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Zeta invariants of Morse forms

Jesús A. Álvarez López, Yuri A. Kordyukov and Eric Leichtnam

Abstract

Given a closed real 1-form η on a closed Riemannian manifold (M, g), let dz, δz and ∆z

be the induced Witten’s type perturbations of the de Rham derivative and coderivative
and the Laplacian on differential forms on M , parametrized by z ∈ C, and let ζ(s, z)
be the zeta function of s ∈ C given by ζ(s, z) = Trs(η∧ δz∆−sz ) when <s � 0. For a
class of Morse forms η, we prove that ζ(s, z) is smooth at s = 1 for |<z| � 0, and
the zeta invariant ζ(1, z) converges to some z ∈ R as <z → +∞, uniformly on =z. We
describe z in terms of the instantons of an auxiliary Smale gradient-like vector field X
and the Mathai-Quillen current on TM defined by g. Any real cohomology class has a
representative η satisfying the needed hypothesis. If n is even, we can prescribe any real
value for z by perturbing g, η and X; if moreover M is oriented, we can also achieve
the same limit as <z → −∞. This is used to define and describe certain tempered
distributions induced by g and η. These distributions appear in another publication as
the contributions from the compact leaves preserved by the flow in a trace formula for
simple foliated flows on closed foliated manifolds, which gives a solution to a problem
proposed by C. Deninger.
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1. Introduction

1.1 Witten’s perturbed operators

Let M be a closed n-manifold. For any smooth function h on M , Witten [Wit82] introduced
a perturbed de Rham differential operator dµ = d + µdh∧, depending on a parameter µ ∈ R.
Endowing M with a Riemmanian metric g, we have a corresponding perturbed codifferential
operator δµ = δ − µdhy, and a perturbed Laplacian ∆µ = dµδµ + δµdµ. Since dµ = e−µh d eµh,
it defines the same Betti numbers as d. However ∆µ and the usual Laplacian ∆ have different
spectrum in general. In fact, if h is a Morse function and g is Euclidean with respect to Morse
coordinates around the critical points, then the spectrum of ∆µ develops a long gap as µ→ +∞,
giving rise to the small and large spectrum. The eigenforms of the small/large eigenvalues gener-
ate the small/large subcomplex, Eµ,sm/la. When h is a Morse function, Witten gave a beautiful
analytic proof of the Morse inequalities by analyzing the small spectrum. This was refined by
subsequent work of Helffer and Sjöstrand [HS85] and Bismut and Zhang [BZ92, BZ94], showing
that, if moreover X := − gradh is a Smale vector field, then the Morse complex (C•,d) of X can
be considered as the limit of (Eµ,sm, dµ). More precisely, for certain perturbed Morse complex
(C•,dµ), isomorphic to (C•,d), there is a quasi-isomorphism Φµ : (Ez,sm, dµ) → (C•,dµ), de-
fined by integration on the unstable cells of the zero points of X, which becomes an isomorphism
for µ� 0 and almost isometric as µ→ +∞ (after rescaling at every degree).

We can replace dh with any real closed 1-form η, obtaining a generalization of the Witten’s
perturbations, dµ, δµ and ∆µ. Now dµ need not be gauge equivalent to d, obtaining new twisted
Betti numbers βkµ. However the numbers βkµ have well defined ground values βkNo, called the
Novikov numbers, which depend upon the de Rham cohomology class [η] ∈ H1(M,R). Assume
that:

(a) η is a Morse form (it has Morse type zeros), and g is Euclidean with respect to Morse
coordinates around the zero points of η.

(Some concepts used in this section are recalled in Sections 3.1 and 5.1.) Then ∆µ also develops
a long gap separating a small spectrum and a large spectrum, and the analysis of the small
spectrum gives Morse inequalities for the Novikov numbers. Take any auxiliary vector field X
such that:

(b) X has Morse type zeros, and is gradient-like and Smale; and

(c) η is Lyapunov for X, and η and g are in standard form with respect to X.

Then the small complex approaches a perturbed Morse complex of X. We refer to work by
Novikov [Nov81, Nov82], Pajitnov [Paj87], Braverman and Farber [BF97], Burghelea and Haller
[BH01, BH04, BH08], and Harvey and Minervini [HM06, Min15].

We can similarly define the perturbation dz = d+z η∧ with parameter z = µ+iν ∈ C (µ, ν ∈ R
and i =

√
−1). Its adjoint is δz = δ − z̄ ηy, and we have a corresponding perturbed Laplacian

∆z = dzδz+δzdz. As a first step in our study, we prove extensions of the above results to this case,
taking limits as |µ| → ∞, uniformly on ν. First, assuming (a), we get the long gap in the spectrum
of ∆z separating the small and large spectrum, which depends only on µ (Theorem 3.10). Second,
assuming (a)–(c), we show that the quasi-isomorphism Φz : (Ez,sm, dz) → (C•,dz) becomes an
isomorphism for |µ| � 0 and almost isometric as |µ| → ∞ (Theorem 5.3). To get that the
convergence is uniform on ν, we show a version of a Sobolev inequality for a Sobolev norm
defined by ∆iν , where the constant involved is independent of ν (Proposition 2.2). Then we
adapt the arguments of Bismut and Zhang [BZ92, BZ94] (see also [Zha01]).
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1.2 Zeta invariants of some Morse forms

Let Π⊥z and Π1
z be the orthogonal projections to the images of ∆z and dz, and let w be the

degree involution. We consider the zeta function ζ(s, z) = ζ(s, z, η) := ζ(s,∆z, η∧ δzw) [Gil95,
Section 1.12.4]. As a function of s, this is the meromorphic extension to C of the function
Trs(η∧ δz∆−sz Π⊥z ) = Trs(η∧ d−1

z ∆−s+1
z Π1

z), which is well defined and holomorphic for <s � 0.
Then the zeta invariant ζ(1, z) would be a renormalized interpretation of the super-trace of
η∧ d−1

z Π1
z, which is not of trace class by the Weyl’s law. However, according to the general

theory of zeta functions of operators, ζ(s, z) might have a simple pole at s = 1. To study this zeta
function, we decompose it as sum of the terms defined by the contributions from the small/large
spectrum, ζsm/la(s, z) = ζsm/la(s, z, η). As a function of s, ζsm(s, z) is always holomorphic on C.

For a class of Morse forms, our first main theorem states that ζ(s, z) is smooth at s = 1 for
|µ| � 0, and describes the asymptotic behavior of ζ(1, z) as µ → ±∞, uniformly on ν. In fact,
since

ζ(s, z, η) = −ζ(s,−z,−η) , ζsm/la(s, z, η) = −ζsm/la(s,−z,−η) , (1.1)

it is enough to consider the case where µ� 0 and take the limit as µ→ +∞.

We use the current ψ(M,∇M ) of degree n− 1 on TM constructed by Mathai and Quillen in
[MQ86], depending on the Levi-Civita connection∇M . This current is smooth on the complement
of the zero section, where it is given by the solid angle. It is also locally integrable, and its wave
front set is contained in the conormal bundle in T ∗TM of the zero section of TM . Since this set
does not meet the conormal bundle of the map X : M → TM (assuming (b)), X∗ψ(M,∇M ) is
well defined as a current on M . Assuming (a)–(c), consider the real number

zla = zla(M, g, η) =

ˆ
M
η ∧X∗ψ(M,∇M ) ,

which is known to be independent of X [BZ92, Proposition 6.1].

Now suppose also that:

(d) for every zero point p of X, the maximum value of the integrals of η along the instantons
of X with α-limit {p} only depends on the Morse index k of p.

This maximum value is denoted by −ak for some ak > 0. Let m1
k denote the dimension of

dz(E
k−1
z,sm) for |µ| � 0, which is independent of z. Consider also the real number

zsm = zsm(M, g, η,X) =
n∑
k=1

(−1)k
(
1− eak

)
m1
k ,

and let z = z(M, g, η,X) = zsm + zla.

Theorem 1.1. Let M ≡ (M, g) be a closed Riemannian manifold of dimension n. Let η be a
closed real 1-form on M satisfying (a).

(i) For µ� 0, ζ(s, z) is smooth for s 6= (1− k)/2 (k = 0, 1, . . . ), and

ζ(1, z) = lim
t↓0

Trs
(
η∧ d−1

z e−t∆zΠ1
z

)
.

(ii) Let X be a vector field on M satisfying (b)–(c). Then

ζla(1, z) = zla +O(µ−1/2)

as µ→ +∞, uniformly on ν.
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(iii) If moreover (d) holds, then

ζsm(1, z) = zsm +O(µ−1)

as µ→ +∞, uniformly on ν.

The existence of the limit of Theorem 1.1 (i) is rather surprising because η∧ d−1
z e−t∆zΠ1

z

is weakly convergent to η∧ d−1
z Π1

z. An expression similar to Trs(η∧ d−1
z e−t∆zΠ1

z) was used by
Mrowka, Ruberman and Saveliev to define a cyclic eta invariant [MRS16]. Theorem 1.1 (iii)
shows that zsm and z are also independent of X. Thus X will be omitted in their notation. In
the notation of zsm/la and z, we may also omit M or g if they are fixed.

By (1.1), if we take µ→ −∞ in Theorem 1.1, we have to replace zsm/la(η) with −zsm/la(−η).
Descriptions of −zsm/la(−η) are given in (6.9) and (7.1).

Our second main theorem is about the prescription of z = z(M, g, η) without changing the
cohomology class of η.

Theorem 1.2. Let M be a smooth closed manifold of dimension n.

(i) Let X be a vector field satisfying (b). For every ξ ∈ H1(M,R) and τ � 0, there is some
η ∈ ξ and a Riemannian metric g satisfying (a), (c) and (d) with X such that z(M, g, η) = τ .
If n is even, this property holds for all τ ∈ R.

(ii) Assume M is oriented and n is even. Then, for every ξ ∈ H1(M,R) and τ ∈ R, there
is some η ∈ ξ, a Riemannian metric g and a vector field X satisfying (a)–(d) such that
±z(M, g,±η) = τ .

1.3 A distribution associated to some Morse forms

A trace formula for simple foliated flows on closed foliated manifolds was conjectured by C. Deninger
(see e.g. [Den08]). He was motivated by analogies with a formula in Arithmetics, and previous
work of Guillemin and Sternberg [Gui77]. This trace formula is an expression for a Lefschetz
distribution in terms of infinitesimal data of the flow at the fixed points and closed orbits. This
Lefschetz distribution should be an analogue of the Lefschetz number for the action induced by
the flow on some leafwise cohomology, whose value is a distribution on R—the precise definition
of these notions is part of the problem. In [ALK02, ALK08], the first two authors proved such
a trace formula when the flow has no preserved leaves; see also the contributions [Lei08, Lei14]
by the third author. The general case is considerably more involved. In [ALKL20], we propose a
solution to this problem using a few additional ingredients. One of them is the b-trace introduced
by Melrose [Mel93]. Since the b-trace is not really a trace, it produces an extra term, denoted by
Z, in the same way as the eta invariant shows up in Index Theory on manifolds with boundary.
In our trace formula, the term Z is a contribution from the compact leaves preserved by the
flow, which depends on the choice of a form defining the foliation and a metric on the ambient
manifold. But Z may not be well defined in general; it will be proved that appropriate choices
of the form and the metric guarantee its existence.

Precisely, we would like to define

Z = Z(M, g, η) = lim
µ→+∞

Zµ , (1.2)

in the space of tempered distributions, where Zµ = Zµ(M, g, η) (µ � 0) should be a tempered
distribution defined by

〈Zµ, f〉 = − 1

2π

ˆ ∞
0

ˆ ∞
−∞

Trs
(
η∧ δze−u∆z

)
f̂(ν) dν du , (1.3)
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for any Schwartz function f , where Trs denotes the supertrace and f̂ the Fourier transform of f .

Let δ0 denote the Dirac distribution at 0 on R. The problem about the definition of Z is
solved in our third main theorem for the same class of Morse forms as before.

Theorem 1.3. Let M ≡ (M, g) be a closed Riemannian manifold of dimension n. Let η be a
closed 1-form on M satisfying (a), (c) and (d) with some vector field satisfying (b). Then (1.2)
and (1.3) define the tempered distribution Z = zδ0.

According to Theorems 1.2 and 1.3, we can choose η and g in the trace formula for foliated
flows so that Z(M, g, η) = 0 if n is even, or Z(M, g,±η) = 0 if moreover M is oriented, achieving
the original expression of Deninger’s conjecture.

It looks clear that extensions of Theorems 1.1 to 1.3 with coefficients in flat vector bundles
could be similarly proved. We only consider complex coefficients for the sake of simplicity since
this is enough for our application.

1.4 Some ideas of the proofs of Theorems 1.1 to 1.3

Theorem 1.1 (i) follows by using that the derived heat trace invariants up to order n of the elliptic
complex dz are independent of z, proved by Gilkey and the first author [ALG20] (Section 4.6).

Consider the meromorphic function

θ(s, z) = −ζ(s,∆z,Nw) , (1.4)

where N is the number operator, and write

θ(s, z) = θsm(s, z) + θla(s, z) ,

where

θsm/la(s, z) = −ζsm/la(s,∆z,Nw) , (1.5)

using the contributions from the small/large spectrum as above. Thus eθ
′(0,z)/2 is the factor used

to define the Ray-Singer metric on detH•z (M) [BZ92], using a prime to denote ∂s. We obtain
(Corollary 4.16)

ζla(1, z) = ∂zθ
′
la(0, z) . (1.6)

This equality allows us to use the deep relation between the Ray-Singer metric and the Morse
metric on detH•z (M), proved by Bismut-Zhang [BZ92, BZ94]. In this way, using also that
Φz : Ez,sm → C• is an isomorphism, we obtain that ζla(1, z) is asymptotic to zla as µ → +∞
(Section 6.2). This proves Theorem 1.1 (ii).

When η is exact, we show this asymptotic expression of ζla(1, z) assuming only (a) (Sec-
tion 4.7), without using (1.6) and the indicated strong result of Bismut-Zhang. Instead, we apply
that the index density of the elliptic complex dz is independent of z, proved by Gilkey and the
first author [ALG21] and by the authors [ALKL20].

On the other hand, given any ξ ∈ H1(M,R) and a vector field X satisfying (b), we prove
that there is some η ∈ ξ and a metric g satisfying (a), (c) and (d) (Theorem 7.1). This can be
considered as an extension of a theorem of Smale stating the existence of nice Morse functions
[Sma61, Theorem B] (the case where ξ = 0). Its proof is relegated to Appendix A because of its
different nature.

The properties (a)–(d) are used to give an asymptotic description of dz as µ → +∞ (Sec-
tion 7.2). From this asymptotic description and using that Φz : Ez,sm → C• is an isomorphism for
µ� 0, we get upper and lower bounds of the nonzero small spectrum of ∆z (Theorem 7.5), which
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are independent of ν. This is a partial extension of accurate descriptions of the nonzero small
eigenvalues achieved in the case where η is exact and the parameter is real [LPNV13, Mic19].
With the same procedure and using the bounds of the nonzero small spectrum, it also follows
that ζsm(1, z) is asymptotic to zsm as µ→ +∞ (Section 7.4), showing Theorem 1.1 (iii).

Next, by modifying η and X around its zero points of index 0 and n, without changing the
cohomology class of η, we can achieve any real number as z(η), or as both ±z(±η) if M is oriented
and n even (Section 8). This shows Theorem 1.2.

If it is possible to switch the order of integration in (1.3),

〈Zµ, f〉 = − 1

2π

ˆ ∞
−∞

ˆ ∞
0

Trs
(
η∧ δze−u∆z

)
f̂(ν) du dν

=
1

2π

ˆ ∞
−∞

lim
t↓0

Trs
(
η∧ d−1

z e−t∆zΠ1
z

)
f̂(ν) dν , (1.7)

then Theorem 1.3 is an easy consequence of Theorem 1.1. Thus it only remains to prove that
both (1.3) and (1.7) define the same tempered distribution Zµ. This follows from the Lebesgue’s
dominated convergence theorem and Fubini’s theorem (Section 9). The verification of the hy-
pothesis of the Fubini’s theorem requires the above lower estimate of the nonzero spectrum.

2. Witten’s perturbations

2.1 Preliminaries on the Witten’s perturbations

2.1.1 Basic notation LetM be a closed Riemannian n-manifold. For any smooth Euclidean/Hermitean
vector bundle E over M , let Cm(M ;E), C∞(M ;E), L2(M ;E), L∞(M ;E) and Hm(M ;E) de-
note the spaces of distributional sections that are Cm, C∞, L2, L∞ and of Sobolev order m,
respectively; as usual, E is removed from this notation if it is the trivial line bundle. Consider
the induced scalar product 〈 , 〉 and norm ‖ ‖ on L2(M ;E), and the induced norm ‖ ‖L∞ on
L∞(M ;E). Fix also norms, ‖ ‖m on every Hm(M ;E) and ‖ ‖Cm on Cm(M ;E) with ‖ ‖ = ‖ ‖0
and ‖ ‖C0 = ‖ ‖L∞ . If P is the orthogonal projection of L2(M ;E) to some closed subspace V ,
then P⊥ denotes the orthogonal projection to V ⊥.

Let TCM = TM⊗C and T ∗CM = T ∗M⊗C. The exterior bundle with coefficients in K = R,C is
denoted by ΛK = ΛKM , and let Ω(M,K) = C∞(M ; ΛK); in particular, C∞(M,K) = Ω0(M,K).
The Levi-Civita connection is denoted by ∇ = ∇M . As usual, d and δ denote the de Rham
derivative and coderivative, and let D = d+δ and ∆ = D2 = dδ+δd (the Laplacian). Let Z(M,K)
and B(M,K) denote the kernel and image of d in Ω(M,K). Thus H•(M,K) = Z(M,K)/B(M,K)
is the de Rham cohomology with coefficients in K. We typically consider complex coefficients, so
we will omit K from all of the above notation just when K = C. Take ‖ ‖m and ‖ ‖Cm given on
Ω(M) by

‖α‖m =

m∑
k=0

‖Dkα‖ , ‖α‖Cm =
m∑
k=0

‖∇kα‖L∞ .

For any homogeneous linear operator between graded vector spaces, T : V • → W •, the
notation Tk means its precomposition with the canonical projection of V • to V k. On any graded
vector space V •, let w and N be the degree involution and number operator; i.e., w = (−1)k and
N = k on V k.

For any η ∈ Ω1(M,R) with η] = X ∈ X(M) := C∞(M ;TM), let LX and ιX denote the
Lie derivative and interior product with respect to X, and let ηy = −(η∧)∗ = −ιX . Using the
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identity Cl(T ∗M) ≡ ΛM defined by the symbol of filtered algebras, the left Clifford multiplication
by η is c(η) = η∧ + ηy, and the composition of w with the right Clifford multiplication by η is
ĉ(η) = η∧−ηy; in particular, c(η)∗ = −c(η) and ĉ(η)∗ = ĉ(η). Recall that, for any h ∈ C∞(M,R),

[D,h] = ĉ(dh) . (2.1)

In the whole paper, unless otherwise indicated, we will use the following notation without
further comment. We use constants C, c > 0 without even mentioning their existence, and their
precise values may change from line to line. We may add subindices or primes to these constants
if needed. We also use a complex parameter z = µ+ iν ∈ C (µ, ν ∈ R and i =

√
−1). Recall that

∂z = (∂µ − i∂ν)/2 and ∂z̄ = (∂µ + i∂ν)/2.

2.1.2 Perturbations defined by a closed real 1-form For any ω ∈ Z1(M), we have the Witten’s
type perturbations dω, δω, Dω and ∆ω of d, δ, D and ∆. Given η ∈ Z1(M,R) and z ∈ C, we write
dz = dzη, δz = δη, Dz = Dzη and ∆z = ∆zη. These operators have the following expressions:

dz = d+ z η∧ , δz = d∗z = δ − z̄ ηy ,
Dz = dz + δz = D + µĉ(η) + iνc(η) = Diν + µĉ(η) ,

∆z = D2
z = dzδz + δzdz = ∆ + µHη + iνJη + |z|2|η|2 = ∆iν + µHη + µ2|η|2 ,

 (2.2)

where, for X = η],

Hη = Dĉ(η) + ĉ(η)D = L∗X + LX , Jη = Dc(η) + c(η)D = L∗X − LX .

Note that Hη is of order zero and Jη of order one.

As families of operators, dz and δz are holomorphic and anti-holomorphic functions of z,
respectively. More precisely, it follows from (2.2) that

∂zdz = η∧ , ∂zδz = 0 , ∂z∆z = η∧ δz + δz η∧ ,
∂z̄dz = 0 , ∂z̄δz = −ηy , ∂z̄∆z = −ηy dz − dz ηy .

}
(2.3)

The operator dz defines an elliptic complex on Ω(M), whose cohomology is denoted by
H•z (M). Since dz has the same principal symbol as d, it is a generalized Dirac complex and
∆z a generalized Laplacian [BGV04, Definition 2.2]. If θ = η+ dh for some h ∈ C∞(M,R), then
the multiplication operator

ezh : (Ω(M), dzθ)→ (Ω(M), dzη) (2.4)

is an isomorphism of differential complexes, and therefore it induces an isomorphism H•zθ(M) ∼=
H•zη(M). Thus the isomorphism class of H•z (M) only depends on ξ := [η] ∈ H1(M,R) and z ∈ C.
By ellipticity, Dz and ∆z have a discrete spectrum, and there is a Hodge type decomposition

Ω(M) = ker ∆z ⊕ im dz ⊕ im δz , (2.5)

as topological vector spaces. It induces a Hodge type isomorphism

H•z (M) ∼= ker ∆z . (2.6)

We also have

ker ∆z = kerDz = ker dz ∩ ker δz , im ∆z = imDz = im dz ⊕ im δz .

