1 a)] det V • ∼ = det H • (V ) . (6.1)
Given a Hermitian metric on V • so that the homogeneous components V k are orthogonal one another, the corresponding norm

V • on V • induces a metric det V • on det V • , which corre- sponds to a metric det H • (V )
on det H • (V ) via (6.1). On the other hand, consider the induced Laplacian, = (∂ + ∂ * ) 2 = ∂∂ * + ∂ * ∂, whose kernel is a graded vector subspace H • . Then finite dimensional Hodge theory gives an isomorphism H

• (V ) ∼ = H • , which induces an isomorphism det H • (V ) ∼ = det H • . (6.2)
The restriction of

V • to H • induces a metric det H • on det H • , which corresponds to another metric | | det H • (V ) on det H • (V ) via (6.2).
Let denote the restriction : im → im . For s ∈ C, let θ(s) = θ(s, ) = -Tr s (N( ) -s ) . (6.3) (Do not confuse the superscript "s" of the supertrace with the complex variable s.) This defines a holomorphic function on C. Then the above metrics on det H

• (V ) satisfy [BGS88, Proposi- tion 1.5], [BZ92, Theorem 1.1], [BZ94, Theorem 1.4] det H • (V ) = | | det H • (V ) e θ (0)/2 . (6.4) If H • (V ) = 0, then det H • (V ) ≡ C
is canonically generated by 1, and we have 1 det H • (V ) = e θ (0)/2 . Using the orthogonal projection Π 1 : V → im ∂, we can write (6.3) as θ(s) = -Tr s ( ) -s Π 1 . (6.5)

Let ( V • , ∂) be another finite dimensional cochain complex, endowed with a Hermitian metric so that the homogeneous components are orthogonal to each other, and let φ : (V, ∂) → ( V • , ∂) be an isomorphism of cochain complexes, which may not be unitary. Then (see the proof of [BZ94, Theorem 6.17])

log det H • ( V ) det H • (V ) 2 = Tr s (log(φ * φ)) .
(6.6) 6.1.2 Case of an elliptic complex Some of the concepts of Section 6.1.1 extend to the case where V • = C ∞ (M ; E • ), for some graded Hermitian vector bundle E • over M , and ∂ is an elliptic differential complex of order one. Then det H

• (V ) is defined because dim H • (V ) < ∞.
Moreover Hodge theory for the Laplacian gives the isomorphism (6.2). Thus at least the norm | | det H • (V ) is defined in this setting. Now the expression (6.3) only defines θ(s) = θ(s, ) when s > n/2, but it has a meromorphic extension to C, denoted in the same way; indeed, (6.3) becomes

θ(s) = θ(s, ) = -ζ(s, , Nw) ,
for s > n/2, and therefore this equality also holds for the meromorphic extensions. Furthermore θ(s) is smooth at s = 0 [See67], and θ (0) can be considered as a renormalized version of the super-trace of the operator N log( ), which is not of trace class. Thus the right-hand side of (6.4) is defined in this way and plays the role of an analytic version of the metric det H • (V ) , which is not directly defined. This kind of metrics were introduced by D. Quillen [Qui85] for the case of the Dolbeault complex. The expression (6.5) also holds in this case for s 0; in fact, it becomes θ(s) = -ζ s, , Π 1 w , where this zeta function can be shown to define a meromorphic function on C, even though Π 1 is not a differential operator, and this equality holds as meromorphic functions.

6.1.3 Reidemeister, Milnor and Ray-Singer metrics Let F be a flat vector bundle over M , defined by a representation ρ of π 1 M , and let ∇ F denote its covariant derivative. Consider a smooth triangulation K of M and the corresponding cochain complex C • (K, F ) with coefficients in F , whose cohomology is isomorphic to H

• (M, F ) via the quasi-isomorphism Ω(M ; F ) → C • (K, F ) = C • (K, F * ) *
defined by integration of differential forms on smooth simplices. Given a Hermitian structure g F on F , we get an induced metric on C • (K, F ), and the concepts of Section 6.1.1 can be applied. In this case, the left-hand side of (6.4) is called the Reidemeister metric, denoted by

R det H • (M,F ) . If ∇ F g F = 0 (ρ is unitary) and H • (M, F ) = 0, then the Reidemeister torsion τ M (ρ) is defined using K, and it is a topological invariant of M [Fra35, Rei35, dR50]. Moreover τ M (ρ) = 1 R det H • (M,F )
is the exponential factor of the right-hand side of (6.4) [RS71, Proposition 1

.7]. If we only assume ∇ F g F = 0, then R det H • (M,F ) is still a topological invariant of M . Next, given a vector field X on M satisfying (b), consider the complex (C • (-X, W -, F ), d F ), whose cohomology is also isomorphic to H • (M, F ) via the quasi-isomorphism Φ -X,F : Ω(M, F ) → C • (-X, W -, F ) = C • (-X, W -, F * ) * .
This complex has a metric induced by g F , like in Section 5.2.2, and the concepts of Section 6.1.1 can be also applied. In this case, the left-hand side of (6.4) is called the Milnor metric, denoted by M,X det H • (M,F ) , and the metric factor of the right-hand side of (6.4) is denoted by

| | M,X det H • (M,F ) . If ∇ F g F = 0, then M,X det H • (M,F ) = R det H • (M,F ) [Mil66, Theorem 9.3].
Finally, the concepts of Section 6.1.2 can be applied to (Ω(M, F ), d F ), whose cohomology is again H • (M, F ). In this case, the right-hand side of (6.4) is called the Ray-Singer metric, denoted by RS det H • (M,F ) , and the metric factor of the right-hand side of (6.4) is denoted by

| | RS det H • (M,F ) . If H • (M, F ) = 0,
then the exponential factor of the right-hand side of (6.4) is called the analytic torsion or Ray-Singer torsion, denoted by T M (ρ). These concepts were introduced by Ray and Singer [RS71], who conjectured that T

