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Abstract

This article is about the question of the persistence of regularity for the solution to hyperbolic
boundary value in the quarter-space. More precisely we will both consider the pure boundary value
problem and the initial boundary value problem and we propose a functional space, based upon the high
order Sobolev space in which a control of the data of the problem leads to a control of the solution (in
the same space). The space proposed here contains the tangential Sobolev space. The analysis borrows
some ideas of the study of characteristic boundary value problems in the half-space for which the good
derivative to consider is known to be the tangential derivative z10: instead of the normal derivative
01. For quarter-space problems the good quantity to consider will be the radial derivative x101 + 2202
and then we recover the control of tangential derivative x191 and x202 using explicit formulas in polar
coordinates. The regularity of the solution is then established intrinsically by adapting the method
introduced by the author to deal with half-space problems without using regularization methods.
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1 Introduction

We are interested in the well-posedness in high order Sobolev spaces of hyperbolic initial boundary value
problems defined in a quadrant. For N € N*, d > 2 we consider the following system of partial differential
equations:

L(O)u := dyu + A101u + A0ru + Z?:?) Aj0ju=f in (t,z1,20,2") € [0,00[ x R x R9~2,

Bz, —0 = g1 for (t,z2,2") € [0,00[ x Ry x RI~2 )
Baujy,—0 = 92 for (t,x1,2') € [0,00[R x Ry x RI72,
Ujg=0 = Up for (z1,20,2") € R2 x R172,

where the interior coefficients A; € My n(R) are given matrices and where the boundary matrices By €
M,, xnv(R), B2 € M,,,xn(R) are also given and encode generic boundary conditions (the number of lines in
the boundary conditions namely p; and ps, that is the number of required boundary conditions on each side
of the quarter space, namely the number of positive eigenvalues of A; and A, respectively. In order that we
have true boundary value problems we will assume in the following that 0 < p1,ps < N.

In this article we will also consider the pure boundary value problem associated to that is to say the
same problem but defined on the whole time line R.

L(O)u=f in (t,x1,22,7") € R x R x R472,
Biujg,—o = g1 for (t,z3,2') € R x Ry x R472, (2)
Boujy,—0 = g2 for (t,x1,2") € R x Ry x R¥72,

The aim of this article is to give some results about the persistence of the regularity for the solution to
the problems and . More precisely the question can crudely be reformulated as: ”if the sources of the
problem have some regularity then what about the solution ?”.

Before to give an exposition of the main results of the article. Let us have a brief state of art about
hyperbolic boundary value problems in domain with corners.



It is fair to say that such problems have a rather long history because they appear in the 60/70s in
the literature in the articles of Sarason [Sarason, 1962, Osher [Osher, 1973]-[Osher, 1974] and also in the
work of Sarason and Smoller [Sarason and Smoller, 7475] about geometric optics expansions. But such
problems have then been in somewhat a little forgotten until the recent works of Huang and Temam
[Huang and Temam, 2014], Huang [Huang, 2015], Halpern and Rauch [Halpern and Rauch, 2017], Métivier
and Rauch [Métivier and Rauch, 2017] and the author [Benoit, 2015].

Before to describe a little more the above results let us insist on the fact that even if it is a rather old
problem then very a little is known about the strong well-posedness of hyperbolic boundary value problems
in domain with corners. And thus even in the case of non regular (meaning only L?) solutions.

Indeed compared to the more classical geometry of the half-space for which a complete characterization
(the so-called Kreiss-Lopatinskii condition) of the boundary matrices leading to strong well-posedness has
been achieved by Kreiss [Kreiss, 1970], then in the corner geometry such a result is far to be well-understood
and seems to be a rather long range question.

The most significant work for such a full characterization comes from the work of Osher [Osher, 1973] in
which, by adapting the construction of a Kreiss type symmetrizor, the author achieves to show an a priori
energy estimate but with a non explicit number of losses of derivatives so that it is far to be sufficient to es-
tablish a L?-strong well-posedness theory. Moreover in this work the existence of a solution is not considered.