The orthogonal projections of Ω(M) to ker ∆z, im dz and im δz are denoted by Πz = Π0
z, Π1

z and
Π2
z, respectively; thus Π⊥z = Π1

z + Π2
z. The restrictions dz : im δz → im dz, δz : im dz → im δz and
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Dz : imDz → imDz are topological isomorphisms, and therefore the compositions d−1
z Π1, δ−1

z Π2

and D−1
z Π⊥ are defined and continuous on Ω(M). Moreover the diagram

im δz,k+1
dz,k−−−−→ im dz,k

∆z,k

y y∆z,k+1

im δz,k+1
dz,k−−−−→ im dz,k

(2.7)

is commutative—recall that dz,k, δz,k and ∆z,k are the compositions of the projection to Ωk(M)
with dz, δz and ∆z. The alternate sum of the dimensions βkz = βkz (M, ξ) = dimHk

z (M) (k =
0, . . . , n) is the Euler characteristic [Far04, Proposition 1.40],∑

k

(−1)kβkz = χ(M) . (2.8)

(This is also a consequence of the index theorem.) For every degree k, βkz is independent of z
outside a discrete subset of C, where βkz jumps (Mityagin and Novikov [Nov02, Theorem 1]).
This ground value of βkz is called the k-th Novikov Betti number, and will be denoted by βkNo =
βkNo(M, ξ). Moreover it will be shown in Section 5.2.2 that

βkz = βkNo for |µ| � 0 . (2.9)

(When z is real, this is proved in [Far95, Theorem 2.8], [BF97, Lemma 1.3], [BH04, Proposi-
tion 4].) Thus the discrete set of parameters z ∈ C with βkz (M, ξ) > βkNo(M, ξ) for some degree
k is contained in a strip |µ| 6 C.

By (2.2) and since η is real, for all α ∈ Ω(M),

dzα = dz̄ᾱ , δzα = δz̄ᾱ , Dzα = Dz̄ᾱ , ∆zα = ∆z̄ᾱ . (2.10)

So conjugation induces C-antilinear R-isomorphisms

Hk
z (M) ∼= Hk

z̄ (M) , ker ∆z,k
∼= ker ∆z̄,k ,

yielding βkz = βkz̄ .

2.1.3 Case of an exact form When η = dh for some h ∈ C∞(M,R), we have the original
Witten’s perturbations, which satisfy

dz = e−zh d ezh = e−iνh dµ e
iνh , δz = ez̄h δ e−z̄h = e−iνh δµ e

iνh ,

Dz = e−iνhDµ e
iνh , ∆z = e−iνh ∆µ e

iνh .

}
(2.11)

Thus the multiplication operator

ezh : (Ω(M), dz)→ (Ω(M), d) (2.12)

is an isomorphism of differential complexes, and therefore H•z (M) ∼= H•(M); thus βkz = βk =
βk(M) (the kth Betti number) in this case. Moreover multiplication by eiνh defines a unitary
isomorphism ker ∆z

∼= ker ∆µ.

2.1.4 Interpretation of the closed form as a flat connection There is a unique flat connection
∇M×C on the trivial complex line bundle M × C so that ∇M×C1 = η. The corresponding flat
complex line bundle is denoted by L = Lη. Note that Lzη = Lz. Since every Lz is canonically
trivial as line bundle, it has a canonical Hermitian structure gL

z
. Let (Ω(M,Lz) = Ω(M), dL

z
)

be the de Rham complex with coefficients in Lz.

8
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Suppose η = dh for a while. Then the horizontal leaves of Lz are the graphs of the functions
se−zh (s ∈ C). So ezh : Lz → L0 is an isomorphism of flat bundles, which induces an isomorphism
of differential complexes,

ezh : (Ω(M), dL
z
)→ (Ω(M), d) .

Comparing with the isomorphism (2.12), we get dL
z

= dz on Ω(M). Furthermore, since gL
z

corresponds to e2µhgL
0

via the isomorphism ezh : Lz → L0, it follows that ∇LzgLz corresponds
to

∇L0
(
e2µhgL

0)
= 2µe2µh dh⊗ gL0 ,

yielding

∇LzgLz = 2µdh⊗ gLz . (2.13)

A general η is locally exact, and therefore Lz can be locally described as above. Thus dz = dL
z

on Ω(M) = Ω(M,Lz), and (2.13) gives

∇LzgLz = 2µη ⊗ gLz . (2.14)

2.1.5 Perturbed operators on oriented manifolds Using for instance the interpretation of dz
given in Section 2.1.4, the mapping (α, β) 7→ α∧ β induces a bilinear map Hk

z (M)×H l
−z(M)→

Hk+l(M), and the mapping (α, β) 7→ α ∧ β̄ induces a sesquilinear map Hk
z (M) × H l

−z̄(M) →
Hk+l(M).

Now assumeM is oriented. Then the above maps and integration onM define a nondegenerate
bilinear pairing Hk

z (M) × Hn−k
−z (M) → C, and a nondegenerate sesquilinear pairing Hk

z (M) ×
Hn−k
−z̄ (M)→ C. Thus βkz = βn−k−z = βn−k−z̄ = βkz̄ .

Let ? denote the C-linear extension to ΛM of the Hodge operator ? on ΛRM , which is unitary,
and let ?̄ denote its C-anti-linear extension. These operators are determined by the conditions

α ∧ ?β = g(α, β) vol = α ∧ ?̄β

for α, β ∈ Ω(M), where vol = ?1 is the volume form. The following equalities on Ωk(M) follow
from (2.2) and the usual equalities relating ?, d, δ, η∧ and ηy (see e.g. [Roe98, Chapters 1 and 3],
[Gil95, Section 1.5.2], [BGV04, Section 3.6]):

dz ? = (−1)k ? δ−z̄ , δz ? = (−1)k+1 ? d−z̄ , ∆z ? = ?∆−z̄ ,

dz ?̄ = (−1)k ?̄ δ−z , δz ?̄ = (−1)k+1 ?̄ d−z , ∆z ?̄ = ?̄ ∆−z .

}
(2.15)

Then we get a linear isomorphism ? : ker ∆z → ker ∆−z̄ and an anti-linear isomorphism ?̄ :
ker ∆z → ker ∆−z, inducing a linear isomorphism Hk

z (M) ∼= Hn−k
−z̄ (M) and an anti-linear iso-

morphism Hk
z (M) ∼= Hn−k

−z (M) by (2.6).

2.2 Perturbation of the Sobolev norms

For m ∈ N0 and ω ∈ Z1(M), define the norm ‖ ‖m,ω on Hm(M ; Λ) by

‖α‖m,ω =
m∑
k=0

∥∥Dk
ωα
∥∥ .

Proposition 2.1. For all ω ∈ Z1(M) and α ∈ Hm(M ; Λ),

‖α‖m,ω 6 Cm
m∑
k=0

‖ω‖m−k
Ck
‖α‖k , ‖α‖m 6 Cm

m∑
k=0

‖ω‖m−k
Ck
‖α‖k,ω .

9
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Proof. We proceed by induction on m. We have ‖ ‖0,ω = ‖ ‖. Now take m > 0 and assume these
inequalities hold for m− 1. For η ∈ Z1(M,R) and α ∈ Ω(M), we have

‖ĉ(η)α‖m, ‖c(η)α‖m 6 C ′m‖η‖Cm‖α‖m . (2.16)

Applying these inequalities to the real and imaginary parts of ω, and using the induction hy-
pothesis and (2.2), we get

‖α‖m,ω = ‖α‖+ ‖Dωα‖m−1,ω 6 ‖α‖+ Cm−1

m−1∑
k=0

‖ω‖m−1−k
Ck

‖Dωα‖k

6 ‖α‖+ Cm−1

m−1∑
k=0

‖ω‖m−1−k
Ck

(
‖Dα‖k + C ′k‖ω‖Ck‖α‖k

)
6 ‖α‖+ Cm−1

m−1∑
k=0

‖ω‖m−1−k
Ck

(
‖α‖k+1 + C ′k‖ω‖Ck‖α‖k

)
6 Cm

m∑
l=0

‖η‖m−l
Cl
‖α‖l ,

and

‖α‖m = ‖α‖+ ‖Dα‖m−1 6 ‖α‖+ ‖Dωα‖m−1 + C ′m−1‖ω‖Cm−1‖α‖m−1

6 ‖α‖+ Cm−1

m−1∑
k=0

(
‖ω‖m−1−k

Ck
‖Dωα‖k,ω + C ′m−1‖ω‖m−kCk

‖α‖k,ω
)

6 ‖α‖+ Cm−1

m−1∑
k=0

(
‖ω‖m−1−k

Ck
‖α‖k+1,ω + C ′m−1‖η‖m−kCk

‖α‖k,ω
)

6 Cm

m∑
l=0

‖ω‖m−l
Cl
‖α‖l,ω .

Let Z(M,Z) ⊂ Z(M,R) denote the graded subspace of forms that represent cohomology
classes in the image of the canonical homomorphism H•(M,Z)→ H•(M,R). Recall that we can
consider H1(M,Z) as a lattice in H1(M,R) by the universal coefficient theorem for cohomology.
Let θ be the multivalued angle function on S1. Then dθ is the angular form on S1 with

´
S1 dθ = 2π.

For η ∈ Z1(M,R), we have η ∈ 2πZ1(M,Z) if and only if there is some smooth map h : M → S1

such that η = h∗dθ (see e.g. [Far04, Lemma 2.1]).

In Proposition 2.1, the dependence of the constants on ω cannot be avoided. For instance,
for M = S1 with the standard metric g = (dθ)2, we have ‖1‖m =

√
2π, whereas ‖1‖m,iη =√

2π
∑m

k=0 |ν|k for η = ν dθ (ν ∈ R). However, the following version of a Sobolev inequality for
‖ ‖m,iη involves a constant independent of η.

Proposition 2.2. If m > n/2, for all η ∈ Z1(M,R) and α ∈ Hm(M ; Λ),

‖α‖L∞ 6 Cm‖α‖m,iη .

Proof. By the Sobolev embedding theorem, we have

Cm,iη := sup
06=α∈Ω(M)

‖α‖L∞
‖α‖m,iη

> 0 .

10
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Take any η ∈ Z1(M,R) and ω ∈ 2πZ1(M,Z), and let η′ = η + ω. Then ω = h∗dθ for
some smooth function h : M → S1. Since the difference between the multiple values of θ at
every point of S1 are in 2πZ, the functions e±ih

∗θ are well defined and smooth on M . Moreover,
applying (2.11) locally, we get Diη′ = e−ih

∗θDiη e
ih∗θ. So, for 0 6= α ∈ Ω(M),

‖α‖L∞ = ‖ei h∗θα‖L∞ 6 Cm,iη‖eih
∗θα‖m,iη

= Cm,iη

m∑
k=0

‖Dk
iη e

ih∗θα‖ = Cm,iη

m∑
k=0

‖e−ih∗θDk
iη e

ih∗θα‖

= Cm,iη

m∑
k=0

‖Dk
iη′α‖ = Cm,iη‖α‖m,iη′ .

This shows that

sup
η′∈η+2πZ1(M,Z)

Cm,iη′ 6 Cm,iη . (2.17)

Since 2πH1(M,Z) is a lattice in H1(M,R), there is a compact subset K ⊂ H1(M,R) such
that

K + 2πH1(M,Z) = H1(M,R) . (2.18)

Take a linear subspace V ⊂ Z1(M,R) such that the canonical projection V → H1(M,R) is an
isomorphism, and let L ⊂ V be the compact subset that corresponds to K. By (2.18),

L+ 2πZ1(M,Z) = Z1(M,R) . (2.19)

Moreover L is bounded with respect to ‖ ‖Cm . Therefore, by Proposition 2.1, for all η ∈ L and
α ∈ Ω(M),

‖α‖L∞ 6 Cm,0‖α‖m 6 Cm‖α‖m,iη ,
yielding

sup
η∈L

Cm,iη 6 Cm . (2.20)

The result follows from (2.17), (2.19) and (2.20).

Given η ∈ Z1(M,R), we write ‖ ‖m,z = ‖ ‖m,zη. Proposition 2.1 has the following direct
consequence.

Corollary 2.3. For all α ∈ Hm(M ; Λ),

‖α‖m,z 6 Cm
m∑
k=0

|z|m−k‖α‖k , ‖α‖m 6 Cm
m∑
k=0

|z|m−k‖α‖k,z .

Proposition 2.4. For all α ∈ H1(M ; Λ),

‖α‖1,z 6 C
(
‖α‖1,iν + |µ|‖α‖

)
, ‖α‖1,iν 6 C

(
‖α‖1,z + |µ|‖α‖

)
.

Proof. By (2.2) and (2.16),

‖α‖1,z = ‖α‖+ ‖Dzα‖ 6 ‖α‖+ ‖Diνα‖+ C ′|µ|‖α‖ 6 C
(
‖α‖1,iν + |µ|‖α‖

)
,

‖α‖1,iν = ‖α‖+ ‖Diνα‖ 6 ‖α‖+ ‖Dzα‖+ C ′|µ|‖α‖ 6 C
(
‖α‖1,z + |µ|‖α‖

)
.

11



Jesús A. Álvarez López, Yuri A. Kordyukov and Eric Leichtnam

3. Small and large complexes

3.1 Preliminaries on Morse forms

Recall that a critical point p of any h ∈ C∞(M,R) is called nondegenerate if Hessp h is a non-
degenerate symmetric bilinear form on TpM . The index of Hessp h, denoted by ind(p), is called
the index of h at p. By the Morse lemma [Mil63, Lemma 2.2], this means that

h− h(p) =
1

2

n∑
j=1

εp,j(x
j
p)

2 (3.1)

on the domain Up of some coordinates xp = (x1
p, . . . , x

n
p ) (centered) at p, called Morse coordinates,

where

εp,j =

{
−1 if j 6 ind(p)

1 if j > ind(p) .
(3.2)

Recall that h is called a Morse function when all of its critical points are nondegenerate. In
this case, its critical points form a finite set denoted by Crit(h). The Morse functions form an
open and dense subset of C∞(M,R) [Hir76, Theorem 6.1.2]. On every Up, we can assume the
metric is Euclidean with respect to Morse coordinates:

g =
n∑
j=1

(dxjp)
2 . (3.3)

Now take any η ∈ Z1(M,R). A zero p of η is said to be nondegenerate if η = dhη,p around p
for some local Morse function hη,p, which is chosen so that hη,p(p) = 0. The index ind(p) of hη,p
at p is also called the index of η at p. On the domain Up of Morse coordinates xp = (x1

p, . . . , x
n
p )

for hη,p at p, hη,p is given by the right-hand sides of (3.1), and

η =
n∑
j=1

εp,jx
j
p dx

j
p . (3.4)

It is also said that xp = (x1
p, . . . , x

n
p ) are Morse coordinates for η at p. With the notation

x−p = (x1
p, . . . , x

k
p) : Up → Rk , x+

p = (xk+1
p , . . . , xnp ) : Up → Rn−k ,

for k = ind(p), we can write

hη,p =
1

2

(
|x+
p |2 − |x−p |2

)
. (3.5)

If all zeros are nondegenerate, then η is called a Morse form. In this case, its zeros form a
finite set, X = Zero(η); subsets of X defined by conditions on the index are denoted by writing
the conditions as subscripts; for instance, Xk, X+ and X<k are the subsets of zeros of index k, of
positive index, and of index < k, respectively. For any ξ ∈ H1(M,R), the Morse representatives
of ξ form a dense open subset of ξ, considered as a subspace of Ω1(M,R) with the C∞ topology
(see e.g. [Paj06, Theorem 2.1.25]).

From now on, unless otherwise stated, we will use some η ∈ Z1(M,R) and a Riemannian
metric g on M such that η is a Morse form, and g is Euclidean with respect to Morse coordinates
around zero points of η; i.e., η and g satisfy (a) (Section 1.1).

The Hopf index of −η] at every p ∈ Xk is (−1)k (see Section 5.1.1). Thus, by the Hopf index

12
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theorem for −η],
n∑
k=0

(−1)k|Xk| = χ(M) . (3.6)

3.2 The small and large spectrum

Consider the perturbed operators (2.2) defined by η and g. Recall that X denotes the zero set
of η. We can suppose the closures of the domains of Morse coordinates, Up (p ∈ X ), are disjoint
from each other, and xp(Up) = (−4r, 4r)n for some r > 0 independent of p. Let U =

⋃
p∈X Up.

Denoting also the coordinates of Rn by (x1
p, . . . , x

n
p ), consider the function hp ∈ C∞(Rn)

defined by the right-hand side of (3.1) (or (3.5)). Let d′p,z, δ
′
p,z, D

′
p,z and ∆′p,z (z ∈ C) denote the

corresponding Witten’s operators on Rn, whose restrictions to (−4r, 4r)n agree via xp with the
restrictions of dµ, δµ, Dµ and ∆µ to Up.

Proposition 3.1 See e.g. [Roe98, Chapters 9 and 14], [Zha01, Sections 4.5 and 4.7]. The fol-
lowing holds for µ ∈ R:

(i) We have

∆′p,µ =

n∑
j=1

(
−
( ∂

∂xjp

)2
+ µ2(xjp)

2 + µεp,j [dx
j
py, dx

j
p∧]
)
. (3.7)

Moreover, using multi-index notation,

[dxjpy, dx
j
p∧]dxJp =

{
dxJp if j ∈ J
−dxJp if j /∈ J .

(ii) ∆′p,µ is a non-negative selfadjoint operator in L2(Rn; Λ) with a discrete spectrum, which
consists of the eigenvalues

µ

n∑
j=1

(1 + 2uj + εp,jvj) , (3.8)

where uj ∈ N0 and vj = ±1. For the restriction of ∆′p,µ to k-forms, the spectrum has the
additional requirement that exactly k of the numbers vj are equal to 1. In particular, 0 is
an eigenvalue of ∆′p,µ with multiplicity 1 (choosing uj = 0 and vj = −εp,j for all j), and
the nonzero eigenvalues are of order µ as µ → +∞. D′p,µ is also a selfadjoint operator in
L2(Rn; Λ) with a discrete spectrum, which consists of the positive and negative square roots
of (3.8).

(iii) The kernel of D′p,µ and ∆′p,µ is generated by the normalized form

e′p,µ =
(µ
π

)n/4
e−µ|xp|

2/2 dx1
p ∧ · · · ∧ dxind(p)

p .

For any z ∈ C with µ > 0, let ∆′p,z = e−iνhp∆′p,µe
iνhp . Since the operator of multiplication

by e−iνhp is unitary, ∆′p,z is also selfadjoint and non-negative in L2(Rn; Λ), it has a discrete
spectrum with the same eigenvalues and multiplicities as ∆′p,µ, and its kernel is generated by the

normalized form e′p,z := e−iνhpe′p,µ. We will also use the notation

e′p,z = x∗pe
′
p,z ∈ C∞

(
Up; Λind(p)

)
.

The function x∗php ∈ C∞(Up) agrees with hη,p, which is also denoted by hp in this section.

13
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Fix an even C∞ function ρ : R→ [0, 1] such that ρ = 1 on [−r, r] and supp ρ ⊂ [−2r, 2r]. For
every p ∈ X , let

ρp = ρ(x1
p) · · · ρ(xnp ) ∈ C∞c (Up) , (3.9)

ep,µ =
ρp
aµ
e′p,µ ∈ C∞c

(
Up; Λind(p)

)
, (3.10)

ep,z = e−iνhpep,µ =
ρp
aµ
e′p,z ∈ C∞c

(
Up; Λind(p)

)
, (3.11)

where

aµ =

( ˆ 2r

−2r
ρ(x)2e−µx

2
dx

)n/2
=
(π
µ

)n/4
+O(e−cµ) , (3.12)

as µ → +∞. The extensions by zero of the forms ep,z to M are also denoted by ep,z. They
form an orthonormal basis of a graded subspace Ez ⊂ Ω(M) with dimEz = |X |. Let Pz be the
orthogonal projection of L2(M ; Λ) to Ez; thus P⊥z is the orthogonal projection to E⊥z .

Remark 3.2. For the sake of simplicity, most of our results are stated for µ� 0 or as µ→ +∞,
but they have obvious versions for µ� 0 or as µ→ −∞, as follows by considering −η.

Proposition 3.3. If µ� 0 and β ∈ H1(M ; Λ) with suppβ ⊂M \ U , then

‖Dzβ‖ > Cµ ‖β‖ .

Proof. This follows like [Zha01, Proposition 4.7], using that Hη is of order zero in (2.2). Actually,
according to the statement of [Zha01, Proposition 4.7], this inequality would hold with

√
µ instead

of µ, but its proof clearly shows that using µ is fine.

Proposition 3.4. The following properties hold:

(i) PzDzPz = 0.

(ii) If µ� 0, α ∈ Ez and β ∈ E⊥z ∩H1(M ; Λ), then

‖P⊥z Dzα‖ 6 e−cµ‖α‖ , ‖PzDzβ‖ 6 e−cµ‖β‖ .

(iii) If µ� 0 and β ∈ E⊥z ∩H1(M ; Λ), then

‖P⊥z Dzβ‖ > C
√
µ ‖β‖ .

Proof. This follows like [Zha01, Propositions 4.11, 4.12 and 5.6]. Property (i) is true because
every Dzep,z is supported in Up and has homogeneous components of degree different from ind(p);
therefore it is orthogonal to ker ∆z. The other properties are consequences of Propositions 3.1
and 3.3 and (3.9)–(3.12). According to [Zha01, Proposition 4.11], the inequalities of (ii) hold with
1/µ instead of e−cµ, but its proof shows that indeed e−cµ can be achieved.

Proposition 3.5. For all m ∈ N0, if µ� 0, then

‖Dzep,z‖m, ‖Dzep,z‖m,iν 6 e−cmµ .

Proof. From Proposition 3.1 (iii), (2.1), (3.10) and (3.11), we get

Dzep,z = Dz

(ρp
aµ
e′p,z

)
= e−iνhp

1

aµ

(π
4

)n/4
ĉ(dρp)e

′
p,µ . (3.13)

Thus the stated estimate of ‖Dzep,z‖m is true by (3.10) and (3.12), and since dρp = 0 around p.
(When ν = 0, this is indicated in [Zha01, Eq. (6.17)].)