M (ρ) = τ M (ρ) if ∇ F g F = 0 and H • (M, F ) = 0, and RS det H • (M,F ) = R det H • (M,F ) assuming only that ∇ F g F = 0
. Independent proofs of this conjecture were given by Cheeger [Che79] and Müller [M 78]. Actually, this equality still holds if the induced Hermitian structure g det F on det F is flat [M 93].

In the case where g det F is not assumed to be flat, Bismut and Zhang [BZ92, BZ94] extended the above results by introducing an additional term. The first ingredient of this extra term is the 1-form Remark 6.2. In Proposition 6.1, observe that (i) and (iv) are compatible because e(M, ∇ M ) = 0 if n is odd. By (ii)-(iv), the restriction of ψ(M, ∇ M ) to T M \ M is induced by a smooth differential form on the sphere bundle which transgresses e(M, ∇ M ) (such a differential form was already defined and used in [Che44]). Remark 6.4. By (b), X = -grad g h for some Morse function h and some Riemannian metric g on M , which may not be the given metric g M . If we fix h, the right-hand side of the equality in Theorem 6.3 is independent of the choice of X satisfying X = -grad g h for some g [BZ92, Proposition 6.1].

θ(F, g F ) = tr (g F ) -1 ∇ F g F , ( 6 
Theorem 6.3 will be applied to the case of the flat complex line bundle L z with a Hermitian structure g L z (Section 2.1.2). By (2.14) and (6.7), θ(L z , g L z ) = 2µη .

(6.8)

Asymptotics of the large zeta invariant

We prove Theorem 1.1 (ii) here. With the notation of Section 6.1.2, consider the meromorphic function θ(s, z) = θ(s, ∆ z ), also defined in (1.4), as well as its components θ sm/la (s, z) defined in (1.5). Consider also the current ψ(M, ∇ M ) of degree n -1 on T M (Section 6.1.3). By Proposition 6.1 (i),

z la (-η) = (-1) n z la (η) . (6.9) Notation 6.5. Let 1 be defined like 0 in Notation 5.2, using O(|µ| -1/2 ) instead of O(e -c|µ| ).

Take some Morse function h on M such that Xh < 0 on M \ X , and h is in standard form with respect to X. Then X = -grad g h for some Riemannian metric g (Section 5.1.3), which may not be the given metric g. Consider the flat complex line bundle L dh-zη with the Hermitian structure g F dh-zη (Section 2.1.2). Note that d L dh-zη -dh ≡ d -zη on C • (-X, W -, L dh-zη ) ≡ C • (-X). So, by (6.8), Theorem 6.3 and Remark 6. (6.12)

From (5.8) and Theorems 5.3, 5.18 and 5.19, we obtain

(Ψ * -z Ψ -z ) -1 (Φ -z Ψ -z ) * Φ -z Ψ -z -1 = π µ n 2 -N + O e -cµ
and

∂ z (Ψ * -z Ψ -z ) -1 (Φ -z Ψ -z ) * Φ -z Ψ -z = ∂ z (Ψ * -z Ψ -z ) -1 (Φ -z Ψ -z ) * Φ -z Ψ -z + (Ψ * -z Ψ -z ) -1 (∂ z (Φ -z Ψ -z )) * Φ -z Ψ -z + (Ψ * -z Ψ -z ) -1 (Φ -z Ψ -z ) * ∂ z (Φ -z Ψ -z ) = O µ -1/2 + 1 + O e -cµ n 4µ - N 2µ π µ N-n 2 + O e -cµ = O µ -1/2 + n 4µ - N 2µ π µ N-n 2 + O e -cµ .
So

∂ z Tr s log (Ψ * -z Ψ -z ) -1 (Φ -z Ψ -z ) * Φ -z Ψ -z = Tr s (Ψ * -z Ψ -z ) -1 (Φ -z Ψ -z ) * Φ -z Ψ -z -1 ∂ z (Ψ * -z Ψ -z ) -1 (Φ -z Ψ z ) * Φ -z Ψ -z = O µ -1/2 + Tr s n 4µ - N 2µ + O e -cµ = O µ -1/2 .
Then, by (6.12),