However on the one hand, some of the more recent articles are in a somewhat more optimistic. Let us
briefly described the results of these works:

e In [Huang and Temam, 2014]-[Huang, 2015] the authors consider the problem in a square (so that there
are four boundary conditions) and show by using Hile-Yossida theorem that for some suitable boundary
conditions the problem is strongly well-posed in L?. However in these contributions the author do not
try to have a whole characterizations of the boundary conditions leading to L2-strong well-posedness.

e In [Halpern and Rauch, 2017] the authors consider three dimensional corners and they show that for
the particular class of maximal dissipative boundary conditions (see Definition ) then we have a good
L? well-posedness theory. The method used is elliptic regularization which requires in particular that
the number of conditions on each side of the boundary are equal (meaning p; = p2). Assumption that
we will not do in this contribution.

e In [Benoit, 2015|, the author uses the strong=weak lemma of [Sarason, 1962] in order to show that
under a structural assumption on the matrix A; ' Ay (referred as Sarason matrix in the following) for
two dimensional corners we have a good L2-well-posedness theory at least when the boundary condition
are dissipative.

On the other hand the recent work [Métivier and Rauch, 2017] is not so optimistic because it shows that if
Sarason matrix admits a non trivial Jordan block then we can have non uniqueness of the solution although
the problem is linear... The idea os such a counterexample to uniqueness is to give two solutions the first
one having L? traces while the second one has not. Consequently in this article in order to avoid such
pathological behaviour we will work with L? traces.

In this article we essentially propose two theorems establishing the persistence of the regularity of the
solution to and separately. The results differ however a little.

Indeed the result for the pure boundary value problem assumes that we have a good L2-well-posedness
theory and then gives a persistence of regularity result in some functional space that will be described below.
In particular from the result of [Benoit, 2015] when the boundary condition are dissipative then we have
such a L2-well-posed condition but because we do not require in the proof the boundary conditions to
be dissipative this method may apply to more generic boundary conditions. Let us stress that in such a
framework the functional space S (even if this space is not so user-friendly) encoding the regularity of the
solution is the same than the one encoding the regularity of the data. As a consequence we do not have any
loss of regularity and we have a sharp persistence of regularity result.

While the result for the initial boundary value problem do not require any L2-well posedness assump-
tion, in particular it shows that the problem is automatically L2-well posed. But to operate the method



has to be restricted to dissipative boundary conditions. We propose here two results of persistence of reg-
ularity. The first one is a result where both the data and the solution are in ., however because .7 is
essentially a tangential Sobolev space it is not very well-adaptated for initial datum. This result thus needs
some well-preparedness of the initial datum in order to compensate. The second result holds for an initial
boundary value problem with datum in, the user-friendly, space H*® but the solution will only be in some
kind of conormal Sobolev space so that wa have somehow losses of regularity.

One of the principal interest of such persistence of regularity results is that, apart from the fact that
it is a really satisfactory result, it is often a first step to treat non linear problems. Indeed to treat non
linear problems then at some point an L° norm is required and such a bound is often obtain by Sobolev
embeddings of the high order Sobolev space H*.

Let us indicate that for elliptic partial differential equations, in domain with corners then the elliptic reg-
ularization phenomenon is known to be less good with corners than without. wWe refer to the full exposition
of [Grisvard, 1985]. For hyperbolic problems for which, of course, no regularization, occurs one may think
that the analogous phenomenon holds and thus gives rise to a loss of regularity which can be rather deli-
cate to handle with for non linear problems. Our main results however show that such a loss does not appear.

In this article we will not obtain a persistence of regularity in the usual Sobolev space H? so that such an
L embedding is not immediate. But we have results in some weighted tangential Sobolev space (without
giving a precise description see Paragraph [2:3.1] let us say that this space is generated by z10; and z20;
instead of 97 and 02) for the pure boundary value problem and in some conormal Sobolev space (we refer
to Paragraph for a precise definition) for the initial boundary value problem .

The establishement of such persistence of regularity result in H®, using two tangential derivatives to con-
trol one normal derivatives like in [Gueés, 1993] or [Secchi, 1996] will be given in a forthcoming publication.

Let us explain why these tangential derivatives x10; and z202 naturally come into play. Such operators
of derivation naturally appear for characteristic, meaning that the boundary A; is singular, boundary value
problems in the half-space and thus they also appear for corner problem because in some sense they are
characteristic problems.

To be more precise on this claim we consider the half-space problem
LOu=f inRy xR, x R~ 3)

Bujy,—0 =g on Ry x RA-1,

for which we assume that we have a L? good well-posedness theory. Then the classical method to derive the
regularity of the solution to non characteristic problems if the sources f and g are regular (let us say H!) is
to mollify the equation with respect to the tangential variables (¢,2') and then to use the explicit equation
in the interior

d
du= Ay (f — -y Ajaju), (4)
j=2

to recover the whole regularity H'.

