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Abstract

This article is about the question of the persistence of regularity for the solution to hyperbolic
boundary value in the quarter-space. More precisely we will both consider the pure boundary value
problem and the initial boundary value problem and we propose a functional space, based upon the high
order Sobolev space in which a control of the data of the problem leads to a control of the solution (in
the same space). The space proposed here contains the tangential Sobolev space. The analysis borrows
some ideas of the study of characteristic boundary value problems in the half-space for which the good
derivative to consider is known to be the tangential derivative x1∂1 instead of the normal derivative
∂1. For quarter-space problems the good quantity to consider will be the radial derivative x1∂1 + x2∂2

and then we recover the control of tangential derivative x1∂1 and x2∂2 using explicit formulas in polar
coordinates. The regularity of the solution is then established intrinsically by adapting the method
introduced by the author to deal with half-space problems without using regularization methods.
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1 Introduction

We are interested in the well-posedness in high order Sobolev spaces of hyperbolic initial boundary value
problems defined in a quadrant. For N ∈ N∗, d ≥ 2 we consider the following system of partial differential
equations:

L(∂)u := ∂tu+A1∂1u+A2∂2u+
∑d

j=3Aj∂ju = f in (t, x1, x2, x
′) ∈ [0,∞[× R2

+ × Rd−2,

B1u|x1=0 = g1 for (t, x2, x
′) ∈ [0,∞[× R+ × Rd−2,

B2u|x2=0 = g2 for (t, x1, x
′) ∈ [0,∞[R× R+ × Rd−2,

u|t=0 = u0 for (x1, x2, x
′) ∈ R2

+ × Rd−2,

(1)

where the interior coefficients Aj ∈ MN×N (R) are given matrices and where the boundary matrices B1 ∈
Mp1×N (R), B2 ∈ Mp2×N (R) are also given and encode generic boundary conditions (the number of lines in
the boundary conditions namely p1 and p2, that is the number of required boundary conditions on each side
of the quarter space, namely the number of positive eigenvalues of A1 and A2 respectively. In order that we
have true boundary value problems we will assume in the following that 0 < p1, p2 < N .

In this article we will also consider the pure boundary value problem associated to (1) that is to say the
same problem but defined on the whole time line R.

L(∂)u = f in (t, x1, x2, x
′) ∈ R× R2

+ × Rd−2,

B1u|x1=0 = g1 for (t, x2, x
′) ∈ R× R+ × Rd−2,

B2u|x2=0 = g2 for (t, x1, x
′) ∈ R× R+ × Rd−2.

(2)

The aim of this article is to give some results about the persistence of the regularity for the solution to
the problems (1) and (2). More precisely the question can crudely be reformulated as: ”if the sources of the
problem have some regularity then what about the solution ?”.

Before to give an exposition of the main results of the article. Let us have a brief state of art about
hyperbolic boundary value problems in domain with corners.
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It is fair to say that such problems have a rather long history because they appear in the 60/70s in
the literature in the articles of Sarason [Sarason, 1962], Osher [Osher, 1973]-[Osher, 1974] and also in the
work of Sarason and Smoller [Sarason and Smoller, 7475] about geometric optics expansions. But such
problems have then been in somewhat a little forgotten until the recent works of Huang and Temam
[Huang and Temam, 2014], Huang [Huang, 2015], Halpern and Rauch [Halpern and Rauch, 2017], Métivier
and Rauch [Métivier and Rauch, 2017] and the author [Benoit, 2015].

Before to describe a little more the above results let us insist on the fact that even if it is a rather old
problem then very a little is known about the strong well-posedness of hyperbolic boundary value problems
in domain with corners. And thus even in the case of non regular (meaning only L2) solutions.

Indeed compared to the more classical geometry of the half-space for which a complete characterization
(the so-called Kreiss-Lopatinskii condition) of the boundary matrices leading to strong well-posedness has
been achieved by Kreiss [Kreiss, 1970], then in the corner geometry such a result is far to be well-understood
and seems to be a rather long range question.

The most significant work for such a full characterization comes from the work of Osher [Osher, 1973] in
which, by adapting the construction of a Kreiss type symmetrizor, the author achieves to show an a priori
energy estimate but with a non explicit number of losses of derivatives so that it is far to be sufficient to es-
tablish a L2-strong well-posedness theory. Moreover in this work the existence of a solution is not considered.

However on the one hand, some of the more recent articles are in a somewhat more optimistic. Let us
briefly described the results of these works:

� In [Huang and Temam, 2014]-[Huang, 2015] the authors consider the problem in a square (so that there
are four boundary conditions) and show by using Hile-Yossida theorem that for some suitable boundary
conditions the problem is strongly well-posed in L2. However in these contributions the author do not
try to have a whole characterizations of the boundary conditions leading to L2-strong well-posedness.

� In [Halpern and Rauch, 2017] the authors consider three dimensional corners and they show that for
the particular class of maximal dissipative boundary conditions (see Definition ) then we have a good
L2 well-posedness theory. The method used is elliptic regularization which requires in particular that
the number of conditions on each side of the boundary are equal (meaning p1 = p2). Assumption that
we will not do in this contribution.

� In [Benoit, 2015], the author uses the strong=weak lemma of [Sarason, 1962] in order to show that
under a structural assumption on the matrix A−1

1 A2 (referred as Sarason matrix in the following) for
two dimensional corners we have a good L2-well-posedness theory at least when the boundary condition
are dissipative.

On the other hand the recent work [Métivier and Rauch, 2017] is not so optimistic because it shows that if
Sarason matrix admits a non trivial Jordan block then we can have non uniqueness of the solution although
the problem is linear... The idea os such a counterexample to uniqueness is to give two solutions the first
one having L2 traces while the second one has not. Consequently in this article in order to avoid such
pathological behaviour we will work with L2 traces.

In this article we essentially propose two theorems establishing the persistence of the regularity of the
solution to (1) and (2) separately. The results differ however a little.

Indeed the result for the pure boundary value problem (2) assumes that we have a good L2-well-posedness
theory and then gives a persistence of regularity result in some functional space that will be described below.
In particular from the result of [Benoit, 2015] when the boundary condition are dissipative then we have
such a L2-well-posed condition but because we do not require in the proof the boundary conditions to
be dissipative this method may apply to more generic boundary conditions. Let us stress that in such a
framework the functional space H (even if this space is not so user-friendly) encoding the regularity of the
solution is the same than the one encoding the regularity of the data. As a consequence we do not have any
loss of regularity and we have a sharp persistence of regularity result.

While the result for the initial boundary value problem (1) do not require any L2-well posedness assump-
tion, in particular it shows that the problem is automatically L2-well posed. But to operate the method
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has to be restricted to dissipative boundary conditions. We propose here two results of persistence of reg-
ularity. The first one is a result where both the data and the solution are in H , however because H is
essentially a tangential Sobolev space it is not very well-adaptated for initial datum. This result thus needs
some well-preparedness of the initial datum in order to compensate. The second result holds for an initial
boundary value problem with datum in, the user-friendly, space Hs but the solution will only be in some
kind of conormal Sobolev space so that wa have somehow losses of regularity.

One of the principal interest of such persistence of regularity results is that, apart from the fact that
it is a really satisfactory result, it is often a first step to treat non linear problems. Indeed to treat non
linear problems then at some point an L∞ norm is required and such a bound is often obtain by Sobolev
embeddings of the high order Sobolev space Hs.

Let us indicate that for elliptic partial differential equations, in domain with corners then the elliptic reg-
ularization phenomenon is known to be less good with corners than without. wWe refer to the full exposition
of [Grisvard, 1985]. For hyperbolic problems for which, of course, no regularization, occurs one may think
that the analogous phenomenon holds and thus gives rise to a loss of regularity which can be rather deli-
cate to handle with for non linear problems. Our main results however show that such a loss does not appear.

In this article we will not obtain a persistence of regularity in the usual Sobolev space Hs so that such an
L∞ embedding is not immediate. But we have results in some weighted tangential Sobolev space (without
giving a precise description see Paragraph 2.3.1, let us say that this space is generated by x1∂1 and x2∂2
instead of ∂1 and ∂2) for the pure boundary value problem (2) and in some conormal Sobolev space (we refer
to Paragraph 2.3.2 for a precise definition) for the initial boundary value problem (1).

The establishement of such persistence of regularity result in Hs, using two tangential derivatives to con-
trol one normal derivatives like in [Guès, 1993] or [Secchi, 1996] will be given in a forthcoming publication.

Let us explain why these tangential derivatives x1∂1 and x2∂2 naturally come into play. Such operators
of derivation naturally appear for characteristic, meaning that the boundary A1 is singular, boundary value
problems in the half-space and thus they also appear for corner problem because in some sense they are
characteristic problems.

To be more precise on this claim we consider the half-space problem{
L(∂)u = f in Rt × R+ × Rd−1,

Bu|x1=0 = g on Rt × Rd−1,
(3)

for which we assume that we have a L2 good well-posedness theory. Then the classical method to derive the
regularity of the solution to non characteristic problems if the sources f and g are regular (let us say H1) is
to mollify the equation with respect to the tangential variables (t, x′) and then to use the explicit equation
in the interior

∂1u = A−1
1

(
f − ∂tu−

d∑
j=2

Aj∂ju
)
, (4)

to recover the whole regularity H1.
Of course for characteristic problems such a method fails because we do not have this explicit equation any

more. To overcome this difficulty the classical way (we refer to [Rauch, 1985]-[Guès, 1993] or [Secchi, 1996])
is to consider the tangential derivative x1∂1 instead of ∂1. Indeed it satisfies{

L(∂)x1∂1u = x1∂1f +A1u = x1∂1f +
(
f − ∂tu−

∑d
j=2Aj∂ju

)
,

B(x1∂1u)|x1=0 = 0,

where the source term in the interior equation only involves the source and tangential derivatives of u so
that the L2 well posedness theory applies.

The common point of hyperbolic boundary value problem with corners and characteristic problems is
the lack of the explicit formula (4). Indeed for corner problem one can not mollify with respect to the two

4



normal variables x1 and x2 without changing the traces. We can only mollify with respect to (t, x′) so that
the equation in the interior only gives that A1∂1u+A2∂2u ∈ L2 which is far to be sufficient to recover that
∂1u and ∂2u are in L2.

Moreover a new difficulty proper to corner problem is that because there are ”too many” normal direc-
tions the usual proofs for the half-space for establishing the existence of a regular solution which rely on
a full mollification in the tangential variables fail. So one needs to obtain the existence of a solution in a
more intrinsic way. To do so we will adapt the recent result of [Benoit, ] form the half-space to the quarter
space. Before to describe a little more these method to obtain regular solution without regularization let us
conclude with the link between characteristic and corner problems.

Once we have understood the similarities between characteristic problems and corner problems. Then
the whole sketch of proof starts to be clear. If one considers the tangential derivative x1∂1u then it solves

L(∂)x1∂1u = x1∂1f +
(
f − ∂tu−

∑d
j=2Aj∂ju−A2∂2u

)
,

B1(x1∂1u)|x1=0 = 0,

B2(x1∂1u)|x2=0 = x1∂1g2,

(5)

and the method fails because of the last term in the right hand side of the interior equation of (5). But if
one considers instead the radial derivative r∂r = x1∂1 + x2∂2 then it solves

L(∂)r∂ru = r∂rf +
(
f − ∂tu−

∑d
j=3Aj∂ju

)
,

B1(r∂ru)|x1=0 = x2∂2g1,

B2(r∂ru)|x2=0 = x1∂1g2,

(6)

so that the source in the interior equation of (6) is now L2 and the well-posedness applies exactly like for
characteristic problems to give that r∂ru ∈ L2.

Then to recover from this fact that each x1∂1u and x2∂2u are in L2 we get a full use of polar coordinates.
Indeed in polar coordinates (r, θ) the equation essentially reads

A (θ)∂θũ = f̃ + M (θ)r∂rũ, (7)

where A (θ) and M (θ) are explicit matrices. Assuming that A (θ) is invertible which is the case under a
variation on Sarason hypothesis for well-posedness (see [Sarason, 1962]) then (7) gives an explicit formula
for the angular derivative ∂θ = −x2∂1 + x2∂2 and plays the role of (4) for non characteristics problems.

Once we have the control of the angular derivative ∂θu and of the radial derivative r∂r then one can
recover a control of x1∂1u and x2∂2 separately and this essentially ends up the establishment of an a priori
energy estimate for the pure boundary value problem in domain with a corner.

In order to conclude for the pure boundary value problem we have to construct a regular solution. As
already mentioned we here need to use a new analysis compared to the half-space geometry because in the
quarter space one can not regularize the solution with respect to x1 or x2. The construction of a regular
solution without this regularization method is made by a rather straightforward modification of the duality
method of Lax-Phillips [Lax and Phillips, 1960] from the space L2 to some regular space containing the
regularity of the radial derivative (r∂r)

αu. And then in a second time we show that the constructed solution
in fact lies in the target space H . The ideas of the duality method are rather classical and are recalled in
Paragraph 4.3.

For the initial boundary value problem, following an idea of [[Benzoni-Gavage, 2007]-Chapter 3] already
used in [Benoit, ], the construction is made directly by considering (1) like the pure evolution problem{

d
dtu = Au for t > 0,

u|t=0 = u0 on Γ,
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and use Lumer-Phillips Theorem. In order to do so we need to show that both A and A∗ are (quasi)dissipative.
This can be done if the boundary conditions in (1) (which are hidden in the domain of definition of A) are
maximal dissipative and if moreover the base Hilbert space used in the definition of D(A) is chosen in such
a way that we have an essentially skew-adjoint operator operator meaning that A∗ = −A + Φ′ where Φ′

stands for some linear continuous operator.
The paper is organized as follows, Section 2 contains some definitions and states the main results in

Paragraph 2.3 namely Theorems 2.1, 2.2 and 2.3. Because Theorem 2.1 requires the fact that the corner
problem is L2 well-posed, this assumption is discussed at the end of Section 2 in Paragraph 2.4 using a result
of [Benoit, 2015] whose (unpublished) proof is given for the sake of completeness.

The proof of Theorem 2.1 is divided in two parts. The first one deals with an a priori energy estimate
which is demonstrated in Section 3 and then the second one deals with the regularity of the solution it is
given in Section 4, more precisely in Paragraph 4.3.

The proof of Theorem 2.2 and 2.3 are more straightforward because they only relies on the construction
to a regular solution, the energy estimate being a consequence of the construction and are given in Paragraph
4.2.

Both of the regularity results of the solution are shown assuming that we have some required duality
formula, stated in Paragraph 4.1.2 and whose proofs are postponed to Paragraph 4.4.

Section 5 contains some examples of physical interest. At last Section 6 gives a conclusion and draws
some prospects about boundary value problems in corner domains.

2 Assumptions, notations and main result

2.1 Notations and definitions

2.1.1 Notations

In this paragraph we introduce some notations, definitions and we recall some rather well-known facts for
hyperbolic boundary value problems.

Firstly we introduce the following sets

Ω := Rt×R2
+,(x1,x2)

×Rd−2
x′ , ∂Ω1 := Rt×R+,x2×Rd−2

x′ ≃ Rt×R+,x1×Rd−2
x′ := ∂Ω2 and Γ := R2

+,(x1,x2)
×Rd−2

x′ .

We also define
∂Γ1 := R+,x2

× Rd−2
x′ ≃ R+,x1

× Rd−2
x′ := ∂Γ2.

For a, b ∈ R the notations Ja, bK stands for the set of integers between a and b. That is to say Ja, bK =
[a, b] ∩ Z.

Throughout the article the notations CA stands for a positive constant depending on the parameter(s)
A. This constant may be modify from one line to the other without any change of notation.

For a functional space X, the dependency Xγ implies that the integrations in the definition of Xγ depend
on the time variable, the notation X without γ means that these integrations do not depend on t.

In all the article for a multi-index δ, the differentiation operator ∂δ will stands for the tangential differen-
tiation operator. This operator can change (but for simplicity of the notations will keep the same notation)
depending on if we are considering a subspace of Γ or a subspace of Ω. More precisely we have the two
alternatives

� If we are working on Γ then δ := (δ3, ..., δd) ∈ Nd−2 and ∂δ := ∂δ33 · · · ∂δdd .

� If we are working on Ω then δ := (δ0, δ3, ..., δd) ∈ N1+d−2 and ∂δ := ∂δ0t ∂
δ3
3 · · · ∂δdd .

We hope that this common notation will not create any confusion.

For p, q ∈ N∗ and a matrix A ∈ Mp×q(R) the notation AT stands for the transpose of A.
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2.1.2 Definitions

We introduce the following definitions for hyperbolic boundary value problems

Definition 2.1 (Symmetric operator) We say that the operator L(∂) is symmetric if for all j ∈ J1, dK
we have AT

j = Aj.

Definition 2.2 (Non characteristic boundary) For j = 1, 2 we say that the boundary ∂Ωj is non char-
acteristic for the operator L(∂) if detAj ̸= 0. Let µj be the number of positive eigenvalues of Aj then pj the
number of lines of Bj satisfies pj = µj.

In the following we will also frequently considered the following particular type of boundary conditions,
already mentioned in the introduction, namely dissipative boundary conditions. In the half-space geometry
these boundary conditions are known to not be the most generic ones for which the strong well-posedness
of the boundary value problem occurs (these boundary conditions are characterized by the so-called uni-
form Kreiss-Lopatinskii condition [Kreiss, 1970]). But they have the advantage to be easily algebraically
determinable conditions for which we have strong well-posedness (for such well-posedness result we refer for
example to [[Benzoni-Gavage, 2007]-Chapter 3]). These particular boundary conditions are also commonly
used when one deals with non linear problems see for instance [Guès, 1993] of [Secchi, 1996].

Definition 2.3 (Maximal dissipative boundary condition) For j = 1, 2, we say that the boundary
condition Bj is maximal dissipative if the following properties are satisfied

� ∀u ∈ kerBj, we have ⟨Aju, u⟩ ≤ 0.

� kerB is not a proper subspace of some linear subspace on which Aj is non-positive.

Definition 2.4 (Strictly dissipative boundary condition) For j = 1, 2, we say that the boundary con-
dition is strictly dissipative if we have

� ∀u ∈ kerBj , u ̸= 0, ⟨Aju, u⟩ < 0.

� kerB is maximal for the previous property.

� B is onto.

In particular it implies that there exists εj , Cj > 0 such that for all u ∈ RN we have the inequality

εj |u|2 + ⟨Aju, u⟩ ≤ Cj |Bju|2.

2.2 Assumptions

In this work we essentially use two assumptions, the first one ensures that we have a good L2-well posedness
theory for (2), the second one is a spectral condition on Sarason matrix made to ensure that we have enough
explicit formulas in order to recover a good persistence of regularity result.

2.2.1 The L2-well posedness Assumption

To deal with the pure boundary value problem (2) we will require the following assumption which ensures
that the problem (2) comes with a good L2-well posedness theory. We stress that this assumption is not
required for in the initial boundary value problem (1).

Assumption 2.1 (L2-well posedness) We assume that the pure boundary value problem (2) is L2-well
posed in the following sense. For all γ > 0 for all f ∈ L2

γ(Ω), (g1, g2) ∈ L2
γ(∂Ω1) × L2

γ(∂Ω2) there exists
a unique solution u to (2), u ∈ L2

γ(Ω), its traces (u|x1=0, u|x2=0) ∈ L2
γ(∂Ω1) × L2

γ(∂Ω2) and u satisfies the
energy estimate

γ∥u∥2L2
γ(Ω) + ∥u|x1=0∥2L2

γ(∂Ω1)
+ ∥u|x2=0∥2L2

γ(∂Ω2)
≤ C

(
1

γ
∥f∥2L2

γ(Ω) + ∥g1∥2L2
γ(∂Ω1)

+ ∥g2∥2L2(∂Ω2)

)
, (8)
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where the constant C > 0 does not depend on γ. In (8) the spaces with weight L2
γ are defined by: for X ⊂ Ω

L2(X) := {u ∈ D′(X) \ e−γtu ∈ L2(X)}, normed by ∥u∥2L2
γ(X) :=

∫
X

e−2γt|u(t, x)|2 dx dt.

This kind of concept of well posedness is a straightforward generalization of the one of [Kreiss, 1970]
in the half-space geometry. Let us however point that for corner problems the requirement that the traces
are L2 in not harmless at all. Indeed it permits to avoid the pathological counterexample to uniqueness of
[Métivier and Rauch, 2017] in which under a spectral property on the Sarason matrix the authors manage to
construct a solution with traces in L2 and an other one with traces which are not in L2 giving consequently
a non uniqueness result.

Let us stress that Assumption 2.1 is not harmless. We refer to Paragraph 2.4 for the proof that this
assumption is satisfied for symmetric non characteristic problems with strictly dissipative boundary condi-
tions.

2.2.2 Assumption on Sarason matrix

As we will see in Paragraph 2.4 and as it is pointed in the work of Sarason [Sarason, 1962] and in the work of
Métivier and Rauch [Métivier and Rauch, 2017], the Sarason matrix namely the matrix A−1

1 A2 has a large
influence on the behaviour of the solution to hyperbolic corner problems. To establish our persistence of
regularity result we will also require that this matrix satisfies a spectral property. More precisely we assume
the following

Assumption 2.2 Assume that the boundary ∂Ω1 is non-characteristic then we assume that the real eigen-
values of Sarason matrix A−1

1 A2 (if they exist) are negative.

Let us comment that compared to the assumption in [Sarason, 1962] (see Theorem 2.5) Assumption 2.2
is a little stronger because essentially the assumption of Sarason is the same except that it is required to
hold on Jordan blocks only. As pointed in [Métivier and Rauch, 2017] if Sarason matrix has a non trivial
Jordan block then it can lead to non uniqueness if we allow in the definition of strong well-posedness a weak
enough control of the trace.

Assumption 2.2 has the advantage to be an easily algebraically checkable assumption and as we will see
in Section 5 it is also satisfied by a lot of examples of physical interest.

Without enter into technical details, Assumption 2.2 is used in the proofs in order to recover from
the control of the radial derivatives (r∂r)

αu for α ∈ J0, sK the whole control of the anisotropic derivatives
xα1+α2−k
1 xk2∂

α1
1 ∂α2

2 where α1 + α2 = α, k ∈ J0, αK. So that if Assumption 2.2 fails the results of persistence
of regularity still hold but with a rather weak control of the solution.

2.3 Main results

In this paragraph we state the main results of the article. Firstly we state the result of persistence of
regularity for the pure boundary value problem (2) (see Theorem 2.1) and then we state the analogous
results for the initial boundary value problem (see Theorems 2.2 and 2.3).

2.3.1 Persistence of the regularity for the pure boundary value problem

In order to state precisely our main result we need to introduce some norms and functional spaces.
We define for s ∈ N∗, and 0 ≤ p ≤ s the following modification of the classical Sobolev space Hs(Ω),

Hs,p
γ (Ω) :=

{
u ∈ D′(Ω) \ for α, β ∈ N, δ ∈ Nd−1, α+ β + |δ| ≤ s and α+ β ≤ p,

∀k ∈ J0, α+ βK, xk1x
α+β−k
2 ∂α1 ∂

β
2 ∂

δu ∈ L2
γ(Ω)

}
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for the whole space and let for k ∈ J1, 2K

Hs,p
γ (∂Ωk) :=

{
u ∈ D′(∂Ωk) \ for α ∈ N, δ ∈ Nd−1, α+ |δ| ≤ s and α ≤ p,

(x3−k∂3−k)
α∂δu ∈ L2

γ(Ω)
}

for the boundaries. Where for a multi-index δ = (δ0, δ3, ..., δd) ∈ N1+d−2 we defined ∂δ := ∂δ0t ∂
δ3
3 · · · ∂δdd .

We introduce the following norms on Hs,p
γ (Ω); for u ∈ Hs,p

γ (Ω)

∥u∥2Hs,p
γ (Ω) :=

∑
α+β≤p,α+β+|δ|≤s

α+β∑
k=0

∥xk1x
α+β−k
2 ∂α1 ∂

β
2 ∂

δu∥2L2
γ(Ω)

the norm on the boundaries being defined similarly.
In the previously defined Sobolev type spaces, the index s stands for the maximal degree of regularity

while p stands for the maximal degree of regularity with respect to the normal derivatives ∂1 and ∂2. Note
that we have weights with respect to the variables x1 and x2 and that the space includes the usual tangential
Sobolev space Hs,p

γ,tan (see [Rauch, 1985]) defined by

Hs,p
γ,tan(Ω) :=

{
u ∈ D′(Ω) \ (x1∂1)α(x2∂2)β∂δu ∈ L2

γ(Ω),∀α+ β ≤ p, α+ β + |δ| ≤ s
}
.

Indeed choosing k = α in the norm on Hs,p
γ (Ω) and using the fact that (xk∂k)

α =
∑α

p=0 λ
α
px

p
k∂

p
k

for (λαp )α,p ⊂ R shows that Hs,p
γ,tan(Ω) ⊂ Hs,p

γ (Ω) which is consequently an extension of Hs,p
γ,tan(Ω) with

anisotropic weights in x1 and x2. This anisotropy comes from the fact that in the following proof we will
have to consider the angular derivatives ∂θ := −x2∂1 + x1∂2, which mix the weights in front of the differen-
tiation operators ∂1 and ∂2 and not only the radial derivative r∂r = x1∂1 + x2∂2.