∂ z log RS,sm det H • -z (M ) M,X det H • -z (M )
= O µ -1/2 . (6.13) By taking the derivative with respect to z of both sides of (6.10), and using (6.11), (6.13) and Corollary 4.16, we get ζ la (1, -z) 1 z la . Then Theorem 1.1 (ii) follows because z la is independent for k = 1, . . . , n, where d k-1 e q = p∈X k , γ∈T (p,q), η(γ)=-a k (γ)e p , (7.3)

d z,k-1 e q =
p∈X k , γ∈T (p,q), η(γ)<-a k e z(a k +η(γ)) (γ)e p , (7.4) for q ∈ X k-1 . Observe that The orthogonal projections of C • to ker ∆ , im d and im δ are denoted by Π = Π 0 , Π 1 and Π 2 , respectively. Like in Sections 2.1.2 and 5.2.4, the composition (d ) -1 Π 1 is defined on C • . From (7.5) and (7.9), we easily get that, as µ → +∞, Π j z,k = Π j k + O(e -cµ ) (j = 0, 1, 2) , (7.10) Proof. By the commutativity of (2.7), for every eigenvalue λ of ∆ z,sm on im δ z,sm,k + im d z,sm,k-1 , there are normalized λ-eigenforms, e ∈ im δ z,sm,k and e ∈ im d z,sm,k-1 , so that d z e = λ 1/2 e and δ z e = λ 1/2 e. Hence the maximum and minimum of the spectrum of ∆ z,sm on im δ z,sm,k + im d z,sm,k-1 is d z,sm,k-1 2 and d -1 z,sm,k-1 Π 1 z,sm,k -2 , respectively. Similarly, the maximum and minimum of the spectrum of ∆ z on im δ z,k + im d z,k-1 is d z,k-1 2 and d -1 z,k-1 Π 1 z,k -2 , respectively. Then the result follows from Corollaries 5.9, 5.14 and 5.17 and Proposition 7.4:

e -a k z (d z,k-1 ) -1 Π 1 z,k = (d k-1 ) -1 Π 1 k + O(e -cµ
d z,sm,k-1 2 Φ -1 z,k 2 d z,k-1 -2 Φ z,sm,k-1 -2 µ π k-n/2
+ O e -cµ C 0 e -2a k µ π µ k-1-n/2

+ O e -cµ C µe -2a k µ , d -1 z,sm,k-1 Π 1 z,sm,k-1

-2 Φ -1 z,k-1 -2 d -1 z,k-1 Π 1 z,k -2 Φ z,sm,k -2 π µ k-1-n/2
+ O e -cµ C 0 e -2a k µ µ π k-n/2

+ O e -cµ Cµe -2a k µ .

Asymptotics of the small zeta invariant

Theorem 1.1 (iii) is proved here.

Notation 7.6. Let 2 be defined like 0 in Notation 5.2, using O(|µ| -1 ) instead of O(e -c|µ| ).

Theorem 7.7. As µ → +∞,

η∧ d -1 z Π 1 z,sm,k 2 ± 1 -e a k Π 1 z,sm,k .
Proof. Consider the notation of Sections 5.3 and 7.2. By Corollary 5.13 and (5.11), Π 1 z,sm

0 Ψ z Π 1 z Φ z,sm = Ψ z Π 1 z Π 1 z Φ z,sm = Ψ z Π 1 z Φ z,sm -Ψ z Π 1 z ⊥ Π 1 z Φ z,sm .
But Π For brevity, let R z = P z-1,sm P z,sm on L 2 (M ; Λ), and S z = Φ z Ψ z-1 and T z = Φ z-1 P z-1,sm Ψ z on C • . By (7.5)-(7.11), (7.13), Propositions 3.18 and 7.4,Corollaries 3.19,5.6,5.7,5.9,5.11, 

  and H m (M ; E) denote the spaces of distributional sections that are C m , C ∞ , L 2 , L ∞ and of Sobolev order m, respectively; as usual, E is removed from this notation if it is the trivial line bundle. Consider the induced scalar product , and norm on L 2 (M ; E), and the induced norm L ∞ on L ∞ (M ; E). Fix also norms, m on every H m (M ; E) and C m on C m (M ; E) with = 0 and C 0 = L ∞ . If P is the orthogonal projection of L 2 (M ; E) to some closed subspace V , then P ⊥ denotes the orthogonal projection to V ⊥ . Let T C M = T M ⊗C and T * C M = T * M ⊗C. The exterior bundle with coefficients in

2. 1 . 2

 12 Perturbations defined by a closed real 1-form For any ω ∈ Z 1 (M ), we have the Witten's type perturbations d ω , δ ω , D ω and ∆ ω of d, δ, D and ∆. Given η ∈ Z 1 (M, R) and z ∈ C, we write d z = d zη , δ z = δ η , D z = D zη and ∆ z = ∆ zη . These operators have the following expressions:

Proposition 3. 5 .

 5 For all m ∈ N 0 , if µ 0, then D z e p,z m , D z e p,z m,iν e -cmµ .Proof. From Proposition 3.1 (iii), (2.1), (3.10) and (3.11), we getD z e p,z = D z ρ p a µ e p,z = e -iνhp 1 a µ p )e p,µ . (3.13)Thus the stated estimate of D z e p,z m is true by (3.10) and (3.12), and since dρ p = 0 around p.(When ν = 0, this is indicated in[Zha01, Eq. (6.17)].) By (2.11), for all k ∈ N 0 and p ∈ X , the form D k iν D z e p,z is the extension by zero of the form e -iνhp D k D µ e p,µ on U p . Then the stated estimate of D z e p,z m,iν follows from the case ν = 0.Corollary 3.6. If µ 0, then

  sm is an isomorphism; in particular, dim E z,sm = |X | and dim E k z,sm = |X k |. Proof. The result follows from Proposition 3.7 for m = 0 like [Zha01, Proposition 5.5]. When µ 0, (3.6) also follows from Corollary 3.9, (2.8) and (3.14). Theorem 3.10 Cf. [BH01, Theorem 3]. We have spec ∆ z ⊂ 0, e -c|µ| ∪ C|µ|, ∞ .