Of course for characteristic problems such a method fails because we do not have this explicit equation any
more. To overcome this difficulty the classical way (we refer to [Rauch, 1985]-|Gues, 1993] or [Secchi, 1996])
is to consider the tangential derivative x10; instead of 0;. Indeed it satisfies

{L(a)zlalu =101 f +Au=x101f + (f — Opu — Z?:2 Ajaju) )
B(xlﬁlu)m:o =0,

where the source term in the interior equation only involves the source and tangential derivatives of u so
that the L? well posedness theory applies.

The common point of hyperbolic boundary value problem with corners and characteristic problems is
the lack of the explicit formula . Indeed for corner problem one can not mollify with respect to the two



normal variables 21 and x5 without changing the traces. We can only mollify with respect to (¢,2’) so that
the equation in the interior only gives that A;0;u + Asdru € L? which is far to be sufficient to recover that
O1u and Opu are in L2.

Moreover a new difficulty proper to corner problem is that because there are ”too many” normal direc-
tions the usual proofs for the half-space for establishing the existence of a regular solution which rely on
a full mollification in the tangential variables fail. So one needs to obtain the existence of a solution in a
more intrinsic way. To do so we will adapt the recent result of [Benoit, | form the half-space to the quarter
space. Before to describe a little more these method to obtain regular solution without regularization let us
conclude with the link between characteristic and corner problems.

Once we have understood the similarities between characteristic problems and corner problems. Then
the whole sketch of proof starts to be clear. If one considers the tangential derivative x10;u then it solves

L@)w10ru =101 f + (f = O = 5, A05u — Asdpu)
Bl(l‘lalu)‘m:o = 0, (5)
Bg(l'lalu)‘wzzo = xlalgz,

and the method fails because of the last term in the right hand side of the interior equation of . But if
one considers instead the radial derivative rd, = 2107 + 202 then it solves

L(O)royu = o f + (f — 0w — Z?:s Ajaj“) ,
Bl (I'aru)kmzo = 11728291, (6)
Ba(rdpt)|p,—0 = 10192,

so that the source in the interior equation of @ is now L? and the well-posedness applies exactly like for
characteristic problems to give that rd.u € L2.

Then to recover from this fact that each z10;u and z20-u are in L? we get a full use of polar coordinates.
Indeed in polar coordinates (r,d) the equation essentially reads

o (0)09t = f + M (0)rd, 1, (7)

where &7 (0) and .#(0) are explicit matrices. Assuming that </ (6) is invertible which is the case under a
variation on Sarason hypothesis for well-posedness (see [Sarason, 1962]) then (7)) gives an explicit formula
for the angular derivative 0y = —x90; + x202 and plays the role of for non characteristics problems.

Once we have the control of the angular derivative dypu and of the radial derivative rd, then one can
recover a control of x101u and z20, separately and this essentially ends up the establishment of an a prior:
energy estimate for the pure boundary value problem in domain with a corner.

In order to conclude for the pure boundary value problem we have to construct a regular solution. As
already mentioned we here need to use a new analysis compared to the half-space geometry because in the
quarter space one can not regularize the solution with respect to x; or xo. The construction of a regular
solution without this regularization method is made by a rather straightforward modification of the duality
method of Lax-Phillips [Lax and Phillips, 1960] from the space L? to some regular space containing the
regularity of the radial derivative (rd,)*u. And then in a second time we show that the constructed solution
in fact lies in the target space 7. The ideas of the duality method are rather classical and are recalled in

Paragraph

For the initial boundary value problem, following an idea of [[Benzoni-Gavage, 2007]-Chapter 3] already
used in [Benoit, |, the construction is made directly by considering like the pure evolution problem

%u:Au for t > 0,
Up=g = ug on T,



and use Lumer-Phillips Theorem. In order to do so we need to show that both A and A* are (quasi)dissipative.
This can be done if the boundary conditions in (which are hidden in the domain of definition of A) are
maximal dissipative and if moreover the base Hilbert space used in the definition of D(A) is chosen in such
a way that we have an essentially skew-adjoint operator operator meaning that A* = —A + &' where @’
stands for some linear continuous operator.

The paper is organized as follows, Section [2| contains some definitions and states the main results in
Paragraph namely Theorems and Because Theorem requires the fact that the corner
problem is L? well-posed, this assumption is discussed at the end of Section [2|in Paragraph using a result
of [Benoit, 2015] whose (unpublished) proof is given for the sake of completeness.