By (2.11), for all k ∈ N0 and p ∈ X , the form Dk
iνDzep,z is the extension by zero of the form

e−iνhpDkDµep,µ on Up. Then the stated estimate of ‖Dzep,z‖m,iν follows from the case ν = 0.
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Corollary 3.6. If µ� 0, then

‖Dzep,z‖L∞ 6 e−cµ .

Proof. Apply Propositions 2.2 and 3.5.

Consider the partition of spec ∆z into its intersections with [0, 1] and (1,∞), called the small
and large spectrum; the term small/large eigenvalues may be also used. Let Ez,sm ⊂ Ω(M) denote
the graded finite dimensional subspace generated by the eigenforms of the small eigenvalues, let
Ez,la = E⊥z,sm in L2(M ; Λ), and let Pz,sm/la be the orthogonal projections to Ez,sm/la. Note that
Ez,sm and Ez,la ∩Ω(M) are subcomplexes with dz, called the small and large complexes, and the
term small/large projection will be used for Pz,sm/la. Thus (Ω(M), dz) splits into a topological
direct sum of the subcomplexes Ez,sm and Ez,la ∩ Ω(M), and (2.5) gives

H•(Ez,sm, dz) ≡ H•z (M) , H•(Ez,la ∩ Ω(M), dz) = 0 . (3.14)

For any operator B defined on Ω(M) or L2(M ; Λ), let Bz,sm/la = BPz,sm/la.

Proposition 3.7. For all m ∈ N0, µ� 0 and α ∈ Ez,

‖α− Pz,smα‖m,iν 6 e−cmµ‖α‖ .

Proof. This follows like [Zha01, Lemma 5.8 and Theorem 6.7], using ‖ ‖m,iν instead of ‖ ‖m. The
following are the main steps of the proof.

Let S1 = {ω ∈ C | |ω| = 1 }. With the argument of the proof of [Zha01, Eq. (5.27)], using
Proposition 3.4, we get that, for all α ∈ H1(M ; Λ), w ∈ S1 and µ� 0,

‖(w −Dz)α‖ > C‖α‖ .

Thus w −Dz : H1(M ; Λ)→ L2(M ; Λ) has a bounded inverse and, for all β ∈ L2(M ; Λ), w ∈ S1

and µ� 0, ∥∥(w −Dz)
−1β

∥∥ 6 C−1‖β‖ . (3.15)

On the other hand, arguing like in the proof of [Zha01, Eq. (6.18)], it follows that, for all
γ ∈ Hm(M ; Λ), w ∈ S1 and µ� 0,

‖γ‖m,iν 6 Cm
(
‖(w −Dz)γ

∥∥
m−1,iν

+ µ‖γ‖m−1,iν + ‖γ‖
)
.

Continuing by induction on m ∈ N0, we obtain

‖γ‖m,iν 6 Cm
(
µm‖γ‖+

m∑
k=1

µk−1‖(w −Dz)γ
∥∥
m−k,iν

)
.

In other words, for all β ∈ Hm−1(M ; Λ),∥∥(w −Dz)
−1β

∥∥
m,iν
6 Cm

(
µm
∥∥(w −Dz)

−1β
∥∥+

m∑
k=1

µk−1‖β‖m−k,iν
)
.

Applying (3.15) to this inequality, we get∥∥(w −Dz)
−1β

∥∥
m,iν
6 Cmµ

m‖β‖m−1,iν . (3.16)

Then, by Proposition 3.5, ∥∥(w −Dz)
−1Dzep,z

∥∥
m,iν

= O
(
e−cmµ

)
(3.17)
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as µ → +∞, uniformly on w ∈ S1. But, endowing S1 with the counter-clockwise orientation,
basic spectral theory gives (see e.g. [DS88a, Section VII.3])

Pz,smep,z − ep,z =
1

2πi

ˆ
S1

(
(w −Dz)

−1 − w−1
)
ep,z dw

=
1

2πi

ˆ
S1
w−1(w −Dz)

−1Dzep,z dw . (3.18)

The result follows using (3.17) in (3.18).

Corollary 3.8. For µ� 0 and α ∈ Ez,

‖α− Pz,smα‖L∞ 6 e−cµ‖α‖ .

Proof. Apply Propositions 2.2 and 3.7.

Alternatively, the proof of Proposition 3.7 can be modified as follows to get this result (some
step of this alternative argument will be used later). Iterating (3.16), we get∥∥(w −Dz)

−1β
∥∥
m,iν
6 C ′mµ

(m+1)m/2‖β‖ ,

for all β ∈ L2(M ; Λ). Then, by Proposition 2.2,∥∥(w −Dz)
−1β

∥∥
L∞
6 Cµ(m+1)m/2‖β‖ . (3.19)

Thus, by Proposition 3.5, ∥∥(w −Dz)
−1Dzep,z

∥∥
L∞

= O
(
e−cmµ

)
as µ→ +∞. Finally, apply this expression in (3.18).

Corollary 3.9. If µ� 0, then Pz,sm : Ez → Ez,sm is an isomorphism; in particular, dimEz,sm =
|X | and dimEkz,sm = |Xk|.

Proof. The result follows from Proposition 3.7 for m = 0 like [Zha01, Proposition 5.5].

When µ� 0, (3.6) also follows from Corollary 3.9, (2.8) and (3.14).

Theorem 3.10 Cf. [BH01, Theorem 3]. We have

spec ∆z ⊂
[
0, e−c|µ|

]
∪
[
C|µ|,∞

)
.

Proof. We can assume µ > 0 according to Remark 3.2. By Propositions 2.4, 3.4 and 3.7, for all
α ∈ Ez,

‖DzPz,smα‖ 6 ‖Dzα‖+ ‖Dz(α− Pz,smα)‖ 6 ‖Dzα‖+ ‖α− Pz,smα‖1,z
6 ‖P⊥z Dzα‖+ C(µ‖α− Pz,smα‖+ ‖α− Pz,smα‖1,iν)

6
(
e−cµ + C

(
µe−c0µ + e−c1µ

))
‖α‖ .

Hence, by Corollary 3.9, for all β ∈ Ez,sm,

0 6 〈∆zβ, β〉 = ‖Dzβ‖2 6 e−cµ ‖β‖2 .

This shows that

spec ∆z ∩ [0, 1] ⊂
[
0, e−cµ

]
. (3.20)

Now let φ ∈ Ez,la ∩H1(M ; Λ), and write α = Pzφ ∈ Ez and β = P⊥z φ ∈ E⊥z ∩H1(M ; Λ). By
Proposition 3.7,

‖α‖2 = 〈α, φ〉 = 〈α− Pz,smα, φ〉 6 ‖α− Pz,smα‖‖φ‖ 6 e−c0µ‖α‖‖φ‖ ,

16
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yielding

‖α‖ 6 e−c0µ‖φ‖ .
So

‖β‖ = ‖φ− α‖ > ‖φ‖ − ‖α‖ >
(
1− e−c0µ

)
‖φ‖ .

Then, by Proposition 3.4,

‖Dzφ‖ > ‖Dzβ‖ − ‖Dzα‖ > ‖P⊥z Dzβ‖ − e−cµ‖α‖
> C
√
µ ‖β‖ − e−cµ‖φ‖ >

(
C
√
µ
(
1− e−c0µ

)
− e−cµ

)
‖φ‖ .

Therefore, for all φ ∈ Ez,la ∩H1(M ; Λ),

〈∆zφ, φ〉 = ‖Dzφ‖2 > Cµ‖φ‖2 .

This proves that

spec ∆z ∩ (1,∞) ⊂ [Cµ,∞) . (3.21)

The inclusions (3.20) and (3.21) give the result for µ � 0. But, in those inclusions, we can
take c and C so small that, if one of them is not true for some µ > 0, then Cµ 6 e−cµ.

3.3 Ranks of some projections in the small complex

Recall that (Π⊥z )sm,k, Π1
z,sm,k and Π2

z,sm,k denote the orthogonal projections to the images of

∆z,sm,k, dz,sm,k−1 and δz,sm,k+1, respectively. Let mz,k, m
1
z,k and m2

z,k be the corresponding ranks
(or traces) of these projections. They satisfy

mz,k = m1
z,k +m2

z,k , m1
z,0 = m2

z,n = 0 , m2
z,k = m1

z,k+1 , (3.22)

where the last equality is true because dz : im δz → im dz is an isomorphism. For µ� 0, we have
mz,k,m

j
z,k 6 |Xk| by Corollary 3.9 and (3.22).

Lemma 3.11. The numbers mj
z,k are determined by the numbers mz,k.

Proof. This follows from (3.22) with an easy induction argument on k.

Lemma 3.12. We have mz,k = |Xk| − βkz .

Proof. This is a consequence of (2.5), (3.14) and Corollary 3.9.

Corollary 3.13. Trs((Π⊥z )sm) = 0.

Proof. By (2.8), (3.6) and Lemma 3.12,

Trs
(
(Π⊥z )sm

)
=
∑
k

(−1)k|Xk| −
∑
k

(−1)kβkz = χ(M)− χ(M) = 0 .

Lemma 3.14. If M is oriented, then, for k = 0, . . . , n,

mz,k = m−z̄,n−k = m−z,n−k , m1
z,k = m2

−z̄,n−k = m2
−z,n−k .

Proof. This is true because, by (2.15),

(Π⊥z )sm,k ? = ? (Π⊥−z̄)sm,n−k , Π1
z,sm,k ? = ?Π2

−z̄,sm,n−k ,

(Π⊥z )sm,k ?̄ = ?̄ (Π⊥−z)sm,n−k , Π1
z,sm,k ?̄ = ?̄Π2

−z,sm,n−k .

Corollary 3.15. For |µ| � 0, mz,k and mj
z,k only depend on |Xk| and the class ξ = [η] ∈

H1(M,R).

17
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Proof. Apply (2.9) and Lemmas 3.11 and 3.12.

By Corollary 3.15, we write mk = mz,k and mj
k = mj

z,k for |µ| � 0.

Corollary 3.16. Trs(Πj
z,sm) = 0 if M is oriented, n is even and µ� 0.

Proof. By Corollaries 3.13 and 3.15 and Lemma 3.14, and since n is even,

Trs
(
Π1
z,sm

)
= −Trs

(
Π2
z,sm

)
= −Trs

(
Π1
z,sm

)
.

3.4 Asymptotic properties of the small projection

Notation 3.17. Consider a function f(x) > 0 (x > 0). When referring to vectors in Banach spaces,
the order notation O(f(|µ|)) (µ→ ±∞) will be used for a family of vectors v = v(z) (z ∈ C) with
‖v(z)‖ = O(f(|µ|)). This notation applies e.g. to bounded operators between Banach spaces. We
may also consider this notation when the Banach spaces depend on z.

Proposition 3.18. For every τ ∈ R, on L2(M ; Λ), as µ→ +∞,

Pz,sm = Pz +O
(
e−cµ

)
= Pz,smPz+τ,smPz,sm +O

(
µ−2

)
= Pz+τ,sm +O

(
µ−1

)
.

Proof. By Corollary 3.9, for µ� 0, the elements Pz,smep,z (p ∈ X ) form a base of Ez,sm. Applying
the Gram-Schmidt process to this base, we get an orthonormal base ẽp,z. By Proposition 3.7,

ẽp,z = ep,z +O
(
e−cµ

)
. (3.23)

This gives the first equality of the statement: for any α ∈ L2(M ; Λ),

Pzα =
∑
p∈X
〈α, ep,z〉ep,z =

∑
p∈X
〈α, ẽp,z〉ẽp,z +O

(
e−cµ

)
‖α‖ = Pz,smα+O

(
e−cµ

)
‖α‖ .

Since the sets Up (p ∈ X ) are disjoint one another, for p 6= q in X ,

〈ep,z, eq,z+τ 〉 = 0 . (3.24)

On the other hand, by (3.9)–(3.12), we can also assume

〈ep,z, ep,z+τ 〉 = 〈e−iνhpep,µ, e−iνhpep,µ+τ 〉 = 〈ep,µ, ep,µ+τ 〉

=
(µ(µ+ τ))n/4

πn/2
〈
ρpe
−µ|xp|2/2, ρpe

−(µ+τ)|xp|2/2〉+O
(
e−cµ

)
=

(µ(µ+ τ))n/4

πn/2

ˆ
Rn
e−(µ+τ/2)|xp|2 dxp +O

(
e−cµ

)
=

(µ(µ+ τ))n/4

(µ+ τ/2)n/2
+O

(
e−cµ

)
= 1 +O

(
µ−2

)
, (3.25)

where dxp = dx1
p . . . dx

n
p = vol(xp). Combining (3.23) for z and z + τ with (3.24) and (3.25), we

obtain

Pz+τ,smẽp,z =
∑
q∈X
〈ẽp,z, ẽq,z+τ 〉ẽq,z+τ =

∑
q∈X
〈ep,z, eq,z+τ 〉eq,z+τ +O

(
e−cµ

)
= ep,z+τ +O

(
µ−2

)
= ẽp,z+τ +O

(
µ−2

)
. (3.26)

Repeating (3.26) interchanging the roles of z and z + τ , we get

Pz,smPz+τ,smẽp,z = Pz,smẽp,z+τ +O
(
µ−2

)
= ẽp,z +O

(
µ−2

)
.
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This gives the second equality of the statement: for any α ∈ L2(M ; Λ),

Pz,smα =
∑
p∈X
〈α, ẽp,z〉ẽp,z = Pz,smPz+τ,sm

∑
p∈X
〈α, ẽp,z〉ẽp,z +O

(
µ−2

)
‖α‖

= Pz,smα+O
(
µ−2

)
‖α‖ .

By (3.26),

‖ẽp,z − ẽp,z+τ
∥∥2

= ‖ẽp,z‖2 − 2<〈ẽp,z, ẽp,z+τ 〉+ ‖ẽp,z+τ‖2 = 2− 2<〈Pz+τ,smẽp,z, ẽp,z+τ 〉
= 2− 2<〈ẽp,z+τ , ẽp,z+τ 〉+O

(
µ−2

)
= O

(
µ−2

)
,

which means

ẽp,z = ẽp,z+τ +O
(
µ−1

)
. (3.27)

The last stated equality follows from (3.26) and (3.27): for any α ∈ L2(M ; Λ),

Pz,smα =
∑
p∈X
〈α, ẽp,z〉ẽp,z =

∑
p∈X
〈α, ẽp,z+τ 〉ẽp,z+τ +O

(
µ−1

)
α = Pz+τ,smα+O

(
µ−1

)
α .

Corollary 3.19. For every τ ∈ R, on L2(M ; Λ),

dz+τ,sm − dz+τPz,sm = O
(
µ−1

)
(µ→ +∞) .

Proof. Since dz+τ = dz + τ η∧, it follows from Theorem 3.10 that dz+τ is bounded on Ez,sm +
Ez+τ,sm, uniformly on µ� 0. Hence, by Proposition 3.18,

dz+τ,sm − dz+τPz,sm = dz+τ (Pz+τ,sm − Pz,sm) = O
(
µ−1

)
.

Proposition 3.20. On L2(M ; Λ),

Pz,sm η∧, η∧Pz,sm = O
(
µ−1/2

)
(µ→ +∞) .

Proof. Let α ∈ L2(M ; Λk) and p ∈ Xk+1. Using multi-index notation, write α =
∑
|J |=k αJ dx

J
p on

Up with αJ ∈ L2(Up). Let Jj = {1, . . . , k+1}\{j} (j = 1, . . . , k+1). By Proposition 3.1 (iii), (3.10)
and (3.11),

〈η ∧ α, ep,z〉 = − 1

aµ

k+1∑
j=1

〈
αJjx

j
p dx

j
p ∧ dx

Jj
p , e

−iνhpρpe
−µ|xp|2/2 dx1

p ∧ · · · ∧ dxk+1
p

〉
= (−1)j

1

aµ

k+1∑
j=1

〈
αJjx

j
p, e
−iνhpρpe

−µ|xp|2/2〉 .
Hence

|〈η ∧ α, ep,z〉| 6
1

aµ

k+1∑
j=1

∣∣〈αJj , e−iνhpρpxjpe−µ|xp|2/2〉∣∣ 6 ‖α‖ 1

aµ

k+1∑
j=1

∥∥ρpxjpe−µ|xp|2/2∥∥ , (3.28)
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and ∥∥ρpxjpe−µ|xp|2/2∥∥ =
(ˆ

Up

(ρp(xp)x
j
p)

2e−µ|xp|
2

vol(xp)
)1/2

=
(ˆ 2r

−2r
ρ(x)2x2e−µx

2
dx
) 1

2
( ˆ 2r

−2r
ρ(y)2e−µy

2
dy
)n−1

2

=
(ˆ 2r

−2r
x2e−µx

2
dx
) 1

2
( ˆ 2r

−2r
e−µy

2
dy
)n−1

2
+O

(
e−cµ

)
=

1

(2µ)1/2

(π
µ

)n/4
+O

(
e−cµ

)
. (3.29)

By (3.12), (3.28) and (3.29),

|〈η ∧ α, ep,z〉| = ‖α‖O
(
µ−1/2

)
.

Since

Pz(η ∧ α) =
∑

p∈Xk+1

〈η ∧ α, ep,z〉ep,z ,

it follows that

‖Pz(η ∧ α)‖ = ‖α‖O
(
µ−1/2

)
.

This shows that Pz η∧ = O
(
µ−1/2

)
, yielding Pz,sm η∧ = O

(
µ−1/2

)
by Proposition 3.18.

On the other hand, for q ∈ Xk,

η ∧ eq,z =
ρq
aµ
e−µ|xp|

2/2
n∑

j=k+1

xjq dx
j
q ∧ dx1

q ∧ · · · ∧ dxkq .

So

‖η ∧ eq,z‖ =
1

aµ

(
n∑

j=k+1

ˆ
Uq

(ρq(xq)x
j
q)

2e−µ|xp|
2

vol(xq)

)1/2

,

which becomes O
(
µ−1/2

)
like in the previous part of the proof. Since

η∧Pzα =
∑
q∈Xk

〈α, eq,z〉 η ∧ eq,z ,

we get η∧Pz = O
(
µ−1/2

)
, yielding η∧Pz,sm = O

(
µ−1/2

)
as before.

3.5 Derivatives of the small projection

Remark 3.21. For reasons of brevity, most of the results about derivatives are stated for ∂z,
which may be simply denoted with a dot. But there are obvious versions of those results for ∂z̄
with analogous proofs.

Proposition 3.22. We have

rank ∂zPz,sm 6 2|X | (µ� 0) , ∂zPz,sm = O
(
µ−1/2

)
(µ→ +∞) .

Proof. By (2.3) and Theorem 3.10, for µ� 0 and every ω ∈ S1, a standard computation gives

∂z
(
(w −Dz)

−1
)

= (w −Dz)
−1 η∧ (w −Dz)

−1 . (3.30)
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Then, by (3.15), ∂z
(
(w−Dz)

−1
)

defines an operator on L2(M ; Λ), bounded uniformly on w ∈ S1

and z ∈ C. By (3.15) and Proposition 3.20, we also get

Pz,la/sm∂z
(
(w −Dz)

−1
)
Pz,sm/la = (w −Dz)

−1Pz,la/sm η∧Pz,sm/la(w −Dz)
−1 = O

(
µ−1/2

)
,

uniformly on w ∈ S1.

On the other hand, applying again basic spectral theory, we obtain

Pz,sm =
1

2πi

ˆ
S1

(w −Dz)
−1 dw

for µ� 0, yielding

Ṗz,sm =
1

2πi

ˆ
S1
∂z
(
(w −Dz)

−1
)
dw , (3.31)

which defines an operator on L2(M ; Λ), bounded uniformly on z.

Using that Pz,sm is an orthogonal projection, the argument of the proof of [BGV04, Propo-
sition 9.37] shows that

Ṗz,sm = Pz,laṖz,smPz,sm + Pz,smṖz,smPz,la . (3.32)

So rank Ṗz,sm 6 2 rankPz,sm 6 2|X | by Corollary 3.9, and

Ṗz,sm =
1

2πi

ˆ
S1
Pz,la∂z

(
(w −Dz)

−1
)
Pz,sm dw

+
1

2πi

ˆ
S1
Pz,sm∂z

(
(w −Dz)

−1
)
Pz,la dw = O

(
µ−1/2

)
.

Lemma 3.23. For all p ∈ X ,

∂zep,z =

(
n

8µ
−
|x+
p |2

2
+O(e−cµ)

)
ep,z (µ→ +∞) .

Proof. Using integration by parts, and since ρ is an even function and ρ′ vanishes on [−r, r], we
obtain ˆ 2r

−2r
ρ(x)2x2e−µx

2
dx =

1

2µ

ˆ 2r

−2r
(2ρ(x)ρ′(x)x+ ρ(x)2)e−µx

2
dx

=
1

2µ

(π
µ

) 1
2

+O(e−cµ) . (3.33)

So

∂µaµ = ∂µ

(( ˆ 2r

−2r
ρ(x)2e−µx

2
dx

)n
2
)

= −n
2

(ˆ 2r

−2r
ρ(x)2e−µx

2
dx

)n
2
−1 ˆ 2r

−2r
ρ(x)2x2e−µx

2
dx

= −n
2

(π
µ

)n
4
− 1

2 1

2µ

(π
µ

) 1
2

+O(e−cµ) = − n

4µ

(π
µ

)n
4

+O(e−cµ) .