In the following we will use the following space for r :=
√
x21 + x22

H s
γ (Ω) :=

{
u ∈ D′(Ω) \ ∀ l ∈ J0, sK, rlu ∈ Hs,s−l

γ (Ω)
}
,

it is equipped with the obvious norm; for u ∈ H s
γ (Ω)

∥u∥2H s
γ (Ω) :=

s∑
ℓ=0

∥rlu∥2
Hs,s−ℓ

γ (Ω)
.

We define the spaces H s
γ (∂Ωk), for k ∈ {1, 2} similarly.

Our first main result establishes a strong well-posedness result for the pure boundary value problem in
high order weighted Sobolev spaces. The first part of the theorem gives some a priori energy estimate for
regular solutions while the second statement gives the regularity of the solution in the high order Sobolev
type spaces H s

γ (Ω).

Theorem 2.1 Let s ≥ 0 under Assumptions 2.1 and 2.2 then there exist γ0 := γ0(s) ≥ 1 and C := Cs > 0
such that if for γ ≥ γ0, u ∈ H s

γ (Ω) is such that L(∂)u ∈ H s
γ (Ω), B1u|x1=0 ∈ H s

γ (∂Ω1) and B2u|x2=0 ∈
H s

γ (∂Ω2) then we have the a priori energy estimate: ∀ γ ≥ γ0

∥u∥2H s
γ (Ω) + ∥u|x1=0∥2H s

γ (∂Ω1)
+∥u|x2=0∥2H s

γ (∂Ω2)
(9)

≤ C
(
∥L(∂)u∥2H s

γ (Ω) + ∥B1u|x1=0∥2H s
γ (∂Ω1)

+ ∥B2u|x2=0∥2H s
γ (∂Ω2)

)
.

Conversely under Assumptions 2.2 assume that for some γ > 0 f ∈ H s
γ (Ω), (g1, g2) ∈ H s

γ (∂Ω1) ×
H s

γ (∂Ω2) and consider 
L(∂)u = f in Ω,

B1u|x1=0 = g1 on ∂Ω1,

B2u|x2=0 = g2 on ∂Ω2.

(10)
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We assume that the dual problem to (10) comes with a good high order well-posedness theory see Assumption
4.1. Then the unique solution u to (10) given by Assumption 2.1 lies in H s

γ (Ω). Moreover u satisfies the
energy estimate there exist γ, C > 0 such that ∀ γ ≥ γ

γ∥u∥2H s
γ (Ω) ≤ C

(
1

γ
∥f∥2H s

γ (Ω) + ∥g1∥2H s
γ (∂Ω1)

+ ∥g2∥2H s
γ (∂Ω2)

)
, (11)

where C depends on the coefficients of L(∂) and on s.

The a priori energy estimate that is to say the first statement of Theorem 2.1 is demonstrated in Sec-
tion 3, the regularity of the solution is then obtained by a slight modification of the duality method of
[Lax and Phillips, 1960] see also [Benoit, ] is demonstrated in Paragraph 4.3.

From a persistence of regularity point of view Theorem 2.1 is really satisfactory because it shows that
the solution u has exactly the same regularity as the sources.

Moreover it is a quite positive, interesting and encouraging fact that the spaces H s
γ (Ω) contain all the

tangential derivatives. Indeed in [Secchi, 1996] and [Guès, 1993] such control of the tangential derivatives
(x1∂1)

αu was used in order to recover the control of the normal derivative ∂1u which implies the L∞
x bound

via Sobolev embedding.
For corner problems we can also recover the control of the normal derivatives by using two tangential

derivatives to obtain such a Hs regularity result of the solution. This claim is however behind of the scope
of the present article and will follows in a forthcoming publication.

We conclude this paragraph by the following corollary of Theorem 2.1 showing that for symmetric non
characteristic problems with strictly dissipative boundary conditions then we have a good persistence of
regularity theory.

Corollary 2.1 We assume that the pure boundary value problem (2) is symmetric with non characteristic
strictly dissipative boundary conditions and that we have Assumption 2.2. Let s ∈ N be given then there exist
γ > 0 such that for all γ > γ if the sources f ∈ H s

γ (Ω), (g1, g2) ∈ H s
γ (∂Ω1)× H s

γ (∂Ω2) then (2) admits a
unique solution u ∈ H s

γ (Ω). This solution satisfies the energy estimate (11).

Proof : The proof is just a direct consequence of Theorem 2.1. For symmetric operators with non charac-
teristic strictly dissipative boundary conditions because Assumption 2.2 implies the assumptions of Theorem
2.5, it applies and gives the L2 well-posedness result. As a consequence Assumption 2.1 holds.

From the first statement of Theorem 2.1 the energy estimate (9) holds for regular solutions.
It is a well-known fact that strictly dissipative boundary conditions are suitable for the dual problem so

that the dual problem to (2) satisfies the a priori energy estimate (9) this implies in particular Assumption
4.1. So that the second statement of Theorem 2.1 applies and this completes the proof.

□

2.3.2 Persistence of the regularity for initial boundary value problems

Our second main result deals with the initial boundary value problem (1) for which by linearity we assume1

to simplify that f, g1, g2 ≡ 0. An interesting point to be noticed is that contrary to Theorem 2.1 where
the L2-well posedness is assumed in order to derive the strong well-posedness in higher oder Sobolev type
spaces then no L2-well posedness is assumed for these results. This comes from the fact that these results
are based on Lumer-Philips theorem which gives automatically the existence of a regular solution (which is
in particular L2).

Moreover let us insist on the fact that, in terms of regular well-posedness for the initial boundary value
problem, we establish the so-called semigroup well-posedness of the system (1) that is to say that we obtain

a control of the L∞
t (H̃s(Γ)) norm of the solution where H̃s(Γ) is some suitable functional space based upon

Hs(Γ). In terms of well-posedness it is the best framework that one can hopes.

1Using a remark of [[Benzoni-Gavage, 2007] page 114] here we may also consider f ̸≡ 0 but the method really requires that
g1 ≡ g2 ≡ 0 in order the boundary conditions to be incorporated in the domain of A
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Unfortunately compared to Theorem 2.1 for which the data and the solution relies on the same functional
space the counterpart in Theorem 2.3 is that the initial solution u0 and the solution u will not live in the
same functional space. The reason of this is essentially that the tangential Sobolev generated by x1∂1 and
x2∂2 can not be compared with the usual Sobolev space.

In the following we assume that the initial datum u0 lies in some weighted Sobolev space Ds(Γ) and we
will obtain that the solution u to (1) lies in some kind of conormal Sobolev space. Without enter into the
details of the definition of this space let us that say it essentially acts like the usual conormal space (that
is that near the boundary {xk = 0} we have an estimate for (xk∂k)

s and of ∂sk away from this boundary).
Near the corner we only have an estimate for (x1∂1 + x2∂2)

s with each a rather weak estimate, but which
can be transformed into the same control than the one of Theorem 2.1.

To state our main results let us introduce some functional spaces and ideas.

Firstly the starting point to solve the initial boundary value problem is to write it as the pure evolution
problem {

d
dtu = Au for t ∈ [0,∞[ ,

u|t=0 = u0,
(12)

where

Au := −
d∑

j=1

Aj∂ju,

and where the boundary conditions in (1) are encoded in the domain D(A) of A. This approach has first
been introduced by Benzoni-Gavage and Serre in [[Benzoni-Gavage, 2007]-Chapter 3] for constant coefficients
boundary value problems in the half-space and then have been extended by the author in [Benoit, ] to vari-
able or characteristic coefficients.

To solve (12) we use Lumer-Phillips Theorem (see Theorem 4.1) which applies if we can justify that both
A and its dual operator A∗ are (quasi)dissipative (see Definition 4.2).

Then because we are now considering regular solution to an initial boundary value problem then some
compatibility conditions are expected (and necessary) on the datum u0. In the following discussion assume
that the solution is regular enough for the traces to be well-defined. Then we should have[

B1u|x1=0

]
|t=0

=
[
B2u|x2=0

]
|t=0

= 0 so that u0|x1=0
∈ kerB1 and u0|x2=0

∈ kerB2,

condition which is referred as the compatibility condition of order zero.

More generically let us define for k ≥ 1, uk := (∂kt u)|t=0 and u0 = u0 then with A = −
∑d

j=1Aj∂j
because on the one hand u is solution to (1) we have uk = Aku0 but on the other hand

∂kt B1u|x1=0 = ∂kt B2u|x2=0 = 0 so that taking the trace uk|x1=0 ∈ kerB1 and uk|x2=0 ∈ kerB2. (13)

This motivates the following definition

Definition 2.5 Let s ∈ N we say that u0 satisfies the compatibility conditions up to the order σ ≤ s − 1 if
(13) is satisfied for all k ∈ J0, σ − 1K. The compatibility condition of order −1 being the empty condition.

To state the well-posedness result we introduce the following functional spaces For s ∈ N, 0 ≤ p ≤ s we
first define the Hilbert space for X ⊂ Γ:

Hs,p
rad(X) := {u ∈ D′(X) \ ∀ 0 ≤ α ≤ p, ∀ δ ∈ Nd−2 s.t. α+ |δ| ≤ s we have (r∂r)

α∂δu ∈ L2(X)},

where for δ := (δ3, ..., δd) ∈ Nd−2, ∂δ := ∂δ33 · · · ∂δdd and where r∂r := x1∂1 + x2∂2. It is a Hilbert space
according to the norm, for u ∈ Hs,p

rad(X)

∥u∥2Hs,p
rad(X) :=

p∑
α=0

∑
|δ|≤s−α

∥(r∂r)α∂δu∥2L2(X).
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We insist on the fact that in Hs,p
rad(X) we do not require any control on the angular derivative ∂θu and/or

on the anisotropic weighted derivatives xα+β−k
1 xk2∂

α
1 ∂

β
2 u, k ∈ J0, α+ βK.

Then we consider the following functional spaces X s
rad(Γ) and Ys(Γ) in which we have good duality for-

mulas.

Firstly we define the space X s
rad(Γ) as a subspace of Hs,0

rad(Γ) as follows

X s
rad(Γ) :=

{
u ∈ D′(Γ) \ ∀ 0 ≤ l ≤ s, rlu ∈ Hs,s−l

rad (Γ)
}
.

In such a functional space the persistence of regularity result is the following

Theorem 2.2 Let s ∈ N and u0 ∈ X s
rad(Γ) be given and satisfying the compatibility conditions up to the

order s− 1. We also assume that u0 satisfies the well-preparedness assumptions
Ak+1u0 ∈ X s−k

rad (Γ) ∀ k ∈ J0, s− 1K,
Aku0|xj=0

∈ X s−k
rad (∂Γj) ∀ k ∈ J0, sK,∀ j ∈ J1, 2K,

∥Au0∥X s
rad(Γ)

≤ C∥u0∥X s
rad(Γ)

(14)

We assume that the initial boundary value problem (1) is symmetric, non characteristic for each side of the
boundary with strictly dissipative boundary conditions and that Assumption 2.2 holds.

Then (1) admits a unique solution u ∈ ∩s
k=0C

k
t ([0,∞[ ;H s−k(Γ)). Moreover there exists ω,Cs > 0 such

that we have the energy estimate

∀ t ∈ [0,∞[ , ∀k ∈ J0, sK, ∥∂kt u(t)∥H s−k(Γ) ≤ Cse
ωt∥u0∥X s

rad(Γ)
, (15)

where the space H p(Γ) are defined exactly like the space H p
γ (Ω) excepted that the integrations are made on

the space Γ instead of the time/space Ω.

Secondly to state our second main result we define the space Hilbert space Ys(Γ) by

Ys(Γ) :=
{
u ∈ D′(Γ) \ ∀ l ∈ J0, sK, rlu ∈ Hs,s−l

rad (Γ) and ∥u∥Ys(Γ) <∞
}
,

where the norm ∥ · ∥Ys(Γ) comes from the scalar product

⟨u, v⟩Ys(Γ) :=

s∑
l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
C

〈
(r∂r)

α∂δrlu, (r∂r)
α∂δrlv

〉
dx (16)

+

∫
B1

α∑
p=0

⟨
(
α
p

)
∂1,p(x2∂2)

α−p∂δrlu,

(
α
p

)
∂1,p(x2∂2)

α−p∂δrlv⟩dx

+

∫
B2

α∑
p=0

⟨
(
α
p

)
(x1∂1)

p∂2,α−p∂
δrlu,

(
α
p

)
(x1∂1)

p∂2,α−p∂
δrlv⟩dx

+

∫
I

α∑
p=0

⟨
(
α
p

)
∂1,p∂2,α−p∂

δrlu,

(
α
p

)
∂1,p∂2,α−p∂

δrlv⟩dx,

where we defined

C := {x ∈ Γ \ 0 ≤ x1, x2 < 1} , I := {x ∈ Γ \ x1, x2 ≥ 1} ,
B1 := {x ∈ Γ \ x1 > 1, 0 < x2 ≤ 1} and B2 := {x ∈ Γ \ 0 < x1 < 1, x2 ≥ 1}

and where the differentiation operators ∂1,· and ∂2,· are defined by

∀ p ∈ J0, αK, ∂1,p :=

p∑
q=1

λpq∂
q
1 and ∂2,α−p :=

α−p∑
q=1

λα−p
q ∂q2 . (17)
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The scalars λ·· being fixed and defined in (90). We decompose

⟨u, v⟩Ys(Γ) := ⟨u, v⟩Ys(C ) + ⟨u, v⟩Ys(B1)
+ ⟨u, v⟩Ys(B2)

+ ⟨u, v⟩Ys(I ) ,

with obvious definitions.

The space in which lies the solution to the initial boundary value problem is then defined by

Y s(Γ) :=
{
u ∈ D′(Γ) \ ∀ 0 ≤ l ≤ s, rlu ∈ Hs,s−l

rad (Γ) and ∥u∥Y s(Γ) <∞
}
,

where the norm on Y s(Γ) comes from the scalar product

⟨u, v⟩Y s(Γ) := ⟨u, v⟩H s(C ) + ⟨u, v⟩Ys(B1)
+ ⟨u, v⟩Ys(B2)

+ ⟨u, v⟩Hs(I ) ,

where H s(C ) has the same definition than H s
γ (C ) except that we do not integrate with respect to the time

variable (so that we take the norm ∥ · ∥L2
x(C ) instead of ∥ · ∥L2

γ(R×C )). H
s(I ) being the usual Sobolev space

of order s.

Finally for the initial condition we define the space

Ds(Γ) :=
{
u ∈ Hs(Γ) \ ∀ l ∈ J0, sK, rlu ∈ Hs−l(Γ)

}
,

it is equipped with the norm ∥ · ∥D(Γ) defined by

∀ u ∈ Ds(Γ), ∥u∥2D(Γ) :=

s∑
l=0

∥rlu∥2Hs(Γ).

One can see that for u ∈ Ys(Γ) (or Y s(Γ)) we have ∥u∥Ys(Γ) ≤ Cs∥u∥Ds(Γ) so that Ds(Γ) ⊂ Ys(Γ).

With such definitions Ys(Γ) acts like a conormal Sobolev space except at the corner where we only have
a control of the radial derivatives, while Y s(Γ) is truly a conormal Sobolev space because it contains the
tangential derivatives (x1∂1)

α1(x2∂2)
α2 near the corner.

The well-posedness result in such a space is the following:

Theorem 2.3 Let s ∈ N and u0 ∈ Ds(Γ) satisfying the compatibility conditions (13) up to the order
s− 1. We assume that the initial boundary value problem (1) is symmetric, with non characteristic maximal
dissipative boundary condition as defined in Paragraph 2.1.2. Let us also assume that Sarason matrix satisfies
Assumption 2.2. Then there exists a unique solution u ∈ ∩s

k=0C
k
t ([0,∞[ ;Y s−k(Γ)) to (1). Moreover we

have the energy estimates that there exist ω, Cs > 0 such that

∀ t ∈ [0,∞[ , ∀k ∈ J0, sK, ∥∂kt u(t)∥Y s(Γ) ≤ Cse
ωt∥u0∥Ds(Γ). (18)

We end up this presentation paragraph by some comments on Theorems 2.2 and 2.3

� Let us first remark that for s = 0 the conditions imposed on the datum u0 are void so that u0 can be
chosen arbitrary in L2(Γ). In particular this gives for free the L2 well-posedness result.

� Theorem 2.2 gives from (only) a control on the radial derivatives of the initial datum u0 a complete
tangential control of the solution.

� It seems rather delicate to bypass the well-preparedness assumption (14). Indeed the issue here is that
if u0 ∈ X s+1(Γ) then it is clear for all tangential j, ∂ju0 ∈ X s(Γ) but because X s

rad(Γ) is defined with
the derivatives x1∂1 and x2∂2 so that it is not obvious that A1∂1u0 ∈ X s

rad(Γ) and A2∂2u0 ∈ X s
rad(Γ).

This well-preparedness assumption is however removed in Theorem 2.3 but we pay some price on the
regularity on the solution.
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� Concerning the persistence of regularity point of view Theorem 2.2 is sharp but it is rather fair to say
that compared to the data u0 we have some losses of regularity for the solution u near the boundaries
in 2.3. There are two kinds of losses.

1. The first one comes from the fact that in C we only have a control of the tangential derivatives
while u0 is controlled by the normal derivatives.

2. The second point is more delicate and comes from the definition of Ys(Γ). Indeed near the
boundaries (to fix the ideas let us consider B1) we only recover a control of the unmixed derivatives∑α

p=0 ∂1,p(x2∂2)
α−p and not a whole control of the decoupled derivatives ∂α1 (x2∂2)

β for α+β ≤ s.
This comes from the fact that near the boundaries the operators of differentiation are not defined
by x1∂1 and x2∂2 but one of then is defined by ∂1, the other one being defined by x2∂2 so that
we can not use the radial and angular derivatives in order to recover the control of the uncoupled
derivatives. However if we have a control of one of the normal derivative ∂1 or ∂2 near the corner
some partition of unity arguments enable us to show that the control near the boundary can in
fact be transformed into the usual Sobolev one.

2.4 Comments about the L2-well-posedness Assumption: the L2 theory

The following paragraph exposes a framework for which Assumption 2.1 is known to hold. The results
exposed here are generalizations of the ones of [Benoit, 2015] to variable coefficients. We stress in particular
that it is the only part of the article where the coefficients are authorized to vary.

Assumption 2.1 is of course far to be harmless. Indeed the full-characterization of the boundary matrices
B1 and B2 leading to the L2-well posedness of the quarter space problem boundary value problem is far
to be clearly understood instead of the one of the analogous problem in the half-space (see for example
[Kreiss, 1970]-[Chazarain and Piriou, 1981]-[Benzoni-Gavage, 2007]).

However, there is a framework, the one of the so-called strictly dissipative boundary conditions for
which Assumption 2.1 can be verified. Let us introduce the following definitions with are straightforward
generalizations to the ones of Paragraph 2.1.2 to variable coefficients

Definition 2.6 (Strictly dissipative boundary conditions) The boundary condition B1 (resp. B2) on
the side ∂Ω1 (resp. ∂Ω2) is said to be strictly dissipative if

∀ (t, x2, x′) ∈ ∂Ω1, ∀ u ∈ kerB1(t, x2, x
′), u ̸= 0, we have ⟨A1(t, 0, x2, x

′)u, u⟩ < 0.

(resp. ∀ (t, x1, x′) ∈ ∂Ω2, ∀ u ∈ kerB2(t, x1, x
′), u ̸= 0, we have ⟨A2(t, x1, 0, x

′)u, u⟩ < 0) .

It implies (we refer to [[Benzoni-Gavage, 2007]-Chapter 3] for a proof) that if i = 1, 2 there exist εi, Ci > 0
such that for all u ∈ RN we have the inequality

εi|u|2 +
〈
Ãi(t, x3−i, x

′)u, u
〉
≤ Ci|Bi(t, x

′, x3−i)u|2. (19)

where Ã1(t, x2, x
′) = A1(t, 0, x2, x

′) and Ã2(t, x1, x
′) = A2(t, x1, 0, x

′). We also require that Bi is onto and
that kerBi is maximal for the previous property.

We will also require the coefficients of the corner problem to be symetric in the following sense.

Definition 2.7 (Symmetric coefficients) The hyperbolic operator L(∂) is said to be symmetric if

∀ (t, x) ∈ Ω, AT
j (t, x) = Aj(t, x).

Finally let us assume that the two sides of the boundary are non characteristic in the sense that

Definition 2.8 (Non characteristic boundary) The side of the boundary ∂Ω1 (resp. ∂Ω2) is said to be
non characteristic if

∀ (t, x) ∈ Ω, detA1(t, x) ̸= 0 (resp. detA2(t, x) ̸= 0) .

The proof exposed bellow strongly relies on the ”weak=strong result” of Sarason [Sarason, 1962], the
other arguments being classical. Indeed the proof is a three steps proof
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1. Establish an a priori energy estimate is made in Paragraph 2.4.1 (which comes from free thanks to
the strict dissipativity).

2. Construct a weak solution. In order to do so we will use a slight modification of the so-called duality
method of [Lax and Phillips, 1960]. We refer to Paragraph 2.4.2

3. Show that the weak solution is a strong one to conclude. This result comes from the ”weak=strong
result” of Sarason [Sarason, 1962]. It is the technical part of the proof. For a sake of completeness the
result of Sarason is recalled in Paragraph 2.4.3

The result is the following:

Theorem 2.4 We consider the corner problem
L(∂)u = f in Ω,

B1u|x1=0 = g1 on ∂Ω1,

B2u|x2=0 = g2 on ∂Ω2,

(20)

for which we assume that the coefficients Aj, satisfy

A1 = A1(x1, x2) ∈ C 1
b (R2

+), A2 = A2(x1, x2) ∈ C 1
b (R2

+), and ∀ j ≥ 3Aj = Aj(t, x) ∈W 1,∞(Ω),

C 1
b being the et of C 1 functions with bounded derivatives and where the boundary matrix Bj = Bj(x3−j) lies

in C 0(R+). Assume that this problem admits non characteristic strictly dissipative boundaries in the sense
of Definitions 2.6 and 2.8 and that it is symetric in the sense of Definition 2.7. Assume moreover that in a
neighborhood V of (0, 0) the eigenvalues λ of the matrix A−1

1 A2 satisfies the following

1. The multiplicity of λ remains constant on V .

2. The real eigenvalues and the imaginary parts of the complex eigenvalues remains either positive either
negative away from zero on V .

3. In its Jordan decomposition (A−1
1 A2)(0, 0) does not admit a non trivial Jordan block associated to a

real positive eigenvalue.

There exists2 γ0 > 0 such that for all γ ≥ γ0 if f ∈ L2
γ(Ω), (g1, g2) ∈ L2

γ(∂Ω1)× L2
γ(∂Ω2) then the problem

(20) admits a unique solution u ∈ L2
γ(Ω) with traces (u|x1=0, u|x2=0) ∈ L2

γ(∂Ω1) × L2
γ(∂Ω2). Moreover the

solution u satisfies the energy estimate: there exists C > 0 such that for all γ ≥ γ0

γ∥u∥2L2
γ(Ω)+∥u|x1=0∥2L2

γ(∂Ω1)
+ ∥u|x2=0∥2L2

γ(∂Ω2)
(21)

≤ C

(
1

γ
∥L(∂)u∥2L2

γ(Ω) + ∥B1u|x1=0∥2L2
γ(∂Ω1)

+ ∥B2u|x2=0∥2L2(∂Ω2)

)
.

The proof of this result occupies the three following paragraphs.

2.4.1 A priori energy estimate

Because we are in the particular framework of strictly dissipative boundary conditions, with symmetric matri-
ces Aj , the a priori energy estimate which is the technical point in the analysis of Kreiss [Kreiss, 1970], which
is far to be well established for corner problems, comes for free. Indeed we have the following proposition

Proposition 2.1 Assume that the problem
L(∂)u+Du = f in Ω,

B1(t, x2, x
′)u|x1=0 = g1 on ∂Ω1,

B2(t, x1, x
′)u|x2=0 = g2 on ∂Ω2,

2The coefficient γ0 only depends on the dimension d and the coefficients Aj
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where D ∈ L∞(Ω,MN×N (R)), is symmetric with strictly dissipative boundary conditions. Also assume that
the coefficients Aj ∈W 1,∞(Ω) then there exists γ0 > 0 such that if u is a regular enough solution to (2) then
u satisfies the energy estimate: there exists C > 0 such that for all γ ≥ γ0 then

γ∥u∥2L2
γ(Ω)+∥u|x1=0∥2L2

γ(∂Ω1)
+ ∥u|x2=0∥2L2

γ(∂Ω2)

≤ C

(
1

γ
∥L(∂)u∥2L2

γ(Ω) + ∥B1u|x1=0∥2L2
γ(∂Ω1)

+ ∥B2u|x2=0∥2L2(∂Ω2)

)
,

where we stress that the constant C depends on the coefficients but not on γ.

Proof : We introduce v = e−γtu where u stands for a regular solution to (20). We have L(∂)v+ γv+Dv =
e−γtL(∂)u. Multiplying by v and integrating over Ω gives from the symmetry assumption

2γ∥v∥2L2(Ω)−
∫
∂Ω1

〈
A1|x1=0

v|x1=0, v|x1=0

〉
dtdx′ dx2 −

∫
∂Ω2

〈
A2|x2=0

v|x2=0, v|x2=0

〉
dtdx′ dx1

+

∫
Ω

⟨Dv, v⟩ dtdx = 2

∫
Ω

e−γtL(∂)u · v dtdx+

d∑
j=1

∫
Ω

⟨(∂jAj)v, v⟩ dtdx.