  ) where the last equality is true because d z : im δ z → im d z is an isomorphism. For µ 0, we have m z,k , m j z,k |X k | by Corollary 3.9 and (3.22). Lemma 3.11. The numbers m j z,k are determined by the numbers m z,k . Proof. This follows from (3.22) with an easy induction argument on k.

  .25) where dx p = dx 1 p . . . dx n p = vol(x p ). Combining (3.23) for z and z + τ with (3.24) and (3.25), we obtain P z+τ,sm ẽp,z = q∈X ẽp,z , ẽq,z+τ ẽq,z+τ = q∈X e p,z , e q,z+τ e q,z+τ + O e -cµ = e p,z+τ + O µ -2 = ẽp,z+τ + O µ -2 . (3.26) Repeating (3.26) interchanging the roles of z and z + τ , we get P z,sm P z+τ,sm ẽp,z = P z,sm ẽp,z+τ + O µ -2 = ẽp,z + O µ -2 . This gives the second equality of the statement: for any α ∈ L 2 (M ; Λ), P z,sm α = p∈X α, ẽp,z ẽp,z = P z,sm P z+τ,sm p∈X α, ẽp,z ẽp,z + O µ -2 α = P z,sm α + O µ -2 α . By (3.26), ẽp,z -ẽp,z+τ 2 = ẽp,z 2 -2 ẽp,z , ẽp,z+τ + ẽp,z+τ 2 = 2 -2 P z+τ,sm ẽp,z , ẽp,z+τ = 2 -2 ẽp,z+τ , ẽp,z+τ + O µ -2 = O µ -2 , which means ẽp,z = ẽp,z+τ + O µ -1 . (3.27) The last stated equality follows from (3.26) and (3.27): for any α ∈ L 2 (M ; Λ), P z,sm α = p∈X α, ẽp,z ẽp,z = p∈X α, ẽp,z+τ ẽp,z+τ + O µ -1 α = P z+τ,sm α + O µ -1 α . Corollary 3.19. For every τ ∈ R, on L 2 (M ; Λ), d z+τ,sm -d z+τ P z,sm = O µ -1 (µ → +∞) . Proof. Since d z+τ = d z + τ η∧, it follows from Theorem 3.10 that d z+τ is bounded on E z,sm + E z+τ,sm , uniformly on µ 0. Hence, by Proposition 3.18, d z+τ,sm -d z+τ P z,sm = d z+τ (P z+τ,sm -P z,sm ) = O µ -1 .

  Then the function hλ (t) = Tr Be -tA P ⊥ A,λ = Tr Be -tA -Tr(Be -tA P A,λ ) (4n + b coefficients ãl are given by ãλ,l = a l if l < n + b a l -Tr(BP A,λ ) if l = n + b .

  The meromorphic function Γ(s)ζ(s, A, B, λ) has simple poles at the points s = (n + b -l)/a, for l ∈ N 0 with ãl = 0. The corresponding residues are ãl , and ζ(s, A, B, λ) is smooth away from these exceptional values of s. (iii) For µ > λ 0, let λ 1 • • • λ k denote the eigenvalues of A in (λ, µ], taking multiplicities into account, and let ψ 1 , . . . , ψ k be corresponding orthonormal eigensections. Then, for all s, ζ(s, A, B, µ) -ζ(s, A, B, λ) = k j=1 λ -s k Bψ j , ψ j . (iv) For smooth families {A } and {B } of such operators, if the non-constant branches of eigenvalues of {A } stay uniformly away from the value λ, then ζ(s, A , B , λ) is smooth in (s, ) away from the exceptional values of s given in (ii).

  checked. With this generality, we can write ζ(s, A, B, λ) = ζ(s, A, BP ⊥ A,λ ) = ζ(s, A, P ⊥ A,λ B) , and we have ζ(s, A, B) = ζ(s, A, BP A,λ ) + ζ(s, A, B, λ) .

  using that η∧ d z and η∧ δ -1 z change the degree of homogeneous forms. So, when ζ(s, ∆ z , η∧ D z w) is regular at s = 1, the value ζ(1, ∆ z , η∧ D z w) is a renormalized version of the super-trace of η∧ d -1

t↓0

  Tr s η∧ D -1 z e -t∆z P z,la , ζ(1, z) = lim t↓0 Tr s η∧ D -1 z e -t∆z Π ⊥ z . Proof. By Corollary 4.14, (4.23) and (4.24), and since Tr s η∧ D -1 z e -t∆z P z,la = O(e -ct ) (t → ∞) , we get ζ la (1, z) = ˆ∞ 0 Tr s η∧ D z e -u∆z P z,la du = lim t↓0 ˆ∞ t Tr s η∧ D z e -u∆z P z,la du = lim t↓0 Tr s η∧ D -1 z e -t∆z P z,la . The expressions of ζ(1, z) and ζ sm (1, z) follow from the expression of ζ la (1, z) and Proposition 4.1 (iii). Theorem 4.13 and Corollary 4.15 give Theorem 1.1 (i). Corollary 4.16. If µ 0, then (1.6) is true.

  lim µ→+∞ h ẽp,z , ẽq,z = lim µ→+∞ he p,z , e q,z = h(p)δ pq .