Hence, by (3.12),

∂µ

( 1

aµ

)
= −∂µaµ

a2
µ

=
n

4µ

(π
µ

)n
4
(µ
π

)n
2

+O(e−cµ) =
n

4µ

(µ
π

)n
4

+O(e−cµ) . (3.34)
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It also follows from Proposition 3.1 (iii), (3.10), (3.12) and (3.34) that

∂µep,µ = ∂µ

(ρp
aµ
e−µ|xp|

2/2 dx1
p ∧ · · · ∧ dxind(p)

p

)
=

(
∂µ

( 1

aµ

)
aµ −

|xp|2

2

)
ep,µ

=

(
n

4µ
− |xp|

2

2
+O(e−cµ)

)
ep,µ . (3.35)

So, by (3.11),

∂µep,z =

(
n

4µ
− |xp|

2

2
+O(e−cµ)

)
ep,z , ∂νep,z = −ihpep,z . (3.36)

Then the result follows using (3.5).

Proposition 3.24. For all p ∈ X ,

‖∂z(Dzep,z)‖L∞ = O(e−cµ) (µ→ +∞) .

Proof. From (3.13), we get

∂z(Dzep,z) =
1

2

(
e−iνhp∂µ

( 1

aµ

(π
µ

)n/4)
ĉ(dρp)ep,µ + e−iνhp

1

aµ

(π
µ

)n/4
ĉ(dρp)∂µep,µ

− hpe−iνhp
1

aµ

(π
µ

)n/4
ĉ(dρp)ep,µ

)
. (3.37)

By (3.12) and (3.34),

∂µ

( 1

aµ

(π
µ

)n
4
)

= ∂µ

( 1

aµ

)(π
µ

)n
4 − nπ

4aµµ2

(π
µ

)n
4
−1

=
n

4µ

(µ
π

)n
4
(π
µ

)n
4 − nπ

4µ2

(π
µ

)n
4
−1(µ

π

)n
4

+O(e−cµ) = O(e−cµ) . (3.38)

The result follows applying Proposition 3.1 (iii), (3.10), (3.12), (3.35) and (3.38) to (3.37), and
using that dρp = 0 around p.

Proposition 3.25. For every p ∈ X ,

‖∂z(Pz,smep,z − ep,z)‖L∞ = O(e−cµ) (µ→ +∞) .

Proof. By (3.18),

∂z(Pz,smep,z − ep,z) =
1

2πi

ˆ
S1
w−1∂z

(
(w −Dz)

−1
)
Dzep,z dw

+
1

2πi

ˆ
S1
w−1(w −Dz)

−1∂z(Dzep,z) dw .

Now apply (3.19), (3.30), Corollary 3.6 and Proposition 3.24.

4. Zeta invariants of Morse forms

4.1 Preliminaries on asymptotic expansions of heat kernels

Let A be a positive semi-definite symmetric elliptic differential operator of order a, and B a
differential operator of order b; both of them are defined in C∞(M ;E) for some Hermitian
vector bundle E over M . Then Be−tA is a smoothing operator with Schwartz kernel Kt(x, y) in
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C∞(M2;E�E∗) (omitting the Riemannian density vol(y) of the second factor). On the diagonal,
there is an asymptotic expansion (as t ↓ 0) [Gil95, Lemma 1.9.1], [BGV04, Theorem 2.30],

Kt(x, x) ∼
∞∑
l=0

el(x)t(l−n−b)/a , (4.1)

where el ∈ C∞(M ;E ⊗ E∗) is locally computable in terms of the jets of the local coefficients of
A and B. Hence the function

h(t) = Tr
(
Be−tA

)
=

ˆ
M

trKt(x, x) vol(x)

has an asymptotic expansion

h(t) ∼
∞∑
l=0

alt
(l−n−b)/a , (4.2)

where

al =

ˆ
M

tr el(x) vol(x) . (4.3)

Given any λ > 0, let PA,λ be the spectral projection of A corresponding to [0, λ]; thus P⊥A,λ
is the spectral projection corresponding to (λ,∞). By ellipticity, PA,λ is of finite rank, and
Be−tAPA,λ is a smoothing operator defined for all t ∈ R. Take any orthonormal frame φ1, . . . , φκ
of imPA,λ, consisting of eigensections with corresponding eigenvalues 0 6 λ1 6 · · · 6 λκ 6 λ.
Then the Schwartz kernel Ht(x, y) of Be−tAPA,λ (t > 0) is given by

Ht(x, y) =
κ∑
j=1

e−tλj (Bφj)(x)⊗ φj(y) ,

using the identity E ≡ E∗ given by the Hermitian structure. Thus Ht(x, y) is defined for all
t ∈ R and smooth. So

Tr(Be−tAPA,λ) =

ˆ
M

trHt(x, x) vol(x) .

In particular, for t = 0, we have

H0(x, x) =
κ∑
j=1

(Bφj)(x)⊗ φj(x) , (4.4)

Tr(BPA,λ) =

ˆ
M

trH0(x, x) vol(x) . (4.5)

The Schwartz kernel of Be−tAP⊥A,λ is K̃t(x, y) = Kt(x, y) − Ht(x, y) (t > 0), which has an
asymptotic expansion

K̃t(x, x) ∼
∞∑
l=0

ẽl(x)t(l−n−b)/a , (4.6)

where the first n+ b sections ẽl are given by

ẽl(x) =

{
el(x) if l < n+ b

el(x)−H0(x, x) if l = n+ b .

Then the function

h̃λ(t) = Tr
(
Be−tAP⊥A,λ

)
= Tr

(
Be−tA

)
− Tr(Be−tAPA,λ) (4.7)
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has an asymptotic expansion

h̃λ(t) =

ˆ
M
K̃t(x, x) vol(x) ∼

∞∑
l=0

ãλ,lt
(l−n−b)/a , (4.8)

where the first n+ b coefficients ãl are given by

ãλ,l =

{
al if l < n+ b

al − Tr(BPA,λ) if l = n+ b .
(4.9)

Consider also smooth families of such operators, {Aε} and {Bε}, for ε in some parameter space.
Then Tr(Bεe

−tAε) is smooth in (t, ε), and we add ε to the above notation, writing for instance
Kt(x, y, ε), el(x, ε), h(t, ε), al(ε), K̃t(x, y, ε), ẽλ,l(x, ε), h̃λ(t, ε) and ãλ,l(ε) in (4.1), (4.2), (4.6)
and (4.8). The operator BεPAε,λ may not be smooth in ε when some non-constant spectral
branch of {Aε} reaches the value λ. If the values of the non-constant spectral branches of {Aε}
stay uniformly away from λ, then h̃λ(t, ε) is smooth in (t, ε).

4.2 Preliminaries on zeta functions of operators

Proposition 4.1 See e.g. [Gil95, Theorems 1.12.2 and 1.12.5], [BGV04, Propositions 9.35–9.37].
The following holds:

(i) For every λ > 0, there is a meromorphic function ζ(s,A,B, λ) on C such that, for <s� 0,

ζ(s,A,B, λ) = Tr
(
BA−sP⊥A,λ

)
=

1

Γ(s)

ˆ ∞
0

ts−1h̃λ(t) dt . (4.10)

(ii) The meromorphic function Γ(s)ζ(s,A,B, λ) has simple poles at the points s = (n+b− l)/a,
for l ∈ N0 with ãl 6= 0. The corresponding residues are ãl, and ζ(s,A,B, λ) is smooth away
from these exceptional values of s.

(iii) For µ > λ > 0, let λ1 6 · · · 6 λk denote the eigenvalues of A in (λ, µ], taking multiplicities
into account, and let ψ1, . . . , ψk be corresponding orthonormal eigensections. Then, for all
s,

ζ(s,A,B, µ)− ζ(s,A,B, λ) =
k∑
j=1

λ−sk 〈Bψj , ψj〉 .

(iv) For smooth families {Aε} and {Bε} of such operators, if the non-constant branches of
eigenvalues of {Aε} stay uniformly away from the value λ, then ζ(s,Aε, Bε, λ) is smooth in
(s, ε) away from the exceptional values of s given in (ii).

(v) Consider the conditions of (iv) for ε in some open neighborhood of 0 in R. If A0 and B0

commute, then

∂εζ(s,Aε, Bε, λ)
∣∣
ε=0

= ζ(s,A0, Ḃ0, λ)− sζ(s+ 1, A0, Ȧ0B0, λ) ,

where the dot denotes ∂ε.

The last expression of (4.10) is the Mellin transform of the function h̃λ(t) divided by Γ(s).
This function ζ(s,A,B, λ) is called the zeta function of (A,B, λ). If B = 1 or λ = 0, they may
be omitted from the notation.

We will also use ζ(s,A,B, λ) when B is not a differential operator, with the same definition.
Then the asymptotic expansion (4.8) and the properties stated in Proposition 4.1 need to be
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checked. With this generality, we can write

ζ(s,A,B, λ) = ζ(s,A,BP⊥A,λ) = ζ(s,A, P⊥A,λB) ,

and we have

ζ(s,A,B) = ζ(s,A,BPA,λ) + ζ(s,A,B, λ) .

The function ζ(s,A,BPA,λ) is always defined and holomorphic on C because PA,λ is of finite
rank.

In particular, when A is ∆z or ∆z,k (k = 0, . . . , n) and B is another operator in L2(M ; Λ),
we will use ζ(s,A,B, λ) if it is defined. We get

ζ(s,∆z, B) = ζsm(s,∆z, B) + ζla(s,∆z, B) ,

where, with the notation of Section 3.2,

ζsm/la(s,∆z, B) = ζ(s,∆z, Bz,sm/la) .

These are the contributions from the small/large spectrum to ζ(s,∆z, B), which are called the
small/large zeta functions of (∆z, B).

4.3 Zeta invariants of Morse forms

By Proposition 4.1 (i), as a function of s, ζ(s,∆z, η∧Dzw) is meromorphic on C. Moreover, for
<s� 0,

ζ(s,∆z, η∧Dzw) = Trs
(
η∧Dz∆

−s
z Π⊥z

)
= Trs

(
η∧ δz∆−sz Π1

z

)
= Trs

(
η∧D−1

z ∆−s+1
z Π⊥z

)
= Trs

(
η∧ d−1

z ∆−s+1
z Π1

z

)
,

using that η∧ dz and η∧ δ−1
z change the degree of homogeneous forms. So, when ζ(s,∆z, η∧Dzw)

is regular at s = 1, the value ζ(1,∆z, η∧Dzw) is a renormalized version of the super-trace of
η∧ d−1

z Π1
z, which is called the zeta invariant of (M, g, η) for the scope of this paper. Unfortunately,

according to Proposition 4.1 (ii) and since Γ(s) is regular at s = 1, ζ(s,∆z, η∧Dzw) might have
a simple pole at s = 1. It will be shown that we can choose η in the given class ξ ∈ H1(M,R)
such that ζ(s,∆z, η∧Dzw) is regular at s = 1 for µ � 0. To achieve this task, we consider its
decomposition into small/large zeta functions (Section 4.2),

ζ(s,∆z, η∧Dzw) = ζsm(s,∆z, η∧Dzw) + ζla(s,∆z, η∧Dzw) .

The values ζsm/la(1,∆z, η∧Dzw) will be called the small/large zeta invariant of (M, g, η), if they
are defined—ζsm(1,∆z, η∧Dzw) is always defined.

4.4 Heat invariants of perturbed operators

For k = 0, . . . , n, the Schwartz kernels of e−t∆z,k and e−t∆z,kPz,la,k are denoted by Kz,k,t(x, y)

and K̃z,k,t(x, y), respectively. Their restrictions to the diagonal have asymptotic expansions (as
t ↓ 0),

Kz,k,t(x, x) ∼
∞∑
l=0

ek,l(x, z)t
(l−n)/2 ,

K̃z,k,t(x, x) ∼
∞∑
l=0

ẽk,l(x, z)t
(l−n)/2 , (4.11)
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where ek,l(x, z) is locally given by smooth expressions involving z and the jets of the local
coefficients of g and η. Take µ � 0 so that Pz,la,k depends smoothly on z (Theorem 3.10) and
dimEkz,sm = |Xk| (Corollary 3.9). Thus ẽk,l(x, z) also depends smoothly on z (Section 4.1). Then

ẽk,l(x, z) =

{
ek,l(x, z) if l < n

ek,n(x, z)−Hz,k,0(x, x) if l = n ,
(4.12)

where Hz,k,t(x, y) is the Schwartz kernel of e−t∆z,kPz,sm,k, which is defined for all t ∈ R and
smooth. According to Section 4.2, the corresponding functions

hk(t, z) = Tr
(
e−t∆z,k

)
, h̃k(t, z) = Tr

(
e−t∆z,kPz,la,k

)
,

have asymptotic expansions

hk(t, z) ∼
∞∑
l=0

ak,l(z)t
(l−n)/2 , h̃k(t, z) ∼

∞∑
l=0

ãk,l(z)t
(l−n)/2 , (4.13)

where, by (4.3)–(4.5) and (4.9),

ak,l(z) =

ˆ
M

trs ek,l(x, z) vol(x) , (4.14)

ãk,l(z) =

ˆ
M

trs ẽk,l(x, z) vol(x) =

{
ak,l(z) if l < n

ak,l(z)− |Xk| if l = n .
(4.15)

Consider the operators e−t∆zw and e−t∆zPz,law, whose respective Schwartz kernels are

Kz,t(x, y) =
n∑
k=0

(−1)kKz,k,t(x, y) , K̃z,t(x, y) =
n∑
k=0

(−1)kK̃z,k,t(x, y) .

We have induced asymptotic expansions

Kz,t(x, x) ∼
∞∑
l=0

el(x, z)t
(l−n)/2 , K̃z,t(x, x) ∼

∞∑
l=0

ẽl(x, z)t
(l−n)/2 ,

where

el(x, z) =
n∑
k=0

(−1)kek,l(x, z) , ẽl(x, z) =
n∑
k=0

(−1)kẽk,l(x, z) .

The corresponding functions,

h(t, z) = Trs
(
e−t∆z

)
=

n∑
k=0

(−1)khk(t, z) ,

h̃(t, z) = Trs
(
e−t∆zPz,la

)
=

n∑
k=0

(−1)kh̃k(t, z) ,

have asymptotic expansions

h(t, z) ∼
∞∑
l=0

al(z)t
(l−n)/2 , h̃(t, z) ∼

∞∑
l=0

ãl(z)t
(l−n)/2 ,

where

al(z) =

n∑
k=0

(−1)kak,l(z) , ãl(z) =
n∑
k=0

(−1)kãk,l(z) .
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Theorem 4.2 [ALG21, Theorem 1.5], [ALKL20]. We have:

(i) el(x, z) = 0 for l < n; and,

(ii) if n is even, then en(x, z) = e(M,∇M )(x).

Remark 4.3. Actually, [ALG21, Theorem 1.5] gives Theorem 4.2 when z is real. But, since the
functions el(x, z) have local expressions, we can assume η is exact. Then the result can be
extended to non-real z using (2.11).

4.5 Derived heat invariants of perturbed operators

For k = 0, . . . , n and j = 1, 2, let

hjk(t, z) = Tr
(
e−t∆z,kΠj

z,k

)
, h̃jk(t, z) = Tr

(
e−t∆z,kΠj

z,la,k

)
.

Lemma 4.4. We have

h1
k+1(t, z) = h2

k(t, z) =

k∑
p=0

(−1)k−php(t, z) =
n∑

q=k+1

(−1)q−k−1hq(t, z) .

Proof. This follows by induction on k, using that

h1
0(t, z) = h2

n(t, z) = 0 , hk(t, z) = h1
k(t, z) + h2

k(t, z) , h2
k(t, z) = h1

k+1(t, z) .

The last equality holds because (2.7) is commutative.

Let

hj(t, z) =
n∑
k=0

(−1)khjk(t, z) = Trs
(
e−t∆zΠj

z

)
,

h̃j(t, z) =
n∑
k=0

(−1)kh̃jk(t, z) = Trs
(
e−t∆zΠj

z,la

)
.

Thus

h(t, z) = h1(t, z) + h2(t, z) , h̃(t, z) = h̃1(t, z) + h̃2(t, z) . (4.16)

Corollary 4.5. We have h(t, z) = 0.

Proof. This is a direct consequence of Lemma 4.4 and (4.16).

Corollary 4.6. We have

−(−1)jhj(t, z) =

n∑
k=0

(−1)kkhk(t, z) = Trs
(
Ne−t∆zΠ⊥z

)
.

Proof. By Lemma 4.4 and Corollary 4.5,

h1(t, z) =

n∑
k=0

(−1)k
n∑
q=k

(−1)q−khq(t, z) =

n∑
q=0

(−1)q(q + 1)hq(t, z)

= h(t, z) +
n∑
q=0

(−1)qqhq(t, z) =
n∑
q=0

(−1)qqhq(t, z) .
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Applying (4.13) and Lemma 4.4, we get

hjk(t, z) ∼
∞∑
l=0

ajk,l(z)t
(l−n)/2 , hj(t, z) ∼

∞∑
l=0

ajl (z)t
(l−n)/2 , (4.17)

where

a1
k+1,l(z) = a2

k,l(z) =
k∑
p=0

(−1)k−pap,l(t, z) =
n∑

q=k+1

(−1)q−k−1aq,l(t, z) ,

−(−1)jajl (z) =
n∑
k=0

(−1)kkak,l(z) .

This a1
l (z) is sometimes called the derived heat invariant of ∆z [GS77], [RS71], [Gil95,

page 181], [ALG20].

For µ� 0, Lemma 4.4, Corollary 4.5 and (4.17) have obvious versions for h̃jk(t, z) and h̃j(t, z),
with the similar proofs. The coefficients of the corresponding asymptotic expansions are denoted
by ãjk,l(z) and ãjl (z).

Theorem 4.7 [ALG20, Theorem 1.3 (1b)]. For all l 6 n, a1
l (z) and ã1

l (z) are independent of z.

Remark 4.8. Again, [ALG20, Theorem 1.3 (1b)] gives Theorem 4.7 in case of a1
l (z) for real z, but

this can be extended for non-real z like in Remark 4.3. Then the case of ã1
l (z) follows from (4.15).

In Theorem 4.7, the case of a1
l (z) is true for any η ∈ Z1(M,R).

Remark 4.9. Theorem 4.2 and the case of a1
l (z) in Theorem 4.7 hold for any η ∈ Z1(M,R) (there

is no need of other conditions). This is also true for all properties of Sections 4.4 and 4.5 concern-
ing Kz,k,t(x, y), ek,l(x, z), hk(t, z), h(t, z), hj(t, z), hjk(t, z), ak,l(z), al(z), a

j
k,l(z), ζ(s,∆z,Π

j
zw)

and θ(s, z).

4.6 Regularity

By (4.8), we have an asymptotic expansion of the form

Trs
(
η∧Dze

−t∆zPz,la
)
∼
∞∑
l=0

b̃l(z)t
(l−n−1)/2 . (4.18)

Lemma 4.10. The function ζla(s,∆z, η∧Dzw) has a simple pole at every s = (n+ 1− l)/2 with
b̃l(z) 6= 0, for 1 6 l 6 n and for even/odd l > n+2 if n is even/odd, whose residue is b̃l(z), and it
is smooth away from these values of s. Moreover the value of ζla(s,∆z, η∧Dzw) at every regular
point s = (n+ 1− l)/2, for odd l > n+ 1, is (l − n− 1)! b̃l(z).

Proof. By Proposition 4.1 (ii), the product Γ(s)ζla(s,∆z, η∧Dzw) has a simple pole at every
s = (n+ 1− l)/2 with b̃l(z) 6= 0 (l ∈ N0), whose residue is b̃l(z), and ζla(s,∆z, η∧Dzw) is smooth
away from these exceptional values of s. Then the result follows because Γ(s) has a simple pole
at every point s = −k (k ∈ N0), whose residue is (−1)k/k!, and it is smooth on C \ (−N0).

By Corollary 4.6 and using the notation (1.4) and (1.5), we get

(−1)jζ(s,∆z,Π
j
zw) = θ(s, z) ,

(−1)jζsm/la(s,∆z,Π
j
zw) = θsm/la(s, z) . (4.19)

Thus the following result follows like Lemma 4.10.
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Lemma 4.11. The function ζla(s,∆z,Π
1
zw) has a simple pole at every s = (n−l)/2 with ã1

l (z) 6= 0,
for 1 6 l 6 n − 1 and for odd/even l > n + 1 if n is even/odd, whose residue is ã1

l (z), and it is
smooth away from these values of s. Moreover the value of ζla(s,∆z,Π

1
zw) at every regular point

s = (n− l)/2, for even l > n, is (l − n)! ã1
l (z).

According to Lemmas 4.10 and 4.11, ζla(s,∆z, η∧Dzw) and ζla(s,∆z,Π
1
zw) are smooth at

s = 0 [See67], but they might have a simple pole at s = 1.

Proposition 4.12. We have

∂zζla(s,∆z,Π
1
zw) = −sζla(s+ 1,∆z, η∧Dzw) .

Proof. Recall that a dot may be used to denote ∂z. Like in (3.32),

Π̇1
z,la =

(
Π1
z,la

)⊥
Π̇1
z,laΠ1

z,la + Π1
z,laΠ̇1

z,la

(
Π1
z,la

)⊥
. (4.20)

Therefore, for <s� 0,

ζla(s,∆z, Π̇
1
zw) = Trs

(
Π̇1
z,la∆−sz Π1

z,la

)
= 0 ,

yielding ζla(s,∆z, Π̇
1
zw) = 0 for all s because this is a meromorphic function of s. Hence, since

∆z and Π1
z,law commute, Proposition 4.1 (i),(v) give

∂zζla(s,∆z,Π
1
zw) = −sζla(s+ 1,∆z, ∆̇zΠ

1
zw) = −sTrs

(
∆̇z∆

−s−1
z Π1

z,la

)
.

Next, by (2.3),

∆̇zΠ
1
z,la = (η∧ δz + δz η∧)Π1

z,la = η∧ δzΠ1
z,la + δz η∧Π1

z,la . (4.21)

But, since Π1
zδz = 0,

Trs
(
δz η∧∆−s−1

z Π1
z,la

)
= −Trs

(
η∧∆−s−1

z Π1
z,laδz

)
= 0 . (4.22)

Combining (4.6)–(4.22) and Proposition 4.1 (i), we get

∂zζla(s,∆z,Π
1
zw) = −sTrs

(
η∧ δz∆−s−1

z Π1
z,la

)
= −sTrs

(
η∧Dz∆

−s−1
z Π1

z,la

)
= −sζla(s+ 1,∆z, η∧Dzw) .