Let M := maxj∈J1,dK ∥∂jAj∥L∞(Ω) and choose for example γ := 2Md. Then for all γ ≥ γ we have from
Young inequality combined with the strict dissipativity property (19)

(γ − ∥D∥L∞(Ω))∥v∥2L2(Ω)−∥v|x1=0∥2L2(∂Ω1)
+ ∥v|x2=0∥2L2(∂Ω1)

≤ C

(
1

γ
∥e−γ·L(∂)u∥2L2(Ω) + ∥B1v|x1=0∥2L2(∂Ω1)

+ ∥B2v|x2=0∥2L2(∂Ω1)

)
so that if we choose for example γ0 := max(γ, 2∥D∥L∞(Ω)) we obtain the desired estimate for u.

□

2.4.2 Existence of a weak solution

The existence of a weak solution to (2) is shown by duality and follows the same ideas that the ones exposed
in [Lax and Phillips, 1960] see also [[Benzoni-Gavage, 2007]-Section 9.2].

Such method will also be a little refined in Paragraph 4.2 in order to establish the regularity of the
solution to the pure boundary value problem (2) so that recalling this method here is a good preliminary
work.

However the definitions of weak solutions are the ones used in [Sarason, 1962] and differ a little from the
one used in [Lax and Phillips, 1960]. This little modification is made to apply the ”weak=strong” result of
[Sarason, 1962]. Let us first introduce the so-called dual problem of (2) and the functional spaces that will
be used in the following.

Definition 2.9 (Dual problem of (2)) The pure boundary value problem
L∗(∂)v = f̃ in Ω,

C1(t, x2, x
′)v|x1=0 = g̃1 on ∂Ω1,

C2(t, x1, x
′)v|x2=0 = g̃2 on ∂Ω2,

(22)

is a dual problem of (2) if for all regular functions u and v we have the duality formula:

⟨L(∂)u, v⟩L2(Ω) − ⟨u, L∗(∂)v⟩L2(Ω) = −
2∑

j=1

〈
Nju|xj=0, Cjv|xj=0

〉
L2(∂Ωj)

+
〈
Bju|xj=0,Mjv|xj=0

〉
L2(∂Ωj)

,

for some matrices Nj , Cj ∈ M(N−pj)×N (R), Mj ∈ Mpj×N (R) satisfying the decomposition

∀ (t, x3−j , x
′) ∈ ∂Ωj , Ãj = CT

j Nj +MT
j Bj . (23)

16



The following proposition is a standard result whose proof can be find for example in [[Benzoni-Gavage, 2007]-
Lemma 9.4].

Proposition 2.2 Define3

L∗(∂) := −∂t −
d∑

j=1

AT
j ∂j −

d∑
j=1

∂jA
T
j ,

then for j = 1, 2 there exist matrices Nj , Cj ∈ (C 0 ∩ L∞)(∂Ωj ,M(N−pj)×N (R)) and a matrix Mj ∈ (C 0 ∩
L∞)(∂Ωj ,Mpj×N (R)) such that the pure boundary value problem (22) is a dual problem of (2).

The matrices Cj are characterized by

∀ (t, x3−j , x
′) ∈ ∂Ωj , kerCj = (Aj kerBj)

⊥, (24)

the matrices Nj are onto and satisfy
kerBj ∩ kerNj = {0} .

Finally for all matrices characterized by (24) if the boundary conditions of (2) are strictly dissipative
then the boundary condition of the dual problem (22) are strictly dissipative.

In particular, for later purposes let us remark that if the operator L(∂) is symmetric it implies that we
have the following sign property: for j ∈ {1, 2}

∀ v ∈ kerCj , v ̸= 0, ⟨Ãjv, v⟩ > 0. (25)

We introduce the following functional space in order to define the weak solutions of (2). For χ ∈ R we
introduce the Hilbert product space Sχ := L2

χ(Ω)× L2
χ(∂Ω1)× L2(∂Ω2) equipped with the product norm

for (u, u1, u2) ∈ Sχ , ∥(u, u1, u2)∥Sχ
:=
√
∥u∥2L2

χ(Ω) + ∥u1∥2L2
χ(∂Ω1)

+ ∥u2∥2L2
χ(∂Ω2)

.

Following [Sarason, 1962] we define the following notions of weak solutions

Definition 2.10 (Weak solutions to L(∂)u = f) Let γ > 0 and f ∈ L2
γ(Ω). We then say that the triplet

U = (u, u1, u2) ∈ Sγ is a weak solution to L(∂)u = f if for all v ∈ H1
−γ(Ω) there holds

⟨f, v⟩L2(Ω) − ⟨u, L∗(∂)v⟩L2(Ω) = −
〈
A1u

1, v|x1=0

〉
L2(∂Ω1)

−
〈
A2u

2, v|x2=0

〉
L2(∂Ω2)

.

Definition 2.11 (Weak solutions to (2)) Let γ > 0 and (f, g1, g2) ∈ Sγ . We then say that the triplet
U = (u, u1, u2) ∈ Sγ is a weak solution to (2) if U is a weak solution of L(∂)u = f in the sense of Definition
2.10 and if moreover we have

B1u
1 = g1 and B2u

2 = g2.

Note that with such a definition we do not require u1 and u2 to be the traces of u|x1=0 and u|x2=0 so that
we are free to modify a little the traces values obtained via the usual use of Riesz representation theorem.
The main result of this paragraph is the following proposition:

Proposition 2.3 (Existence of a weak solution of (2)) Let γ > 0 and (f, g1, g2) ∈ Sγ . Assume that
the pure boundary value problem (2) is symmetric, non characteristic with strictly dissipative boundary
conditions then it has a weak solution U ∈ Sγ in the sense of Definition 2.11

Proof : Let γ > 0 we introduce the space

X−γ :=
{
L ∗v := (L∗(∂)v, C1v|x1=0, C2v|x2=0) where v ∈ H1

−γ(Ω)
}
.

From Proposition 2.2 there is no loss of generality by assuming that the matrices C1, C2 are strictly
dissipative for the dual problem (22) so that from Proposition 2.1 we have the dual energy estimate (8) that
is

∥v∥S−γ
≤ Cγ∥L ∗v∥S−γ

. (26)

3Note that this part of the proof does not require the symmetry of the coefficients.
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Let (f, g1, g2) ∈ Hγ we introduce the form ℓ : X−γ → R defined by

ℓ(L ∗v) := ⟨f, v⟩L2(Ω;RN ) +
〈
g1,M1v|x1=0

〉
L2(∂Ω1;Rp1 )

+
〈
g2,M2v|x2=0

〉
L2(∂Ω2;Rp2 )

.

We have from Cauchy-Schwarz and Young inequalities

|ℓ(L ∗v)| ≤ C
[
∥v∥2L2

−γ(Ω) + ∥v|x1=0∥2L2
−γ(∂Ω1)

+ ∥v|x2=0∥2L2
−γ(∂Ω2)

]
where C depends in particular on f, g1, g2 and on ∥M1∥L∞(∂Ω1), ∥M2∥L∞(∂Ω2). Using the a priori energy
estimate (26) we obtain |ℓ(L ∗v)| ≤ Cγ∥L ∗v∥S−γ . Consequently from Hahn-Banach theorem the form ℓ can
be extended by continuity up to S−γ and from Riesz representation theorem there exists U := (u, u1, u2) ∈
S−γ such that

ℓ(L ∗v) = ⟨u, L∗(∂)v⟩L2(Ω) +
〈
u1, C1v|x1=0

〉
L2(∂Ω1)

+
〈
u2, C2v|x2=0

〉
L2(∂Ω2)

,

so that from the definition of ℓ the triplet U satisfies

⟨f, v⟩L2(Ω) − ⟨u, L∗(∂)v⟩L2(Ω) =−
〈
g1,M1v|x1=0

〉
L2(∂Ω1)

+
〈
u1, C1v|x1=0

〉
L2(∂Ω1)

(27)

−
〈
g2,M2v|x2=0

〉
L2(∂Ω2)

+
〈
u1, C2v|x1=0

〉
L2(∂Ω2)

.

In the rest of the proof we modify the boundary couple (u1, u2) in some (u1, u2) defined in such a way
that the right hand side of (27) becomes −(

〈
A1u

1, v|x1=0

〉
L2(∂Ω1)

+
〈
A2u

2, v|x2=0

〉
)L2(∂Ω2) showing that

U := (u, u1, u2) ∈ Hγ is a weak solution to L(∂)u = f . To conclude we verify that such a U in fact gives a
weak solution to (2).

Because for all (t, x3−j , x
′) ∈ ∂Ωj , the matricesNj and Bj are onto we can write uj = Nj ũ

j and gj = Bjhj
with ũj , hj ∈ L2

γ(Ω;RN ). So that

−
〈
gj ,Mjv|xj=0

〉
L2(∂Ωj)

+
〈
uj , Cjv|xj=0

〉
L2(∂Ωj)

= −
〈
Aju

j , v|xj=0

〉
L2(∂Ωj)

,

with
uj := A−1

j

(
MT

j Bjhj − CT
j Nj ũ

j
)
.

Consequently the triplet U := (u, u1, u2) ∈ Hγ is a weak solution to L(∂)u = f .
To conclude we verify that for j = 1, 2 we have Bju

j = gj . From the definition of uj we can directly
compute

Bju
j = −BjA

−1
j CT

j Nj ũ
j +BjA

−1
j MT

j Bjhj ,

and the desired equality comes from the relations BjA
−1
j CT

j Nj = 0 and BjA
−1
j MT

j Bj = Bj which are direct
consequences of decomposition (23) and the definition of the dual problem.

Indeed because RN = kerNj ⊕ kerBj it is sufficient to compute BjA
−1
j CT

j Nju for u ∈ kerBj and

BjA
−1
j MT

j Bjv for v ∈ kerNj . But using (23) we can write

BjA
−1
j CT

j Nju = BjA
−1
j

(
Aj −MT

j Bj

)
u = 0,

BjA
−1
j MT

j Bjv = BjA
−1
j

(
Aj − CT

j Nj

)
v = Bjv.

□

2.4.3 Uniqueness of the weak solution

To show the uniqueness of the weak solution and that the conclusions of Assumption 2.1 are satisfied for sym-
metric non-characteristics operators with strictly dissipative boundary conditions we use the ”weak=strong”
lemma of [Sarason, 1962]. In order to do so we introduce the following definition for strong solutions.

Definition 2.12 (Strong solution(s) to L(∂)u = f) Let γ > 0 and f ∈ L2
γ(Ω) then U = (u, u1, u2) ∈ Sγ

is said to be a strong solution to L(∂)u = f if there exists a sequence (un)n∈N ⊂ D(Ω) such that

lim
n→∞

∥U − (un, un|x1=0, u
n
|x2=0)∥

2
Sγ

+ ∥L(∂)un − f∥2L2
γ(Ω) = 0.
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In order to show that weak solutions are in fact strong ones we will apply the result of [Sarason, 1962].
Let us recall precisely the statement of this result4.

Theorem 2.5 ([Sarason, 1962]-Theorem 3.1) Consider L := ∂1+A(x1, x2)∂2+B(x1, x2) be an operator
acting on R2

+. We assume that

1. The matrices A ∈ C 1(R2
+) and B ∈ C 0(R2

+).

2. Let λ ∈ R be a real eigenvalue of A(0, 0) corresponding to a non-simple eigenspace of A(0, 0), then the
line y = λx lies outside of Ω (that is λ < 0).

3. In a neighborhood of (0, 0) the matrix A does not change type (meaning that its eigenvalues remain
either purely real either complex).

Let U = (u, u1, u2) ∈ Sγ be a weak solution to Lu = f then U is a strong solution in the sense of Definition
2.12.

Note that the assumptions of Theorem 2.4 on A−1
1 A2 combined with the fact that the coefficients A1 and

A2 do not depend on the tangential variables (t, x′) are made in order to apply the previous theorem to the
matrix A := A−1

1 A2.
With this result in hand then we can easily conclude the proof of Theorem 2.4. Indeed let a triplet

U = (u, u1, u2) ∈ Sγ be a weak solution of (20) given by Proposition 2.3 in particular it is a weak solution
to L(∂)u = f in the sense of Definition 2.10. Then by Theorem 2.5, U is a strong solution to L(∂)u = f
that is there exists a sequence (un)n∈N ⊂ D(Ω) such that for all γ > 0

lim
n→∞

∥U − (un, un|x1=0, u
n
|x2=0)∥

2
Sγ

+ ∥L(∂)un − f∥2L2
γ(Ω) = 0.

However (un)n∈N is regular so that it satisfies the a priori energy estimate of Proposition 2.1 that is to
say that for all γ ≥ γ0 we have

γ∥un∥2L2
γ(Ω)+∥un|x1=0∥

2
L2

γ(∂Ω1)
+ ∥un|x2=0∥

2
L2

γ(∂Ω2)

≤ C

(
1

γ
∥L(∂)un∥2L2

γ(Ω) + ∥B1u
n
|x1=0∥

2
L2

γ(∂Ω1)
+ ∥B2u

n
|x2=0∥

2
L2

γ(∂Ω2)

)
.

From the triangle inequality we thus have

γ∥u∥2L2
γ(Ω) + ∥u1∥2L2

γ(∂Ω1)
+∥u2∥2L2

γ(∂Ω2)

≤Cγ∥U − (un, un|x1=0, u
n
|x2=0)∥

2
Sγ

+ C

(
1

γ
∥L(∂)un∥2L2

γ(Ω) + ∥B1u
n
|x1=0∥

2
L2

γ(∂Ω1)
+ ∥B2u

n
|x2=0∥

2
L2

γ(∂Ω2)

)
.

So that passing to the limit n goes to ∞ we obtain that for all γ ≥ γ0:

γ∥u∥2L2
γ(Ω) + ∥u1∥2L2

γ(∂Ω1)
+ ∥u2∥2L2

γ(∂Ω2)
≤ C

(
1

γ
∥f∥2L2

γ(Ω) + ∥B1u
1∥2L2

γ(∂Ω1)
+ ∥B2u

2
|x2=0∥

2
L2

γ(∂Ω2)

)
.

However recall that U is a weak solution to (20) so that we have B1u
1 = g1 and B2u

2 = g2 thus the
weak solution U satisfies the energy estimate (21). The problem (20) being linear it automatically implies
the uniqueness of the weak solution. This ends up the proof of Theorem 2.4, showing consequently that
Assumption 2.1 applies to a non empty set of boundary value problems.

4Note that we simplify a little the statement of the result of [Sarason, 1962]. Indeed the result of [Sarason, 1962] holds for
generic corner domains and note only for our quarter space R2

+.
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3 The a priori energy estimate

In this section we want to show that any (regular) solution to the pure boundary value problem
L(∂)u = f in Ω,

B1u|x1=0 = g1 on ∂Ω1,

B2u|x2=0 = g2 on ∂Ω2,

(28)

satisfies the energy estimate (9).
The proof of such high order energy estimate is classically made by iteration on s. In Paragraph 3.1 we

give the initialization for s = 1. Note that we could also use Theorem 2.4 in order to initialize at s = 0
but because the step s = 1 contains all the main ingredients of the proof it is a better initialization step to
illustrate our purpose. Then the iteration process is described in Paragraph 3.2. The three main ides of the
proof are the followings:

1. We estimate the radial derivatives (r∂r)
ku, for all k ∈ J0, sK. This is made using Assumption 2.1.

2. We use the equation in polar coordinates to obtain explicit formulas for the (r∂r)
k−l∂lθu for k ∈ J0, sK

and l ∈ J0, kK essentially in terms of the radial derivatives. This uses Assumption 2.2.

3. To conclude we then use explicit formulas to recover the control of the anisotropic weighted derivatives
xα+β−p
1 xp2∂

α
1 ∂

β
2 for α+ β ∈ J0, sK and p ∈ J0, α+ βK in terms of the mixed derivatives (r∂r)

k−l∂lθu.

3.1 The case s = 1

In this paragraph we give the proof of Theorem for s = 1 in order to initialize the iterative process. We thus
consider u ∈ H 1

γ (Ω) and we shall estimate

∥u∥2H1,1(Ω) + ∥ru∥2H1,0(Ω) +

2∑
p=1

∥u|xp=0∥2H1,1(∂Ωp)
+ ∥x3−pu|xp=0∥2H1,0(∂Ωp)

,

which by definition of the Sobolev spaces H1,p(X) amounts to estimate

∑
α+β=1

1∑
k=0

∥xk1x1−k
2 ∂α1 ∂

β
2 u∥2L2

γ(Ω)+
∑
|δ|≤1

∥∂δu∥2L2
γ(Ω) +

∑
|δ|≤1

∥∂δru∥2L2
γ(Ω) (29)

+

2∑
p=1

∥x3−p∂3−pu∥2L2
γ(∂Ωp)

+
∑
|δ|≤1

∥∂δu∥2L2
γ(∂Ωp)

+
∑
|δ|≤1

∥∂δx3−pu∥2L2
γ(∂Ωp)

,

where we recall that for δ = (δ0, δ3, ..., δd) ∈ N1+d−2, ∂δ := ∂δ0t ∂
δ3
3 · · · ∂δdd .

Firstly let j ∈ {t} ∪ J3, dK := T , T being the set of tangential indices. In order to simplify the notations
let At := Id×d. Then clearly ∂ju solves the boundary value problem5

L(∂)∂ju = ∂jL(∂)u in Ω,

B1∂ju|x1=0 = ∂jB1u|x1=0 on ∂Ω1,

B2∂ju|x2=0 = ∂jB2u|x2=0 on ∂Ω2,

so that from Assumption 2.1 we obtain the following energy estimate for tangential derivatives: for all j ∈ T

γ∥∂ju∥2L2
γ(Ω)+∥∂ju|x1=0∥2L2

γ(∂Ω1)
+ ∥∂ju|x2=0∥2L2

γ(∂Ω2)
(30)

≤ C

(
1

γ
∥∂jL(∂)u∥2L2

γ(Ω) + ∥∂jB1u|x1=0∥2L2
γ(∂Ω1)

+ ∥∂jB2u|x2=0∥2L2
γ(∂Ω2)

)
,

5Note that we use in a non trivial way the fact that A1 and A2 do not depend on (t, x′)
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This equation gives the estimations for the second and the fifth terms in (29). So it remains to estimate the
terms x1∂1u, x2∂1u, x1∂2u and x2∂2u appearing in the first and the third terms and also the r∂ju and their
traces in order to conclude.

The first estimates are the most interesting ones. They are done in two steps, firstly we use the equation
in cartesian coordinates to obtain an estimate on the radial derivative x1∂1u+x2∂2u = r∂ru and then we use
the formulation of the equation in polar coordinates to estimate the polar derivative ∂θu = −x2∂1u+x1∂2u.

Finally some simple and explicit computations then permit to express each term x1∂1u, x2∂1u, x1∂2u
and x2∂2u in terms of r∂ru and ∂θu in order to conclude.

We apply r∂r to the evolution equation of (28) and we use the commutator relations

r∂r∂1 = ∂1r∂r − ∂1 and r∂r∂2 = ∂2r∂r − ∂2,

to obtain that r∂ru satisfies the problem
L(∂)r∂ru = r∂rL(∂)u+ A1∂1u+A2∂2u︸ ︷︷ ︸

=L(∂)u−
∑

j∈T Aj∂ju

in Ω,

B1(r∂ru)|x1=0 = B1x2∂2u|x1=0 = x2∂2B1u|x1=0 on ∂Ω1,

B2(r∂ru)|x2=0 = B1x1∂1u|x2=0 = x1∂1B2u|x2=0 on ∂Ω2,

where we used the classical trick consisting in expressing the normal derivative in terms of the equation
L(∂)u = A1∂1u + A2∂2u +

∑
j∈T Aj∂ju already used in characteristics boundary value problems in the

half-space (see [Rauch, 1985])
So that from Assumption 2.1 combined with (30) we obtain the estimate

γ∥r∂ru∥2L2
γ(Ω)+∥x2∂2u|x1=0∥2L2

γ(∂Ω1)
+ ∥x1∂1u|x2=0∥2L2

γ(∂Ω2)
(31)

≤C
(
1

γ
∥r∂rL(∂)u∥2L2

γ(Ω) +
1

γ
∥L(∂)u∥2L2

γ(Ω) + ∥x2∂2B1u|x1=0∥L2
γ(∂Ω1) + ∥x1∂1B1u|x2=0∥2L2

γ(∂Ω2)

)
+
C

γ

∑
j∈T

∥∂ju∥2L2
γ(Ω)

≤C
( 1
γ
∥r∂rL(∂)u∥2L2

γ(Ω) +
1

γ
∥L(∂)u∥2L2

γ(Ω) +
1

γ3

∑
j∈T

∥∂jL(∂)u∥2L2
γ(Ω)

+

2∑
k=1

∥x3−k∂3−kBku|xk=0∥L2
γ(∂Ωk) +

1

γ2

∑
j∈T

∥∂jBku|xk=0∥2L2
γ(∂Ωk)

)
.

We complete the estimates for the terms in cartesian coordinates by estimating r∂ju for j ∈ T . We
apply ∂j to (28) and multiply by r to obtain that r∂ju satisfies

L(∂)r∂ju = r∂jL(∂)u+ (∂1r)A1∂ju+ (∂2r)A2∂ju in Ω,

B1(r∂ju)|x1=0 = x2∂jB1u|x1=0 on ∂Ω1,

B2(r∂ju)|x2=0 = x1∂jB2u|x2=0 on ∂Ω2,

using the fact that ∥∂1r∥L∞(Ω), ∥∂2r∥L∞(Ω) ≤ 1 we can apply Assumption 2.1 to derive the estimate

γ∥r∂ju∥2L2
γ(Ω)+∥x2∂ju|x1=0∥2L2

γ(∂Ω1)
+ ∥x1∂ju|x2=0∥2L2

γ(∂Ω2)
(32)

≤C
(
1

γ
∥r∂jL(∂)u∥2L2

γ(Ω) + ∥x2∂jB1u|x1=0∥L2
γ(∂Ω1) + ∥x1∂jB2u|x2=0∥2L2

γ(∂Ω2)

)
+
C

γ
∥∂ju∥2L2

γ(Ω)

≤C
( 1
γ
∥r∂jL(∂)u∥2L2

γ(Ω) +
1

γ3
∥∂jL(∂)u∥2L2

γ(Ω)

+

2∑
k=1

∥x3−k∂jBku|xk=0∥L2
γ(∂Ωk) +

1

γ2
∥∂jBku|xk=0∥2L2

γ(∂Ωk)

)
.
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This gives the estimates for the third and the sixth terms in (29).

We now turn to the estimate on ∂θu. In polar coordinates let ũ(r, θ) := u(r cos θ, r sin θ). Then ũ solves
the boundary value problem (28)

A (θ)∂θũ+ M (θ)r∂rũ+ r
∑

j∈T Aj∂j ũ = rL̃(∂)u for (t, r, θ, x′) ∈ R× R+ ×
[
0, π2

]
× Rd−2,

B1ũ|θ=π
2
= B1u|x1=0, for (t, r, x′) ∈ R× R+ × Rd−2,

B2ũ|θ=0 = B2u|x2=0, for (t, r, x′) ∈ R× R+ × Rd−2,

(33)

where the matrices A (θ) := cos θA2 − sin θA1 and M (θ) := cos θA1 + sin θA2. We now use the Assumption
on the spectrum of A−1

2 A1 in order to invert the matrix A (θ) in the evolution equation of (33).

Lemma 3.1 Under Assumption 2.2 the matrix A (θ) is uniformly invertible. That is for all θ ∈
[
0, π2

]
,

A (θ) is invertible that is there exists C > 0 such that

∥A −1∥L∞([0,π2 ])
≤ C,

where C does not depend on θ.
As a consequence because A ∈ (C∞ ∩ L∞)(

[
0, π2

]
;MN×N (R)) we also have that for all n ≥ 0

∥∂nθ A −1∥L∞([0,π2 ])
≤ Cn.

Proof : The matrix A is clearly continuous with respect to θ and we can remark that at the boundaries
A (π/2) = −A1 and A (0) = A2 are invertible. For θ ∈

]
0, π2

[
then we can write

A (θ) = cos(θ)A1

(
A−1

1 A2 − tan(θ)
)
,

so that detA (θ) = 0 is equivalent to say that tan(θ) is an eigenvalue of A−1
1 A2 which is impossible because

of Assumption 2.2 on the spectrum of A−1
1 A2.

The second statement of the lemma is then shown inductively using the explicit formula for the derivative
∂nθ A −1 in terms of the ∂mθ A ±1 with m < n.

□

So that from the triangle inequality we obtain the estimate:

∥∂θu∥L2
γ(Ω) = ∥∂θũ∥L2

γ(Ω̃,r dr) ≤ C∥A −1∥L∞([0,π2 ])

(
∥M ∥L∞([0,π2 ])

∥r∂rũ∥L2
γ(Ω̃,r dr)

+ ∥rL̃(∂)u∥L2
γ(Ω̃,r dr) +

∑
j∈T

∥r∂j ũ∥L2
γ(Ω̃,r dr)

)
,

where Ω̃ stands for the quarter space in polar coordinates. So that

∥∂θu∥L2
γ(Ω) ≤ C

(
∥r∂ru∥L2

γ(Ω) + ∥rL(∂)u∥L2
γ(Ω) +

∑
j∈T

∥r∂ju∥L2
γ(Ω)

)
.

Consequently ∥∂θu∥L2
γ(Ω) can be estimated by the right hand-side of (31) and (32).