  Proposition 5.1 [BZ92, Appendix by F. Laudenbach, Proposition 2], [Lat94, Chapter 2], [Bur97, Theorem 2.1], [BH01, Theorem 1], [BFK10, Theorem 4.4], [Lau12, Sections A.2 and A.8], [Min15, Corollary 2.3.2]. The following holds for every p ∈ X k (k = 0, . . . , n):

  7, Ψ z e = 1 + O e -cµ e (µ → +∞) for all e ∈ C • . Using polarization (see e.g. [Kat95, Section I.6.2]) and conjugation, this means that, as µ → +∞, Ψ * z Ψ z = 1 + O e -cµ , Ψ z Ψ * z = 1 + O e -cµ . (5.8) Notation 5.2. Consider functions u(z) and v(z) (z ∈ C) with values in Banach spaces. The notation u(z) 0 v(z) (µ → ±∞) means u(z) = v(z) + O e -c|µ| (µ → ±∞) .

  .7) which vanishes if and only if g det F is flat. Moreover θ(F, g F ) is closed and its cohomology class of θ(F, g F ) is independent of the choice of g F [BZ92, Proposition 4.6]; this class measures the obstruction to the existence of a flat Hermitian structure on det F . Let e(M, ∇ M ) be the representative of the Euler class of M given by the Chern-Weil theory using g M , and let ψ(M, ∇ M ) be the current of degree n -1 on T M constructed in [MQ86] (see also [BGS90, Section 3], [BZ92, Section 3], [BH06, Section 2], [BH08, Section 4]). Identify the image of the zero section of T M with M , and identify the conormal bundle of M in T M with T * M . Let δ M be the current on T M defined by integration on M , and let π : T M → M be the vector bundle projection. Since M may not be oriented, the form e(M, ∇ M ) is valued in the orientation line bundle o(M ) of M , and the currents are the elements of Ω(M, o(M )) . Proposition 6.1 Bismut-Zhang [BZ92, Theorem 3.7]. The following holds: (i) For any smooth function λ : T M → R ± , under the mapping v → λv, ψ(M, ∇ M ) is changed into (±1) n ψ(M, ∇ M ).(ii) The current ψ(M, ∇ M ) is locally integrable, and its wave front set is contained inT * M (thus ψ(M, ∇ M ) is smooth on T M \ M ).(iii) The restriction of -ψ(M, ∇ M ) to the fibers of T M \M coincides with the solid angle defined by g M .(iv) We have dψ(M, ∇ M ) = π * e(M, ∇ M ) -δ M .

=

  -ˆM θ(F, g F ) ∧ X * ψ(M, ∇ M ) .

==-

  -ˆM (dh -µη) ∧ X * ψ(M, ∇ M ) , Tr s (log(Φ * -z Φ -z )) = -Tr s log Ψ -1 -z Φ * -z Φ -z Ψ -z = -Tr s log (Ψ * -z Ψ -z ) -1 (Φ -z Ψ -z ) * Φ -z Ψ -z .

e

  a k z d z,k-1 = d k-1 + O(e -cµ ) (µ → +∞) . (7.5) So d k d k-1 = lim µ→+∞ e (a k+1 +a k )z d z,k d z,k-1 = 0 . Hence the operator d = k d k on C • satisfies (d ) 2 = 0.Taking adjoints in (7.2)-(7.4), or using (5.5), we also getδ z,k = e -a k z (δ k + δ z,k ) ,(7.6)for k = 1, . . . , n, whereδ k e p = q∈X k-1 , γ∈T (p,q), η(γ)=-a k (γ) e q , (7.7) δ z,k e p = q∈X k-1 , γ∈T (p,q), η(γ)=-a k e z(a k +η(γ)) (γ)e q , (7.8) for p ∈ X k . Moreover (7.5) yields e a k z δ z,k = δ k + O(e -cµ ) (µ → +∞) . (7.9) Let δ = k δ k = (d ) * , and let D = d + δ , ∆ = (D ) 2 = d δ + δ d . We have C • = ker ∆ ⊕ im d ⊕ im δ , im ∆ = im D = im d ⊕ im δ , ker ∆ = ker D = ker d ∩ ker δ .

  and (7.9), on im δ z,k + im d z,k-1 , ∆ z = e -2a k µ ∆ + O(e -(2a k +c)µ ) (µ → +∞) .(7.12)Proposition 7.4. For k = 0, . . . , n and µ 0, the spectrum of ∆ z on im δ z,k + im d z,k-1 is contained in an interval of the formCe -2a k µ , C e -2a k µ (C C) .Proof. The positive eigenvalues of ∆ are contained in an interval [C 0 , C 0 ] (C 0 C 0 > 0). By (7.12), for µ 0 and e ∈ im δ z,k + im d z,k-1 ,∆ z e, e e 2a k µ ∆ e, e -C 1 e -(2a k +c)µ e 2 C 0 e -2a k µ -C 1 e -(2a k +c)µ e 2 , ∆ z e, e e 2a k µ ∆ e, e + C 1 e -(2a k +c)µ e 2 C 0 e -2a k µ + C 1 e -(2a k +c)µ e 2 .Then result follows taking 0 < C < C 0 and C > C 0 .7.3 Estimates of the nonzero small spectrum Theorem 7.5. If µ 0, the spectrum of ∆ z,sm on im δ z,sm,k + im d z,sm,k-1 is contained in an interval of the form [Cµe -2a k µ , C µe -2a k µ ] (C C) .