Theorem 4.13. For µ� 0, ζla(s,∆z, η∧Dzw) is smooth on C \ ((1− N0)/2).

Proof. By Lemma 4.10, it is enough to prove that ζla(s,∆z, η∧Dzw) is regular at s = sl =
(n+ 1− l)/2 for l 6 n− 1, which means b̃l(z) = 0.

First, take l 6 n − 2. By Lemmas 4.10 and 4.11, Theorem 4.7, and Proposition 4.12, for
µ� 0,

0 = ∂zã
1
l+1(z) = −(sl − 1)b̃l(z) .

Thus b̃l(z) = 0 because sl − 1 = (n− 1− l)/2 > 0.

Next, take l = n−1. (The previous argument does not apply in this case because sn−1−1 = 0.)
By Theorem 4.7 and Lemma 4.11, for µ� 0,

∂zζla(0,∆z,Π
1
zw) = ∂zã

1
n(z) = 0 .

So there is a holomorphic function φz(s), defined around s = 0 and depending smoothly on z,
such that

∂zζla(s,∆z,Π
1
zw) = sφz(s) .
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Hence, by Proposition 4.12,

φz(s) = −ζla(s+ 1,∆z, η∧Dzw) ,

obtaining that ζla(s,∆z, η∧Dzw) is regular at s = sn−1 = 1.

From now on, we use the simpler notation

ζ(s, z) = ζ(s,∆z, η∧Dzw) , ζsm/la(s, z) = ζsm/la(s,∆z, η∧Dzw) .

We may also add η to this notation, writing ζ(s, z, η) and ζsm/la(s, z, η).

Corollary 4.14. If <s > 1/2 and µ� 0, then

ζla(s, z) =
1

Γ(s)

ˆ ∞
0

ts−1 Trs
(
η∧Dze

−t∆zPz,la
)
dt ,

where the integral is absolutely convergent.

Proof. By Lemma 4.10, Theorem 4.13 and (4.18), for µ� 0,

Trs
(
η∧Dze

−t∆zPz,la
)

= O
(
t−1/2

)
(t→ 0) . (4.23)

Moreover there is some c > 0 such that

Trs
(
η∧Dze

−t∆zPz,la
)

= O(e−ct) (t→∞) . (4.24)

So the stated integral is absolutely convergent for <s > 1/2, defining a holomorphic function of
s on this half-plane. Then the stated equality is true because it holds for <s� 0.

Corollary 4.15. For µ� 0,

ζsm(1, z) = Trs(η∧D−1
z (Π⊥z )sm) ,

ζla(1, z) = lim
t↓0

Trs
(
η∧D−1

z e−t∆zPz,la
)
,

ζ(1, z) = lim
t↓0

Trs
(
η∧D−1

z e−t∆zΠ⊥z
)
.

Proof. By Corollary 4.14, (4.23) and (4.24), and since

Trs
(
η∧D−1

z e−t∆zPz,la
)

= O(e−ct) (t→∞) ,

we get

ζla(1, z) =

ˆ ∞
0

Trs
(
η∧Dze

−u∆zPz,la
)
du = lim

t↓0

ˆ ∞
t

Trs
(
η∧Dze

−u∆zPz,la
)
du

= lim
t↓0

Trs
(
η∧D−1

z e−t∆zPz,la
)
.

The expressions of ζ(1, z) and ζsm(1, z) follow from the expression of ζla(1, z) and Proposi-
tion 4.1 (iii).

Theorem 4.13 and Corollary 4.15 give Theorem 1.1 (i).

Corollary 4.16. If µ� 0, then (1.6) is true.

Proof. Apply Proposition 4.12 and Theorem 4.13.
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4.7 The case of exact forms

Let us consider the special case where η = dh for a Morse function h. These results will be
extended later, but the arguments are much simpler in this case, with weaker conditions and less
ingredients.

Lemma 4.17. For µ� 0,

Trs
(
η∧ d−1

z Π1
z,sm

)
= −Trs

(
h (Π⊥z )sm

)
,

Trs
(
η∧ d−1

z e−t∆zΠ1
z,la

)
= −Trs

(
h e−t∆zPz,la

)
,

Trs
(
η∧ d−1

z e−t∆zΠ1
z

)
= −Trs

(
h e−t∆zΠ⊥z

)
.

Proof. We prove the first equality, the other ones being analogous. Since η∧ = [d, h],

Trs
(
η∧ d−1

z Π1
z,sm

)
= Trs

(
[dz, h] d−1

z Π1
z,sm

)
= Trs

(
dz h d

−1
z Π1

z,sm

)
− Trs

(
h dzd

−1
z Π1

z,sm

)
= −Trs

(
h d−1

z Π1
z,smdz

)
− Trs

(
hΠ1

z,sm

)
= −Trs

(
h d−1

z dzΠ
2
z,sm

)
− Trs

(
hΠ1

z,sm

)
= −Trs

(
hΠ2

z,sm

)
− Trs

(
hΠ1

z,sm

)
= −Trs

(
h (Π⊥z )sm

)
.

Remark 4.18. The last equality of Lemma 4.17 does not require any condition on η or g (h can
be any smooth real-valued function).

Corollary 4.19. For µ� 0,

ζsm(1, z) = −Trs
(
h (Π⊥z )sm

)
,

ζla(1, z) = − lim
t↓0

Trs
(
h e−t∆zPz,la

)
,

ζ(1, z) = − lim
t↓0

Trs
(
h e−t∆zΠ⊥z

)
.

Proof. Apply Corollary 4.15 and Lemma 4.17.

Corollary 4.20. The value ζsm(1, z) is uniformly bounded on z for µ� 0.

Proof. The operator h (Π⊥z )sm is uniformly bounded and, for µ � 0, has uniformly bounded
rank. So Trs(h (Π⊥z )sm) is uniformly bounded on z for µ � 0, and therefore the result follows
from Corollary 4.19.

Corollary 4.21. If µ� 0, then ζ(1, z), ζsm/la(1, z) ∈ R.

Proof. We consider the case of ζ(1, z), the other cases being similar. By Corollary 4.19, it is
enough to prove that Trs(h e−t∆zΠ⊥z ) ∈ R. This is true because, taking adjoints,

Trs
(
h e−t∆zΠ⊥z

)
= Trs

(
Π⊥z e

−t∆z h
)

= Trs
(
hΠ⊥z e

−t∆z
)

= Trs
(
h e−t∆zΠ⊥z

)
.

Corollary 4.22. If M is oriented, n is even and |µ| � 0, then

ζ(1, z) = ζ(1,−z̄) = ζ(1,−z) = ζ(1, z̄) ,

ζsm/la(1, z) = ζsm/la(1,−z̄) = ζsm/la(1,−z) = ζsm/la(1, z̄) .

Proof. We prove the case of ζsm(1, z), the other cases being similar. By (2.15) and since n is
even,

Trs
(
h (Π⊥z )sm

)
= Trs

(
? ?−1h (Π⊥z )sm

)
= Trs

(
?−1 h (Π⊥z )sm ?

)
= Trs

(
?−1 ?h (Π⊥−z̄)sm

)
= Trs

(
h (Π⊥−z̄)sm

)
.
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Thus the first equality of the statement follows by Corollary 4.19. The second equality follows
with a similar argument, using ?̄ instead of ?. The third equality is a consequence of the other
ones.

Theorem 4.23. The following limit holds uniformly on ν:

lim
µ→+∞

ζla(1, z) = −
ˆ
M
h e(M,∇M ) vol +

n∑
p∈X

(−1)ind(p)h(p) .

Proof. By (4.11), (4.12), Theorem 4.2 and Corollary 4.19, for µ� 0,

ζla(1, z) = − lim
t↓0

Trs
(
h e−t∆zPz,la

)
= −

ˆ
M
h(x) trs ẽn(x, z) vol(x)

= −
ˆ
M
h(x) trs en(x, z) vol(x) + Trs(hPz,sm)

= −
ˆ
M
h e(M,∇M ) vol + Trs(hPz,sm) .

According to Corollary 3.9, the elements Pz,smep,z (p ∈ X ) form a base of Ekz,sm when µ� 0.
Applying the Gram-Schmidt process to this base, we get an orthonormal frame ẽp,z (p ∈ X ) of
Ez,sm. By Proposition 3.7 for m = 0 and (3.9)–(3.12), we get

lim
µ→+∞

〈h ẽp,z, ẽq,z〉 = lim
µ→+∞

〈hep,z, eq,z〉 = h(p)δpq .

Hence

lim
µ→+∞

Trs(hPz,sm) =
n∑
k=0

(−1)k
∑
p∈Xk

h(p) .

5. The small complex vs the Morse complex

5.1 Preliminaries on Smale vector fields

5.1.1 Vector fields with Morse type zeros Let X be a real smooth vector field on M with
flow φ = {φt}. Let X = Zero(X) denote the set of zeros of X (or rest points φ). It is said that a
zero p of X is of Morse type with (Morse) index of ind(p) if, using the notation (3.2),

X = −
n∑
j=1

εp,jx
j
p

∂

∂xjp
(5.1)

on the domain Up of some coordinates xp = (x1
p, . . . , x

n
p ) at p, also called Morse coordinates. This

condition means that X = − gradg hX,p on Up, where hX,p and g are given on Up by the right-hand
side of (3.1) and (3.3). The coordinates xp used in (5.1) are not unique; that expression is invariant
by taking positive multiples of the coordinates (contrary to the expressions (3.1), (3.3) and (3.4)).
But ind(p) is independent of xp. If (3.3), (3.4) and (5.1) hold with the same coordinates, then η
and g are said to be in standard form with respect to X around p. In this case, Cη and Cg (C > 0)
are also in standard form with respect to X around p; indeed, Cη, X and Cg satisfy (3.3), (3.4)
and (5.1) with the coordinates

√
Cxp. When g is defined on M , if η and g are in standard form

with respect to X around every p ∈ X , then η and g are said to be in standard form with respect
to X. This concept is also applied to any Morse function h on M referring to dh and g. The
reference to g may be omitted in this terminology.
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The vector field X is fixed in most of the paper and plays an auxiliary role. Unless otherwise
indicated, we assume from now on that X has Morse type zeros. Then X is finite, and the sets
Xk, X+ and X<k are defined like in Section 3.1.

5.1.2 Stable and unstable manifolds For k = 0, . . . , n and p ∈ Xk, the stable/unstable mani-
folds of p are smooth injective immersions, ι±p : W±p →M , where the images ι±p (W±p ) consist of
the points satisfying φt(x)→ p as t→ ±∞, and the manifolds W+

p and W−p are diffeomorphic to

Rn−k and Rk, respectively [Sma63, Theorem 9.1]. In particular, p ∈ ι±p (W±p ), and the maps ι+p
and ι−p meet transversely at p. Let p± = (ι±p )−1(p). Assume every Up is connected, and let U±p be
the connected component of (ι±p )−1(Up) that contains p±. The restriction ι±p : U±p → (x±p )−1(0)
is a diffeomorphism, and therefore (U±p , x

±
p ι
±
p ) is a coordinate system of W±p centered at p±.

5.1.3 Gradient-like vector fields Given a Morse function h on M in standard form with
respect to X, we have X = − gradg h on M for some Riemannian metric g if and only if Xh < 0
on M \ X [BFK10, Lemma 2.1], [Lau12, Section 6.1.3]; in this case, X is said to be gradient-like
(with respect to h). If X is gradient-like, then the maps ι±p are embeddings [Sma60b, Lemma 3.8],
[BFK10, Lemma 2.2], and their images cover M [Sma61, Lemma 1.1], [BFK10, Corollary 2.5].
Thus, in this case, we will write W±p = ι±p (W±p ) and p± = p, and ι±p becomes the inclusion map.

Unless otherwise indicated, we also assume in the rest of the paper that X is gradient-like.

5.1.4 Smale vector fields X is said to be Smale if W+
p t W−q for all p, q ∈ X . In this

case,M(p, q) := W+
p ∩W−q is a φ-saturated smooth submanifold of dimension ind(p)− ind(q). In

particular,M(p, p) = {p}, and define T (p, p) = ∅. If p 6= q, then the induced R-action onM(p, q)
is free and proper, and therefore the orbit space T (p, q) := M(p, q)/R is a smooth manifold of
dimension ind(p) − ind(q) − 1. The elements of T (p, q) are the (unparameterized) trajectories
with α-limit {p} and ω-limit {q}, which are oriented by X. If ind(p) 6 ind(q), then T (p, q) = ∅. If
ind(p)−ind(q) = 1, then T (p, q) consists of isolated points, each of them representing a trajectory
in M . Let T =

⋃
p,q∈X T (p, q), and

T 1
p =

⋃
q∈Xind(p)−1

T (p, q) , T 1
k =

⋃
p∈Xk

T 1
p , T 1 =

n⋃
k=0

T 1
k .

The elements of T 1 are called instantons.1

Unless otherwise indicated, besides the above conditions, we assume from now on that X is
Smale; i.e., we assume (b) (Section 1.1). Thus the α- and ω-limits of the orbits of X are zero
points [Sma61, Theorem B and Lemma 1.1].

5.1.5 Lyapunov forms Any η ∈ Z1(M,R) is said to be Lyapunov for X if η(X) < 0 on M \X
[BH08, Definition 2.3]. By (b), every class in H1(M,R) has a representative η which is Lyapunov
for X and η] = −X for some Riemannian metric g on M , with η and g in standard form with
respect to X [BH04, Proposition 16 (i)], [BH08, Observations 2.5 and 2.6], [HM06, Lemma 3.7],
[Lau12, Section 6.1.3]. Moreover X can be C∞-approximated by gradient-like Smale vector fields
that agree with X around X [BH08, Proposition 2.4] (this follows from [Sma61, Theorem A]). A
well known consequence is that, for any Morse function h, there is a C∞-dense set of Riemannian
metrics g on M such that − gradg h is Smale; this density is also true in the subspace of metrics

1Sometimes, the elements of T are called instantons, and the elements of T 1 proper instantons [Bot88].
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that are Euclidean with respect to Morse coordinates on given neighborhoods of the critical
points.

5.1.6 Completion of the unstable manifolds

Proposition 5.1 [BZ92, Appendix by F. Laudenbach, Proposition 2], [Lat94, Chapter 2], [Bur97,
Theorem 2.1], [BH01, Theorem 1], [BFK10, Theorem 4.4], [Lau12, Sections A.2 and A.8], [Min15,
Corollary 2.3.2]. The following holds for every p ∈ Xk (k = 0, . . . , n):

(i) W−p is a C1 submanifold with conic singularities (in the sense of [BZ92, Appendix by
F. Laudenbach, Section a)] and [Lau12, Appendix A.1]) and a Whitney stratified subspace.
Its strata are the submanifolds W−q for q ∈ X<k with T (p, q) 6= ∅. As a consequence, W−p
has finite volume, and

W−q ∩W−p ⊂
⋃

x∈X<k

W−x

if q 6= p in Xk; in particular, p /∈W−q .

(ii) There is a compact k-manifold with corners2 Ŵ−p whose l-corner3 (0 6 l 6 k) is

∂lŴ
−
p =

⊔
(q0,...,ql)∈{p}×X l

( l∏
j=1

T (qj−1, qj)

)
×W−ql .

In particular, the interior of Ŵ−p is ∂0Ŵ
−
p = W−p , and the set T (p, q) is finite if q ∈ Xk−1.

(iii) There is a smooth map ι̂−p : Ŵ−p → M whose restriction to every component of ∂lŴ
−
p

in (ii) is given by the factor projection to W−ql ; in particular, ι̂−p = ι−p on W−p . Moreover

ι̂−p : Ŵ−p →W−p is a stratified map.

By Proposition 5.1 (i), we can choose the open sets Up (p ∈ Xk, k = 0, . . . , n) so small that

Up ∩W−q = ∅ if q 6= p in Xk.
For every q ∈ Xk−1 and γ ∈ T (p, q), the closure γ̄ in M is a compact oriented submanifold

with boundary of dimension one, and ∂γ̄ = {p, q}. We may also consider γ̄ as the closure of γ in

Ŵ−p .

5.2 Preliminaries on the Morse complex

5.2.1 The Morse complex Fix an orientation O−p of every unstable manifold W−p (p ∈ Xk,
k = 0, . . . , n), which can be also considered as an orientation of Ŵ−p . Then W−p ≡ (W−p ,O−p )

defines a current of dimension k on M , also denoted by W−p ; namely, for α ∈ Ωk(M),

〈W−p , α〉 =

ˆ
W−p

α =

ˆ
Ŵ−p

(ι̂−p )∗α .

Let ∂1O−p be the orientation of ∂1Ŵ
−
p induced by O−p like in the Stokes’ theorem. The

restriction of ∂1O−p to every component T (p, q)×W−q (q ∈ Xk′) of ∂1Ŵ
−
p is of the form Op,q⊗O−q

for a unique orientation Op,q of T (p, q). If k′ = k − 1, then Op,q can be represented by a unique
function εp,q : T (p, q) → {±1}; combining these functions, we get a map ε : T 1 → {±1}. By

2In the sense of [Mel96, Section 1.1.8].
3The union of the interiors of the boundary faces of codimension l.
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the descriptions of ∂1Ŵ
−
p and ι̂−p : ∂1Ŵ

−
p → M , and by the Stokes’ theorem for manifolds with

corners, we have [BZ92, Appendix by F. Laudenbach], [HM06, Remark 1.9], [BFK10, Theorem 3.6
and Proposition 5.3], [Lau12, Section 6.5.3]

∂W−p =
∑

q∈Xk−1, γ∈T (p,q)

ε(γ)W−q . (5.2)

Thus the currents W−p (p ∈ X ) generate over C a finite dimensional subcomplex (C•(X,W
−), ∂)

of the complex (Ω(M)′, ∂) of currents on M , called the Morse complex. The simpler notation
C• = C•(X) = C•(X,W

−) may be also used. Moreover C• ↪→ Ω(M)′ induces an isomorphism4

H•(C•, ∂) ∼= H•(M,C) [Tho49, Sma60a, Mil65] (see also [Flo89, Sch93, Sch99], [HS85, Theo-
rem 0.1], [BZ92, Appendix by F. Laudenbach, Proposition 7], [Lau12, Section 6.6.5]).

The dual Morse complex is the dual (C•(X,W−),d) of (C•, ∂); namely, Ck(X,W−) =
(Ck)

∗ ≡ CXk (k = 0, . . . , n). We will usually denote C• = C•(X) = C•(X,W−). Moreover
boldface notation will be used for elements of C• and operators on C•. Let ep (p ∈ X ) denote
the elements of the canonical base of C•, determined by ep(q) = δpq, using the Kronecker delta.
Then, for q ∈ Xk−1,

deq =
∑

p∈Xk, γ∈T (p,q)

ε(γ) ep . (5.3)

5.2.2 The perturbed Morse complex Take any η ∈ Z1(M,R) defining a class ξ ∈ H1(M,R)
(there is no need of any condition on η or g in Sections 5.2.2 to 5.2.4). For reasons of brevity,
write η(γ) =

´
γ η for every γ ∈ T 1. According to [BH01, BH04, BH08], (C•,d) has an analog of

the Witten’s perturbation, (C•,dz = dzη) (z ∈ C), where, for q ∈ Xk−1 (k = 1, . . . , n),

dzeq =
∑

p∈Xk, γ∈T (p,q)

ε(γ)ezη(γ)ep . (5.4)

If η = dh for some h ∈ C∞(M,R), then dz = e−zhdezh on C• because η(γ) = h(q) − h(p) for
p ∈ Xk, q ∈ Xk−1 and γ ∈ T (p, q); here, e±zh also denotes the operator of multiplication by the
restriction of this function to X . It will be said that (C•,dz) (z ∈ C) is the perturbed dual Morse
complex defined by X and η. A perturbation (C•, ∂

z) is similarly defined, adding the factor ezη(γ)

to the terms of the right-hand side of (5.2).

Since W−p (p ∈ Xk, k = 0, . . . , n) is diffeomorphic to Rk, there is a unique h−η,p ∈ C∞(W−p ,R)

such that h−η,p(p̂
−) = 0 and dh−η,p = (ι−p )∗η. Indeed h−η,p has a smooth extension ĥ−η,p to Ŵ−p

because Ŵ−p is contractile. By Proposition 5.1 (ii), for all q ∈ Xk−1 and γ ∈ T (p, q), we have

ĥ−η,p(γ, q̂
−) = η(γ), yielding

ĥ−η,q ≡ ĥ−η,p − η(γ) on Ŵ−q ≡ {γ} × Ŵ−q ⊂ ∂1Ŵ
−
p .

According to [BH01, Proposition 4], [BH04, Proposition 10], [BH08, Propositions 2.15 and 2.16
and Section 6.2], a sujective homomorphism of complexes,

Φz : (Ω(M), dz)→ (C•,dz) ,

4Actually, H•(M,Z) is isomorphic to the homology of the complex of free Abelian groups generated by the currents
W−p .
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is defined by

Φz(ω)(p) =

ˆ
W−p

ezh
−
η,pω =

ˆ
Ŵ−p

ezĥ
−
η,p(ι̂−p )∗ω .

Moreover Φz is a quasi-isomorphism for all z ∈ C [BZ92, Proposition 1 in the Appendix by
F. Laudenbach] (see also [BZ92, Theorem 2.9], [BZ94, Theorem 1.6], [BH08, Proposition 2.17
and Section 6.2]). Then, by (3.14), the same is true for

Φz : (Ez,sm, dz)→ (C•,dz) .