To conclude we observe that{
cos θ∂1u+ sin θ∂2u = ∂rũ

−r sin θ∂1u+ r cos θ∂2u = ∂θũ
⇔

{
r∂2u = r sin θ∂rũ+ cos θ∂θũ,

r∂1u = r cos θ∂rũ− sin θ∂θũ.
(34)

Multiplying the second line of (34) by cos θ and sin θ gives

x1∂1u = cos2 θr∂rũ− cos θ sin θ∂θũ and x2∂1u = sin θ cos θr∂rũ− sin2 θ∂θũ,
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so that for k ∈ J1, 2K

∥xk∂1u∥2L2
γ(Ω) ≤ ∥r∂ru∥2L2

γ(Ω) + ∥∂θu∥2L2
γ(Ω) (35)

≤ C

(
∥rL(∂)u∥2L2

γ(Ω) +
1

γ2

∑
j∈T

∥∂jrL(∂)u∥2L2
γ(Ω)

+
1

γ2

[
∥L(∂)u∥2L2

γ(Ω) + ∥r∂rL(∂)u∥2L2
γ(Ω) +

1

γ2

∑
j∈T

∥∂jL(∂)u∥2L2
γ(Ω)

]

+
1

γ

2∑
k=1

∥x3−k∂3−kBku|xk=0∥2L2
γ(∂Ωk)

+
∑
j∈T

∥x3−k∂jBku|xk=0∥2L2
γ(∂Ωk)

+
1

γ2
∥∂jBku|xk=0∥2L2

γ(∂Ωk)

)
.

Proceeding similarly for the first line of (34) gives the desired bounds on x1∂2u and x2∂2u. From now on
let us fix γ ≥ 1 in order to simplify the expression of the right hand side of (35). Combining (30), (32) and
(35) we obtain the desired energy estimate:

∥u∥2H 1
γ (Ω)+∥u|x1=0∥2H 1

γ (∂Ω1)
+ ∥u|x2=0∥2H 1

γ (∂Ω2)

≤ C
(
∥L(∂)u∥2H 1

γ (Ω) + ∥B1u|x1=0∥2H 1
γ (∂Ω1)

+ ∥B2u|x2=0∥2H 1
γ (∂Ω2)

)
,

as desired. This ends up the initialization.

3.2 The case s > 1

In order to show the result for s > 1 we need to introduce the following Sobolev type space: for X ⊂ Ω

H̃s,p
γ (X) :=

{
u ∈ D′(X) \ (r∂r)α∂βθ ∂

γu ∈ L2
γ(Ω) for α, β ∈ N, δ ∈ Nd−1, α+ β + |δ| ≤ s and α+ β ≤ p

}
and

H̃s,p,♮
γ (X) :=

{
u ∈ D′(X) \ (r∂r)α∂δu ∈ L2

γ(Ω) for α ∈ N, δ ∈ Nd−1, α ≤ p and α+ |δ| ≤ s
}
.

The space H̃s,p
γ (resp. H̃s,p,♮

γ ) has full regularity s and contains at most p derivatives with respect to r∂r
and ∂θ (resp. r∂r only).

We introduce the following norm on H̃s,p
γ (X); for u ∈ H̃s,p

γ (X)

∥u∥2
H̃s,p

γ (X)
:=

∑
α+β≤p,α+β+|δ|≤s

∥(r∂r)α∂βθ ∂
δu∥2L2

γ(X),

and we define similarly a norm on H̃s,p,♮
γ (X) for u ∈ H̃s,p,♮

γ (X)

∥u∥2
H̃s,p,♮

γ (X)
:=

∑
α≤p,α+|δ|≤s

∥(r∂r)α∂δu∥2L2
γ(X).

The proof essentially follows the one made for the initialization and is made in four steps:

1. We estimate the radial derivatives (r∂r)
α, 0 ≤ α ≤ s and the boundary terms in the initialization of

the proof of Lemma 3.2.

2. Then we use iteratively such estimates to control the mixed derivatives (r∂r)
α−k∂kθ , for 0 ≤ k ≤ α.

This gives the auxiliary estimate of Proposition 3.1.

3. We show that the right hand side of (36) can be bounded by the H s
γ -norm of the sources (see (51)).

4. Finally we show that the interior term in the left hand side of (36) (namely the term involving the
mixed derivatives (r∂r)

α−k∂kθ can be bounded by above by the H s
γ -norm of the solution (see equation

(56)).
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We first show the following estimate in the spaces H̃s,p
γ (X) and H̃s,♮

γ (X).

Proposition 3.1 For all s ∈ N there exists C := Cs > 0 such that the following estimate holds

s∑
ℓ=0

∥rℓu∥2
H̃s,s−ℓ

γ (Ω)
+

s∑
ℓ=0

∥xℓ2u|x1=0∥2H̃s,s−ℓ,♮
γ (∂Ω1)

+

s∑
ℓ=0

∥xℓ1u|x2=0∥2H̃s,s−ℓ,♮
γ (∂Ω2)

(36)

≤ C

(
∥L(∂)u∥H̃s,s,♮

γ (Ω) +

s∑
ℓ=1

∥rℓL(∂)u∥2
H̃s,s−ℓ

γ (Ω)

+

s∑
ℓ=0

∥xℓ2B1u|x1=0∥2H̃s,s−ℓ,♮
γ (∂Ω1)

+

s∑
ℓ=0

∥xℓ1B2u|x2=0∥2H̃s,s−ℓ,♮
γ (∂Ω2)

)
.

Proof of Proposition 3.1 We proceed by iteration. Because of the definitions of H̃1,0 and H̃1,0,♮. The
case s = 1 has been considered in Paragraph 3.1.

Let s ∈ N be such that we have the estimate

s∑
ℓ=0

∥rℓu∥2
H̃s,s−ℓ

γ (Ω)
+

s∑
ℓ=0

∥xℓ2u|x1=0∥2H̃s,s−ℓ,♮
γ (∂Ω1)

+
s∑

ℓ=0

∥xℓ1u|x2=0∥2H̃s,s−ℓ,♮
γ (∂Ω2)

(37)

≤ C

(
∥L(∂)u∥H̃s,s,♮

γ (Ω) +

s∑
ℓ=1

∥rℓL(∂)u∥2
H̃s,s−ℓ

γ (Ω)

+

s∑
ℓ=0

∥xℓ2B1u|x1=0∥2H̃s,s−ℓ,♮
γ (∂Ω1)

+

s∑
ℓ=0

∥xℓ1B2u|x2=0∥2H̃s,s−ℓ,♮
γ (∂Ω2)

)
,

we want to show the analogous result for s = s+ 1.
We have

s+1∑
ℓ=0

∥rℓu∥2
H̃s+1,s+1−ℓ

γ (Ω)
=

s∑
ℓ=0

∥rℓu∥2
H̃s+1,s−ℓ

γ (Ω)
+

s+1∑
ℓ=0

∑
|δ|≤ℓ

s−ℓ+1∑
k=0

∥(r∂r)s+1−k−ℓ∂kθ ∂
δrℓu∥2L2

γ(Ω). (38)

Note that the second sum in the right hand side of (38) can also be labelled by k ∈ J0, s + 1K and ℓ ∈
J0, s+ 1− kK.

To deal with the first term we write

s∑
ℓ=0

∥rℓu∥2
H̃s+1,s−ℓ

γ (Ω)
=

s∑
ℓ=0

∑
α+β≤s−ℓ

∑
|δ|=s+1−ℓ−(α+β)

∥(r∂r)α∂βθ ∂
δrℓu∥2L2

γ(Ω) +

s∑
ℓ=0

∥rℓu∥2
H̃s,s−ℓ

γ (Ω)

≤
( s∑

ℓ=0

∑
j∈T

∑
α+β≤s−ℓ

∑
|δ′|=s−ℓ−(α+β)

∥(r∂r)α∂βθ ∂
δ′∂jr

ℓu∥2L2
γ(Ω) +

s∑
ℓ=0

∥rℓu∥2
H̃s,s−ℓ

γ (Ω)

)

≤ C
( s∑

ℓ=0

∑
j∈T

∥rℓ∂ju∥2H̃s,s−ℓ
γ (Ω)

+ ∥L(∂)u∥2
H̃s,s,♮

γ (Ω)
+

s∑
ℓ=1

∥rℓL(∂)u∥2
H̃s,s−ℓ

γ (Ω)

+

s∑
ℓ=0

∥xℓ2B1u|x1=0∥2H̃s,s−ℓ,♮
γ (∂Ω1)

+

s∑
ℓ=0

∥xℓ1B2u|x2=0∥2H̃s,s−ℓ,♮
γ (∂Ω2)

)
,
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from the estimate (37). To conclude we then use (37) with u = ∂ju so that

s∑
ℓ=0

∑
j∈T

∥rℓ∂ju∥2H̃s,s−ℓ
γ (Ω)

≤ C
(
∥L(∂)∂ju∥2H̃s,s,♮

γ (Ω)
+

s∑
ℓ=1

∥rℓL(∂)∂ju∥2H̃s,s−ℓ
γ (Ω)

+

s∑
ℓ=0

∥xℓ2B1∂ju|x1=0∥2H̃s,s−ℓ,♮
γ (∂Ω1)

+

s∑
ℓ=0

∥xℓ1B2∂ju|x2=0∥2H̃s,s−ℓ,♮
γ (∂Ω2)

)
≤ C

(
∥L(∂)u∥2

H̃s+1,s,♮
γ (Ω)

+

s∑
ℓ=1

∥rℓL(∂)u∥2
H̃s+1,s−ℓ

γ (Ω)

+

s∑
ℓ=0

∥xℓ2B1u|x1=0∥2H̃s+1,s−ℓ,♮
γ (∂Ω1)

+

s∑
ℓ=0

∥xℓ1B2u|x2=0∥2H̃s+1,s−ℓ,♮
γ (∂Ω2)

)
where we used the fact that

[
rℓL(∂), ∂j

]
= 0 for j ∈ T . So that we have

s∑
ℓ=0

∥rℓu∥2
H̃s+1,s−ℓ

γ (Ω)
≤ C

(
∥L(∂)u∥2

H̃s+1,s,♮
γ (Ω)

+

s∑
ℓ=1

∥rℓL(∂)u∥2
H̃s+1,s−ℓ

γ (Ω)
(39)

+

s∑
ℓ=0

∥xℓ2B1u|x1=0∥2H̃s+1,s−ℓ,♮
γ (∂Ω1)

+

s∑
ℓ=0

∥xℓ1B2u|x2=0∥2H̃s+1,s−ℓ,♮
γ (∂Ω2)

)
.

To deal with the second term of the right hand side of (38) we will use the following lemma

Lemma 3.2 Let s ∈ N then for all k ∈ J0, s+ 1K, for all ℓ ∈ J0, s+ 1− kK we have

∥(r∂r)s+1−k−ℓ∂kθ ∂
δrℓu∥2L2

γ(Ω) (40)

≤ C
(
∥L(∂)u∥2

H̃s+1,s+1,♮
γ (Ω)

+

s+1∑
p=1

∥rpL(∂)u∥H̃s+1,s+1−p(Ω)

+

s+1∑
p=0

∥xp2B1u|x1=0∥H̃s+1,s+1−p,♮(∂Ω1)
+

s+1∑
p=0

∥xp1B2u|x2=0∥H̃s+1,s+1−p,♮(∂Ω2)

)
.

For all ℓ ∈ J0, s+ 1K we also have the boundary estimate

∥(x2∂2)s+1−ℓ∂δxℓ2u|x1=0∥2L2
γ(∂Ω1)

+ ∥(x1∂1)s+1−ℓ∂δxℓ1u|x2=0∥2L2
γ(∂Ω2)

(41)

≤ C
(
∥L(∂)u∥2

H̃s+1,s+1,♮
γ (Ω)

+

s+1∑
p=1

∥rpL(∂)u∥H̃s+1,s+1−p(Ω)

+

s+1∑
p=0

∥xp2B1u|x1=0∥H̃s+1,s+1−p,♮(∂Ω1)
+

s+1∑
p=0

∥xp1B2u|x2=0∥H̃s+1,s+1−p,♮(∂Ω2)

)
With Lemma 3.2 in hand (36) at the step s+1 follows from (38). So that it concludes the proof of Proposition
3.1.

□

We now turn to the proof of Lemma 3.2.

Proof of Lemma 3.2 To show (40) we proceed by finite iteration on k. The proof of (41) comes from the
initialization.
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For k = 0 we have to show that for all ℓ ∈ J0, s+ 1K and ∀ |δ| ≤ ℓ we have

∥(r∂r)s+1−ℓ∂δrℓu∥2L2
γ(Ω) (42)

≤ C
(
∥L(∂)u∥2

H̃s+1,s+1,♮
γ (Ω)

+

s+1∑
p=1

∥rpL(∂)u∥2
H̃s+1,s+1−p(Ω)

+

s+1∑
p=0

∥xp2B1u|x1=0∥2H̃s+1,s+1−p,♮(∂Ω1)
+

s+1∑
p=0

∥xp1B2u|x2=0∥2H̃s+1,s+1−p,♮(∂Ω2)

)
.

For s, ℓ, δ fixed we have

L(∂)(r∂r)
s+1−ℓ∂δrℓu =

s+1−ℓ∑
p=0

(
s+ 1− ℓ

p

)
(r∂r)

pL(∂)∂δrℓu

−
s−ℓ∑
p=0

(
s+ 1− ℓ

p

)
(r∂r)

p
∑
j∈T

Aj∂j∂
δu

:=F1,s,ℓ + F2,s,ℓ

Moreover from the binomial formula we have the boundary values

[
(r∂r)

s+1−ℓrℓu
]
|x1=0

=

[
s+1−ℓ∑
p=0

(
s+ 1− ℓ

p

)
(x1∂1)

p(x2∂2)
s+1−ℓ−prℓu

]
|x1=0

= (x2∂2)
s+1−ℓxℓ2u|x1=0,

and [
(r∂r)

s+1−ℓrℓu
]
|x2=0

= (x1∂1)
s+1−ℓxℓ1u|x2=0,

so that (r∂r)
s+1−ℓ∂δrℓu satisfies the boundary value problem

L(∂)(r∂r)
s+1−ℓ∂δrℓu = F1,s,ℓ + F2,s,ℓ in Ω,

B1((r∂r)
s+1−ℓ∂δrℓu)|x1=0 = (x2∂2)

s+1−ℓxℓ2∂
δB1u|x1=0 on ∂Ω1,

B2((r∂r)
s+1−ℓ∂δrℓu)|x2=0 = (x1∂1)

s+1−ℓxℓ1∂
δB2u|x2=0 on ∂Ω2,

(43)

so that from Assumption 2.1 we have

γ∥(r∂r)s+1−ℓ∂δrℓu∥2L2
γ(Ω) + ∥(x2∂2)s+1−ℓ∂δxℓ2u|x1=0∥2L2

γ(∂Ω1)
+ ∥(x1∂1)s+1−ℓ∂δxℓ1u|x2=0∥2L2

γ(∂Ω2)
(44)

≤ C
( 1
γ
∥F1,s,ℓ∥2L2

γ(Ω) +
1

γ
∥F2,s,ℓ∥2L2

γ(Ω)

+ ∥(x2∂2)s+1−ℓxℓ2∂
δB1u|x1=0∥2L2

γ(∂Ω1)
+ ∥(x1∂1)s+1−ℓxℓ1∂

δB2u|x2=0∥2L2
γ(∂Ω2)

)
.

To conclude we then use the following bounds

∥F2,s,ℓ∥2L2
γ(Ω) ≤∥Crℓu∥2

H̃s+1,s−ℓ,♮
γ (Ω)

(45)

≤C
(
∥L(∂)u∥2

H̃s+1,s,♮
γ (Ω)

+

s∑
ℓ=1

∥rℓL(∂)u∥2
H̃s+1,s−ℓ

γ (Ω)

+

s∑
ℓ=0

∥xℓ2B1u|x1=0∥2H̃s+1,s−ℓ,♮
γ (∂Ω1)

+

s∑
ℓ=0

∥xℓ1B2u|x2=0∥2H̃s+1,s−ℓ,♮
γ (∂Ω2)

)
which holds from (39).
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For dealing with the term F1,s,ℓ we first remark that for ℓ = 0 we have

∥F1,s,0∥2L2
γ(Ω) ≤ C

s+1∑
p=0

∥(r∂r)p∂δL(∂)u∥2L2
γ(Ω) ≤ C∥L(∂)u∥2

Hs+1,s+1,♮
γ (Ω)

.

For ℓ ≥ 1 we decompose

L(∂)rℓu = (∂1r
ℓ)A1u+ (∂2r

ℓ)A2u+ rℓL(∂)u

= ℓ [(∂1r)A1 + (∂2r)A2] r
ℓ−1u+ rℓL(∂)u.

So that

∥F1,s,ℓ∥2L2
γ(Ω) ≤

s+1−ℓ∑
p=0

∥(r∂r)prℓ−1∂δu∥2L2
γ(Ω) +

s+1−ℓ∑
p=0

∥(r∂r)prℓ∂δL(∂)u∥2L2
γ(Ω)

≤∥rℓ−1u∥2
H̃

s+1,s−(ℓ−1),♮
γ (Ω)

+ ∥rℓL(∂)u∥2
H̃s+1,s+1−ℓ,♮

γ (Ω)

≤ C
(
∥L(∂)u∥2

H̃s+1,s+1,♮
γ (Ω)

+
s+1∑
ℓ=1

∥rℓL(∂)u∥2
H̃s+1,s+1−ℓ

γ (Ω)

+

s∑
ℓ=0

∥xℓ2B1u|x1=0∥2H̃s+1,s−ℓ,♮
γ (∂Ω1)

+

s∑
ℓ=0

∥xℓ1B2u|x2=0∥2H̃s+1,s−ℓ,♮
γ (∂Ω2)

)
where we used (39) for ℓ′ = ℓ− 1. Consequently for all ℓ ∈ J0, s+ 1K we have

∥F1,s,ℓ∥2L2
γ(Ω) ≤ C

(
∥L(∂)u∥2

H̃s+1,s+1,♮
γ (Ω)

+

s+1∑
ℓ=1

∥rℓL(∂)u∥2
H̃s+1,s+1−ℓ

γ (Ω)
(46)

+

s∑
ℓ=0

∥xℓ2B1u|x1=0∥2H̃s+1,s−ℓ,♮
γ (∂Ω1)

+

s∑
ℓ=0

∥xℓ1B2u|x2=0∥2H̃s+1,s−ℓ,♮
γ (∂Ω2)

)
.

As a consequence, (42) (the initalization of (40) at k = 0) follows from (44)-(45) and (46). This also gives
(41). This concludes the initialization part of Lemma 3.2.

We assume that for fixed k, the estimate (40) holds for all ℓ ∈ J0, s + 1 − kK. We want to estimate the
∥(r∂r)s−k−ℓ∂k+1

θ ∂δrℓu∥2L2
γ(Ω) for ℓ ∈ J0, sK. From the equation in polar coordinates (see (33)) we express

∂θũ = A −1(θ)

rL̃(∂)u− M (θ)r∂rũ−
∑
j∈T

Aj∂j∂j ũ

 ,
so that

∥(r∂r)s−k−ℓ∂k+1
θ ∂δrℓu∥2L2

γ(Ω) ≤∥(r∂r)s−k−ℓ∂δ∂kθA −1(θ)rL̃(∂)rℓu∥2L2
γ(Ω)︸ ︷︷ ︸

:=I1

(47)

+ ∥(r∂r)s+1−k−ℓ∂δ∂kθA −1(θ)M (θ)rℓu∥2L2
γ(Ω)︸ ︷︷ ︸

:=I2

+
∑
j∈T

∥(r∂r)s+1−k−ℓ∂δ∂kθA −1(θ)Ajr
ℓ∂ju∥2L2

γ(Ω)︸ ︷︷ ︸
:=I3

,

and we estimate each of the Ij separately.
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For I1 we first decompose

rL(∂)rℓu = [(∂1r)A1 + (∂1r)A2] r
ℓu+ rℓ+1L(∂)u,

and then we apply Leibniz formula on the products A −1 × u and A −1 × L(∂)u so that

∂kθA −1(θ)rL(∂)rℓu =

k∑
p=0

(
k
p

)
A −(k−p)(θ) [(∂1r)A1 + (∂1r)A2] r

ℓ∂pθu+

k∑
p=0

(
k
p

)
A −(k−p)(θ)∂pθr

ℓ+1L(∂)u.

It follows using the uniform bound on A −(p) (see Lemma 3.1) that

I1 ≤
( k∑

p=0

∥(r∂r)s−k−ℓ∂pθ∂
δrℓu∥2L2

γ(Ω) +

k∑
p=0

∥(r∂r)s+1−k−(ℓ+1)∂pθ∂
δrℓ+1L(∂)u∥2

)
(48)

≤C
(
∥rℓu∥2

H̃s,s−ℓ
γ (Ω)

+ ∥rℓL(∂)u∥2
H̃s+1,s+1−ℓ

γ (Ω)

)
and we use (37) to estimate the first term in the right hand side.

For I2 we use Leibniz formula on the product (A −1M (θ))× u and we bound each of the derivatives of
A −1M to obtain

I2 ≤C
k∑

p=0

∥(r∂r)s+1−k−ℓ∂δ∂pθr
ℓu∥2L2

γ(Ω) (49)

≤C
( k−1∑

p=0

∥(r∂r)s+1−k−ℓ∂δ∂pθr
ℓu∥2L2

γ(Ω) + ∥(r∂r)s+1−k−ℓ∂δ∂kθ r
ℓu∥2L2

γ(Ω)

)
,

≤C
(
∥rℓu∥H̃s,s−ℓ

γ (Ω) + ∥L(∂)u∥2
H̃s+1,s+1,♮

γ (Ω)
+

s+1∑
p=1

∥rpL(∂)u∥2
H̃s+1,s+1−p(Ω)

+

s+1∑
p=0

∥xp2B1u|x1=0∥2H̃s+1,s+1−p,♮(∂Ω1)
+

s+1∑
p=0

∥xp1B2u|x2=0∥2H̃s+1,s+1−p,♮(∂Ω2)

)
because (40) holds at the order k. And once again we conclude by estimating the first term from (37).

Finally to deal with the term I3 we use once again Leibniz formula and we majorate the derivatives of
A −1 to recover that

I3 ≤ C

k∑
p=0

∥(r∂)s−k+ℓ∂δ∂j∂
p
θr

ℓu∥2L2
γ(Ω) ≤ C∥rℓu∥2

H̃s+1,s−ℓ
γ (Ω)

. (50)

This time we used (39) to conclude.
We use (48), (49) and (50) in (47). This shows that the estimate (40) holds at the order k + 1. This

concludes the iterative process in the proof of Lemma 3.2.

□

This concludes the proof of the first two steps in the proof of the a priori energy estimate. It remains to
show the first one it is made in Proposition 3.2 and the fourth one in Proposition 3.3

Proposition 3.2 For all s ∈ N∗, there exists C := Cs > 0 such that

∥L(∂)u∥H̃s,s,♮
γ (Ω) +

s∑
l=1

∥rlL(∂)u∥2
H̃s,s−l

γ (Ω)
≤ C∥L(∂)u∥H s

γ (Ω). (51)

Proof of Proposition 3.2 We evaluate each term in the left hand side of (51).
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� For the first term, by definition we have

∥L(∂)u∥2
H̃s,s,♮

γ (Ω)
=

s∑
m=0

∑
|δ|≤s−m

∥(r∂r)m∂δL(∂)u∥2L2
γ(Ω).

The operator (r∂r)
m can be made precise in terms of ∂1 and ∂2 More precisely we have the following

formula; for a function f depending on x1 and x2

(r∂r)
mf =

m∑
p=0

p∑
α=1

m−p∑
β=1

(
m
p

)
λpαλ

m−p
β xα1x

β
2∂

α
1 ∂

β
2 f, (52)

where the value of the scalars λ·· is of little interest for our discussion (we refer to (90) for a precise
definition). So that

∥L(∂)u∥2
H̃s,s,♮

γ (Ω)
≤Cs

s∑
m=0

∑
|δ|≤s−m

p∑
α=1

m−p∑
β=1

∥xα1x
β
2∂

α
1 ∂

β
2 ∂

δL(∂)u∥2L2
γ(Ω).

≤Cs

s∑
m=0

∑
|δ|≤s−m

∑
α+β≤m

α+β∑
k=0

∥xk1x
α+β−k
2 ∂α1 ∂

β
2 ∂

δL(∂)u∥2L2
γ(Ω)

≤Cs∥L(∂)u∥H s
γ (Ω)

� For fixed l ∈ J1, sK we have

∥rlL(∂)u∥2
H̃s,s−l

γ (Ω)
=

∑
n+m≤s−l

∑
|δ|≤s−(n+m)

∥(r∂r)m∂sθ∂δrlL(∂)u∥2L2
γ(Ω). (53)

It is not so clear if we have a nice formula for ∂nθ f but we have the following lemma

Lemma 3.3 For all n ∈ N there exist (Pn
α,β)0≤α,β≤n which is sum of monomial of order α + β such

that we have the equality

∂nθ f =

n+1∑
α=0

n−α∑
β=0

Pn
α,β∂

α
1 ∂

β
2 f. (54)

Proof of Lemma 3.3 We show this lemma by iteration. Clearly (54) holds for n = 0. Assume that
(54) holds at some order n. Then

∂n+1
θ f =

n∑
α=0

n−α∑
β=0

(
−x2∂1Pα,β + x1∂2P

n
α,β

)
∂α1 ∂

β
2 f

−
n+1∑
α=1

n+1−α∑
β=0

x2P
n
α−1,β∂

α
1 ∂

β
2 f +

n∑
α=0

n+1−α∑
β=1

x1P
n
α,β−1∂

α
1 ∂

β
2 f.