  0 Ψ z Π 1 z Φ z,sm .(7.13) 

  By ellipticity, D z and ∆ z have a discrete spectrum, and there is a Hodge type decomposition

	). Since d z has the same principal symbol as d, it is a generalized Dirac complex and
	∆ z a generalized Laplacian [BGV04, Definition 2.2]. If θ = η + dh for some h ∈ C ∞ (M, R), then
	the multiplication operator	
	e zh : (Ω(M ), d zθ ) → (Ω(M ), d zη )	(2.4)
	is an isomorphism of differential complexes, and therefore it induces an isomorphism H • zθ (M ) ∼ = H • zη (M ). Thus the isomorphism class of H • z (M ) only depends on ξ := [η] ∈ H 1 (M, R) and z ∈ C.

  : im D z → im D z are topological isomorphisms, and therefore the compositions d -1

	1 z and z Π 2 z . The restrictions d z Π 1 , δ -1 z + Π 2 z = Π 1 z , respectively; thus Π ⊥ Π 2 and D -1 z Π ⊥ are defined and continuous on Ω(M ). Moreover the diagram im δ z,k+1

z : im δ z → im d z , δ z : im d z → im δ z and D z

  R) is called nondegenerate if Hess p h is a nondegenerate symmetric bilinear form on T p M . The index of Hess p h, denoted by ind(p), is called the index of h at p. By the Morse lemma [Mil63, Lemma 2.2], this means that

  -cµ ) e p,z , ∂ ν e p,z = -ih p e p,z .

					e p,µ .	(3.35)
	So, by (3.11),				
	∂ µ e p,z =	n 4µ	-	|x p | 2 2	+ O(e (3.36)

  23, we get |x - p | instead of |x + p | 2 by (3.5) and (3.36). So ∂ z (Φ z Ψ z ) has the same final expression as ∂ z (Φ z Ψ z ) by (5.16).

	Theorem 5.19. As µ → +∞,

  z , e p,z e p + O e -cµ

	=	n 8µ	-	1 2	|x +
	But, by (3.12) and (3.33),				
	|x p | 2 e p,z , e p,z =	ˆ2r	ρ(x) 2 e -µx 2 dx	n-1
		-2r		

p | 2 e p,z , e p,z e p + O µ -1/2 .

Sometimes, the elements of T are called instantons, and the elements of T 1 proper instantons [Bot88].

In the sense of [Mel96, Section 1.1.8].

The union of the interiors of the boundary faces of codimension l.

Actually, H•(M, Z) is isomorphic to the homology of the complex of free Abelian groups generated by the currents W - p .

The authors are partially supported by the grants MTM2017-89686-P and PID2020-114474GB-I00 (AEI/FEDER, UE) and ED431C 2019/10 (Xunta de Galicia, FEDER)

Applying (4.13) and Lemma 4.4, we get

a j l (z)t (l-n)/2 , (4.17)

where

(-1) k-p a p,l (t, z) = n q=k+1

(-1) q-k-1 a q,l (t, z) ,

-(-1) j a j l (z) = n k=0

(-1) k ka k,l (z) .

This a 1 l (z) is sometimes called the derived heat invariant of ∆ z [GS77], [RS71], [Gil95, page 181], [ALG20].

For µ 0, Lemma 4.4, Corollary 4.5 and (4.17) have obvious versions for hj k (t, z) and hj (t, z), with the similar proofs. The coefficients of the corresponding asymptotic expansions are denoted by ãj k,l (z) and ãj l (z).

Theorem 4.7 [ALG20, Theorem 1.3 (1b)]. For all l n, a 1 l (z) and ã1 l (z) are independent of z. Remark 4.8. Again, [ALG20, Theorem 1.3 (1b)] gives Theorem 4.7 in case of a 1 l (z) for real z, but this can be extended for non-real z like in Remark 4.3. Then the case of ã1 l (z) follows from (4.15). In Theorem 4.7, the case of a 1 l (z) is true for any η ∈ Z 1 (M, R). Remark 4.9. Theorem 4.2 and the case of a 1 l (z) in Theorem 4.7 hold for any η ∈ Z 1 (M, R) (there is no need of other conditions). This is also true for all properties of Sections 4.4 and 4.5 concerning K z,k,t (x, y), e k,l (x, z), h k (t, z), h(t, z), h j (t, z), h j k (t, z), a k,l (z), a l (z), a j k,l (z), ζ(s, ∆ z , Π j z w) and θ(s, z).

Regularity

By (4.8), we have an asymptotic expansion of the form Tr s η∧ D z e -t∆z P z,la ∼ ∞ l=0 bl (z)t (l-n-1)/2 .