Since direct adaptation of [BH04, Appendix A] shows that, for k = 0, . . . , n, dimHk(C•,dz) is
independent of z ∈ C with |µ| � 0, we get (2.9).

5.2.3 Morse complex with coefficients in a flat vector bundle With more generality [BZ92,
Section 1c)], for a flat vector bundle F , we may consider (C•(X,W−, F ),dF ), where Ck(X,W−, F ) =⊕

p∈Xk Fp, and dFe (e ∈ Fq, q ∈ Xk−1) is defined like in the right-hand side of (5.3), replacing ep

with the parallel transport of e along γ̄−1. This is the dual of the complex (C•(X,W
−, F ∗), ∂F

∗
),

where Ck(X,W
−, F ∗) =

⊕
p∈Xk F

∗
p , and ∂F f (f ∈ F ∗p , p ∈ Xk) is defined like in the right-hand

side of (5.2), replacing W−q with the parallel transport of f along γ̄. A homomorphism

ΦF = ΦX,F : (Ω(M,F ), d)→
(
C•(X,W−, F ),dF

)
can be defined like Φz, using the isomorphism

Ω•
(
Ŵ−p , (ι̂

−
p )∗F

) ∼= Ω•
(
Ŵ−p

)
⊗ Fp

given by the parallel transport of (ι̂−p )∗F . With this generality, ΦF is also induces a quasi-
isomorphism [BZ92, Theorem 2.9]. If F = Lz (Section 2.1.4), then(

C•(X,W−,Lz),dLz
)
≡ (C•,dz) , ΦL

z ≡ Φz .

5.2.4 Hodge theory of the Morse complex Consider the Hermitian scalar product on C•

so that the canonical base ep (p ∈ X ) is orthonormal. All operators induced by dz and this
Hermitian structure are called perturbed Morse operators. For instance, besides dz, we have the
perturbed Morse operators

δz = d∗z , Dz = dz + δz , ∆z = D2
z = dzδz + δzdz .

In particular, it will be said that ∆z is the perturbed Morse Laplacian, and its eigenvalues will be
called perturbed Morse eigenvalues. If z = 0, we omit the subscript “z” and the word “perturbed”.
From (5.4), we easily get

δzep =
∑

q∈Xk−1, γ∈T (p,q)

ez̄η(γ)ε(γ) eq , (5.5)

for p ∈ Xk. We also have

C• = ker ∆z ⊕ im dz ⊕ im δz ,

ker ∆z = ker Dz = ker dz ∩ ker δz , im ∆z = im Dz = im dz ⊕ im δz .

The orthogonal projections of C• to ker ∆z, im dz and im δz are denoted by Πz = Π0
z, Π1

z and
Π2
z, respectively. The compositions d−1

z Π1, δ−1
z Π2 and D−1

z Π⊥ are defined like in Section 2.1.2,
and there is an obvious version of the commutative diagram (2.7).
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5.3 The small complex vs the Morse complex

Our main objects of interest are the form η ∈ Z1(M ;R) and the Riemannian metric g; X plays
an auxiliary role. Unless otherwise indicated, assume from now on that η is Lyapunov for X, and
η and g are in standard form with respect to X; i.e., we assume (c) besides (a) and (b). Since
every ξ ∈ H1(M,R) is Lyapunov for X by (b), we can choose some η ∈ ξ and g satisfying (a)
and (c).

For every p ∈ X , consider the functions hη,p, hX,p, h
−
η,p and ĥ−η,p defined in Sections 3.1, 5.1.1

and 5.2.2. Since η and g are in standard form with respect to X, we have hη,p = hX,p on Up, and

h−η,p = hη,p = −1

2
|x−p |2 (5.6)

on U−p . From now on, the simpler notation hp = hη,p = hX,p, h
−
p = h−η,p and ĥ−p = ĥ−η,p will be

used. Since η is Lyapunov for X,

h−p < 0 on W−p \ {p} . (5.7)

Consider the notation of Section 5.2.2. Let Jz : C• → Ez be the C-linear isometry given
by Jz(ep) = ep,z, and let Ψz = Pz,smJz : C• → Ez,sm, which is an isomorphism for µ � 0
(Corollary 3.9). By Proposition 3.7,

‖Ψze‖ =
(
1 +O

(
e−cµ

))
‖e‖ (µ→ +∞)

for all e ∈ C•. Using polarization (see e.g. [Kat95, Section I.6.2]) and conjugation, this means
that, as µ→ +∞,

Ψ∗zΨz = 1 +O
(
e−cµ

)
, ΨzΨ

∗
z = 1 +O

(
e−cµ

)
. (5.8)

Notation 5.2. Consider functions u(z) and v(z) (z ∈ C) with values in Banach spaces. The
notation u(z) �0 v(z) (µ→ ±∞) means

u(z) = v(z) +O
(
e−c|µ|

)
(µ→ ±∞) .

We may also consider this asymptotic relation when the Banach spaces also depend on z.

Theorem 5.3 Cf. [BZ94, Theorem 6.11], [Zha01, Theorem 6.9], [BH01, Theorem 4]. For every
τ ∈ R, as µ→ +∞,

Φz+τΨz �0

( π

µ+ τ/2

)N/2(µ
π

)n/4
.

Proof. We adapt the proof of [Zha01, Theorem 6.9] to the case of complex parameter. For every
p ∈ Xk,

Φz+τΨzep =
∑
q∈Xk

eq

ˆ
Ŵ−q

e(z+τ)ĥ−q (ι̂−q )∗Pz,smep,z . (5.9)

Then the result follows by checking the asymptotics of these integrals.

In the case q = p, by (5.7) and Corollary 3.8,
ˆ
Ŵ−p

e(z+τ)ĥ−p (ι̂−p )∗(Pz,sm − 1)ep,z �0 0 .
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But, by Proposition 3.1 (iii), (3.9)–(3.12) and (5.6),ˆ
Ŵ−p

e(z+τ)ĥ−p (ι̂−p )∗ep,z =

ˆ
Ŵ−p

e(z+τ)ĥ−p (ι̂−p )∗
(
e−iνhpep,µ

)
=

ˆ
Ŵ−p

e(µ+τ)ĥ−p (ι̂−p )∗ep,µ

=
1

aµ

(ˆ 2r

−2r
ρ(x)e−(2µ+τ)x2/2 dx

)k
=
( π

µ+ τ/2

)k/2(µ
π

)n/4(
1 +O

(
e−cµ

))
. (5.10)

(When τ = 0, the last equality is the same as [Zha01, Eq. (6.30)].)

For q 6= p in Xk, since ep,z = 0 on W−q because Up ∩W−q = ∅ (Section 5.1.6), like in the
previous case, we get ˆ

Ŵ−q

e(z+τ)ĥ−q (ι̂−q )∗Pz,smep,z �0 0 .

Corollary 5.4. For every τ ∈ R, if µ� 0, then Φz+τ : Ez,sm → C• is an isomorphism.

Proof. Apply Theorem 5.3 and Corollary 3.9.

Remark 5.5. The argument of the proof of Theorem 5.3 shows that

ΦzJz =
(π
µ

)N/2−n/4
+O

(
e−cµ

)
(µ→ +∞) .

So Φz : Ez → C• is an isomorphism for µ� 0 (see also [BH08, Lemma 5.2]).

Let

Ψ̃z =
(µ
π

)N/2−n/4
Ψz : C• → Ez,sm .

Corollary 5.6. Consider Ψ̃∗z : Ez,sm → C•. As µ→ +∞,

Ψ̃∗zΨ̃z =
(µ
π

)N−n/2
+O

(
e−cµ

)
, Ψ̃zΨ̃

∗
z =

(µ
π

)N−n/2
+O

(
e−cµ

)
.

Proof. This is a direct consequence of (5.8).

Corollary 5.7. For any τ ∈ R, consider Φz+τ : Ez,sm → C•. As µ→ +∞,

Φz+τ Ψ̃z �0

( µ

µ+ τ/2

)N/2
, Ψ̃zΦz+τ �0

( µ

µ+ τ/2

)N/2
.

Proof. The first relation is a restatement of Theorem 5.3. The second relation follows by conju-
gating the first one by Ψ̃z and using Corollary 5.6.

Corollary 5.8. As µ→ +∞, Ψ̃−1
z �0 Φz on Ez,sm.

Proof. By Corollaries 5.6 and 5.7, on Ez,sm,

Ψ̃−1
z �0 Ψ̃−1

z Ψ̃zΦz = Φz .

In the rest of this section, we consider Φz : Ez,sm → C• unless otherwise indicated.

Corollary 5.9. As µ→ +∞,

Φ∗zΦz �0

(π
µ

)N−n/2
, ΦzΦ

∗
z �0

(π
µ

)N−n/2
.
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Proof. We show the first relation, the other one being similar. By Corollaries 5.6 and 5.8, on
Ez,sm,

Φ∗zΦz �0

(
Ψ̃−1
z

)∗
Ψ̃−1
z =

(
Ψ̃∗z
)−1

Ψ̃−1
z =

(
Ψ̃zΨ̃

∗
z

)−1 �0

(π
µ

)N−n/2
.

Corollary 5.10. As µ→ +∞,

Ψ̃z �0

(µ
π

)N−n/2
Φ∗z .

Proof. By Corollaries 5.7 and 5.9,

Ψ̃z �0

(µ
π

)N−n/2
Ψ̃zΦzΦ

∗
z �0

(µ
π

)N−n/2
Φ∗z .

Corollary 5.11. For every τ ∈ R, as µ→ +∞,

Φz+τPz+τ,smΨ̃z �0

( µ

µ+ τ/2

)N/2
+O

(
µ−1

)
.

Proof. By Corollaries 5.6, 5.7 and 5.9 and Proposition 3.18,

Φz+τPz+τ,smΨ̃z = Φz+τ (Pz+τ,sm − Pz,sm)Ψ̃z + Φz+τ Ψ̃z �0 O
(
µ−1

)
+
( µ

µ+ τ/2

)N/2
.

Corollary 5.12. As µ→ +∞,

dz,sm �0 Ψ̃zdzΦz , δz,sm �0 Ψ̃zδzΦz .

Proof. By Theorem 3.10 and Corollary 5.7,

dz,sm �0 Ψ̃zΦzdz,sm = Ψ̃zdzΦz .

Now, taking adjoints and using Corollaries 5.6, 5.9 and 5.10, we obtain

δz,sm = Φ∗z,smδzΨ̃
∗
z �0 Ψ̃zδzΦz .

The orthogonal projections of C• to the subspaces Φz(ker ∆z,sm), Φz(im dz,sm) and Φz(im δz,sm)

are denoted by Π̃z = Π̃
0

z, Π̃
1

z and Π̃
2

z, respectively. The inclusion Φz(im dz,sm) ⊂ im dz

Π̃
1

z = Π̃
1

zΠ
1
z . (5.11)

Corollary 5.13. For j = 0, 1, 2, as µ→ +∞,

ΦzΠ
j
z,sm �0 Π̃

j

zΦz,sm , Πj
z,sm �0 Ψ̃zΠ̃

j

zΦz,sm , Πj
z,smΨ̃z �0 Ψ̃zΠ̃

j

z,sm .

Proof. We only prove the case of Π̃
2

z, the other cases being similar. Let αz,1, . . . , αz,pz be an
orthonormal frame of δz(E

k+1
z,sm). So Φzαz,1, . . . ,Φzαz,pz is a base of Φzδz(E

k+1
z,sm) for µ � 0 by

Corollary 5.4. Applying the Gram-Schmidt process to this base, we get an orthonormal base
fz,1, . . . , fz,pz of Φzδz(E

k+1
z,sm). By Corollary 5.9,

〈Φzαz,a,Φzαz,b〉 �0

(π
µ

)k−n/2
δab ,

for 1 6 a, b 6 pz. So

fz,a �0

(µ
π

)k/2−n/4
Φzαz,a .
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Hence, by Corollary 5.9, for any β ∈ Ekz,sm,

Π̃
2

zΦzβ =

pz∑
a=1

〈Φzβ, fz,a〉fz,a �0

(µ
π

)k−n/2 pz∑
a=1

〈Φzβ,Φzαz,a〉Φzαz,a

�0

m∑
a=1

〈β, αz,a〉Φzαz,a = ΦzΠ
2
z,smβ .

This shows the first relation of the statement because dimEkz,sm < ∞. Then the other stated
relations follow using Corollaries 5.6, 5.7 and 5.9.

According to Corollary 5.4, in the following corollaries, we take µ� 0 so that Φz : Ez,sm → C•

is an isomorphism.

Corollary 5.14. As µ→ +∞,

(Φ−1
z )∗Φ−1

z �0

(µ
π

)N−n/2
, Φ−1

z (Φ−1
z )∗ �0

(µ
π

)N−n/2
.

Proof. By Corollary 5.9, for e ∈ Ck with ‖e‖ = 1,∥∥Φ−1
z e
∥∥ �0

(µ
π

)k/2−n/4∥∥ΦzΦ
−1
z e
∥∥ =

(µ
π

)k/2−n/4
,

yielding the first stated relation. The second one has a similar proof.

Corollary 5.15. As µ→ +∞,

Φ∗z �0

(π
µ

)N−n/2
Φ−1
z , Ψ̃z �0 Φ−1

z .

Proof. By Corollaries 5.9 and 5.14,

Φ∗z = Φ∗zΦzΦ
−1
z �0

(π
µ

)N−n/2
Φ−1
z , Ψ̃z = Ψ̃zΦzΦ

−1
z �0 Φ−1

z .

Corollary 5.16. We have Π̃
1

z = Π1
z for µ� 0, and Π̃

2

z �0 Π2
z as µ→ +∞.

Proof. Since Φz(im dz,sm) = im dz for µ� 0, we get Π̃
1

z = Π1
z.

To prove Π̃
2

z �0 Π2
z as µ→ +∞, consider the notation of the proof of Corollary 5.13. We have

αz,a = δzβz,a (a = 1, . . . , pz) for some base βz,1, . . . , βz,pz of im dz,sm,k. Hence, by Corollaries 5.7,
5.9 and 5.12,

Φzαz,a = Φzδzβz,a �0 ΦzΨ̃zδzΦzβz,a �0 δzΦzβz,a , (5.12)

and δzΦzβz,1, . . . , δzΦzβz,pz is a base of im δz,k+1. Applying the Gram-Schmidt process to this
base, we get an orthonormal base gz,1, . . . ,gz,pz of im δz,k+1 satisfying gz,a �0 fz,a by (5.12).
Then, for any e ∈ Ck with ‖e‖ = 1,

Π̃
2

ze =

pz∑
a=1

〈e,gz,a〉gz,a �0

pz∑
a=1

〈e, fz,a〉fz,a = Π2
ze .

Corollary 5.17. We have

dz,sm = Φ−1
z dzΦz,sm , d−1

z,smΠ1
z,sm = Π2

z,smΦ−1
z d−1

z ΦzΠ
1
z,sm .
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Proof. The first equality follows like the first relation of Corollary 5.12, using Φ−1
z instead of Ψ̃z.

To prove the second one, take any α ∈ im dz,sm. Since

dzΠ
2
z,smΦ−1

z d−1
z Φzα = dzΦ

−1
z d−1

z Φzα = Φ−1
z dzd

−1
z Φzα = α

with Π2
z,smΦ−1

z d−1
z Φzα ∈ im δz,sm, we obtain

Π2
z,smΦ−1

z d−1
z Φzα = d−1

z,smα .

5.4 Derivatives of some homomorphisms

Theorem 5.18. As µ→ +∞,

∂z(ΦzΨz), ∂z̄(ΦzΨz) �0

( n
8µ
− N

4µ

)(π
µ

)N/2−n/4
.

Proof. By (5.9),

∂z(ΦzΨzep) =
∑
q∈Xk

eq

(ˆ
Ŵ−q

ĥ−q e
zĥ−q (ι̂−q )∗Pz,smep,z +

ˆ
Ŵ−q

ezĥ
−
q (ι̂−q )∗∂z(Pz,smep,z)

)
, (5.13)

for every p ∈ Xk (k = 0, . . . , n). We estimate each of these integrals.

Like in the proof of Theorem 5.3, we get, for any q 6= p in Xk,ˆ
Ŵ−p

ĥ−p e
zĥ−p (ι̂−p )∗(Pz,sm − 1)ep,z �0 0 , (5.14)

ˆ
Ŵ−q

ĥ−q e
zĥ−q (ι̂−q )∗Pz,smep,z �0 0 . (5.15)

Moreover, by Proposition 3.1 (iii), (3.9)–(3.12) and (3.33),
ˆ
Ŵ−p

ĥ−p e
zĥ−p (ι̂−p )∗ep,z = − k

2aµ

( ˆ 2r

−2r
ρ(x)e−µx

2/2 dx

)k−1 ˆ 2r

−2r
ρ(x)x2e−µx

2/2 dx

= − k

4µ

(π
µ

) k
2
−n

4
+O(e−cµ) . (5.16)

On the other hand, by (5.7) and Proposition 3.25 ,ˆ
Ŵ−q

ezĥ
−
q (ι̂−q )∗∂z(Pz,smep,z − ep,z) �0 0 ,

for all q ∈ Xk. In the case q = p, by (5.10) and Lemma 3.23,ˆ
Ŵ−p

ezĥ
−
p (ι̂−p )∗∂zep,z =

( n
8µ

+O(e−cµ)
)ˆ

Ŵ−p

ezĥ
−
p (ι̂−p )∗ep,z

=
( n

8µ
+O(e−cµ)

)((π
µ

) k
2
−n

4
+O(e−cµ)

)
=

n

8µ

(π
µ

) k
2
−n

4
+O(e−cµ) . (5.17)

In the case q 6= p, using Lemma 3.23 and arguing again like in the proof of Theorem 5.3, we getˆ
Ŵ−q

ezĥ
−
q (ι̂−q )∗∂zep,z �0 0 (µ→ +∞) . (5.18)

Now the result for ∂z follows from (5.13)–(5.16), (5.17) and (5.18).
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Jesús A. Álvarez López, Yuri A. Kordyukov and Eric Leichtnam

If we consider ∂z̄, the proof has to be modified as follows. In the expression analogous to (5.13),
the first term of the right-hand side must be removed. In the analogue of Lemma 3.23, we get
|x−p | instead of |x+

p |2 by (3.5) and (3.36). So ∂z̄(ΦzΨz) has the same final expression as ∂z(ΦzΨz)
by (5.16).

Theorem 5.19. As µ→ +∞,

∂z
(
(Ψ∗zΨz)

±1
)
, ∂z̄
(
(Ψ∗zΨz)

±1
)

= O
(
µ−1/2

)
.

Proof. We only show the case of ∂z. Consider Pz,sm : Ez → Ez,sm, whose adjoint is Pz : Ez,sm →
Ez. Then, since Jz : C• → Ez is an isometry,

Ψ∗zΨz = (Pz,smJz)
∗Pz,smJz = J−1

z PzPz,smJz .

It follows that, for every p ∈ Xk (k = 0, . . . , n),

Ψ∗zΨzep =
∑
q∈Xk

〈Pz,smep,z, eq,z〉eq .

Therefore

∂z(Ψ
∗
zΨz)ep =

∑
q∈Xk

(
〈∂z(Pz,sm)ep,z, eq,z〉+ 〈Pz,sm∂z(ep,z), eq,z〉+ 〈Pz,smep,z, ∂z̄(eq,z)〉

)
eq .

Then, by Propositions 3.18 and 3.22, Lemma 3.23 and its analogue for ∂z̄,

∂z(Ψ
∗
zΨz)ep = O

(
µ−1/2

)
+
( n

8µ
− 1

2

〈
|x+
p |2ep,z, ep,z

〉)
ep +O

(
e−cµ

)
=
( n

8µ
− 1

2

〈
|x+
p |2ep,z, ep,z

〉)
ep +O

(
µ−1/2

)
.

But, by (3.12) and (3.33),〈
|xp|2ep,z, ep,z

〉
=
(ˆ 2r

−2r
ρ(x)2e−µx

2
dx
)n−1

(n− k)

ˆ 2r

−2r
y2ρ(y)2e−µy

2
dy

=
n− k

2µ

(π
µ

)n
2

+O
(
e−cµ

)
.

Hence

∂z(Ψ
∗
zΨz)ep =

( n
8µ
− n− k

4µ

(π
µ

)n
2
)
ep +O

(
µ−1/2

)
= O

(
µ−1/2

)
,

yielding the stated expression for ∂z
(
Ψ∗zΨz).

Now, arguing like in the proof of (3.30) and using (5.8), we get

∂z
(
(Ψ∗zΨz)

−1
)

= −(Ψ∗zΨz)
−1∂z(Ψ

∗
zΨz)(Ψ

∗
zΨz)

−1

= −
(
1 +O

(
e−cµ

))
O
(
µ−1/2

)(
1 +O

(
e−cµ

))
= O

(
µ−1/2

)
.

6. Asymptotics of the large zeta invariant

6.1 Preliminaries on Quillen metrics

6.1.1 Case of a finite dimensional complex All vector spaces considered here are over C. For
a line λ, its dual λ∗ is also denoted by λ−1. For a vector space V of finite dimension, let detV =∧dimV V . For a graded vector space V • of finite dimension, let detV • =

⊗
k(detV k)(−1)k .
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Now consider a finite dimensional cochain complex (V •, ∂), whose cohomology is denoted by
H•(V ). Then there is a canonical isomorphism [KM76], [BGS88, Section 1 a)]

detV • ∼= detH•(V ) . (6.1)

Given a Hermitian metric on V • so that the homogeneous components V k are orthogonal one
another, the corresponding norm ‖ ‖V • on V • induces a metric ‖ ‖detV • on detV •, which corre-
sponds to a metric ‖ ‖detH•(V ) on detH•(V ) via (6.1).