Define

Qn
α,β :=


−x2∂1Pn

α,β + x1∂2P
n
α,β if 0 ≤ α ≤ n , 0 ≤ β ≤ n− α,

0 if α = n+ 1 , β = 0,

0 if α = 0 , β = n+ 1,

Rn
α,β :=

{
−x2Pn

α−1,β if 1 ≤ α ≤ n+ 1 , 0 ≤ β ≤ n+ 1− α,

0 if α = 0 , 0 ≤ β ≤ n+ 1,
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and

Sn
α,β :=

{
x1P

n
α,β−1 if 0 ≤ α ≤ n , 1 ≤ β ≤ n+ 1− α,

0 if 0 ≤ α ≤ n+ 1 , β = 0,

which are all sums of monomial so that we have

∂n+1f =

n∑
α=0

n+1−α∑
β=0

(Qn
α,β +Rn

α,β + Sn
α,β)∂

α
1 ∂

β
2 .

□

We now complete the bound for the right hand side of (53) by making the right hand side more precise.
We have from Leibniz formula

∥(r∂r)m∂nθ ∂δrlL(∂)u∥2L2
γ(Ω)

= ∥
m∑

p=0

p∑
α′=0

m−p∑
β′=0

(
m
p

)
λpα′λ

m−p
β′ xα

′

1 x
β′

2 ∂
α′

1 ∂
β′

2

n∑
α=0

n−α∑
β=0

Pn
α,β∂

α
1 ∂

β
2 ∂

δrlL(∂)u∥2L2
γ(Ω)

≤ Cm

m∑
p=0

p∑
α′=0

m−p∑
β′=0

n∑
α=0

n−α∑
β=0

α′∑
γ′=0

β′∑
η′=0

∥xα
′

1 x
β′

2 (∂α
′−γ′

1 ∂β
′−η′

2 Pn
α,β)∂

α+γ′

1 ∂β+η′

2 ∂δrlL(∂)u∥2L2
γ(Ω),

(55)

and to conclude we shall justify that in the right hand side of (55) the order of derivation with respect
to ∂1 and ∂2 is bounded by m+ n and that the polynomial in front of this factor is sum of monomial
of order α+ γ′ + β + η′. Firstly because of the set of indices in the sums we have

α+ γ′β + µ′ ≤ α+ α′ + n− α+ β′ ≤ n+m,

so that the order of derivatives with respect to ∂1 and ∂2 are bounded by n+m like in the definition
of H s

γ .

Secondly we shall justify that the polynomial in factor of the derivation operator has the good degree

with respect to x1, x2. If (∂
α′−γ′

1 ∂β
′−η′

2 Pn
α,β) vanishes then the associated norm vanishes and it can be

bounded by any term appearing in the norm of H s
γ (Ω) to fix the ideas we use the trivial bound

0 = ∥xα
′

1 x
β′

2 (∂α
′−γ′

1 ∂β
′−µ′

2 Pn
α,β)∂

α+γ′

1 ∂β+η′

2 ∂δrlL(∂)u∥2L2
γ(Ω) ≤ ∥xα+γ′

1 xβ+η′

2 ∂α+γ′

1 ∂β+η′

2 ∂δrlL(∂)u∥2L2
γ(Ω).

If (∂α
′−γ′

1 ∂β
′−η′

2 Pn
α,β) ̸= 0 it is thus a sum of monomials of degree α+ β − α′ − β′ + γ′ + η′ so that the

term (∂α
′−γ′

1 ∂β
′−µ′

2 Pn
α,β) is of degree α+ γ′ + β + η′ like the derivative. Using the crude of majoration

of the cardinal to avoid the extra sums we thus have justified that

∥rlL(∂)u∥H̃s,s−l
γ (Ω) ≤ Cs∥L(∂)u∥H s

γ (Ω),

this completes the proof of Proposition 3.2.

□

Proposition 3.3 For all s ∈ N∗, there exists C := Cs > 0 such that

Is :=

s∑
ℓ=0

∑
α+β≤s−ℓ,α+β+|δ|≤s

α+β∑
k=0

∥xk1x
α+β−k
2 ∂α1 ∂

β
2 ∂

δrℓu∥ ≤
s∑

ℓ=0

∥rℓu∥2
H̃s,s−ℓ

γ (Ω)
. (56)
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Proof of Proposition 3.3 We proceed by iteration on s. The initialisation (56) for s = 1 has been estab-
lished in Paragraph 3.1 (see equation (35)).

We then assume that Is ≤
∑s

ℓ=0 ∥rℓu∥2H̃s,s−ℓ
γ (Ω)

for some s ≥ 1 and we show that the same holds for Is+1.

We decompose

Is+1 =

s∑
ℓ=0

∑
|δ|≤ℓ

∑
α+β=s+1−ℓ

α+β∑
k=0

∥xk1x
α+β−k
2 ∂α1 ∂

β
2 ∂

δrℓu∥2L2
γ(Ω)︸ ︷︷ ︸

:=Js+1

+

s∑
ℓ=0

∑
α+β≤s−ℓ,α+β+|δ|=s+1−ℓ

α+β∑
k=0

∥xk1x
α+β−k
2 ∂α1 ∂

β
2 ∂

δrℓu∥2L2
γ(Ω)︸ ︷︷ ︸

:=Ks+1

+ Is +
∑

|δ|≤s+1

∥rs+1∂δu∥2L2
γ(Ω).

So that

Is+1 ≤ Js+1 +Ks+1 +

s∑
ℓ=0

∥rℓu∥2
H̃s,s−ℓ

γ (Ω)
+ ∥rs+1u∥2

H̃s+1,0
γ (Ω)

. (57)

Relabelling the sums in Js+1 and Ks+1 we can thus write

Js+1 =

s∑
ℓ=0

∑
|δ|≤ℓ

s+1−ℓ∑
p=0

s+1−ℓ∑
k=0

∥xk1xs+1−ℓ−k
2 ∂s+1−ℓ−p

1 ∂p2∂
δrℓu∥2L2

γ(Ω)

Ks+1 =

s∑
ℓ=0

∑
α+β≤s−ℓ,α+β+|δ|=s−ℓ

∑
j∈T

α+β∑
k=0

∥xk1x
α+β−k
2 ∂α1 ∂

β
2 ∂

δrℓ∂ju∥2L2
γ(Ω)

By assumption we thus have

Ks+1 ≤
s∑

ℓ=0

∑
j∈T

∥rℓ∂ju∥2H̃s,s−ℓ
γ (Ω)

≤
s∑

ℓ=0

∥rℓu∥2
H̃s+1,s−ℓ

γ (Ω)
(58)

Let δ and ℓ be fixed we define v = vℓ,δ := rℓ∂δu the aim of the following is to express the derivatives

∂s+1−ℓ−p
1 ∂p2v appearing in Js+1 as sums of the derivatives (r∂r)

s+1−ℓ−k∂kθ v for k ∈ J0, s+ 1− ℓK.

Let N ≥ 1 be fixed, k ∈ J0, N − 1K and let v = v(x1, x2) be a given regular function, we want to isolate
the terms of higher order of differentiation in terms of ∂1 and ∂2 in (r∂r)

N−1−k∂kθ v. We thus decompose

(r∂r)
N−1−k∂kθ v =

N−1∑
p=0

αN,k
p ∂N−1−p

1 ∂p2 + pNk := LN
k + pNk , (59)

where for all k ∈ J0, N − 1K, p ∈ J0, N − 1K αN,k
p is a sum of monomials of degree N and where for all

k ∈ J0, N − 1K, pNk reads as a sum of monomial of degree α+ β times ∂α1 ∂
β
2 v with α+ β < N − 1 that is

pNk :=
∑

α+β≤N−2

α+β∑
k=0

ψα,β,kx
k
1x

α+β−k
2 ∂α1 ∂

β
2 v, (60)

where ψα,β,k ∈ R.
Indeed let ρ be a monomial of degree N with respect to x1 and x2 we thus have

(r∂r)(ρ∂
N−p
1 ∂p2v) = x1ρ︸︷︷︸

d◦=N+1

∂N+1−p
1 ∂p2v + x2ρ︸︷︷︸

d◦=N+1

∂N−p
1 ∂p+1

2 v + [x1(∂1ρ) + x2(∂2ρ)︸ ︷︷ ︸
d◦=N

]∂N−p
1 ∂p2v
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and the same holds for the operator ∂θ.
We consider the system of equations

S N :=



LN
0 = (r∂r)

N−1v − pN0 := ℓN1 ,

LN
1 = (r∂r)

N−1v − pN1 := ℓN2 ,
...

LN
N−2 = r∂r∂

N−2
θ v − pNN−2 := ℓNN−2,

LN
N−1 = ∂N−1

θ v − pNN−1 := ℓNN−1,

⇔ ANUN = LN (61)

with AN
i,j = αN,i

j , UN :=
[
∂N−1
1 v, ∂N−2

1 ∂2v, ..., ∂
N−1
2 v

]T ∈ RN and LN =
[
ℓN0 , ℓ

N
1 , ..., ℓ

N
N−1

]T ∈ RN .
The following lemma describes the solution to (61)

Lemma 3.4 For all N ≥ 2 and k ∈ J0, N − 1K there exist ψN,k
0 , ..., ψN,k

N−1 functions, C∞ with respect to θ,

such that the solution UN of ANUN = LN satisfies

∀k ∈ J0, N − 1K, rN−1UN
k =

N−1∑
p=0

ψN,k
p (θ)ℓNp ,

where we stress that the ψN,k
p do not depend on r and are bounded with respect to θ.

Proof of Lemma 3.4 We proceed by iteration on N . The initialisation has been done in Paragraph 3.1
indeed (34) gives

rU2
0 = cos θℓ20 − sin θℓ21 and rU2

1 = sin θℓ20 + cos θℓ21,

so that the ψ0,·
· are readable.

We now assume that the solution of ANUN = LN satisfies rN−1UN
k =

∑N−1
p=0 ψN,k

p (θ)ℓNp for some λN,k
p

and we want to show that the same holds for the solution of S N+1.
The aim of the following is to show that we can easily solve the system S N+1 in terms of the solution

of S N . Indeed we decompose the terms (r∂r)
N−k∂kθ like in (59). Because (r∂r)

N = (x1∂1 + x2∂2)(r∂r)
N−1

and ∂Nθ = (−x2∂1 + x1∂2)∂
N−1
θ we have

αN+1,0
p :=


x1α

N,0
0 p = 0

x1α
N,0
p + x2α

N,0
p−1 p ∈ J1, N − 1K

x2α
N,0
N p = N

and αN+1,N
p :=


−x2αN,N−1

0 p = 0

−x2αN,N−1
p + x1α

N,N−1
p−1 p ∈ J1, N − 1K

x1α
N,N−1
s p = N

and for k ∈ J1, N − 1K we have

αN+1,k
p :=


x1α

N,k
0 p = 0

x1α
N,k
p + x2α

N,k
p−1 p ∈ J1, N − 1K

x2α
N,k
N p = N

or αN+1,k
p :=


−x2αN,k−1

0 p = 0

−x2αN,k−1
p + x1α

N,k−1
p−1 p ∈ J1, N − 1K

x1α
N,k−1
N p = N

depending on that we write (r∂r)
N−k∂kθ = (r∂r)

(
(r∂r)

N−1−k∂kθ
)
that corresponds to LN

k or that we write

(r∂r)
N−k∂kθ = ∂θ

(
(r∂r)

N−1−(k−1)∂k−1
θ

)
corresponding to LN

k−1. Consequently for k ∈ J0, N − 1K we thus
have

x1L
N+1
k+1 + x2L

N+1
k =− x1x2α

N,k
0 ∂N1 v +

N−1∑
p=1

(−x1x2αN,k
p + x21α

N,k
p−1)∂

N−p
1 ∂p2v + x21α

N,k
N ∂N2 v

+ x1x2α
N,k
0 ∂N1 v +

N−1∑
p=1

(x1x2α
N,k
p + x22α

N,k
p−1)∂

N−p
1 ∂p2v + x22α

N,k
N ∂N2 v

=r2
N∑

p=0

αN,k
p ∂N−p

1 ∂p2∂2v.
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So that by substituting LN+1
k by x1L

N+1
k+1 + x2L

N+1
k we obtain

AN+1UN+1 = LN+1 ⇔

{
LN+1
0 = ℓN+1

0 ,

ANU
N

= L
N
,

where we defined U
N

= r2
[
∂N−1
1 ∂2v, ∂

N−1
1 ∂22v, ..., ∂

N
2 v
]T

= r2
[
UN+1
1 , ..., UN+1

N

]T
and L

N

k :=
[
ℓ
N

0 , ..., ℓ
N

N−1

]T
where ℓ

N

k := x1ℓ
N+1
k+1 + x2ℓ

N+1
k .

So that by assumption we have that for all k ∈ J1, NK

rN+1UN+1
k =

N−1∑
p=0

ψN,k
p (θ)ℓp =

N−1∑
p=0

ψN,k
p (θ)(x1ℓ

N+1
p+1 + x2ℓ

N+1
p ),

so that writing x1 = r cos θ and x2 = r sin θ and simplifying by r gives

rNUN+1
k =

N∑
p=0

ψN+1,k
p (θ)ℓN+1

p ,

where we defined

ψN+1,k
p :=


sin θψN,k

0 p = 0,

sin θψN,k
p + cos θψN,k

p−1 p ∈ J1, N − 1K,
cos θψN,k

N−1 p = N.

To recover the missing coordinate UN+1
0 we substitute for k ∈ J0, N − 1K, LN+1

k by x1L
N+1
k − x2L

N+1
k

and we obtain the equivalence

S N+1 ⇔

{
ANUN = LN ,

LN+1
N = ℓN+1

N ,
,

where UN := r2
[
UN
0 , U

N
1 , ..., U

N
N−1

]
and L =

[
x1ℓ

N
0 − x2ℓ

N
1 , ..., x1ℓ

N
N−1 − x2ℓ

N
N

]T
and we conclude exactly

like in the previous case.

□

We apply the result of Lemma 3.4 with N = s + 2 − ℓ ≥ 2 and to the function v := vδ,ℓ = rℓ∂δu.

We thus can write ANUN = LN with Us+2−ℓ =
[
∂s+1−ℓ
1 v, ..., ∂s+1−ℓ

2 v
]T ∈ Rs+2−ℓ and where the datum

Ls+2−ℓ =
[
ℓs+2−ℓ
0 , ..., ℓs+2−ℓ

s+1−ℓ

]T ∈ Rs+2+ℓ where we recall that by definition ℓNq := (r∂r)
N−1−q∂qθv−pNq where

.
Consequently we have that for all p ∈ J0, s+ 1− ℓK

rs+1−ℓ∂s+1−ℓ−p
1 ∂p2∂

δrℓu =

s+1−ℓ∑
q=0

ψs+1−ℓ,p
q (θ)ℓs+2−ℓ

q ,

from which we deduce that for all k ∈ J0, s+ 1− ℓK

xk1x
s+1−k
2 ∂s+1−ℓ−p

1 ∂p2∂
δrℓu =

s+1−ℓ∑
q=0

ψ̃s+1−ℓ,p
q (θ)ℓs+2−ℓ

q (62)

where ψ̃s+1−ℓ,p
q (θ) := cosk θ sins+1−k θψs+1−ℓ,p

q (θ) is bounded with respect to θ.
It follows, using in particular (60) that

∥xk1xs+1−k
2 ∂s+1−ℓ−p

1 ∂p2∂
δrℓu∥2L2

γ(Ω)

≤
s+1−ℓ∑
q=0

∥(r∂r)s+1−ℓ−q∂qθ∂
δrℓu∥2L2

γ(Ω) +

s+1−ℓ∑
q=0

∥ps+2−ℓ
q ∥2L2

γ(Ω)

≤ ∥∂δrℓu∥2
H̃s+1−ℓ,s+1−ℓ

γ (Ω)
+ Cs,ℓ

∑
α+β≤s−ℓ

α+β∑
k′=0

∥xk
′

1 x
α+β−k′

2 ∂α1 ∂
β
2 r

ℓ∂δu∥2L2
γ(Ω).
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To obtain our estimate on Js+1 we sum the above inequality with respect to k, p, ℓ and δ. We thus have

Js+1 ≤Cs

( s∑
ℓ=0

∑
|δ|≤ℓ

∥∂δrℓu∥2
H̃s+1−ℓ,s+1−ℓ

γ (Ω)
+

s∑
ℓ=0

∑
|δ|≤ℓ

∑
α+β≤s−ℓ

α+β∑
k′=0

∥xk
′

1 x
α+β−k′

2 ∂α1 ∂
β
2 r

ℓ∂δu∥2L2
γ(Ω)

)

≤Cs

( s∑
ℓ=0

∥rℓu∥2
H̃s+1,s+1−ℓ

γ (Ω)
+ Is

)
≤Cs

s∑
ℓ=0

∥rℓu∥2
H̃s+1,s+1−ℓ

γ (Ω)
. (63)

To conclude we combined (57), (58) and (63). This shows that (51) holds for s+ 1 instead of s and ends up
the proof of Proposition 3.3.

□

To end up the proof of the a priori energy estimate at the order s+ 1 we combine Propositions 3.1, 3.2 and
3.3.

□

4 Regularity of the solution

In this section we establish the regularity of the solution to initial boundary value problem (1) and to the
pure boundary value problem (2). This section thus contains the proof of the second statement of Theorem
2.1 and the ones of Theorems 2.2 and 2.3. For convenience we recall here the two problems; we will consider

L(∂)u = f for (t, x) ∈ Ω

B1u|x1=0 = g1 on (t, x2, x
′) ∈ ∂Ω1,

B2u|x2=0 = g2 on (t, x1, x
′) ∈ ∂Ω2,

(64)

that is to say the pure boundary value problem, and
L(∂)u = 0 for (t, x) ∈ Ω,

B1u|x1=0 = 0 on (t, x2, x
′) ∈ ∂Ω1,

B2u|x2=0 = 0 on (t, x1, x
′) ∈ ∂Ω2,

u|t=0 = u0 on x ∈ Γ,

(65)

the initial boundary value problem.
The existence of a regular solution to (64) comes from a slight adaptation of the duality method in-

troduced in Lax-Phillips [Lax and Phillips, 1960] while the existence for (65) comes from the application of
Lumer-Phillips theorem [Lumer and Phillips, 1961]. We refer to [Benoit, ] for examples of applications of
these methods in the simpler geometry of the half-space.

In order to apply the method based upon Lumer-Phillips theorem we should express (65) as a pure
evolution problem so that we write it under the following form{

d
dtu = Au for t > 0,

u|t=0 = u0 on t = 0,
(66)

where A is the operator defined by Au := −
∑d

j=1Aj∂ju on some domain which in particular encodes in its
definition the boundary conditions of (65) (we refer to Proposition 4.1 for a precise definition of D(A)).
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In the following we first recall for completeness the version of Lumer-Phillips that we will use in order to
show the existence of the solution to (65) that is to say the one involving the dissipativity of the operator A
combined with the one for its dual operator A∗.

Similarly the main assumption for the duality method of Lax-Phillips is to assume that the dual problem
to (64) satisfies an a priori energy estimate and then to recover from this injectivity property on the adjoint
operator the surjectivity of the primal operator giving the existence of a solution.

So that both methods of construction of a solution to (64) and (65) rely in fact on a dual operator defined
on some suitable base Hilbert spaces.

The required duality formulas are stated in Paragraph 4.1.2 but because they are a little heavy to
demonstrate their proof are postponed to Paragraph 4.1.2. The main feature to keep in mind is that A is
essentially skew-adjoint, meaning that in some suitable Hilbert space we can write the dual operator A∗ can
be written under the form

A∗ = −A+Φ (67)

where Φ is some linear continuous operator.
Paragraph 4.1.1 contains the version of Lumer-Phillips theorem that we will use in the following and

gives some elements of functional analysis.
Then assuming that the decomposition (67) holds, Paragraph 4.2 describes the Lumer-Phillips method

in two different base Hilbert space and thus gives the proof of Theorems 2.2 and 2.3 while Paragraph 4.3
deals with Lax-Phillips method and thus gives the proof of the second statement of Theorem 2.1.

4.1 Preliminaries

4.1.1 Functional analysis framework

In this paragraph we recall for a sake of completeness and for convenience the following version of Lumer-
Phillips theorem that will be used to show the existence of a regular solution to (66).

In the following (X, ∥ ·∥X) stands for a Banach space and A denotes an operator defined on some domain
D(A). We recall the following definition for dissipative/quasidissipative operators.

Definition 4.1 (Dissipative operator) Consider A : D(A) → X an operator. We say that A is dissipa-
tive if

∀ λ > 0, ∀u ∈ D(A), ∥(λI −A)u∥X ≥ λ∥u∥X .

Definition 4.2 (Quasidissipative operator) Let A : D(A) → X an operator. We say that A is ω-
quasidissipative if there exists ω ≥ 0 such that A− ωI is dissipative.

For such operators we have the following corollary of Hille-Yosida theorem characterizing the strongly
continuous semigroups of (quasi)contractions

Theorem 4.1 ([Lumer and Phillips, 1961]) Let A : D(A) → X be a closed densely defined operator.
We assume that A is ω-quasidissipative and that there exists λ0 > ω such that λ0I − A is onto then A
generates a strongly continuous semigroup of quasicontractions T that is to say that

∃ ω > 0, s.t. ∀ t ∈ [0,∞[ , ∥T (t)∥X ≤ eωt.

As pointed in the beginning of this section we will not show that λ0I − A is onto but we change this
requirement by some property on the dual operator A∗. This is why we rather consider the following corollary
of Theorem 4.1 in which the second statement just describes the definition of a strongly continuous semigroup
of quasicontractions on the solution u to the initial boundary value problem (66).

Theorem 4.2 Let A be a closed densely defined operator D(A) → X if A and A∗ are both ω-quasidissipative
then A generates a strongly continuous semigroup of quasicontractions on X.
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In particular the differential equation{
d
dtu = Au t ∈ [0,∞[ ,

u|t=0 = u0,

has a unique solution u ∈ C 0([0,∞[ , D(A)) ∩ C 1([0,∞[ , X) which satisfies the energy estimate

∃ ω > 0, ∀ t ∈ [0,∞[ , ∥u(t)∥X ≤ eωt∥u0∥X .

4.1.2 Duality formulas

The only thing that is needed in order to show the regularity of the solution to problems (64) and (65)
is the following duality formulas for A on X s

rad(Γ) or Ys(Γ) (we recall that these spaces are introduced in
Paragraph 2.3.2).

Because the establishment of such duality formulas is rather heavy and that it is not computation free
we postpone the proofs to Paragraph 4.4.

Proposition 4.1 Let s ≥ 0 and let Z := X s
rad(Γ) or Z := Ys(Γ) then we have the following characterization

of A, D(A), A∗ and D(A∗):

Let A : D(A) → Z be defined by Au := −
∑d

j=1Aj∂ju on

D(A) := Ds(A) = {u ∈ Z \Au ∈ Z , ∀j ∈ {1, 2} , u|xj=0 ∈ Z satisfies u|xj=0 ∈ kerBj}.

Then the dual operator of A∗ : D(A∗) → Z is defined on

D(A∗) := Ds(A
∗) = {v ∈ Z \ −Av ∈ Z , ∀j ∈ {1, 2} , v|xj=0 ∈ Z satisfies v|xj=0 ∈ kerCj},

where the boundary matrices Cj are such that we have the decomposition (see equation (23))

Aj :=MT
j Bj + CT

j Nj . (68)

Moreover there exists a linear continuous operator Φ : Z → Z such that we have the characterization

A∗ = −A+Φ.

To conclude let us remark that A and thus A∗ are closed operators and that they are densely defined because
both D(A) and D(A∗) contains D(Γ).

4.2 The initial boundary value problem

In the following assuming that we have the duality formulas exposed above we expose the proofs of Theorems
2.2 and 2.3. The proof of Theorem 2.3 is given in Paragraph ?? and the one of Theorem 2.2 is given in
Paragraph 4.2.2

4.2.1 Existence of a solution to (65) in Ys(Γ); proof of Theorem 2.3

In this paragraph we use Lumer-Phillips theorem in the form of Theorem 4.2 with X := Ys(Γ) in order to
show the existence of a regular solution to (66).

The sketch of the proof is the following:

1. Classically when one deals with compatible initial datum we will first show the result when the initial
datum u0 as one extra regularity and one extra compatibility condition. We then obtain the desired
result by regularization of the initial datum.

2. We first apply Theorem 4.2 to (66). This is made possible because thanks to the maximal dissipativity
of the boundary conditions A is dissipative. We also use Proposition 4.1 in order to state the same
result for A∗. This gives the existence of a solution u ∈ C 0([0,∞[ , D(A)) ∩ C 1([0,∞[ ,Ys(Γ)) to (66).
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3. Then we iteratively apply Theorem 4.2 to ∂kt (66) for k ∈ {1, ..., s} which will give the desired regularity
of the solution in terms of the space Ys(Γ).

4. To conclude we have to justify that near the corner we can recover from the control of the radial
derivative (r∂r)

αrlu the control of all the anisotrops derivatives xα1+α2−k
1 xk2∂

α1
1 ∂α2

2 u this is made in
two steps

(a) Firstly we use Assumption 2.2 which permits to bound explicitly the radial/angular derivatives
(r∂r)

α∂s−l−α
θ u in terms of the radial derivatives (r∂r)

α∂δu.