(4.18)

Lemma 4.10. The function ζ la (s, ∆ z , η∧ D z w) has a simple pole at every s = (n + 1 -l)/2 with bl (z) = 0, for 1 l n and for even/odd l n + 2 if n is even/odd, whose residue is bl (z), and it is smooth away from these values of s. Moreover the value of ζ la (s, ∆ z , η∧ D z w) at every regular point s

Proof. By Proposition 4.1 (ii), the product Γ(s)ζ la (s, ∆ z , η∧ D z w) has a simple pole at every s = (n + 1 -l)/2 with bl (z) = 0 (l ∈ N 0 ), whose residue is bl (z), and ζ la (s, ∆ z , η∧ D z w) is smooth away from these exceptional values of s. Then the result follows because Γ(s) has a simple pole at every point s = -k (k ∈ N 0 ), whose residue is (-1) k /k!, and it is smooth on C \ (-N 0 ).

By Corollary 4.6 and using the notation (1.4) and (1.5), we get

Thus the following result follows like Lemma 4.10.

But, by Proposition 3.1 (iii), (3.9)-(3.12) and (5.6), ˆ

(5.10) (When τ = 0, the last equality is the same as [Zha01,Eq. (6.30)].)

For q = p in X k , since e p,z = 0 on W - q because U p ∩ W - q = ∅ (Section 5.1.6), like in the previous case, we get ˆ W - q e (z+τ ) ĥ- q (ι - q ) * P z,sm e p,z 0 0 .

Proof. Apply Theorem 5.3 and Corollary 3.9.

Remark 5.5. The argument of the proof of Theorem 5.3 shows that

Corollary 5.6.

Proof. This is a direct consequence of (5.8).

Corollary 5.7. For any τ ∈ R, consider

Proof. The first relation is a restatement of Theorem 5.3. The second relation follows by conjugating the first one by Ψ z and using Corollary 5.6.

Proof. By Corollaries 5.6 and 5.7, on E z,sm ,

In the rest of this section, we consider Φ z : E z,sm → C • unless otherwise indicated.

Corollary 5.9. As µ → +∞,

.

Proof. We show the first relation, the other one being similar. By Corollaries 5.6 and 5.8, on E z,sm ,

.

Corollary 5.10. As µ → +∞,

Proof. By Corollaries 5.7 and 5.9,

Corollary 5.11. For every τ ∈ R, as µ → +∞,

Proof. By Corollaries 5.6, 5.7 and 5.9 and Proposition 3.18,

Proof. By Theorem 3.10 and Corollary 5.7,

Now, taking adjoints and using Corollaries 5.6, 5.9 and 5.10, we obtain

The orthogonal projections of

(5.11)

Corollary 5.13. For j = 0, 1, 2, as µ → +∞,

Proof. We only prove the case of Π 2 z , the other cases being similar. Let α z,1 , . . . , α z,pz be an orthonormal frame of δ z (E k+1 z,sm ). So Φ z α z,1 , . . . , Φ z α z,pz is a base of Φ z δ z (E k+1 z,sm ) for µ 0 by Corollary 5.4. Applying the Gram-Schmidt process to this base, we get an orthonormal base f z,1 , . . . , f z,pz of Φ z δ z (E k+1 z,sm ). By Corollary 5.9,

of z.

Remark 6.6. In the case where η = dh, Theorem 1.1 (ii) agrees with Theorem 4.23. In fact, by Proposition 6.1 (iv), Theorem 1.1 (ii) and the Stokes formula,

7. Asymptotics of the small zeta-invariant

Condition on the integrals along instantons

Let

Thus (d) means that M p = M k for all k = 1, . . . , n and p ∈ X k . The following result will be proved in Appendix A.

there is some η ∈ ξ, satisfying (a) and (c) with the given X and some metric g, such that M p (η, X) = a k for all k = 1, . . . , n and p ∈ X k .

Remark 7.2. If ξ = 0, for p ∈ X k , q ∈ X k-1 and γ, δ ∈ T (p, q) ⊂ T 1 p , the period ξ, γ δ-1 = η(γ) -η(δ) may not be zero. Hence it may not be possible to get η(γ) = -a k for all γ ∈ T 1 p , contrary to the case where ξ = 0.

From now on, we assume η satisfies (d), besides (a) and (c). By Theorem 7.1, this is possible for any prescription of the class ξ

Then -η also satisfies (a), (c) and (d) with -X and g, and M k (-η, -X) = a n-k+1 . So, by Corollary 3.15,

Lemma 7.3. Suppose M is oriented and n is even. Then

If moreover all numbers a k are equal one another, then z sm = 0.

Proof. Use Lemma 3.14 and Corollary 3.16.

Asymptotics of the perturbed Morse operators

Consider the notation of Section 5.2.2. By (5.4),

5.13, 5.15 and 5.17, and Theorem 7.5,

Theorem 1.1 (iii) follows from Corollaries 3.9 and 4.15 and Theorem 7.7.

Remark 7.8. Theorem 1.1 (iii) agrees with Corollaries 4.20 to 4.22 by (7.1) and Lemma 7.3.

Prescription of the asymptotics of the zeta invariant

We prove Theorem 1.2 here. By Theorem 7.1, given a 0, there is some η 0 ∈ ξ and some metric g satisfying (a) and (d) with the given X, and so that M k (η 0 , X) = a for all k = 1, . . . , n. Using the notation of Section 3.1, we are going to modify η 0 only in every U p for p ∈ X 0 ∪ X n .