On the other hand, consider the induced Laplacian, � = (∂+∂∗)2 = ∂∂∗+∂∗∂, whose kernel
is a graded vector subspace H•. Then finite dimensional Hodge theory gives an isomorphism
H•(V ) ∼= H•, which induces an isomorphism

detH•(V ) ∼= detH• . (6.2)

The restriction of ‖ ‖V • to H• induces a metric ‖ ‖detH• on detH•, which corresponds to another
metric | |detH•(V ) on detH•(V ) via (6.2).

Let �′ denote the restriction � : im�→ im�. For s ∈ C, let

θ(s) = θ(s,�) = −Trs(N(�′)−s) . (6.3)

(Do not confuse the superscript “s” of the supertrace with the complex variable s.) This defines
a holomorphic function on C. Then the above metrics on detH•(V ) satisfy [BGS88, Proposi-
tion 1.5], [BZ92, Theorem 1.1], [BZ94, Theorem 1.4]

‖ ‖detH•(V ) = | |detH•(V )e
θ′(0)/2 . (6.4)

If H•(V ) = 0, then detH•(V ) ≡ C is canonically generated by 1, and we have ‖1‖detH•(V ) =

eθ
′(0)/2. Using the orthogonal projection Π1 : V → im ∂, we can write (6.3) as

θ(s) = −Trs
(
(�′)−sΠ1

)
. (6.5)

Let (Ṽ •, ∂̃) be another finite dimensional cochain complex, endowed with a Hermitian metric
so that the homogeneous components are orthogonal to each other, and let φ : (V, ∂)→ (Ṽ •, ∂̃)
be an isomorphism of cochain complexes, which may not be unitary. Then (see the proof of
[BZ94, Theorem 6.17])

log

(‖ ‖
detH•(Ṽ )

‖ ‖detH•(V )

)2

= Trs(log(φ∗φ)) . (6.6)

6.1.2 Case of an elliptic complex Some of the concepts of Section 6.1.1 extend to the case
where V • = C∞(M ;E•), for some graded Hermitian vector bundle E• over M , and ∂ is an
elliptic differential complex of order one. Then detH•(V ) is defined because dimH•(V ) < ∞.
Moreover Hodge theory for the Laplacian � gives the isomorphism (6.2). Thus at least the norm
| |detH•(V ) is defined in this setting. Now the expression (6.3) only defines θ(s) = θ(s,�) when
<s > n/2, but it has a meromorphic extension to C, denoted in the same way; indeed, (6.3)
becomes

θ(s) = θ(s,�) = −ζ(s,�,Nw) ,

for <s > n/2, and therefore this equality also holds for the meromorphic extensions. Furthermore
θ(s) is smooth at s = 0 [See67], and θ′(0) can be considered as a renormalized version of the
super-trace of the operator N log(�′), which is not of trace class. Thus the right-hand side of (6.4)
is defined in this way and plays the role of an analytic version of the metric ‖ ‖detH•(V ), which
is not directly defined. This kind of metrics were introduced by D. Quillen [Qui85] for the case
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of the Dolbeault complex. The expression (6.5) also holds in this case for <s � 0; in fact, it
becomes

θ(s) = −ζ
(
s,�,Π1w

)
,

where this zeta function can be shown to define a meromorphic function on C, even though Π1

is not a differential operator, and this equality holds as meromorphic functions.

6.1.3 Reidemeister, Milnor and Ray-Singer metrics Let F be a flat vector bundle over M ,
defined by a representation ρ of π1M , and let ∇F denote its covariant derivative. Consider a
smooth triangulation K of M and the corresponding cochain complex C•(K,F ) with coefficients
in F , whose cohomology is isomorphic to H•(M,F ) via the quasi-isomorphism

Ω(M ;F )→ C•(K,F ) = C•(K,F
∗)∗

defined by integration of differential forms on smooth simplices. Given a Hermitian structure gF

on F , we get an induced metric on C•(K,F ), and the concepts of Section 6.1.1 can be applied. In
this case, the left-hand side of (6.4) is called the Reidemeister metric, denoted by ‖ ‖RdetH•(M,F ).

If ∇F gF = 0 (ρ is unitary) and H•(M,F ) = 0, then the Reidemeister torsion τM (ρ) is
defined using K, and it is a topological invariant of M [Fra35, Rei35, dR50]. Moreover τM (ρ) =
‖1‖RdetH•(M,F ) is the exponential factor of the right-hand side of (6.4) [RS71, Proposition 1.7]. If

we only assume ∇F gF = 0, then ‖ ‖RdetH•(M,F ) is still a topological invariant of M .

Next, given a vector field X on M satisfying (b), consider the complex (C•(−X,W−, F ),dF ),
whose cohomology is also isomorphic to H•(M,F ) via the quasi-isomorphism

Φ−X,F : Ω(M,F )→ C•(−X,W−, F ) = C•(−X,W−, F ∗)∗ .

This complex has a metric induced by gF , like in Section 5.2.2, and the concepts of Section 6.1.1
can be also applied. In this case, the left-hand side of (6.4) is called the Milnor metric, denoted
by ‖ ‖M,X

detH•(M,F ), and the metric factor of the right-hand side of (6.4) is denoted by | |M,X
detH•(M,F ).

If ∇F gF = 0, then ‖ ‖M,X
detH•(M,F ) = ‖ ‖RdetH•(M,F ) [Mil66, Theorem 9.3].

Finally, the concepts of Section 6.1.2 can be applied to (Ω(M,F ), dF ), whose cohomology
is again H•(M,F ). In this case, the right-hand side of (6.4) is called the Ray-Singer metric,
denoted by ‖ ‖RS

detH•(M,F ), and the metric factor of the right-hand side of (6.4) is denoted by

| |RS
detH•(M,F ). If H•(M,F ) = 0, then the exponential factor of the right-hand side of (6.4) is called

the analytic torsion or Ray-Singer torsion, denoted by TM (ρ). These concepts were introduced
by Ray and Singer [RS71], who conjectured that TM (ρ) = τM (ρ) if ∇F gF = 0 and H•(M,F ) = 0,
and ‖ ‖RS

detH•(M,F ) = ‖ ‖RdetH•(M,F ) assuming only that ∇F gF = 0. Independent proofs of this

conjecture were given by Cheeger [Che79] and Müller [M7̈8]. Actually, this equality still holds if
the induced Hermitian structure gdetF on detF is flat [M9̈3].

In the case where gdetF is not assumed to be flat, Bismut and Zhang [BZ92, BZ94] extended
the above results by introducing an additional term. The first ingredient of this extra term is the
1-form

θ(F, gF ) = tr
(
(gF )−1∇F gF

)
, (6.7)

which vanishes if and only if gdetF is flat. Moreover θ(F, gF ) is closed and its cohomology class
of θ(F, gF ) is independent of the choice of gF [BZ92, Proposition 4.6]; this class measures the
obstruction to the existence of a flat Hermitian structure on detF .

Let e(M,∇M ) be the representative of the Euler class of M given by the Chern-Weil theory
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using gM , and let ψ(M,∇M ) be the current of degree n− 1 on TM constructed in [MQ86] (see
also [BGS90, Section 3], [BZ92, Section 3], [BH06, Section 2], [BH08, Section 4]). Identify the
image of the zero section of TM with M , and identify the conormal bundle of M in TM with
T ∗M . Let δM be the current on TM defined by integration on M , and let π : TM → M be
the vector bundle projection. Since M may not be oriented, the form e(M,∇M ) is valued in the
orientation line bundle o(M) of M , and the currents are the elements of Ω(M,o(M))′.

Proposition 6.1 Bismut-Zhang [BZ92, Theorem 3.7]. The following holds:

(i) For any smooth function λ : TM → R±, under the mapping v 7→ λv, ψ(M,∇M ) is changed
into (±1)nψ(M,∇M ).

(ii) The current ψ(M,∇M ) is locally integrable, and its wave front set is contained in T ∗M
(thus ψ(M,∇M ) is smooth on TM \M).

(iii) The restriction of −ψ(M,∇M ) to the fibers of TM \M coincides with the solid angle defined
by gM .

(iv) We have

dψ(M,∇M ) = π∗e(M,∇M )− δM .

Remark 6.2. In Proposition 6.1, observe that (i) and (iv) are compatible because e(M,∇M ) = 0 if
n is odd. By (ii)–(iv), the restriction of ψ(M,∇M ) to TM \M is induced by a smooth differential
form on the sphere bundle which transgresses e(M,∇M ) (such a differential form was already
defined and used in [Che44]).

Theorem 6.3 Bismut-Zhang [BZ92, Theorem 0.2], [BZ94, Theorem 0.2]. We have

log

(
‖ ‖RS

detH•(M,F )

‖ ‖M,X
detH•(M,F )

)2

= −
ˆ
M
θ(F, gF ) ∧X∗ψ(M,∇M ) .

Remark 6.4. By (b), X = − gradg′ h for some Morse function h and some Riemannian metric g′

on M , which may not be the given metric gM . If we fix h, the right-hand side of the equality
in Theorem 6.3 is independent of the choice of X satisfying X = − gradg′ h for some g′ [BZ92,
Proposition 6.1].

Theorem 6.3 will be applied to the case of the flat complex line bundle Lz with a Hermitian
structure gL

z
(Section 2.1.2). By (2.14) and (6.7),

θ(Lz, gLz) = 2µη . (6.8)

6.2 Asymptotics of the large zeta invariant

We prove Theorem 1.1 (ii) here. With the notation of Section 6.1.2, consider the meromorphic
function θ(s, z) = θ(s,∆z), also defined in (1.4), as well as its components θsm/la(s, z) defined

in (1.5). Consider also the current ψ(M,∇M ) of degree n− 1 on TM (Section 6.1.3). By Propo-
sition 6.1 (i),

− zla(−η) = (−1)nzla(η) . (6.9)

Notation 6.5. Let �1 be defined like �0 in Notation 5.2, using O(|µ|−1/2) instead of O(e−c|µ|).

Take some Morse function h on M such that Xh < 0 on M \ X , and h is in standard form
with respect to X. Then X = − gradg′ h for some Riemannian metric g′ (Section 5.1.3), which
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may not be the given metric g. Consider the flat complex line bundle Ldh−zη with the Hermitian

structure gFdh−zη (Section 2.1.2). Note that d
Ldh−zη
−dh ≡ d−zη on C•(−X,W−,Ldh−zη) ≡ C•(−X).

So, by (6.8), Theorem 6.3 and Remark 6.4,

log
‖ ‖RS

detH•−z(M)

‖ ‖M,X
detH•−z(M)

= −
ˆ
M

(dh− µη) ∧X∗ψ(M,∇M ) , (6.10)

where H•−z(M) = H•−zη(M). With the notation of Section 6.1.3, let

‖ ‖RS,sm
detH•−z(M) = | |RS

detH•−z(M)e
θ′sm(0,−z)/2 .

By (6.4),

log
‖ ‖RS

detH•−z(M)

‖ ‖M,X
detH•−z(M)

= log
‖ ‖RS,sm

detH•−z(M)

‖ ‖M,X
detH•−z(M)

+
θ′la(0,−z)

2
. (6.11)

By (6.6) and Corollary 5.4, for µ� 0,

log

(‖ ‖RS,sm
detH•−z(M)

‖ ‖M,X
detH•−z(M)

)2

= −Trs(log(Φ∗−zΦ−z)) = −Trs
(

log
(
Ψ−1
−zΦ

∗
−zΦ−zΨ−z

))
= −Trs

(
log
(
(Ψ∗−zΨ−z)

−1(Φ−zΨ−z)
∗Φ−zΨ−z

))
. (6.12)

From (5.8) and Theorems 5.3, 5.18 and 5.19, we obtain(
(Ψ∗−zΨ−z)

−1(Φ−zΨ−z)
∗Φ−zΨ−z

)−1
=
(π
µ

)n
2
−N

+O
(
e−cµ

)
and

∂z
(
(Ψ∗−zΨ−z)

−1(Φ−zΨ−z)
∗Φ−zΨ−z

)
= ∂z

(
(Ψ∗−zΨ−z)

−1
)
(Φ−zΨ−z)

∗Φ−zΨ−z + (Ψ∗−zΨ−z)
−1(∂z̄(Φ−zΨ−z))

∗Φ−zΨ−z

+ (Ψ∗−zΨ−z)
−1(Φ−zΨ−z)

∗∂z(Φ−zΨ−z)

=

(
O
(
µ−1/2

)
+
(
1 +O

(
e−cµ

))( n
4µ
− N

2µ

))(π
µ

)N−n
2

+O
(
e−cµ

)
=

(
O
(
µ−1/2

)
+
( n

4µ
− N

2µ

))(π
µ

)N−n
2

+O
(
e−cµ

)
.

So

∂z Trs
(

log
(
(Ψ∗−zΨ−z)

−1(Φ−zΨ−z)
∗Φ−zΨ−z

))
= Trs

(
(Ψ∗−zΨ−z)

−1(Φ−zΨ−z)
∗Φ−zΨ−z

)−1
∂z
(
(Ψ∗−zΨ−z)

−1(Φ−zΨz)
∗Φ−zΨ−z

)
= O

(
µ−1/2

)
+ Trs

( n
4µ
− N

2µ

)
+O

(
e−cµ

)
= O

(
µ−1/2

)
.

Then, by (6.12),

∂z log
‖ ‖RS,sm

detH•−z(M)

‖ ‖M,X
detH•−z(M)

= O
(
µ−1/2

)
. (6.13)

By taking the derivative with respect to z of both sides of (6.10), and using (6.11), (6.13) and
Corollary 4.16, we get ζla(1,−z) �1 zla. Then Theorem 1.1 (ii) follows because zla is independent
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of z.

Remark 6.6. In the case where η = dh, Theorem 1.1 (ii) agrees with Theorem 4.23. In fact, by
Proposition 6.1 (iv), Theorem 1.1 (ii) and the Stokes formula,

ζla(1, z) �1 −
ˆ
M
hX∗dψ(M,∇M ) = −

ˆ
M
hX∗(π∗e(M,∇M )− δM )

= −
ˆ
M
h e(M,∇M ) +

∑
p∈X

(−1)ind(p)h(p) .

7. Asymptotics of the small zeta-invariant

7.1 Condition on the integrals along instantons

Let

Mp =Mp(η,X) = −max{ η(γ) | γ ∈ T 1
p }

(
p ∈ X+

)
,

Mk =Mk(η,X) = min
p∈Xk

Mp (k = 1, . . . , n) .

Thus (d) means that Mp = Mk for all k = 1, . . . , n and p ∈ Xk. The following result will be
proved in Appendix A.

Theorem 7.1. For every ξ ∈ H1(M,R) and numbers an > · · · > a1 � 0 or a1 > · · · > an � 0,
there is some η ∈ ξ, satisfying (a) and (c) with the given X and some metric g, such that
Mp(η,X) = ak for all k = 1, . . . , n and p ∈ Xk.

Remark 7.2. If ξ 6= 0, for p ∈ Xk, q ∈ Xk−1 and γ, δ ∈ T (p, q) ⊂ T 1
p , the period 〈ξ, γ̄δ̄−1〉 =

η(γ) − η(δ) may not be zero. Hence it may not be possible to get η(γ) = −ak for all γ ∈ T 1
p ,

contrary to the case where ξ = 0.

From now on, we assume η satisfies (d), besides (a) and (c). By Theorem 7.1, this is possible
for any prescription of the class ξ = [η] ∈ H1(M,R). Let ak =Mk(η,X) (k = 1, . . . , n). Then −η
also satisfies (a), (c) and (d) with −X and g, andMk(−η,−X) = an−k+1. So, by Corollary 3.15,

− zsm(−η) = −
n∑
k=1

(−1)k
(
1− ean−k+1

)
m1
k . (7.1)

Lemma 7.3. Suppose M is oriented and n is even. Then

zsm =
n∑
k=1

(−1)keakm1
k .

If moreover all numbers ak are equal one another, then zsm = 0.

Proof. Use Lemma 3.14 and Corollary 3.16.

7.2 Asymptotics of the perturbed Morse operators

Consider the notation of Section 5.2.2. By (5.4),

dz,k−1 = e−akz(d′k−1 + d′′z,k−1) , (7.2)
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for k = 1, . . . , n, where

d′k−1eq =
∑

p∈Xk, γ∈T (p,q), η(γ)=−ak

ε(γ)ep , (7.3)

d′′z,k−1eq =
∑

p∈Xk, γ∈T (p,q), η(γ)<−ak

ez(ak+η(γ))ε(γ)ep , (7.4)

for q ∈ Xk−1. Observe that

eakzdz,k−1 = d′k−1 +O(e−cµ) (µ→ +∞) . (7.5)

So

d′kd
′
k−1 = lim

µ→+∞
e(ak+1+ak)zdz,kdz,k−1 = 0 .

Hence the operator d′ =
∑

k d′k on C• satisfies (d′)2 = 0. Taking adjoints in (7.2)–(7.4), or
using (5.5), we also get

δz,k = e−ak z̄(δ′k + δ′′z,k) , (7.6)

for k = 1, . . . , n, where

δ′kep =
∑

q∈Xk−1, γ∈T (p,q), η(γ)=−ak

ε(γ) eq , (7.7)

δ′′z,kep =
∑

q∈Xk−1, γ∈T (p,q), η(γ)=−ak

ez̄(ak+η(γ))ε(γ)eq , (7.8)

for p ∈ Xk. Moreover (7.5) yields

eak z̄δz,k = δ′k +O(e−cµ) (µ→ +∞) . (7.9)

Let δ′ =
∑

k δ
′
k = (d′)∗, and let

D′ = d′ + δ′ , ∆′ = (D′)2 = d′δ′ + δ′d′ .

We have

C• = ker ∆′ ⊕ im d′ ⊕ im δ′ ,

im ∆′ = im D′ = im d′ ⊕ im δ′ , ker ∆′ = ker D′ = ker d′ ∩ ker δ′ .

The orthogonal projections of C• to ker ∆′, im d′ and im δ′ are denoted by Π′ = Π′ 0, Π′ 1 and
Π′ 2, respectively. Like in Sections 2.1.2 and 5.2.4, the composition (d′)−1Π′ 1 is defined on C•.
From (7.5) and (7.9), we easily get that, as µ→ +∞,

Πj
z,k = Π′ jk +O(e−cµ) (j = 0, 1, 2) , (7.10)

e−akz(dz,k−1)−1Π1
z,k = (d′k−1)−1Π′ 1k +O(e−cµ) . (7.11)

By (7.5) and (7.9), on im δz,k + im dz,k−1,

∆z = e−2akµ∆′ +O(e−(2ak+c)µ) (µ→ +∞) . (7.12)

Proposition 7.4. For k = 0, . . . , n and µ � 0, the spectrum of ∆z on im δz,k + im dz,k−1 is
contained in an interval of the form[

Ce−2akµ, C ′e−2akµ
]

(C ′ > C) .

Proof. The positive eigenvalues of ∆′ are contained in an interval [C0, C
′
0] (C ′0 > C0 > 0).
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By (7.12), for µ� 0 and e ∈ im δz,k + im dz,k−1,

〈∆ze, e〉 > e2akµ〈∆′e, e〉 − C1e
−(2ak+c)µ‖e‖2 >

(
C0e

−2akµ − C1e
−(2ak+c)µ

)
‖e‖2 ,

〈∆ze, e〉 6 e2akµ〈∆′e, e〉+ C1e
−(2ak+c)µ‖e‖2 6

(
C ′0e

−2akµ + C1e
−(2ak+c)µ

)
‖e‖2 .

Then result follows taking 0 < C < C0 and C ′ > C ′0.

7.3 Estimates of the nonzero small spectrum

Theorem 7.5. If µ � 0, the spectrum of ∆z,sm on im δz,sm,k + im dz,sm,k−1 is contained in an
interval of the form

[Cµe−2akµ, C ′µe−2akµ] (C ′ > C) .

Proof. By the commutativity of (2.7), for every eigenvalue λ of ∆z,sm on im δz,sm,k+im dz,sm,k−1,
there are normalized λ-eigenforms, e ∈ im δz,sm,k and e′ ∈ im dz,sm,k−1, so that dze = λ1/2e′

and δze
′ = λ1/2e. Hence the maximum and minimum of the spectrum of ∆z,sm on im δz,sm,k +

im dz,sm,k−1 is ‖dz,sm,k−1‖2 and ‖d−1
z,sm,k−1Π1

z,sm,k‖−2, respectively. Similarly, the maximum and

minimum of the spectrum of ∆z on im δz,k + im dz,k−1 is ‖dz,k−1‖2 and ‖d−1
z,k−1Π

1
z,k‖−2, respec-

tively. Then the result follows from Corollaries 5.9, 5.14 and 5.17 and Proposition 7.4:

‖dz,sm,k−1‖2 6 ‖Φ−1
z,k‖

2‖dz,k−1‖−2‖Φz,sm,k−1‖−2

6
((µ

π

)k−n/2
+O

(
e−cµ

))
C ′0e

−2akµ
((π

µ

)k−1−n/2
+O

(
e−cµ

))
6 C ′µe−2akµ ,

‖d−1
z,sm,k−1Π1

z,sm,k−1‖−2 > ‖Φ−1
z,k−1‖

−2‖d−1
z,k−1Π

1
z,k‖−2‖Φz,sm,k‖−2

>
((π

µ

)k−1−n/2
+O

(
e−cµ

))
C0e

−2akµ
((µ

π

)k−n/2
+O

(
e−cµ

))
> Cµe−2akµ .

7.4 Asymptotics of the small zeta invariant

Theorem 1.1 (iii) is proved here.

Notation 7.6. Let �2 be defined like �0 in Notation 5.2, using O(|µ|−1) instead of O(e−c|µ|).

Theorem 7.7. As µ→ +∞,

η∧ d−1
z Π1

z,sm,k �2 ±
(
1− eak

)
Π1
z,sm,k .

Proof. Consider the notation of Sections 5.3 and 7.2. By Corollary 5.13 and (5.11),

Π1
z,sm �0 Ψ̃zΠ̃

1

zΦz,sm = Ψ̃zΠ̃
1

zΠ
1
zΦz,sm = Ψ̃zΠ

1
zΦz,sm − Ψ̃z

(
Π̃

1

z

)⊥
Π1
zΦz,sm .