(b) Then from the explicit estimation (56) which controls the desired xα1+α2−k
1 xk2∂

α1
1 ∂α2

2 u in terms
of the (r∂r)

α∂s−l−α
θ u.

We conclude by showing that away from the boundary we can recover the Hs control of the solution
from the control of the

∑α
p=0 ∂1,p∂2,α−p.

In the following we will intensively use the following lemma.

Lemma 4.1 Let k ∈ N and X := Xk = Yk(Γ) then if the boundary conditions of (65) are maximal
dissipative then the operators A : Dk(A) → X and A∗ : Dk(A

∗) → X are quasidissipative in the sense of
Definition 4.2.

Proof : We first establish the dissipativity of A. Let λ > 0, ω > 0 to be fixed below and u ∈ D(A), we
define f := ((λ+ ω)I −A)u. We have from Cauchy-Schwarz inequality

(λ+ ω)∥u∥2X − ⟨Au , u⟩X ≤ ∥f∥X · ∥u∥X .

The remaining of the proof consist in give a bound for the term −⟨Au, u⟩X . In order to do so, we borrow
the following formula, namely equation (97), obtained during the determination of the adjoint operator.
More precisely we can write that for all u ∈ D(A)

−⟨Au, u⟩X = −1

2
⟨u,Φu⟩X − 1

2
B1 −

1

2
B2, (69)

where Φ is the operator given by Proposition 4.1 and where the boundary integrals B1 and B2 are explicitly
given by

B1 =

k∑
l=0

k−l∑
α=0

∑
|δ|≤k−α

∫
∂Γ1

⟨A1(x2∂2)
α∂δxl2u|x1=0, (x2∂2)

α∂δxl2u|x1=0⟩dx′ dx2,

B2 =
k∑

l=0

k−l∑
α=0

∑
|δ|≤k−α

∫
∂Γ2

⟨A2(x1∂1)
α∂δxl1u|x2=0, (x1∂1)

α∂δxl1u|x2=0⟩dx′ dx1.

We remark that from the definition ofD(A) the term (x2∂2)
α∂δxl2u|x1=0 (resp. (x1∂1)

α∂δxl1u|x2=0) appearing
in the scalar product defining B1 (resp. B2) is in kerB1 (resp. kerB2). Indeed these terms only involve
tangential derivatives of u|x1=0 ∈ kerB1 or u|x2=0 ∈ kerB2.

So that from the definition of maximal dissipative boundary conditions (see Definition 4.1) we have
B1,B2 ≤ 0 and thus these terms are signed and can be neglected.

Consequently we have

(λ+ ω)∥u∥2X − 1

2
|⟨u,Φu⟩X | ≤ ∥f∥X · ∥u∥X ,

so that it suffices to choose ω ≥ ∥Φ∥
2 to obtain the desired dissipativity property.

The dissipativity of the adjoint A∗ follows essentially the same lines. So we will only give the main
ingredients. Let λ > 0 and ω > 0 to be chosen large enough we define for v ∈ D(A∗), f := (λ+ ω)v − A∗v.
So using Proposition 4.1 and equation (69) we have

(λ+ ω)∥v∥2X + B1 + B2 −
1

2
⟨v , Φv⟩X ≤ ∥f∥ · ∥v∥.
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Because now v ∈ D(A∗) we have in particular v|x1=0 ∈ kerC1 and v|x2=0 ∈ kerC2 so that we have B1, B2 ≥ 0

from the remark6 (25). The desired dissipativity property follows by choosing ω ≥ ∥Φ∥
2 .

□

We first show Theorem 2.3 when u0 ∈ Ds+1(Γ) satisfies the compatibility conditions up to the order s we
will then in a second time establish the result only for u0 ∈ Ds(Γ) satisfying the compatibility conditions up
to the order s− 1.

We want to use Lemma 4.1 for k = s to apply Theorem 4.2 to (66). Assume for a while that u0 ∈ Ds(A)
then from Theorem 4.2 there exists a unique solution u ∈ C 0([0,∞[ , Ds(A)) ∩ C 1([0,∞[ ,Ys(Γ)) which
satisfies the energy estimate

∀ t ∈ [0,∞[ , ∥u(t)∥Ys(Γ) ≤ eωt∥u0∥Ys(Γ) ≤ ∥u0∥Ds(Γ). (70)

We now justify that u0 ∈ Ds(A). We have u0 ∈ Ds+1(Γ) ⊂ Ds(Γ) ⊂ Ys(Γ) and Au0 ∈ Ds(Γ) ⊂ Ys(Γ).
Then for j ∈ {1, 2}; u|xj=0 ∈ Ds+1/2(∂Γj) ⊂ Ys(∂Γj) and because of the compatibility condition of order 0{

B1u0|x1=0
= 0,

B2u0|x2=0
= 0.

We now want to apply Theorem 4.1 to ∂tu. Such function satisfies{
d
dt∂tu = A∂tu,

(∂tu)|t=0 = Au0 := u1,

so that we should justify that u1 ∈ Ds−1(A). We have u1 = Au0 ∈ Ds(Γ) ⊂ Ys−1(Γ) and Au1 = A2u0 ∈
Ds−1(Γ) ⊂ Ys−1(Γ). Moreover for j ∈ {1, 2}; u|xj=0 ∈ Ds−1/2(∂Γj) ⊂ Ds−1(∂Γj) ⊂ Ys−1(Γ) satisfies{

B1u
1
|x1=0 = 0,

B2u
1
|x2=0 = 0,

from the compatibility condition of order one.
So that ∂tu ∈ C 0([0,∞[ , Ds−1(A)) ∩ C 1([0,∞[ ,Ys−1

rad (Γ)) satisfies the energy estimate

∀t ∈ [0,∞[ , ∥∂tu(t)∥Ys−1(Γ) ≤ eωt∥Au0∥Ys−1
rad (Γ) ≤ Ceωt∥u0∥Ds(Γ), (71)

where C depends on the coefficients Aj .
Proceeding iteratively we thus obtain that u ∈ ∩s

k=0C
k
t ([0,∞[ ;Ys−k(Γ)) satisfies the energy estimates

∀t ∈ [0,∞[ , ∀ k ∈ J0, sK, ∥∂kt u(t)∥Ys−k(Γ) ≤ Cse
ωt∥u0∥Ds(Γ). (72)

We now have to justify that near the corner ∂kt u(t) is not only in Ys−k(C ) but that it is in H s−k(C ).
We also have to justify that the similar result holds in the interior that is to say that we can recover the fact
that ∂kt u(t) ∈ Hs−k(I ) from the fact that it is in Ys−k(I ).

� Extra regularity near the corner: to fix the ideas let us consider the case k = 0 (the others cases
being similar). In order to show that u(t) ∈ H s(C ) from the explicit bound (56) (in which we do not
integrate with respect to t) which gives a bound for the anisotropic weighted derivatives in H s(C ) in
terms of the radial and angular derivatives, it is sufficient to justify that the ∥(r∂r)s−k−l∂kθ ∂

δrlu∥L2(C )

are finite for all 0 ≤ k ≤ s− l.

Note that because u ∈ Ys(Γ) the previous result holds for k = 0. We then shall recover the control of
∥(r∂r)α∂s−l−α

θ ∂δrlu∥L2(C ) iteratively like it as been done in the proof of the a priori energy estimate

6This point of the proof uses in a non trivial way the fact that we can express the dual operator as −A plus some operator
in order to recover the good sign property.
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given in Paragraph 3.2. From (47) (in which we only remove the integration with respect to t) we have
the relation

∥(r∂r)s−1−k−l∂k+1
θ ∂δrlũ∥2

L2(C̃ ,r∂r)
(73)

≤∥(r∂r)s−k−l∂δ∂kθA −1(θ)M (θ)rlũ∥2
L2(C̃ ,r∂r)

(74)

+
∑
j∈T

∥(r∂r)s−1−k−l∂δ∂kθA −1(θ)Ajr
l∂j ũ∥2L2(C̃ ,r∂r)

(75)

≤Cs

(
∥(r∂r)s−k−ℓ∂δ∂kθ r

lũ∥2
L2(C̃ ,r∂r)

+ ∥(r∂r)s−1−k−l∂δ+1∂kθ r
lũ∥2

L2(C̃ ,r∂r)

)
,

where C̃ stands for the image of C in polar coordinates and where we use Assumption 2.2, Leibniz
formula and the slight abuse of notation, for j ∈ T , ∂j∂

δ = ∂δ+1 in the last line. So that in cartesian
coordinates we have

∥(r∂r)s−1−k−l∂k+1
θ ∂δrlu∥2L2(C ) ≤ Cs

(
∥(r∂r)s−k−ℓ∂δ∂kθ r

lu∥2L2(C ) + ∥(r∂r)s−1−k−l∂δ+1∂kθ r
lu∥2L2(C )

)
,

equation which gives the desired result iteratively.

� Extra regularity in the interior : Because of the definition of Ys−k(I ) the result holds for k = s. We
here proof of the fact that we can recover the result that ∂s−1

t u ∈ H1(I ) from the fact that it is in
Y1(I ). Because of the inversibility of A1 we can write

∥∂1u∥L2(I ) ≤ C
(
∥∂st u∥L2(I ) + ∥∂2∂s−1

t u∥L2(I ) +

d∑
j=3

∥∂j∂s−1
t ∂ju∥L2(I )

)
,

so that from the triangle inequality

∥∂1u+ ∂2u∥L2(I ) ≥

∣∣∣∣∣∣(1− C)∥∂1∂s−1
t u∥L2(I ) − C∥∂st u∥L2(I ) − C

d∑
j=3

∥∂j∂s−1
t ∂ju∥L2(I )

∣∣∣∣∣∣ . (76)

The left hand side of (76) being finite because ∂s−1
t u ∈ Y1(Γ). We separate several cases

– If C > 1 we thus obtain (C − 1)∥∂1∂s−1
t u∥L2(I ) ≤ ∥∂1u + ∂2u∥L2(I ). So that we obtain that

∂1∂
s−1
t u ∈ L2(I ).

– For C < 1

* if (1 − C)∥∂1∂s−1
t u∥L2(I ) ≤ C∥∂st u∥L2(I ) + C

∑d
j=3 ∥∂j∂

s−1
t ∂ju∥L2(I ). Then the result is

immediate.

* if (1 − C)∥∂1∂s−1
t u∥L2(I ) ≥ C∥∂st u∥L2(I ) + C

∑d
j=3 ∥∂j∂

s−1
t ∂ju∥L2(I ) then we have from

(76)

(1− C)∥∂1∂s−1
t u∥L2(I ) ≤ ∥∂1u+ ∂2u∥L2(I ) + C∥∂st u∥L2(I ) + C

d∑
j=3

∥∂j∂s−1
t ∂ju∥L2(I ),

so that ∂1∂
s−1
t u ∈ L2(I ).

To obtain the fact that ∂2∂
s−1
t u ∈ L2(I ) we use the inversibility of A2. We thus have justified that

∂s−1
t u ∈ H1(I ). The proof for k ≥ 2 follows exactly the same lines and is omitted here.

We thus have justified that when u0 ∈ Ds+1(Γ) satisfies the compatibility conditions (13) up to the order
s then (65) admits a unique solution u ∈ ∩s

k=0C
k
t ([0,∞[ ;Y s−k(Γ)) and that we have the energy estimate

∀ t ∈ [0,∞[ , ∀ k ∈ J0, sK, ∥∂kt u(t)∥Y s−k(Γ) ≤ Cse
ωt∥u0∥Ds(Γ). (77)
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To conclude the proof of Theorem 2.3 it is sufficient to show that the same result holds for u0 ∈ Ds(Γ)
satisfying the compatibility conditions (13) up to the order s − 1. In order to do so we use the following
regularization result:

Lemma 4.2 Let s ∈ N be fixed and u0 ∈ Ds(Γ) satisfying the compatibility conditions (13) up to the order
s − 1 then there exists a sequence (uν0)ν∈N ⊂ Ds+1(Γ) satisfying the compatibility conditions (13) up to the
order s such that limν→∞ uν0 = u0 in Ds(Γ).

Proof of Lemma 4.2 This lemma is rather immediate because we are working with homogeneous com-
patibility conditions so that it is sufficient to approximate u0 in Ds(Γ) by a sequence of regular functions
vanishing near the boundaries {x1 = 0} and {x2 = 0} such an approximate sequence in fact satisfies the
compatibility conditions at any order.

□

We thus introduce the initial boundary value problem{
d
dtu

ν = Auν for t > 0,

uν|t=0 = uν0 ,
(78)

because uν0 is regular enough the previous discussion applies and thus for fixed ν, (78) admits a unique
solution uν ∈ ∩s

k=0C
k
t ([0,∞[ ;Y s−k(Γ)) with the energy estimates (77). By linearity and from the energy

estimates (77) we can show that (uν(t))ν∈N is a Cauchy sequence so that it converges pointwise to some
u ∈ ∩s

k=0C
k
t ([0,∞[ ;Y s−k(Γ)), passing to the limit in (78) and (77) shows that u is a solution to (78)

satisfying the energy estimates (77) in particular it is unique. This ends up the proof of Theorem 2.3.

□

4.2.2 Existence of a solution to (65) in X s
rad(Γ); proof of Theorem 2.2

The proof of Theorem 2.2 follows essentially the same lines as the one given in the previous paragraph for
Theorem 2.3.

In a first time we assume that u0 ∈ X s
rad(Γ) satisfies the compatibility conditions up to the order s.

Because it only relies on the fact that the dual operator is essentially skew-adjoint which is also true in
X k

rad(Γ) we have the analogous of Lemma 4.1

Lemma 4.3 Let k ∈ N and X := Xk = X k
rad(Γ) then if the boundary conditions of (65) are maximal

dissipative then the operators A : Dk(A) → X and A∗ : Dk(A
∗) → X are quasidissipative in the sense of

Definition 4.2.

We are then in position to apply Theorem 4.1. It is made possible because of the well-preparedness as-
sumption (14). For instance for k = s we have u0 ∈ Ds(A). Indeed we have u0 ∈ X s

rad(Γ), then from
the well-preparedness assumption (14) we have Au0 ∈ X s

rad(Γ) and the trace u|xj=0 ∈ X s
rad(∂Γj) and finally

u0|xj=0
∈ kerBj because of the compatibility condition of order zero. So that Theorem 4.1 gives the existence

of a unique u ∈ C 0([0,∞[ , Ds(A)) ∩ C 1([0,∞[ ,X s
rad(Γ)) which satisfies the energy estimate

∀ t ∈ [0,∞[ , ∥u(t)∥X s(Γ) ≤ eωt∥u0∥X s(Γ).

We then apply inductively Theorem 4.1 to ∂tu like in Paragraph 4.2.1. This is made possible because of
the well-preparedness assumption 14. This shows that u ∈ ∩s

k=0C
k
t ([0,∞[ ;X s−k

rad (Γ)) satisfies the energy
estimates

∀t ∈ [0,∞[ , ∀ k ∈ J0, sK, ∥∂kt u(t)∥X s−k(Γ) ≤ Cse
ωt∥u0∥X s(Γ),

where at each iteration we used the well-preparedness assumption ∥Au0∥X s(Γ) ≤ C∥u0∥X s(Γ).
To conclude we reproduce the arguments of Paragraph 4.2.1 to justify that we can recover from the

regularity u ∈ ∩s
k=0C

k
t (R+,X s−k

rad (Γ)) we can recover the full regularity of the anisotropic weighted derivatives
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that is to say that u ∈ ∩s
k=0C

k
t (R+,H

s−k
rad (Γ)) (we use (73) integrated over the full space instead of C̃ ).

This gives the proof of Theorem 2.2 when u0 satisfies one extra compatibility condition.
Finally we recover the result for u0 ∈ X s

rad(Γ) satisfying the compatibility conditions up to the order
s − 1 using an approximation procedure by regular vanishing functions near the boundaries exactly like in
Lemma 4.2. This concludes the proof of Theorem 2.2.

4.3 The pure boundary value problem

This paragraph is devoted to the proof of the regularity of the solution to (64). This proof relies on a rather
straightforward adaptation of the so-called duality method introduced in [Lax and Phillips, 1960]. The main
ideas of the modified method are the following:

1. We first introduce a dual problem to the primal problem (64). This dual problem has already been
introduced in Paragraph 4.1.2.

2. We assume that the dual problem to (64) satisfies an a priori energy estimate in high order based
Sobolev space (more precisely in X s

rad,γ(Ω)). So that in particular it gives us uniqueness of the solution
to the dual problem.

3. Using this uniqueness property for the dual problem we recover the existence of a solution for the
primal problem in X s

rad,γ(Ω).

4. Like in Paragraph 4.2 to recover the full regularity of the solution in H s
γ (Ω) we use the explicit formulas

(47) and (56) giving the regularity of the angular derivatives ∂kθ in terms of the radial ones.

The most substantial modification that we make compared to the method of [Lax and Phillips, 1960] ex-
posed above is that we will apply this method to high order Sobolev space (more precisely a space containing
the radial derivatives (r∂r)

α) so that if we have an a priori energy estimate in high order Sobolev norms for
the dual problem then the solution to the primal problem will inherit this regularity.

We consider the Hilbert space X s
rad(Γ) encoding the control of the radial derivatives (r∂r)

k, for k ∈ J0, s−lK
of the weighted functions rlu. Because we have now to deal with the time variable we introduce the following
functional spaces; for χ ∈ R and X ⊂ Ω we define

X s
rad,χ(X) := {u ∈ D′(X)\∀ l ∈ {0, ..., s}, ∀α ∈ {0, ..., s− l},∀ |δ| ≤ s−α, e−χt(r∂r)

α∂δrlu ∈ L2(X)}, (79)

where the multi-index δ = (δ0, δ3, ..., δd) ∈ N1+d−2 and where the operator the differentiation ∂δ now stands
for ∂ := ∂δ0t ∂

δ3
3 ...∂

δd
d . This space comes with the norm ; for u ∈ X s

rad,χ(X)

∥u∥2X s
rad,χ(X) :=

s∑
l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
X

e−2χt|(r∂r)α∂δrlu(t, x)|2 dt dx.

Proposition 4.1 applies without any change because we only add in X s
rad,χ(X) the tangential derivative

∂t and because the Aj do not depend on t.
Consequently we have the duality formula: for all u ∈ X s

rad,χ(Ω) satisfying that u|x1=0 ∈ X s
rad,χ(∂Ω1),

u|x2=0 ∈ X s
rad,χ(∂Ω2) and for all v ∈ X s

rad,−χ(Ω) such that v|x1=0 ∈ X s
rad,−χ(∂Ω1), v|x2=0 ∈ X s

rad,−χ(∂Ω2)
we have the equality

⟨L(∂)u, v⟩X s
rad,χ(Ω);X s

rad,−χ(Ω)−⟨u, L∗(∂)v⟩X s
rad,χ(Ω);X s

rad,−χ(Ω) − ⟨u,Φv⟩X s
rad,χ(Ω);X s

rad,−χ(Ω) (80)

+

2∑
j=1

⟨Bju|xj=0,Mjv|xj=0⟩+ ⟨Nju|xj=0, Cjv|xj=0⟩ = 0,

where we defined L∗(∂) := −L(∂) and where the duality products on the boundary are duality product
⟨·, ·⟩X s

rad,χ(∂Ωj);X s
rad,−χ(∂Ωj).
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Indeed we use equality (97) in which we do not have any cancellation of the boundary terms B1 and B2

so that we just express these terms using the decomposition (68).
For later purpose we define the ”complete” (in the sense that it is the one for which we have the duality

formula) adjoint operator L∗(∂) := L∗(∂) − Φ. In the following we consider as a dual problem to (64) the
pure boundary value problem 

L∗(∂)v = f̃ in Ω,

C1v|x1=0 = g̃1 on ∂Ω1,

C2v|x2=0 = g̃2 on ∂Ω2,

(81)

where C1 and C2 are defined in the decomposition (68).

Our main assumption of the current paragraph is the following. It states that the dual problem (81)
admits an a priori energy estimate in the high order radial Sobolev space. More precisely

Assumption 4.1 Assume that for some s ∈ N and γ > 0 for γ ≥ γ, if the solution v ∈ X s
rad,−γ(Ω) is such

that f̃ := L∗(∂)v ∈ X s
rad,−γ(Ω) and g̃1 := C1v|x1=0 ∈ X s

rad,−γ(∂Ω1), g̃2 := C2v|x2=0 ∈ X s
rad,−γ(∂Ω2) then

there exists C > 0 such that for all γ ≥ γ we have the energy estimate

γ∥v∥2X s
rad(Ω) + ∥v|x1=0∥2X s

rad(∂Ω1)
+ ∥v|x2=0∥2X s

rad(∂Ω2)

≤ C

(
1

γ
∥f̃∥2X s

rad(Ω) + ∥g̃1∥2X s
rad(∂Ω1)

+ ∥g̃2∥2X s
rad(∂Ω2)

)
.

Let us indicate that from the results of Section 3 this assumption is not so restrictive or heavy. Indeed
it is in fact sufficient to assume that the dual problem (81) is L2-well posed. In particular it is well-known
that symmetric problems with strictly dissipative boundary conditions have a good behaviour for the dual
problem so that if the primal problem satisfies such assumptions then so do its dual problem (we refer for
example to [Lax and Phillips, 1960] for a proof of this fact).

We now show the existence of a solution u to the primal problem (64).

Proposition 4.2 Let s ∈ N, under Assumption 4.1 there exists γ
0
> 0 such that for all γ ≥ γ

0
if the

sources f ∈ X s
rad,γ(Ω), (g1, g2) ∈ X s

rad,γ(∂Ω1) × X s
rad,γ(∂Ω2) then the primal pure boundary value problem

(64) admits a unique solution u ∈ X s
rad,γ(Ω). Moreover u satisfies the energy estimate, there exists C > 0

such that for all γ ≥ γ
0

γ∥u∥2X s
rad,γ(Ω) ≤ C

(
1

γ
∥f∥2X s

rad,γ(Ω) + ∥g1∥2X s
rad,γ(∂Ω1)

+ ∥g2∥2X s
rad,γ(∂Ω2)

)
. (82)

If in addition f ∈ H s
γ (Ω) and (g1, g2) ∈ H s

γ (∂Ω1) × H s
γ (∂Ω2) then u ∈ H s

γ (Ω). Finally if the primal
problem (64) satisfies Assumption 2.1 then u satisfies the a priori energy estimate (11).

Proof : The proof exposed here follows essentially the one used in [Benoit, ] see also [[Benzoni-Gavage, 2007]-
Paragraph 4.5.3].

We introduce the following subset of X s
rad,−γ(Ω), X defined by

X := {L∗(∂)v where v ∈ X s
rad,−γ(Ω) satisfies C1v|x1=0 = C2v|x2=0 = 0},

and for given f ∈ X s
rad,γ(Ω), (g1, g2) ∈ X s

rad,γ(∂Ω1)×X s
rad,γ(∂Ω2) the following linear form ℓ : X → R defined

by

ℓ(L∗(∂)v) :=⟨f, v⟩X s
rad,γ(Ω),X s

rad,−γ(Ω) (83)

+ ⟨g1, N1v|x1=0⟩X s
rad,γ(∂Ω1),X s

rad,−γ(∂Ω1) + ⟨g2, N2v|x2=0⟩X s
rad,γ(∂Ω2),X s

rad,−γ(∂Ω2).

The main point of the following is to show that because of Assumption 4.1, ℓ is continuous on X. Indeed
Cauchy-Schwarz inequality combined with the energy estimate for (81) gives for γ ≥ γ

|ℓ(L∗(∂)v)| ≤ C

(
1

γ
∥f∥2X s

rad,γ(Ω) +
1
√
γ

(
∥g1∥2X s

rad,γ(∂Ω1)
+ ∥g2∥2X s

rad,γ(∂Ω1)

))
· ∥L∗(∂)v∥2X s

rad,−γ(Ω), (84)
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and in order to show that ℓ is continuous we shall only replace L∗(∂)v by L∗(∂)v in the right hand side of
(84).

The triangle inequality and the definition of L∗(∂) give

∥L∗(∂)v∥X s
rad,−γ(Ω) ≥

∣∣∣∥L∗(∂)v∥X s
rad,−γ(Ω) − ∥Φv∥X s

rad,−γ(Ω)

∣∣∣ . (85)

However using the fact that Φ is continuous and the energy estimate for the dual problem we have the
estimate

∥Φv∥X s
rad,−γ(Ω) ≤ C∥v∥X s

rad,−γ(Ω) ≤
C

γ
∥L∗(∂)v∥X s

rad,−γ(Ω),

so that we can choose γ large enough such that the right hand of (85) is positive and reads like a positive
multiple of ∥L∗(∂)v∥X s

rad,−γ(Ω). This shows the continuity of ℓ on X.
From Hahn-Banach theorem we extend ℓ to the whole space X s

rad,−γ and then from Riesz representation
theorem we deduce the existence of a unique u ∈ X s

rad,γ(Ω) such that

ℓ(L∗(∂)v) = ⟨u, L∗(∂)v⟩X s
rad,γ(Ω),X s

rad,−γ(Ω). (86)

Moreover from the characterization of ∥u∥X s
rad,γ(Ω) given by Riesz representation theorem we have for γ

large enough the energy estimate

γ∥u∥2X s
rad,γ(Ω) ≤ C

(
1

γ
∥f∥2X s

rad,γ(Ω) + ∥g1∥2X s
rad,γ(∂Ω1)

+ ∥g2∥2X s
rad,γ(∂Ω1)

)
, (87)

this gives estimate (82).
We shall now verify that such u is a solution to (64). We choose v ∈ D(Ω) and combine (83) and (86)

with the duality formula (80) to obtain that for all v ∈ D(Ω),

⟨f, v⟩X s
rad,γ(Ω),X s

rad,−γ
= ⟨u, L∗(∂)v⟩X s

rad,γ(Ω),X s
rad,−γ

= ⟨L(∂)u, v⟩X s
rad,γ(Ω),X s

rad,−γ

so that L(∂)u = f . Then choosing v ∈ D(Ω) satisfying Cjv|xj=0 = 0 gives, using the fact that L(∂)u = f ,
the equality ⟨Bu|xj=0−gj ,Mjv|xj=0⟩. The matrix Mj being onto the right hand side can be replaced by any
test function so that we end up with the boundary condition Bju|xj=0 = gj . This shows that u is a solution
to (64).