Fix any > 0 such that, for every p

For any c 0 , c n 0, let η = η(c 0 , c n ) = η 0 -c 0 df 0 + c n df n . This closed 1-form satisfies (a) and (d) with X and g, and we have

Hence, by Corollary 3.15,

By (a), e(M, ∇ M ) = 0 on every U p (p ∈ X ). So, using the Stokes formula,

Combining (8.1) and ( 8.2), we obtain

So, if n is even (respectively, odd), given any τ ∈ R (respectively, τ 0), we get z(η(c 0 , c n )) = τ for some c 0 , c n 0 since |X 0 |, |X n | > 0 by (b). Now assume M is oriented and n is even. Then z(η 0 ) = -z(-η 0 ) by (6.9) and Lemma 7. 

Hence z(η) = τ for some c 0.

The switch of the order of integration

The proof of Theorem 1.3 is given in this section. Let S be the Schwartz space on R. Recall that the space of tempered distributions is the continuous dual space S , with the topology of uniform convergence on bounded sets. Suppose first that (1.7) is used as definition of Z µ . By Theorem 1.1, the expression (1.7) defines a tempered distribution Z µ for µ 0. Moreover, using also the formula of the inverse Fourier transform, we get, for f ∈ S,

To get Theorem 1.3, it only remains to prove the following.

Theorem 9.1. Both (1.3) and (1.7) define the same tempered distribution Z µ for µ 0.

Proposition 9.2. For µ 0, t > 0 and f ∈ S,

Proof. By [DS88b, Corollary XI.9.8 and Lemma XI.9.9 (d)],

Tr s η∧ δ z e -u∆z η∧ δ z e -u∆z

where | | 1 denotes the trace norm. Hence

The operator (I + D 2 ) -N is of trace class for any N > n. Therefore

By Corollary 2.3 and Theorem 7.5, for µ 0 and α ∈ L 2 (M ; Λ),

Proof of Theorem 9.1. Using Theorem 1.1 and Proposition 9.2 to apply the Lebesgue's dominated convergence theorem and Fubini's theorem, we compute

Tr s η∧ δ z e -u∆z f (ν) dν du .

Appendix A. Integrals along instantons

Theorem 7.1 is proved here. We show the case where a n • • • a 1 0. Then the case where a 1 • • • a n 0 follows by using -X and -ξ. By [Sma61, Theorem B], there is some Morse function h on M such that h(X k ) = {k} (k = 0, . . . , n), Xh < 0 on M \ X , and h is in standard form with respect to X; in particular, Crit k (h) = X k . Now we proceed like in the proof of [BH04, Proposition 16 (i)]. Since X is finite, there is some η ∈ ξ such that η = 0 on some open neighborhood U p of every p ∈ X . Let

0, then the representative η := η + C dh of ξ satisfies η (X) < 0 on M \ X . For k = 0, . . . , n, let I ± k ⊂ R be the closed interval with boundary points k ± 1/4 and k ± 1/2. Since there are no critical values of h in I ± k , every

and there are identities

k . Since the α-and ω-limits of the orbits of X are zero points, the orbit of φ through every point

Note that T k and M k are compact submanifolds with boundary of dimension n, and every V p (respectively, K p ) is open (respectively, closed) in T k . We also get smooth functions λp (p ∈ X k ) on T k determined by the condition λp (φ t (x)) = λ + p (x) for all x ∈ Σ + k \ K + k and 0 t τ k (x). They satisfy 0 λp 1, supp λp ⊂ V p , and λp = 1 on K p .

Let

We can suppose C > A and a 1 > C + A > 0. For p ∈ X k , q ∈ X k-1 and γ ∈ T (p, q), we have

Claim 1. For k = 0, . . . , n, there is a smooth function

The statement follows directly from Claim 1 taking η = η + df n . So we only have to prove this assertion.

We proceed by induction on k. For k = 0, we choose f 0 = 0. Then (A.4) is vacuous, (A.2) and (A.3) are trivial, and (A.5) is given by (A.1). Now take any k 1 and assume f k-1 is defined and satisfies (A.2)-(A.5). Let

For every p ∈ X k , we have b p < a k-1 a k because f k-1 satisfies (A.5). So there is a smooth function h 

k and h+ k on T + k , can be combined to produce a smooth function hk on T k . Since hk = 0 around Σ - k and hk = a k -b k around Σ + k , there is a smooth extension of hk to M , also denoted by hk , which is constant on M \ T k .

Let f k = f k-1 + hk on M . This smooth function satisfies (A.2) because f k-1 satisfies (A.2), and X induces the opposite of the standard orientation on every fiber {x} × I ± k ≡ I ± k of T ± k (x ∈ Σ ± k ). It also satisfies (A.3) and (A.4) for p ∈ X l with 1 l < k because f k-1 satisfies these properties and d hk is supported in the interior of T k .

Next, take any p ∈ X k , q ∈ X k-1 and γ ∈ T (p, q) ⊂ T 1 p . We have γ ∩ T - k ≡ {x} × I - k for some x ∈ K Here, the equality holds when the maximum of (A.6) is achieved at γ. Hence f k also satisfies (A.4) for p ∈ X k . Finally, take any p ∈ X k , u ∈ X k+1 and δ ∈ T (u, p) ⊂ T 1 u ⊂ T where the second equality is true because f k-1 satisfies (A.3), and the last inequality holds by (A.1). So f k satisfies (A.5).