But
(
Π̃

1

z

)⊥
Π1
z = 0 if µ� 0 by Corollary 5.16. Hence

Π1
z,sm �0 Ψ̃zΠ

1
zΦz,sm . (7.13)

For brevity, let Rz = Pz−1,smPz,sm on L2(M ; Λ), and Sz = ΦzΨ̃z−1 and Tz = Φz−1Pz−1,smΨ̃z

on C•. By (7.5)–(7.11), (7.13), Propositions 3.18 and 7.4, Corollaries 3.19, 5.6, 5.7, 5.9, 5.11,
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5.13, 5.15 and 5.17, and Theorem 7.5,

eakΠ1
z,sm,k �0 e

akΨ̃zΠ
1
z,kΦz,sm �2 e

akΨ̃zΠ
′ 1
k Φz,sm = eakΨ̃zd

′
k−1(d′k−1)−1Π′ 1k Φz,sm

�2 e
akRzΨ̃zSzd

′
k−1Tz(d

′
k−1)−1Π′ 1k Φz,sm

�2 e
akRzΨ̃z−1d

′
k−1Tz(d

′
k−1)−1Π′ 1k Φz,sm

�2 e
akΨ̃z−1d

′
k−1Tz(d

′
k−1)−1Π′ 1k Φz,sm

�2 e
akΨ̃z−1e

ak(z−1)dz−1,k−1Tze
−akzd−1

z,k−1Π
1
z,kΦz,sm

= Ψ̃z−1dz−1,k−1Tzd
−1
z,k−1Π

1
z,kΦz,sm

�0 Ψ̃z−1dz−1,k−1TzΠ̃
2

z,k−1d
−1
z,k−1Π̃

1

z,kΦz,sm

�0 Ψ̃z−1dz−1,k−1Φz−1Pz−1,smΠ2
z,k−1Ψ̃zd

−1
z,k−1ΦzΠ

1
z,sm

�0 Ψ̃z−1dz−1,k−1Φz−1Pz−1,smΠ2
z,k−1Φ−1

z d−1
z,k−1ΦzΠ

1
z,sm

= Ψ̃z−1Φz−1dz−1,sm,k−1d
−1
z,sm,k−1Π1

z,sm,k �0 dz−1d
−1
z Π1

z,sm,k .

Therefore

η∧d−1
z Π1

z,sm,k = (dz − dz−1)d−1
z Π1

z,sm,k �2 (1− eak)Π1
z,sm,k .

Theorem 1.1 (iii) follows from Corollaries 3.9 and 4.15 and Theorem 7.7.

Remark 7.8. Theorem 1.1 (iii) agrees with Corollaries 4.20 to 4.22 by (7.1) and Lemma 7.3.

8. Prescription of the asymptotics of the zeta invariant

We prove Theorem 1.2 here. By Theorem 7.1, given a� 0, there is some η0 ∈ ξ and some metric
g satisfying (a) and (d) with the given X, and so thatMk(η0, X) = a for all k = 1, . . . , n. Using
the notation of Section 3.1, we are going to modify η0 only in every Up for p ∈ X0 ∪ Xn.

Fix any ε > 0 such that, for every p ∈ X0 ∪Xn, the open ball B(p, 3ε) is contained in Up. Let

V =
⋃

p∈X0∪Xn

B(p, ε) , V ′ =
⋃

p∈X0∪Xn

B(p, 2ε) .

Take a smooth function σ : [0, 3ε]→ [0, 1] so that

σ′ 6 0 , σ([0, ε]) = 1 , σ([2ε, 3ε]) = 0 .

Let fj ∈ C∞(M,R) (j = 0, n) be the extension by zero of the combination of the functions
σ(|xp|) ∈ C∞c (B(p, 3ε),R) (p ∈ Xj). We have

dfj ⊂ V ′j \ Vj , fj(Vj) = 1 , fj(M \ V ′j ) = 0 , Xf0 > 0 , Xfn 6 0 .

For any c0, cn > 0, let η = η(c0, cn) = η0 − c0 df0 + cn dfn. This closed 1-form satisfies (a)
and (d) with X and g, and we have

M1(η,X) = a+ c0 , Mn(η,X) = a+ cn , Mk(η1, X) = a (1 < k < n) .

Hence, by Corollary 3.15,

zsm(η)− zsm(η0) = ea(ec0 − 1)m1
1 + (−1)nea(1− ecn)m1

n . (8.1)
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By (a), e(M,∇M ) = 0 on every Up (p ∈ X ). So, using the Stokes formula,

zla(η)− zla(η0) =

ˆ
M

(c0 df0 − cn dfn) ∧X∗ψ(M,∇M )

=

ˆ
M

(cnfn − c0f0)X∗dψ(M,∇M )

=

ˆ
M

(cnfn − c0f0) e(M,∇M )−
∑
p∈X

(−1)ind(p)(cnfn − c0f0)(p)

= c0|X0| − (−1)ncn|Xn| , (8.2)

Combining (8.1) and (8.2), we obtain

z(η)− z(η0) = ea(ec0 − 1)m1
1 + (−1)nea(1− ecn)m1

n + c0|X0| − (−1)ncn|Xn| . (8.3)

So, if n is even (respectively, odd), given any τ ∈ R (respectively, τ � 0), we get z(η(c0, cn)) = τ
for some c0, cn > 0 since |X0|, |Xn| > 0 by (b).

Now assume M is oriented and n is even. Then z(η0) = −z(−η0) by (6.9) and Lemma 7.3.
Using local changes of X and applying [Sma61, Lemmas 1.1 and 1.2], we can increase |X0| or
|Xn| as much as desired. So we can assume |X0| − |Xn| ∈ (τ − z(η0)) · R+ and m0,mn > 0 by
Lemma 3.12, yielding m1

1,m
1
n > 0 by (3.22). Moreover m1

1 = m1
n by (3.22) and Lemma 3.14.

Thus, taking c0 = cn =: c, the expression (8.3) becomes

z(η)− z(η0) = c(|X0| − |Xn|) .

Hence z(η) = τ for some c > 0.

9. The switch of the order of integration

The proof of Theorem 1.3 is given in this section. Let S be the Schwartz space on R. Recall
that the space of tempered distributions is the continuous dual space S ′, with the topology of
uniform convergence on bounded sets. Suppose first that (1.7) is used as definition of Zµ. By
Theorem 1.1, the expression (1.7) defines a tempered distribution Zµ for µ� 0. Moreover, using
also the formula of the inverse Fourier transform, we get, for f ∈ S,

〈Zµ, f〉 =
1

2π

ˆ ∞
−∞

ζ(1, z) f̂(ν) dν → z

2π

ˆ ∞
−∞

f̂(ν) dν = zf(0) ,

as µ → +∞, uniformly on ν. For every C > 0, this convergence is also uniform on f ∈ S with
|f̂(ν)|, |ν2f̂(ν)| 6 C. So Zµ → zδ0 in S ′ as µ → +∞. To get Theorem 1.3, it only remains to
prove the following.

Theorem 9.1. Both (1.3) and (1.7) define the same tempered distribution Zµ for µ� 0.

Proposition 9.2. For µ� 0, t > 0 and f ∈ S,ˆ ∞
−∞

ˆ ∞
t

∣∣Trs
(
η∧ δze−u∆z

)∣∣ |f̂(ν)| du dν <∞ .

Proof. By [DS88b, Corollary XI.9.8 and Lemma XI.9.9 (d)],∣∣Trs
(
η∧ δze−u∆z

)∣∣ 6 ∣∣η∧ δze−u∆z
∣∣
1
6 ‖η∧‖

∣∣δze−u∆z
∣∣
1

= ‖η‖L∞ Tr
(
(dzδz)

1/2e−u∆z
)
6 ‖η‖L∞ Tr

(
∆1/2
z e−u∆z

)
,
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where | |1 denotes the trace norm. Henceˆ ∞
t

∣∣Trs
(
η∧ δze−u∆z

)∣∣ du 6 ‖η‖L∞ ˆ ∞
t

Tr
(
∆1/2
z e−u∆z

)
du = ‖η‖L∞ Tr

(
∆−1/2
z e−t∆zΠ⊥z

)
.

The operator (I +D2)−N is of trace class for any N > n. Therefore

Tr
(
∆−1/2
z e−t∆zΠ⊥z

)
6
∣∣(I +D2)−N

∣∣
1

∥∥(I +D2)N∆−1/2
z e−t∆zΠ⊥z

∥∥ .
By Corollary 2.3 and Theorem 7.5, for µ� 0 and α ∈ L2(M ; Λ),∥∥(I +D2)N∆−1/2

z e−t∆zΠ⊥z α
∥∥

6 C0

∥∥∆−1/2
z e−t∆zΠ⊥z α

∥∥
2N
6 C1|z|2N

∥∥∆−1/2
z e−t∆zΠ⊥z α

∥∥
2N,z

= C2|z|2N
2N∑
k=0

∥∥Dk
z∆−1/2

z e−t∆zΠ⊥z α
∥∥ 6 C3|z|2N

2N∑
k=0

1

tk/2

∥∥∆−1/2
z Π⊥z α

∥∥
6 C|z|2N

(
1 + t−N

)
ecµ‖α‖ .

Thus, since f ∈ S,
ˆ ∞
−∞

ˆ ∞
t

∣∣Trs
(
η∧ δze−u∆z

)∣∣ |f̂(ν)| du dν

6 C‖η‖L∞
∣∣(I +D2)−N

∣∣
1

(
1 + t−N

)
ecµ
ˆ ∞
−∞
|z|2N |f̂(ν)| dν <∞ .

Proof of Theorem 9.1. Using Theorem 1.1 and Proposition 9.2 to apply the Lebesgue’s domi-
nated convergence theorem and Fubini’s theorem, we compute

− 1

2π

ˆ ∞
−∞

lim
t↓0

Trs
(
η∧ d−1

z e−t∆zΠ1
z

)
f̂(ν) dν = − 1

2π
lim
t↓0

ˆ ∞
−∞

Trs
(
η∧ d−1

z e−t∆zΠ1
z

)
f̂(ν) dν

=
1

2π
lim
t↓0

ˆ ∞
−∞

ˆ ∞
t

Trs
(
η∧ δze−u∆z

)
f̂(ν) du dν

=
1

2π
lim
t↓0

ˆ ∞
t

ˆ ∞
−∞

Trs
(
η∧ δze−u∆z

)
f̂(ν) dν du

=
1

2π

ˆ ∞
0

ˆ ∞
−∞

Trs
(
η∧ δze−u∆z

)
f̂(ν) dν du .

Appendix A. Integrals along instantons

Theorem 7.1 is proved here. We show the case where an > · · · > a1 � 0. Then the case where
a1 > · · · > an � 0 follows by using −X and −ξ.

By [Sma61, Theorem B], there is some Morse function h on M such that h(Xk) = {k}
(k = 0, . . . , n), Xh < 0 on M \ X , and h is in standard form with respect to X; in particular,
Critk(h) = Xk. Now we proceed like in the proof of [BH04, Proposition 16 (i)]. Since X is finite,
there is some η′ ∈ ξ such that η′ = 0 on some open neighborhood Up of every p ∈ X . Let
Uk =

⋃
p∈Xk Up and U =

⋃
k Uk. We can assume h(Uk) ⊂ (k − 1/4, k + 1/4) for all k = 0, . . . , n.

If C � 0, then the representative η′′ := η′ + C dh of ξ satisfies η′′(X) < 0 on M \ X .

For k = 0, . . . , n, let I±k ⊂ R be the closed interval with boundary points k±1/4 and k±1/2.
Since there are no critical values of h in I±k , every T±k := h−1(I±k ) is compact submanifold with
boundary of dimension n, every Σ±k := h−1(k ± 1/2) is a closed submanifold of codimension 1,
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T+
k

T−
k+1

T−
k

T+
k−1

Σ+
k = Σ−

k+1

Σ−
k = Σ+

k−1

∙

 

p

Figure 1. A representation of the sets T±k , Σ±k , T+
k−1 and T−k+1, taking Xk = {p}.

and there are identities T±k ≡ Σ±k × I
±
k given by x ≡ (π±k (x), h(x)) (x ∈ T±k ), where π±k (x) is

the unique point of Σ±k that meets the φ-orbit of x. Of course, Σ−k = Σ+
k−1 (k = 1, . . . , n) and

T−0 = Σ−0 = T+
n = Σ+

n = ∅. (See Figure 1.)

We have Σ±k t ι
±
p (W±p ) for p ∈ Xk. Let K±p = Σ±k ∩ ι

±
p (W±p ) and K±k =

⋃
p∈Xk K

±
p , which

are closed submanifolds of Σ±k ; K−k is of codimension k in Σ−k , and K+
k of codimension n− k in

Σ+
k . Since the α- and ω-limits of the orbits of X are zero points, the orbit of φ through every

point x ∈ Σ+
k \ K

+
k meets Σ−k \ K

−
k at a unique point ψk(x) := φτk(x)(x) (τk(x) > 0). This

defines a diffeomorphism ψk : Σ+
k \K

+
k → Σ−k \K

−
k and a smooth function τk : Σ+

k \K
+
k → R+.

Moreover the sets K±p (p ∈ Xk) have corresponding open neighborhoods V ±p in Σ±k , with disjoint

closures, such that ψk(V
+
p \K+

p ) = V −p \K−p . Take smooth functions λ±p (p ∈ Xk) on Σ±k so that

0 6 λ±p 6 1, suppλ±p ⊂ V ±p , λ±p = 1 on K±p , and λ+
p = ψ∗kλ

−
p on Σ+

k \K
+
k . Moreover let

T̃k = h−1([k − 1/2, k + 1/2]) , K̃p = T̃k ∩
(
ι+p (W+

p ) ∪ ι−p (W−p )
)
,

Ṽp = {φt(x) | x ∈ V +
p \K+

p , 0 6 t 6 τk(x) } ∪ K̃p ,

K̃k =
⋃
p∈Xk

K̃p , Ṽk =
⋃
p∈Xk

Ṽp , Mk = h−1((−∞, k + 1/2]) .

Thus Mk = T̃0 ∪ · · · ∪ T̃k. Note that T̃k and Mk are compact submanifolds with boundary of
dimension n, and every Ṽp (respectively, K̃p) is open (respectively, closed) in T̃k. We also get

smooth functions λ̃p (p ∈ Xk) on T̃k determined by the condition λ̃p(φ
t(x)) = λ+

p (x) for all

x ∈ Σ+
k \K

+
k and 0 6 t 6 τk(x). They satisfy 0 6 λ̃p 6 1, supp λ̃p ⊂ Ṽp, and λ̃p = 1 on K̃p.
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Jesús A. Álvarez López, Yuri A. Kordyukov and Eric Leichtnam

Let

Ap = max{ |η′(γ)| | γ ∈ T 1
p }

(
p ∈ X+

)
,

Ak = max
p∈Xk

Ap (k = 1, . . . , n) , A = max{A1, . . . , An} .

We can suppose C > A and a1 > C +A > 0. For p ∈ Xk, q ∈ Xk−1 and γ ∈ T (p, q), we have

dh(γ) = h(q)− h(p) = −1 .

Therefore

0 > η′′(γ) = η′(γ) + C dh(γ) > −A− C > −a1 (γ ∈ T 1) . (A.1)

Claim 1. For k = 0, . . . , n, there is a smooth function fk on M such that

dfk(X) 6 0 , (A.2)

supp dfk ⊂ M̊k , (A.3)

max{ (η′′ + dfk)(γ) | γ ∈ T 1
p } = −al (p ∈ Xl, 1 6 l 6 k) , (A.4)

(η′′ + dfk)(δ) > −ak (δ ∈ T 1
k+1) . (A.5)

The statement follows directly from Claim 1 taking η = η′′ + dfn. So we only have to prove
this assertion.

We proceed by induction on k. For k = 0, we choose f0 = 0. Then (A.4) is vacuous, (A.2)
and (A.3) are trivial, and (A.5) is given by (A.1).

Now take any k > 1 and assume fk−1 is defined and satisfies (A.2)–(A.5). Let

bp = −max{ (η′′ + dfk−1)(γ) | γ ∈ T 1
p } (p ∈ Xk) , (A.6)

bk = min{ bp | p ∈ Xk } .

For every p ∈ Xk, we have bp < ak−1 6 ak because fk−1 satisfies (A.5). So there is a smooth
function h−p on I−k such that (h−p )′ > 0, h−p = 0 around k − 1/2, and h−p = ak − bp around

k − 1/4. Let h̃−p be the function on V −p × I−k ⊂ Σ−k × I
−
k ≡ T−k given by h̃−p (x, s) = h−p (s). We

have h̃−p = 0 around V −p × {k − 1/2} and h̃−p = ak − bp around V −p × {k − 1/4}. Thus h̃−p has a

smooth extension to Ṽp, also denoted by h̃−p , which is equal to ak − bp on Ṽp \ T−k . The function

λ̃ph̃
−
p on Ṽp can be extended by zero to get a smooth function on T̃k, also denoted by λ̃ph̃

−
p . Let

h̃−k =
∑

p∈Xk λ̃ph̃
−
p on T̃k.

On the other hand, let ρk be a smooth function on I+
k such that ρ′k > 0, ρk = 0 around

k + 1/4, and ρk = 1 around k + 1/2. Let ρ̃k be the smooth function on T+
k ≡ Σ+

k × I
+
k given by

ρ̃k(x, s) = ρk(s), and let

h̃+
k = h̃−k (1− ρ̃k) + (ak − bk)ρ̃k

on T+
k . This smooth function is equal to h̃−k around Σ+

k × {k + 1/4}, and is equal to ak − bk
around Σ+

k × {k+ 1/2} ≡ Σ+
k . So the functions, h̃−k on T̃k \ T+

k and h̃+
k on T+

k , can be combined

to produce a smooth function h̃k on T̃k. Since h̃k = 0 around Σ−k and h̃k = ak − bk around Σ+
k ,

there is a smooth extension of h̃k to M , also denoted by h̃k, which is constant on M \ T̃k.
Let fk = fk−1 + h̃k on M . This smooth function satisfies (A.2) because fk−1 satisfies (A.2),

and X induces the opposite of the standard orientation on every fiber {x} × I±k ≡ I±k of T±k
(x ∈ Σ±k ). It also satisfies (A.3) and (A.4) for p ∈ Xl with 1 6 l < k because fk−1 satisfies these

properties and dh̃k is supported in the interior of T̃k.
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Next, take any p ∈ Xk, q ∈ Xk−1 and γ ∈ T (p, q) ⊂ T 1
p . We have γ ∩ T−k ≡ {x} × I

−
k for

some x ∈ K−p ∩K+
q ⊂ Σ−k = Σ+

k−1, and the orientation of γ ∩ T−k agrees with the opposite of the

standard orientation of {x} × I−k ≡ I
−
k . Then

(η′′ + dfk)(γ) = (η′′ + dfk−1 + dh̃k)(γ) 6 −bp + λ−p (x)dh̃−p (γ)

= −bp −
ˆ
I−k

dh−p = −bp − (ak − bp) = −ak .

Here, the equality holds when the maximum of (A.6) is achieved at γ. Hence fk also satisfies (A.4)
for p ∈ Xk.

Finally, take any p ∈ Xk, u ∈ Xk+1 and δ ∈ T (u, p) ⊂ T 1
u ⊂ T 1

k+1. Thus δ ∩ T+
k ≡ {y} × I

+
k

for some y ∈ K+
p ∩K−u ⊂ Σ+

k = Σ−k+1, and the orientation of δ ∩ T+
k agrees with the opposite of

the standard orientation of {y} × I+
k ≡ I

+
k . Then

(η′′ + dfk)(δ) = (η′′ + dfk−1 + dh̃k)(δ) = η′′(δ) + dh̃+
k (δ)

= η′′(δ) +
(
h̃−k (y)− (ak − bk)

) ˆ
I−k

dρk = η′′(δ) + λ̃p(y)h̃−p (y) + bk − ak

= η′′(δ) + ak − bp + bk − ak = η′′(δ) + bk − bp > η′′(δ) > −ak ,

where the second equality is true because fk−1 satisfies (A.3), and the last inequality holds
by (A.1). So fk satisfies (A.5).
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Jesús A. Álvarez López, Yuri A. Kordyukov and Eric Leichtnam

BH01 D. Burghelea and S. Haller, On the topology and analysis of a closed one form. I. (Novikov’s
theory revisited), Essays on geometry and related topics, Vol. 1, 2, Monogr. Enseign. Math.,
vol. 38, Enseignement Math., Geneva, 2001, pp. 133–175. MR 1929325

BH04 , Laplace transform, dynamics, and spectral geometry, arXiv:math/0405037, 2004.

BH06 , Euler structures, the variety of representations and the Milnor-Turaev torsion, Geom.
Topol. 10 (2006), 1185–1238. MR 2255496

BH08 , Dynamics, Laplace transform and spectral geometry, J. Topol. 1 (2008), no. 1, 115–151.
MR 2365654

Bot88 R. Bott, Morse theory indomitable, Publ. Math. Inst. Hautes Études Sci. 68 (1988), 99–114.
MR 1001450

Bur97 D. Burghelea, Lectures on Witten-Helffer-Sjöstrand theory, Proceedings of the Third Interna-
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de Witten, Comm. Partial Differential Equations 10 (1985), 245–340. MR 780068

Kat95 T. Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag,
Berlin, 1995, Reprint of the 1980 edition. MR 1335452

KM76 F.F. Knudsen and D. Mumford, The projectivity of the moduli space of stable curves. I. Pre-
liminaries on “det” and “Div”, Math. Scand. 39 (1976), no. 1, 19–55. MR 437541

Lat94 F. Latour, Existence de 1-formes fermées non singulières dans une classe de cohomologie de de
Rham, Inst. Hautes Études Sci. Publ. Math. 80 (1994), 135–194. MR 1320607
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