To conclude we have to justify that if f ∈ H s
γ (Ω) and (g1, g2) ∈ H s

γ (∂Ω1)×H s
γ (∂Ω2) then u ∈ H s

γ (Ω).
It is essentially made like in Paragraph 4.2.

It is once again a direct consequence of (51) and (56) which permits to control respectively the norm of
the solution in X s

rad,γ by the norm of f ∈ H s
γ (Ω) and (g1, g2) ∈ H s

γ (∂Ω1) × H s
γ (∂Ω2). The details are

omitted here.

□

4.4 Proof of the duality formulas

In this paragraph we show that in both X s
rad(Γ) and Ys(Γ), the adjoint A∗ of A can be written under the

form A∗ = −A+ ϕ, with Φ linear continuous giving thus the proof of Proposition 4.1.
As we will see in the core of the proofs it is crucial for the analysis that the base Hilbert space X s

rad(Γ)
or Ys(Γ) is defined with respect to the radial derivative and not the tangential ones.

Let us point that from now to the end of the article the multi-index δ := (δ3, ..., δd) ∈ Nd−2 so that the
operator ∂δ := ∂δ33 · · · ∂δdd .

43



4.4.1 Duality formula in X s
rad(Γ)

Let u, v ∈ X s
rad(Γ) we have

⟨Au, v⟩X s
rad(Γ)

=−
s∑

l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
Γ

d∑
j=3

〈
(r∂r)

α∂δrlAj∂ju, (r∂r)
α∂δrlv

〉
dx

−
s∑

l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
Γ

2∑
j=1

〈
(r∂r)

α∂δrlAj∂ju, (r∂r)
α∂δrlv

〉
dx,

:=− Itan − Inor.

We first establish the duality formula for the integral term Itan which is simpler because it involves less
commutators than Inor.

Because the coefficients Aj are constant we have

(r∂r)
αAjr

l∂δu = Aj(r∂r)
αrl∂δu. (88)

So that we have
Itan := J tan,

where

J tan :=

s∑
l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
Γ

d∑
j=3

⟨Aj∂j(r∂r)
α∂q1∂

r
2r

l∂δu, (r∂r)
α∂δrlv⟩dx

We conclude the derivation of the duality formula involving Itan by making the integration by parts in
J tan because the operators ∂j are tangential we have, using the symmetry of the coefficients,

J tan =−
s∑

l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
Γ

d∑
j=3

⟨(r∂r)αrl∂δu,Aj∂j(r∂r)
α∂δrlv)⟩dx.

So that there holds that

−Itan =

s∑
l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
Γ

d∑
j=3

⟨(r∂r)αrl∂δu, (r∂r)α∂δrlAj∂jv⟩dx = Itan
, (89)

where for a bilinear form I := i(u, v) the notation I stands for I := i(v, u).

We now repeat essentially the same computations to deal with the term containing the normal derivatives
that is to say Inor. The method is however modify firstly because rl depends on x1 and x2 so we have one
commutator to deal with. Then, we also have to take care of the fact that ∂j and (r∂r)

α do not commute any
more so that there is an other commutator to handle. Finally note that we also have to deal with boundary
terms during the integration by parts.

We have

Inor =

s∑
l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
Γ

2∑
j=1

〈
Aj(r∂r)

α∂δ∂jr
lu, (r∂r)

α∂δrlv
〉
dx

−
s∑

l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
Γ

2∑
j=1

〈
lAj(∂jr)(r∂r)

α∂δrl−1u, (r∂r)
α∂δrlv

〉
dx

:= J̃ nor − Lnor,

where Lnor := ℓ(u, v) is bilinear with respect to (u, v).
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We now deal with the commutator ∂j and (r∂r)
α in J̃ nor. In order to do so for a function f depending

on (t, x) we first write from the binomial formula

(r∂r)
αf :=

α∑
p=0

(
α
p

)
(x1∂1)

p(x2∂2)
α−pf.

Then we decompose the compositions of the tangential derivatives operators under the form

∀n,m ∈ N, (x1∂1)nf :=

n∑
q=1

λnq x
q
1∂

q
1f and (x2∂2)

mf :=

m∑
r=1

λmr x
r
2∂

r
2f,

where the scalars (λnp )n,p∈N are characterized by the relations{
λNp = λNp−1 + pλNp ∀N ≥ p− 1,

λ1p = · · · = λp−2
p = 0;λp−1

p = 1.
(90)

With these notations in hand we have

J̃ nor =

s∑
l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
Γ

2∑
j=1

⟨Aj∂j(r∂r)
αrl∂δu, (r∂r)

α∂δrlv⟩dx (91)

−
s∑

l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
Γ

⟨
α∑

p=0

p∑
q=1

α−p∑
r=1

(
α
p

)
qλpqλ

α−p
r xq−1

1 xr2∂
q
1∂

r
2r

lA1∂
δu, (r∂r)

α∂δrlv⟩dx

−
s∑

l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
Γ

⟨
α∑

p=0

p∑
q=1

α−p∑
r=1

(
α
p

)
rλpqλ

α−p
r xq1x

r−1
2 ∂q1∂

r
2r

lA2∂
δu, (r∂r)

α∂δrlv⟩dx

:= J̆ nor −Mnor
1 −Mnor

2 .

The terms Mnor
1 and Mnor

2 being bilinear with respect to u and v so that we write Mnor
k := mk(u, v). For

later purpose let use remark that by definition we have

Mnor
1 =

s∑
l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
Γ

⟨A1[∂1, (r∂r)
α]∂δrlu, (r∂r)

α∂δrlv⟩dx, (92)

Mnor
2 =

s∑
l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
Γ

⟨A2[∂2, (r∂r)
α]∂δrlu, (r∂r)

α∂δrlv⟩dx. (93)

We end up with

J̆ nor =

s∑
l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
Γ

2∑
j=1

⟨Aj∂j(r∂r)
αrl∂δu), (r∂r)

α∂δrlv⟩dx. (94)

We now perform the integration by parts in the right hand side of (94) we obtain using the symmetry of
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the coefficients

s∑
l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
Γ

2∑
j=1

⟨∂j∂j((r∂r)αrl∂δu), (r∂r)α∂δrlv⟩dx =

−
s∑

l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
Γ

2∑
j=1

⟨(r∂r)αrl∂δu), Aj∂j [(r∂r)
α∂δrlv⟩] dx

−
s∑

l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
∂Γ1

⟨A1[(r∂r)
αrl∂δu]|x1=0, [(r∂r)

α∂δrlv]|x1=0⟩dx′ dx2

−
s∑

l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
∂Γ2

⟨A2[(r∂r)
αrl∂δu]|x2=0, [(r∂r)

α∂δrlv]|x2=0⟩dx′ dx1,

:= −J̃
nor

− B1 − B2.

Reiterating exactly the same computations as the ones performed so far in order to express J̃
nor

in terms
of (r∂r)

αrl∂δAj∂jv instead of Aj∂j(r∂r)
αrl∂δv gives at the end of the day:

−Inor =

s∑
l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
Γ

2∑
j=1

⟨(r∂r)αrl∂δu, (r∂r)α∂δrlAj∂jv⟩] dx (95)

+ Lnor + Lnor
+Mnor

1 +Mnor

1 +Mnor
2 +Mnor

2 + B1 + B2,

where we used the notations for I ∈ {Lnor,Mnor
1 } associated to the bilinear form i, I := i(v, u).

Summing (89) and (95) then leads to the formula

⟨Au, v⟩X s
rad(Γ)

=− ⟨u,Av⟩X s
rad(Γ)

+ B1 + B2 (96)

+ Lnor + Lnor
+Mnor

1 +Mnor

1 +Mnor
2 +Mnor

2 .

To end up the proof of Proposition 4.1 we should first cancel the boundary terms in (96). This step
is made by imposing some boundary conditions on the domains of A and A∗. Then we show that all the
bilinear forms appearing in the right hand side, namely Lnor, Mnor

1 and Mnor
2 (and the analogous terms

with the notation ·), of (96) are continuous on X s
rad(Γ) × X s

rad(Γ). So that for each bilinear form i, Riesz
representation theorem combined with Hahn-Banach theorem permit us to write

I = i(u, v) = ⟨u, φiv⟩

where φi : X s
rad(Γ) → X s

rad(Γ) is linear continuous and satisfies ∥φi∥L(X s
rad(Γ))

= ∥i∥B(X s
rad(Γ)×X s

rad(Γ))
.

Summing all the φi gives the linear continuous operator Φ of Proposition 4.1 and completes the proof.

Consequently we conclude the proof of Proposition 4.1 by showing the three following lemmas. The first
one asserts that the boundary terms vanish as expected. The two others show the boundedness of the various
operators appearing in the duality formula.

More precisely in Lemma 4.5 we show the boundeness of Lnor essentially by the application of Cauchy-
Scharwz inequality.

Lemma 4.6 establishes the result for the operator Mnor
1 and Mnor

2 . As we will see in the proof this result
is a little more tricky and uses in a non trivial way that our base Hilbert space is defined via tangential
derivatives.

Lemma 4.4 With A : D(A) → X s
rad(Γ) and A

∗ : D(A∗) → X s
rad(Γ) defined in Proposition 4.1 we have

B1 = B2 = 0.
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Lemma 4.5 Let Lnor be previously defined. Then for all s ≥ 0 there exist a continuous linear operator
φℓ : X s

rad(Γ) → X s
rad(Γ) such that the following equality holds for all u, v ∈ X s

rad(Γ)

Lnor = ⟨u, φℓv⟩X s
rad(Γ)

.

The analogous result also holds for Lnor
.

Lemma 4.6 Let Mnor
1 and Mnor

2 be defined as above. Then there exists a continuous linear operator
φm : X s

rad(Γ) → X s
rad(Γ) such that the following equality holds for all u, v ∈ X s

rad(Γ)

Mnor
1 +Mnor

2 = ⟨u, φmv⟩X s
rad(Γ)

.

The analogous result holds for the operator Mnor

1 +Mnor

2 .

So that with Lemmas 4.5 and 4.6 in hand we can show that for all u, v ∈ X s
rad(Γ) we have the identity

⟨Au, v⟩X s
rad(Γ)

=− ⟨u,Av⟩X s
rad(Γ)

+ B1 + B2 + ⟨u,Φv⟩X s
rad(Γ)

, (97)

while with both Lemmas 4.4, 4.5 and 4.6 we end up with the duality formula that for all u ∈ D(A) and for
all v ∈ D(A∗)

⟨Au, v⟩X s
rad(Γ)

= −⟨u,Av⟩X s
rad(Γ)

+ ⟨u,Φv⟩X s
rad(Γ)

. (98)

We start by the proof of Lemma 4.4

Proof of Lemma 4.4 This lemma is a direct consequence of the definition of the dual boundary conditions.
We only show that for u ∈ D(A) and v ∈ D(A∗), B1 = 0. In order to do so, we recall the decomposition

of A1 in terms of the boundary matrix B1 and the dual matrix C1:

A1 :=MT
1 B1 + CT

1 N1.

So that using this decomposition in the expression of B1 gives

B1 =

s∑
l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
∂Γ1

⟨B1[(r∂r)
αrl∂δu]|x1=0,M1[(r∂r)

α∂δrlv]|x1=0⟩dx′ dx2 (99)

+

s∑
l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
∂Γ1

⟨N1[(r∂r)
αrl∂δu]|x1=0, C1[(r∂r)

α∂δrlv]|x1=0⟩dx′ dx2.

However for all functions f depending on x1 and x2 we have

[(r∂r)
α∂δrlf ]|x1=0 = (x2∂2)

α∂δxl2f|x1=0,

so that the first term in the right hand side of (99) vanishes because by definition of D(A) we have that
u|x1=0 ∈ kerB1. Similarly the second term in the right hand side of (99) vanishes because by definition of
v ∈ D(A∗).

□

We now proceed to the proof of Lemma 4.5.

Proof of Lemma 4.5 Clearly it is sufficient to establish the result for the terms without the notation ·.
As already mentioned it is sufficient to show that Lnor is bilinear continuous on X s

rad(Γ)× X s
rad(Γ), the

existence of the operator defined in Lemma 4.5 follows from Riesz representation theorem.
We use Cauchy-Schwarz inequality twice to estimate

|Lnor| ≤

 s∑
l=1

s−l∑
α=0

∑
|δ|≤s−α

∫
Γ

2∑
j=1

∣∣l(r∂r)αrl−1∂δAju
∣∣2 dx

1/2

× ∥v∥X s
rad(Γ)

,

≤CA1,2

s−1∑
l=0

s−l−1∑
α=0

∑
|δ|≤s−α

∫
Γ

∣∣(l + 1)(r∂r)
αrl∂δu

∣∣2 dx

1/2

× ∥v∥X s
rad(Γ)

,

≤CA1,2
∥u∥X s

rad(Γ)
× ∥v∥X s

rad(Γ)
.
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□

We conclude by the proof of Lemma 4.6.

Proof of Lemma 4.6 We now turn to the boundedness of the operator Mnor
1 +Mnor

2 . In order to do so
we use equation (92) combined with the following lemma

Lemma 4.7 Let α ∈ N, there exists an operator Tα such that we have the factorisations

[∂1, (r∂r)
α] = Tα∂1 and [∂2, (r∂r)

α] = Tα∂2. (100)

Moreover from equation (91), Tα is explicitly given by

Tα :=

α∑
p=0

p−1∑
q=0

α−p∑
r=1

(
α
p

)
(q + 1)λpq+1λ

α−p
r xq1x

r
2∂

q
1∂

r
2 . (101)

Before to give the proof of this lemma let us indicate that it is this result which make us working with the
radial derivative (r∂r)

α in the whole duality method and not directly with the derivatives (x1∂1)
α1(x2∂2)

α2

for which, at the end of the day, the solution will be regular with respect to. Indeed the previous lemma is
true only for the radial derivative and fails for example if one considers the derivative x1∂1x2∂2.

Proof of Lemma 4.7 We proceed by iteration. For α = 0 then the result is satisfied with T 0 = 0. Assume
that for a given α ∈ N we have [∂1, (r∂r)

α] = Tα∂1 and [∂2, (r∂r)
α] = Tα∂2. We then consider, using a

standard property on commutators[
∂1, (r∂r)

α+1
]
=(r∂r)

α [∂1, r∂r] + [∂1, (r∂r)
α] r∂r

=(r∂r)
α∂1 + Tα∂1r∂r

=(r∂r)
α∂1 + Tα [∂1, r∂r] + Tαr∂r∂1.

So that we can write [
∂1, (r∂r)

α+1
]
= Tα+1∂1 with Tα+1 := (r∂r)

α + TαT 1 + Tαr∂r,

the definition of Tα+1 being independent on ∂1 we can then easily show by reiterating the same computations
that we also have

[
∂2, (r∂r)

α+1
]
= Tα+1∂2.

□

Using this result we have

Mnor
1 +Mnor

2 =

s∑
l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
Γ

⟨TαA1∂1∂
δrlu, (r∂r)

α∂δrlv⟩+ ⟨TαA2∂2∂
δrlu, (r∂r)

α∂δrlv⟩dx

= −
s∑

l=0

s−l∑
α=1

∑
|δ|≤s−α

∫
Γ

⟨
α−1∑
p=1

p−1∑
q=0

α−p∑
r=1

(
α
p

)
(q + 1)λpq+1λ

α−p
r xq1x

r
2∂

q
1∂

r
2A∂

δrlu, (r∂r)
α∂δrlv⟩dx,

where we used the fact that from the definition of A, A1∂1 = −A − A2∂2 combined with the expression of
Tα given in (101). Note that we also use the fact that T 0 = 0 in order to change the lower bound in the
sum on α and we do not write the vanishing terms corresponding to p = 0 and p = α in the interior sum.

Using Cauchy-Schwarz inequality twice thus gives

|Mnor
1 +Mnor

2 |

≤

 s∑
l=0

s−l∑
α=1

∑
|δ|≤s−α

∫
Γ

∣∣∣∣∣
α−2∑
p=0

p∑
q=1

α−1−p∑
r=1

(
α

p+ 1

)
(q + 1)λp+1

q λα−1−p
r xq1x

r
2∂

q
1∂

r
2A∂

δrlu

∣∣∣∣∣
2

dx

1/2

× ∥v∥X s
rad(Γ)

≤

 s∑
l=0

s−l∑
α=1

∑
|δ|≤s−α

Cα

∫
Γ

∣∣(r∂r)α−1A∂δrlu
∣∣2 dx

1/2

× ∥v∥X s
rad(Γ)

.
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To show that this right hand side is bounded by Cs∥u∥X s
rad(Γ)

×∥v∥X s
rad(Γ)

we use the same method than
for characteristic boundary values problems in the half-space exposed in [Benoit, ].

We introduce, Z, the following subset of D(Γ) defined by

Z := {u ∈ D(Γ) \ (A1∂1 +A2∂2)X s
rad(Γ)u = 0} ,

then Z is non empty and for all u ∈ Z we have the identity

A∂δrlu =
∑
j∈T

Aj∂j∂
δrlu+ l(∂1r)r

l−1A1∂
δu+ l(∂2r)r

l−1A2∂
δu,

so that on Z the operator A only add a tangential derivative plus an operator of order zero.
Consequently we have for u ∈ Z, with a slight abuse of notations

|Mnor
1 +Mnor

2 |

≤Cs

 s∑
l=1

s−l∑
α=1

∑
|δ|≤s−α

∫
Γ

∣∣(r∂r)α−1∂δrl−1u
∣∣2 dx+

s∑
l=0

s−l∑
α=1

∑
|δ|≤s−α

∫
Γ

∣∣(r∂r)α−1∂δ+1rlu
∣∣2 dx

1/2

× ∥v∥X s
rad(Γ)

≤Cs

∥u∥X s−1
rad (Γ) +

s∑
l=0

s−l−1∑
α=0

∑
0<|δ|≤s−α

∫
Γ

∣∣(r∂r)α∂δrlu∣∣2 dx

1/2

× ∥v∥X s
rad(Γ)

≤Cs∥u∥X s
rad(Γ)

× ∥v∥X s
rad(Γ)

.

We can thus apply Hahn-Banach theorem which ensures that Mnor
1 +Mnor

2 can be extended to the whole
space X s

rad(Γ)
2 such that the extension satisfies |Mnor

1 +Mnor
2 | ≤ C∥u∥X s

rad(Γ)
×∥v∥X s

rad(Γ)
on X s

rad(Γ)
2. Then

Riesz representation theorem gives the existence of some linear continuous operator φm : X s
rad(Γ) → X s

rad(Γ)
such that we have the equality

∀ u, v ∈ X s
rad(Γ), Mnor

1 +Mnor
2 = ⟨u, φm(v)⟩X s

rad(Γ)
.

□

4.4.2 Duality formula in Ys(Γ)

In this paragraph we use the computations exposed in the previous paragraph in order to derive the needed
duality formula in the functional space Ys(Γ).

Before to establish the duality formula we introduce some notations. The set of index of the partition of
Γ is denoted by Γ♭ := {C ,B1,B2,I }. We then define the following differentiation operators (all depending
on α, we omit this dependency in order to simplify the notations)

∂C := (r∂r)
α, ∂B1 :=

α∑
p=0

(
α
p

)
∂1,p(x2∂2)

α−p, ∂B2 :=

α∑
p=0

(
α
p

)
(x1∂1)

p∂2,α−p and ∂I :=

α∑
p=0

(
α
p

)
∂1,p∂2,α−p.

Let u, v ∈ Ys(Γ) be given, we shall compute

⟨Au, v⟩Ys := −Itan − Inor

where we defined

Itan :=

s∑
l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
C

d∑
j=3

⟨Aj∂j(r∂r)
α∂δrlu, (r∂r)

α∂δv⟩dx+

∫
B1

d∑
j=3

⟨∂B1∂
δAj∂ju, ∂B1∂

δrlv⟩dx

+

∫
B2

d∑
j=3

⟨∂B2
Aj∂jr

lu, ∂B2
∂δrlv⟩dx+

∫
I

d∑
j=3

⟨∂I ∂
δAj∂jr

lu, ∂I ∂
δrlv⟩dx
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and

Inor :=

s∑
l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
C

2∑
j=1

⟨Aj∂j(r∂r)
α∂δrlu, (r∂r)

α∂δrlv⟩dx+

∫
B1

2∑
j=1

⟨∂B1
∂δAj∂jr

lu, ∂B1
∂δrlv⟩dx

+

∫
B2

2∑
j=1

⟨∂B2
Aj∂jr

lu, ∂B2
∂δrlv⟩dx+

∫
I

2∑
j=1

⟨∂I ∂
δAj∂jr

lu, ∂I ∂
δrlv⟩dx

Like for the duality formula in X s
rad(Γ) we treat the terms Itan and Inor separately. For Itan we can

reiterate the same computations as the ones performed in Paragraph 4.4.1, we do not have any commutator
to deal with because the Aj are constant. Indeed the operators ∂j is tangential so that the integration by
parts ⟨∂jAj∂

δu, ∂δv⟩ becomes ⟨∂δu,Aj∂j∂
δv⟩ does not see the decomposition of Γ and does not involve any

boundary term.
We thus can write

−Itan = Itan
.

We then proceed to the term involving the normal derivatives namely Inor. The computations follows
essentially the ones performed for Itan see also the ones of Paragraph 4.4.1. However we have to pay attention
to two points:

1. The first one is that because of the partition of Γ boundary terms along {x1 = 1} or {x2 = 1} will
appear when we make the integration by parts with respect to ∂j . However as we will see this boundary
terms vanish because of the definition of the operators ∂1,p and ∂2,α−p.

2. The second one is that in the proof of the boundedness of the operator Mnor
1 +Mnor

2 which relies on
the commutators of ∂1 and ∂2 with (r∂r)

α we used in a non trivial way the fact that our base Hilbert
space was defined with respect to the radial derivative to avoid the bad terms A1∂1 and A2∂2 coming
from the definition of A (see Lemma 4.7). This is not true any more because the radial derivative only
acts on C , not on the whole space.

What saves the day is that, to fix the ideas we consider the area B1, we can use the equation in order
to express the bad derivative A2∂2 = −A− A1∂1. We then treat the term involving A like in Lemma
4.6. Concerning the term involving A1∂1 this term can be controlled in B1 because the operator ∂1,p
naturally gives the control of the normal derivative ∂1.

Reiterating the same kind of computations than the ones performed for Itan (but in which we deal with
the commutators [rl, ∂j ] and [∂A, ∂j ]) we obtain that

Inor =−Mnor
1 −Mnor

2 −
∑
A∈Γ♭

Lnor
A +

∑
A∈Γ♭

s∑
l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
A

2∑
j=1

⟨∂j(Aj∂A∂
δrlu), ∂A∂

δrlv⟩dx

︸ ︷︷ ︸
:=Jnor

, (102)

Where for A ∈ Γ♭ the operator Lnor
A is defined by

Lnor
A :=

s∑
l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
A

2∑
j=1

⟨l(∂jr)∂A∂δrl−1Aju, ∂A∂
δrlv⟩dx,

and where we used the fact that for all p ∈ J0, αK we have the identity [∂1,p, ∂1] = [∂2,α−p, ∂2] = 0 in order
to obtain

Mnor
1 :=

s∑
l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
C

⟨A1[∂1, (r∂r)
α]∂δrlu, (r∂r)

α∂δrlv⟩dx (103)

+

∫
B2

⟨
α∑

p=0

∂2,α−pA1[∂1, (x1∂1)
p]∂δrlu, ∂B2∂

δrlv⟩dx,
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and

Mnor
2 :=

s∑
l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
C

⟨A2[∂2, (r∂r)
α]∂δrlu, (r∂r)

α∂δrlv⟩dx (104)

+

∫
B1

⟨
α∑

p=0

∂1,pA2[∂2, (x2∂2)
α−p]∂δrlu, ∂B1

∂δrlv⟩dx.

The commutators in (103) and (104) can be explicited like in (91).

The end of the determination of the adjoint operator is rather clear. We make the integrations by parts
in J nor and then we reiterate exactly the same computations as the ones exposed from the beginning of
this paragraph on the term Aj∂j(r∂r)

α∂δv. Let us stress that from the definition of the operators ∂1,p and
∂2,α−p the boundary terms along {x1 = 1} or {x2 = 1} appearing during the integration by parts vanish.

Indeed let us for example consider the term involving A1∂1 in Inor. We fix l , α and δ and let f := ∂δrlu
and g := ∂δrlv then we have∑

A∈Γ♭

∫
A
⟨A1∂1∂Af, ∂Ag⟩dx

=−
∑
A∈Γ♭

∫
A
⟨∂Af,A1∂1∂Ag⟩dx+ B̃1

+

∫ 1

0

∫
Rd−2

⟨A1 [(r∂r)
αf ]|x1=1 , [(r∂r)

αg]|x1=1⟩dx
′ dx2 (105)

+

∫ ∞

1

∫
Rd−2

⟨
α∑

p=0

A1

[(
α
p

)
∂2,α−p(x1∂1)

pf

]
|x1=1

,

α∑
p=0

[(
α
p

)
∂2,α−p(x1∂1)

pg

]
|x1=1

⟩dx′ dx2

−
∫ 1

0

∫
Rd−2

⟨
α∑

p=0

A1

[(
α
p

)
∂1,p(x2∂2)

α−pf

]
|x1=1

,

α∑
p=0

[(
α
p

)
∂1,p(x2∂2)

α−pg

]
|x1=1

⟩dx′ dx2

−
∫ ∞

1

∫
Rd−2

α∑
p=0

⟨A1

[(
α
p

)
∂1,p∂2,α−pf

]
|x1=1

,

α∑
p=0

[(
α
p

)
∂1,p∂2,α−pg

]
|x1=1

⟩dx′ dx2,

where B̃1 is defined bellow.

Then recall that we write (r∂r)
αf =

∑α
p=0

∑p
q=1

∑α−p
r=1

(
α
p

)
λpqλ

α−p
r xq1x

r
2∂

q
1∂

r
2f so that

[(r∂r)
αf ]|x1=1 =

α∑
p=0

p∑
q=1

α−p∑
r=1

(
α
p

)
λpqλ

α−p
r xr2(∂

q
1∂

r
2f)|x1=0

=

α∑
p=0

(
α
p

)
(x2∂2)

α−p(∂1,pf)|x1=0,

and consequently the first boundary term in the right hand side of (105) is compensated by the third one
and similarly the second term in the right hand side of (105) is compensated by the fourth one.

Consequently we end up with the duality formula

⟨Au, v⟩Y =− ⟨u,Av⟩Y + B̃1 + B̃2 +Mnor
1 +Mnor

1 +Mnor
2 +Mnor

2 +
∑
A∈Γ♭

Lnor
A (106)

where B̃1 and B̃2 stand for the boundary terms along {x1 = 0} and {x2 = 0}appearing in the integration by
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parts. They are given by for k ∈ {1, 2}:

B̃k :=−
s∑

α=0

∑
|δ|≤s−α

∫ 1

0

∫
Rd−2

⟨
[
(x3−k∂3−k)

α∂δu
]
|xk=0

,
[
(x3−k∂3−k)

α∂δv
]
|xk=0

⟩dx′ dx3−k

−
s∑

α=0

∑
|δ|≤s−α

∫ ∞

1

∫
Rd−2

⟨
[
∂3−k,α∂

δu
]
|xk=0

,
[
∂3−k,α∂

δv
]
|xk=0

⟩dx′ dx3−k.

In order to conclude we have to show the analogous of Lemmas 4.4 and 4.6 for the new Hilbert space
Ys(Γ). The proofs of Lemma 4.4 in the space Ys(Γ) follow exactly the same as the one in the space X s

rad(Γ)
so that they are omitted. Similarly the proof of the fact that the Lnor

A give rise to bilinear continuous forms
follow the same lines than Lemma 4.5.

Because on the other hand Lemma 4.6 relies on the fact that we work with the radial derivative (r∂r)
α

which is not true any more on the whole space then we give in the following its proof.

Lemma 4.8 Let Mnor
1 and Mnor

2 be defined in (103) and (104) then there exists a linear continuous operator
φ′
m : Ys(Γ) → Ys(Γ) such that we have the equality

∀ u, v ∈ Ys(Γ), Mnor
1 +Mnor

2 = ⟨u, φ′
mv⟩Ys(Γ).

The analogous result holds for Mnor

1 +Mnor

2 .

Proof of Lemma 4.8 We have

Mnor
1 +Mnor

2 =

s∑
l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
C

⟨(A1[∂1, (r∂r)
α] +A2 [∂2, (r∂r)

α] ∂δrlu, (r∂r)
α∂δrlv⟩dx (107)

+

∫
B2

α∑
p=0

⟨∂2,α−pA1 [∂1, (x1∂1)
p] ∂δrlu, ∂B2

∂δrlv⟩dx

+

∫
B1

α∑
p=0

⟨∂1,pA2

[
∂2, (x2∂2)

α−p
]
∂δrlu, ∂B1∂

δrlv⟩dx.

For the first term in the right hand side of (107) we have radial derivatives so that we can proceed exactly
like in Paragraph 4.4.1 (see Lemma 4.6) we thus obtain the bound∣∣∣∣∣∣

s∑
l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
C

⟨(A1[∂1, (r∂r)
α] +A2 [∂2, (r∂r)

α] ∂δrlu, (r∂r)
α∂δrlv⟩dx

∣∣∣∣∣∣ ≤ Cs∥u∥Ys(Γ) × ∥v∥Ys(Γ). (108)

To conclude we shall then establish such bounds for the others terms in the right hand side of (107). In the
following we give the bound for the term defined on B2, the analysis is the same for the one defined on B1.
We explicit [∂1, (x1∂1)

p] =
∑p

q=1 λ
p
qx

q−1
1 ∂q1 so that using the definition of A we have

α∑
p=0

∂2,α−pA1 [∂1, (x1∂1)
p] ∂δrlu =−

α∑
p=1

p−1∑
q=0

(q + 1)∂2,α−pλ
p
q+1x

q
1∂

q
1A∂

δ

︸ ︷︷ ︸
:=Nα

A

rlu

−
α∑

p=1

p−1∑
q=0

(q + 1)∂2,α−pλ
p
q+1x

q
1∂

q
1A2∂2∂

δ

︸ ︷︷ ︸
:=Nα

A2

rlu,
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so that we are leading to consider the terms NA and NA2 separately. By Cauchy-Schwarz inequality and the
triangle inequality we have

∣∣∣ s∑
l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
B2

⟨
α∑

p=0

∂2,α−p [∂1, (x1∂1)
p]A1∂

δrlu, ∂B2
∂δrlv⟩dx

∣∣∣
≤C

 s∑
l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
B2

∣∣Nα
Arlu

∣∣2 dx

1/2

× ∥v∥Ys(Γ)

+ C

 s∑
l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
B2

∣∣Nα
A2

rlu
∣∣2 dx

1/2

× ∥v∥Ys(Γ),

and to conclude we just have to study the numbers of derivatives in Nα
A2

and in Nα
A . For convenience we

recall that by definition of the base space Ys(Γ) in the area B2 we can take normal derivatives ∂2 and
tangential derivatives (x1∂1) of ∂

δu. Using the definition of ∂2,α−p we have

|Nα
A2

rlu| ≤Cs,A

(
α∑

p=1

∣∣∣∣∣
p−1∑
q=1

α−p∑
r=1

xq1∂
q
1∂

r+1
2 ∂δrlu

∣∣∣∣∣+
α∑

p=1

α−p∑
r=1

|∂r+1
2 ∂δrlu|

)

≤Cs

(
α∑

p=1

(x1∂1)
p−1

∣∣∣∣∣
α−p∑
r=1

∂r+1
2 ∂δrlu

∣∣∣∣∣+
α−1∑
p=0

∣∣∂2,α−p∂
δrlu

∣∣)

≤Cs

(
α−1∑
p=0

|(x1∂1)p∂2,α−p∂
δrlu|+

α−1∑
p=0

∣∣∂2,α−p∂
δrlu

∣∣) ,
so that we obtain the desired bound (the second term in the right hand side being bounded inductively)

s∑
l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
B2

∣∣Nα
A2

rlu
∣∣2 dx ≤ Cs∥u∥2Ys(Γ). (109)

To conclude we reiterate the same computations for the term Nα
A (without the normal derivative ∂2) we

obtain

|Nα
Arlu| ≤ Cs

(
α−1∑
p=0

|(x1∂1)p∂2,α−1−pA∂
δrlu|+

α∑
p=1

∣∣∂2,α−pA∂
δrlu

∣∣) , (110)

in which we remark that each operator of differentiation in the right hand side in now of order α − 1. We
conclude by introducing like in Paragraph 4.4.1 the subspace Z of D(Γ) by(

Z := {u ∈ D(Γ) \A1∂1 +A2∂2)u = 0} .

For u ∈ Z, A adds one derivative with respect to ∂δ and on zero order term. Because the operators in the
right hand side of (110) are of order α− 1 we have the desired estimate that for all u ∈ Z

s∑
l=0

s−l∑
α=0

∑
|δ|≤s−α

∫
B2

∣∣Nα
Arlu

∣∣2 dx ≤ ∥u∥2Ys(Γ), (111)

estimate that can be extended to the whole space Ys(Γ) thanks to Hahn-Banach Theorem. So that from
(107)-(109) and (111) the form Mnor

1 +Mnor
2 is bilinear continuous on Ys(Γ)×Ys(Γ). Riesz representation

theorem then concludes the proof.

□
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5 Applications

In this section we give some examples of physical interest for which Assumption 2.2 about the spectrum of
the corner matrix A−1

1 A2 is satisfied. We borrow some of the examples of [Huang and Temam, 2014]. The
list exposed here being probably far to be exhaustive.

5.1 The wave example

In the following we consider the 2d-wave equation

∂2t u− (∂21 + ∂22)u = f for (t, x) ∈ R× R2
+.

It is well-known that this scalar second order partial differential equation can be written in the following
first order system of partial differential equation

∂tU +A1∂1U + ∂2U = f̃ in Ω,

B1U|x1=0 = g̃1 on ∂Ω1,

B2U|x2=0 = g̃2 on ∂Ω2,

U|t=0 = ũ0 on Γ,

(112)

for suitable boundary matrices B1, B2 ∈ M1×2(R) so that it is a simple exercise to determine the boundary
matrices giving rise to strictly dissipative boundary conditions.

In (112) the coefficients A1, A2 are given by

A1 :=

[
1 0
0 −1

]
, A2 :=

[
0 1
1 0

]
.

We thus have

A−1
1 A2 =

[
0 1
−1 0

]
,

which clearly has ±i as eigenvalues so that Assumption 2.2 is satisfied.

5.2 Inviscid shallow water equation

The inviscid shallow water equation (SWE) in two dimensions reads after linearisation around the constant
state (u0, v0, ϕ0) ∈ R2 × R+, u0, v0 ̸= 0 in the form

∂tU +A1∂1U +A2∂2U + CU = 0, (113)

where U := (u, v, ϕ)T is the vector encoding the velocity (u, v) ∈ R2 and the height of the fluid ϕ ∈ R+ and
where the coefficients A1 A2 and C are explicitly given by

A1 :=

u0 0 g
0 u0 0
ϕ0 0 u0

 , A2 :=

v0 0 0
0 v0 g
0 ϕ0 v0

 and C :=

0 −f 0
f 0 0
0 0 0

 ,
where f stands for the Coriolis parameter and where g > 0 is the gravitational acceleration. In the following
we assume that u20 ̸= gϕ0, v

2
0 ̸= gϕ0 and u20 + v20 ̸= gϕ0 so that in particular the matrices A1 and A2 are

invertible.
Moreover it is easy to see that their eigenvalues are respectively given by λ1,0 = u0, λ1,± = u0±

√
u20 + gϕ0

and λ2,0 = v0, λ2,± = v0 ±
√
v20 + gϕ0, so that independently on the sign of u0 and v0, A1 and A2 have at

least one positive eigenvalue so that there is non trivial boundary conditions to be imposed in addition to
the partial differential equation (113).

We now discuss Assumption 2.2. We consider λ ∈ C an eigenvalue of A−1
1 A2 it is characterized by

det(A2 − λA1) = 0 ⇔(v0 − λu0) ·
[
(u20 − ϕ0g)λ

2 − 2u0v0λ+ v20 − ϕ0g
]
= 0,

⇔(v0 − λu0)P (λ) = 0
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showing that v0
u0

is a (real) eigenvalue of A−1
1 A2. So that in order that Assumption 2.2 holds we assume

that u0 and v0 have opposite sign. As a consequence the fluid of linearisation can be incoming/outgoing or
outgoing/incoming, in order that Assumption 2.2 holds.

To conclude the study of Assumption 2.2 we investigate the roots of P . Its discriminant ∆ = 4ϕ0g(u
2
0 +

v20 − gϕ0) so that if |(u0, v0)|2 < gϕ0 the roots of P have non trivial imaginary part and thus Assumption
2.2 applies.

If |(u0, v0)|2 ≥ gϕ0, the roots of P are real and they are given by

λ− :=
u0v0 −

√
ϕ0g(u20 + v20 − ϕ0g)

u20 + ϕ0g
< 0 and λ+ :=

u0v0 +
√
ϕ0g(u20 + v20 − ϕ0g)

u20 + ϕ0g
,

equation in which we see that λ+ < 0 if and only if u20v
2
0 > ϕ0g(u

2
0 + v20 − ϕ0g). So that Assumption 2.2 can

be satisfied even if |(u0, v0)|2 ≥ gϕ0.

So that to apply Corollary 2.1 or Theorem 2.3 then assuming that the boundary conditions are strictly
dissipative only the symmetry assumption of the coefficients is missing. Equation (113) is of course not
symmetric but it is Friedrichs symmetrizable. Indeed if we introduce the diagonal matrix

S :=

1 0 0
0 1 0
0 0 g

ϕ0

 > 0,

and the change of unknown V := S1/2U then we recover the equation

∂tV + Ã1∂1V + Ã2∂2V + C̃V = 0, (114)

where

Ã1 := S1/2A1S
−1/2 =

 u0 0
√
gϕ0

0 u0 0√
gϕ0 0 u0

 and Ã2 := S1/2A2S
−1/2 =

v0 0 0
0 v0

√
gϕ0

0
√
gϕ0 v0

 (115)

are now symmetric. Of course because of its special form Assumption 2.2 on A−1
1 A2 is equivalent to the one

on Ã−1
1 Ã2 so that Corollary 2.1 and Theorem 2.3 apply to (114).

5.3 Euler equation

In this paragraph we consider the 2d-Euler equation

for (t, x) ∈ R× R2
+,


∂tρ+ u · ∇ρ+ ρ∇ · u = 0,

∂tu+ (u · ∇)u+ ρ−1∇p = 0,

∂te+ u · ∇e+ ρ−1p∇ · u = 0,

(116)

where ρ ∈ R+ stands for the density of the fluid, u := (u, v) ∈ R2 denotes the velocity and where e ∈ R+

stands for the internal energy. In (116) we close the system by imposing the pressure law p = p(ρ, e). After
linearisation around the constant state (u0, v0, ρ0, e0), we use the notation u0 := (u0, v0) with u0, v0 ̸= 0,
Euler equation reads under the form

∂tU +A1∂1U + ∂2U = 0, for (t, x) ∈ R× R2
+

where U := (u, v, ρ, e)T and where the coefficients are given by

A1 :=


u0 0 1

ρ0
∂ρp0

1
ρ0
∂ep0

0 u0 0 0
ρ0 0 u0 0
1
ρ0
p0 0 0 u0

 and A2 :=


v0 0 0 0
0 v0

1
ρ0
∂ρp0

1
ρ0
∂ep0

0 ρ0 v0 0
0 1

ρ0
p0 0 v0

 ,
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where we introduce the notations p0 := p(ρ0, e0), ∂ρp0 := (∂ρp)(p0, e0) and ∂ep0 := (∂ep)(p0, e0). For later
purpose, assuming that the system (116) is hyperbolic so that we have ∂ρp0+

1
ρ2
0
p0∂ep0 ≥ 0, we also introduce

the local speed of sound c :=
√
∂ρp0 +

1
ρ2
0
p0∂ep0.

The eigenvalues λ1 of A1 and λ2 of A2 are given by

λ1,0 = u0, λ2,0 := v0 and λ1,± = u0 ± c, λ2,± = v0 ± c.

So that to ensure that both A1 and A2 have at least one positive eigenvalue and not four we impose that if
u0 < 0 (resp. v0 < 0) then −u0 < c (resp. −v0 < c) and if u0 > 0 (resp. v0 > 0) then u0 < c and v0 < c.

We now turn to a discussion about Assumption 2.2. We have the following characterization of the
eigenvalues of A−1

1 A2

det(A−1
1 A2 − λI) = 0 ⇔(v0 − λu0)

2 ·
[
(u20 − c2)λ2 − 2u0v0λ+ v20 − c2

]
= 0

⇔(v0 − λu0)
2P (λ) = 0.

Consequently λ := v0
u0

is a real eigenvalue of multiplicity two so that in order that Assumption 2.2 holds
we assume that u0 and v0 have opposite sign. The fluid of linearisation is thus outgoing/incoming or
incoming/outgoing.

To fix the ideas we assume that u0 < 0 while v0 > 0. We conclude the discussion by considering the roots
of P . Its discriminant is given by ∆ := 4c2(u20 + v20 − c2). So that if |u0| < c meaning that the reference
state is subsonic then the roots of P have non trivial imaginary part and Assumption 2.2 holds.

Conversely if the fluid is supersonic meaning that |u0| > c then the roots of P are given by

λ− :=
u0v0 − c

√
|u0|2 − c2

u20 − c2
and λ+ :=

u0v0 + c
√
|u0|2 − c2

u20 − c2
,

and we remark that because we imposed −u0 < c then λ− > 0 independently on the value of u0 so that
Assumption 2.2 fails.

We can not apply directly the results of the article to (116) because of the lack of symmetry of the
coefficients. However it is well-known that Euler equations are Friedrichs symmetrizable. Indeed following
for example [[Benzoni-Gavage, 2007]-Paragraph 13.2.3] in the independent set of variables (p,u, s) where s
stands for an entropy we can write (116) under the form

S(∂t + Ã1∂1 + Ã2∂2)

pu
s

 = 0,

where the matrices S is definite positive and where the matrices SÃ1 are symmetric. Our analysis can be
extended mutatis mutandis to systems with a definite positive matrix S in front of the ∂t. Once again because
Assumption 2.2 for A−1

1 A2 is equivalent to the one on Ã−1
1 Ã2 Theorems 2.1 or 2.3 can be apply to Euler

equations if the boundary conditions are strictly dissipative for instance. We refer to [[Benzoni-Gavage, 2007]-
Paragraph 14.2] for a discussion about the dissipative boundary conditions for Euler equation.

6 Comments, conclusion and prospects

In this article we give several results (namely Theorems 2.1 and 2.2 and 2.3) establishing a persistence
of regularity result for hyperbolic boundary value problems defined in the quarter space. The first one,
Theorem 2.1, deals with the pure boundary value problem (2) and gives a sharp result in terms of persistence
of regularity because the space in which we control the solution is the same as the one of the data of the
problem.

The second one, Theorem 2.3 applies to the initial boundary value problem (1). On the one hand, it
is really satisfactory because it applies to the natural space Hs(Γ) but one the other hand because away
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from the corner we can not totally decouple the derivatives using the trick consisting in expressing these
derivatives in terms of the radial and angular derivatives then Theorem 2.3 comes with a somewhat loss of
regularity which will be studied in a future contribution. More precisely we will show that up to pay some
extra tangential derivatives (in the spirit of [Guès, 1993]-[Secchi, 1996]) we can control the normal derivatives
∂1u and ∂2u in the whole space.

In order to simplify as much as possible the exposition we choose to work in this article with constant
coefficients establishing the analogous of Theorems 2.1 or 2.3 for variable coefficients is a required step if one
wants to deal with quasilinear problems. However let us point that in some case the analysis of this article
can be easily extend to variable coefficients.

Indeed let us assume that the coefficients Aj only depend on the tangential space variable x′. Then the
previous analysis applies if we take care to the two following points

� The first one is the establishment of the a priori energy estimate of Section 3. But a careful reading
of the proof show that imposing such variable coefficients will only influence the proof when one uses
the energy estimates to recover the control of the tangential derivatives ∂ju, j ∈ T and of the radial
derivatives (r∂r)

α. In both cases x′-variable coefficients only add a commutator in these estimates
which is a zero order term so that it can be easily controlled, assuming that γ is large enough.

� The second one is in the establishement of the duality formulas of Paragraph 4.4. The proofs being
unchanged except that we have to deal with some extra commutators. For example when we deal with
the commutator

[
∂δ, Aj∂j

]
then the bilinear form

J (u, v) :=

s∑
l=0

s−l∑
α=0

∑
|δ|≤s−α

∫ d∑
j=3

⟨(r∂r)αrl
∑
β≤δ

(
δ
β

)
∂j(∂

δ−βAj∂
βu), (r∂r)

α∂δrlv⟩dx,

will appear in the duality formula. However it is not difficult to show that like Lnor this bilinear form
is continuous so that it will only contribute in the duality formula to the operator Φ and the remaining
of the analysis is unchanged.

The same modifications can also be performed to deal with variable coefficients with respect to time except
that at present time we can only deal with the pure boundary value problem (2). Indeed the establishment
of the duality formula in X s

rad,γ(Ω) can be performed even if we have a dependency with respect to t. In the
author’s knowledge it is the first example of well-posedness for time depending coefficients boundary value
problems in corner domains.

Similarly the proof of the duality formula Ys(Γ) does not see such a dependence. However the point
explaining that we can not deal with time variable coefficient for the initial boundary value problem (1)
is that the domain of the operators D(A) now depend on t so that a precise analysis shall be performed.
We however have good reasons to believe that some existing results in the litterature (like for example the
well-known [Kato, 1956]) can be used to deal with such time depending coefficients.

Establish the analogous of Theorems 2.1 and 2.3 with coefficients depending on the normal variables x1
or x2 seems to be however more delicate than the dependency with respect to (t, x′). Indeed,

� The derivation of the a priori energy estimate and more precisely the decoupling of the derivatives
using the radial and the angular derivatives is a little more delicate because in the expression of the
angular derivatives the matrices M and A now depends on x1 and x2 giving rising to a lot of extra
terms.

� The second point is in the establishment of the duality formulas. When the Aj depend on x1 and x2
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then when we have to deal with the commutator [(r∂r)
α, Aj ] then the following bilinear forms appear:

J tan
2 :=

s∑
l=0

s−l∑
α=0

∑
|δ|≤s−α∫

Γ

d∑
j=1

⟨
α∑

p=0

p∑
q=1

α−p∑
r=1

q−1∑
t=0

r−1∑
k=0

(
q
t

)(
r
k

)(
α
p

)
λpqλ

α−p
r xq1x

r
2∂j
[
(∂q−t

1 ∂r−k
2 Aj)∂

t
1∂

k
2 r

l∂δu
]
, (r∂r)

α∂δrlv⟩dx

J tan
3 :=

s∑
l=0

s−l∑
α=0

∑
|δ|≤s−α∫

Γ

d∑
j=1

⟨
α∑

p=0

p∑
q=1

α−p∑
r=1

q−1∑
t=0

(
q
t

)(
α
p

)
λpqλ

α−p
r xq1x

r
2∂j
[
(∂q−t

1 Aj)∂
t
1∂

r
2r

l∂δu
]
, (r∂r)

α∂δrlv⟩dx

J tan
4 :=

s∑
l=0

s−l∑
α=0

∑
|δ|≤s−α∫

Γ

d∑
j=1

⟨
α∑

p=0

p∑
q=1

α−p∑
r=1

r−1∑
k=0

(
r
k

)(
α
p

)
λpqλ

α−p
r xq1x

r
2∂j
[
(∂r−k

2 Aj)∂
q
1∂

k
2 r

l∂δu
]
, (r∂r)

α∂δrlv⟩dx.

Contrary to the other commutators like Lnor it seems delicate to show that these terms give rise
to continuous bilinear forms. One assumption that may help is to assume that the coefficients are
constants outside some compact set of R2

+ × Rd−2 so that one can recover the same index on xq1 and
on ∂t1 in the previous formulas. However the main difficulty is then that one have to control the
uncorrelated derivatives (x1∂1)

q(x2∂2)
ru in terms of (r∂r)

α which only gives a control of the sum of
the correlated derivatives (x1∂1)

p(x2∂2)
α−pu for p ∈ J0, αK.

Consequently showing the analogous of Theorems 2.1 and 2.3 for normal variable coefficients os left for future
studies.

Finally we would like to discuss some prospects about the use of Sobolev embedding in order to recover
from our persistence of regularity results the L∞ norm of the solution u. As already mentioned before the
persistence of regularity result Theorem 2.1 because it gives a decorrelation of the derivatives in the full
space and not only near the corner like Theorem 2.3 shall be more convenient for this purpose.

Because we have in particular a full control of the tangential derivatives (x1∂1)
α(x2∂2)

β , α+ β ≤ s then
we are not really far to an Hs estimate. Indeed following the result of [Guès, 1993] or [Secchi, 1996] for
example to recover the control of ∂1u then it is sufficient to control (x1∂1)∂1u that is to say a control of the
mixed tangential/normal derivative.

Because as already pointed our problem has a large similarity with characteristic boundary velur prob-
lems, we have reasons to believe that the analysis of [Guès, 1993] and [Secchi, 1996] can be used. However
one key point in these analysis is that to initialize the proof they use that some part of the normal derivative
∂1u

I can be estimated for free (more precisely uI stands for the part of the solution lying in the space on
whoch A1 is invertible). The control of the full normal derivative ∂1u is then recover via the control of the
tangential ones.

In our problem we can of course invert A1 on the whole space but we only have then that ∂1u depends on
A−1

1 A2∂2u which is not known to be L2. So that if one wants to use the analysis of characteristic boundary
value problems then one shall find a subspace on which we can infer that both ∂1u

I and ∂2u
I are in L2.

This point is also left for future studies.
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