The proof of Theorem is divided in two parts. The first one deals with an a priori energy estimate
which is demonstrated in Section [3| and then the second one deals with the regularity of the solution it is
given in Section [d] more precisely in Paragraph

The proof of Theorem [2.2] and [2.3] are more straightforward because they only relies on the construction
to a regular solution, the energy estimate being a consequence of the construction and are given in Paragraph
4.2l

Both of the regularity results of the solution are shown assuming that we have some required duality
formula, stated in Paragraph [{.1.2] and whose proofs are postponed to Paragraph [£.4]

Section [5] contains some examples of physical interest. At last Section [6] gives a conclusion and draws
some prospects about boundary value problems in corner domains.

2 Assumptions, notations and main result

2.1 Notations and definitions
2.1.1 Notations

In this paragraph we introduce some notations, definitions and we recall some rather well-known facts for
hyperbolic boundary value problems.

Firstly we introduce the following sets
Q=R xRy, 1) XREZ, 00 1= Ry xRy 4, xRE? ~ Ry xRy o, xRE? := 90 and T':=RY |

d—2
(z1,72) XRJK' :
We also define

Oy =Ry 4y x REZ Ry, x RE2 = 0Ty,
For a, b € R the notations [a, b] stands for the set of integers between a and b. That is to say [a,b] =
[a,b] N Z.
Throughout the article the notations C'4 stands for a positive constant depending on the parameter(s)
A. This constant may be modify from one line to the other without any change of notation.

For a functional space X, the dependency X, implies that the integrations in the definition of X, depend
on the time variable, the notation X without v means that these integrations do not depend on t.

In all the article for a multi-index ¢, the differentiation operator 9° will stands for the tangential differen-
tiation operator. This operator can change (but for simplicity of the notations will keep the same notation)
depending on if we are considering a subspace of I' or a subspace of ). More precisely we have the two
alternatives

e If we are working on I' then 6 := (3, ...,64) € N9=2 and 9° := 833 e 82(1.
e If we are working on € then & := (8o, 93, ..., 0q) € N**9=2 and 3% := 8f°6§3 e 83"’.

We hope that this common notation will not create any confusion.

For p,q € N* and a matrix A € M, «,(R) the notation AT stands for the transpose of A.



2.1.2 Definitions
We introduce the following definitions for hyperbolic boundary value problems

Definition 2.1 (Symmetric operator) We say that the operator L(9) is symmetric if for all j € [1,d]
we have AJT = Aj.

Definition 2.2 (Non characteristic boundary) For j = 1,2 we say that the boundary 0$; is non char-
acteristic for the operator L(0) if det A; # 0. Let p1; be the number of positive eigenvalues of A; then p; the
number of lines of B; satisfies p; = ;.

In the following we will also frequently considered the following particular type of boundary conditions,
already mentioned in the introduction, namely dissipative boundary conditions. In the half-space geometry
these boundary conditions are known to not be the most generic ones for which the strong well-posedness
of the boundary value problem occurs (these boundary conditions are characterized by the so-called uni-
form Kreiss-Lopatinskii condition [Kreiss, 1970]). But they have the advantage to be easily algebraically
determinable conditions for which we have strong well-posedness (for such well-posedness result we refer for
example to [[Benzoni-Gavage, 2007]-Chapter 3]). These particular boundary conditions are also commonly
used when one deals with non linear problems see for instance [Gues, 1993] of [Secchi, 1996].

Definition 2.3 (Maximal dissipative boundary condition) For j = 1,2, we say that the boundary
condition Bj is mazimal dissipative if the following properties are satisfied

o Vu € ker B;, we have (Aju,u) < 0.
e ker B is not a proper subspace of some linear subspace on which A; is non-positive.

Definition 2.4 (Strictly dissipative boundary condition) For j = 1,2, we say that the boundary con-
dition is strictly dissipative if we have

o Vu € kerB;, u#0, (4;u,u) <O0.
e ker B is maximal for the previous property.
e B is onto.

In particular it implies that there exists €, C; > 0 such that for all u € RN we have the inequality

e5lul? + (Aju, u) < Cj|Bjul?.

2.2 Assumptions

In this work we essentially use two assumptions, the first one ensures that we have a good L2-well posedness
theory for , the second one is a spectral condition on Sarason matrix made to ensure that we have enough
explicit formulas in order to recover a good persistence of regularity result.

2.2.1 The L?-well posedness Assumption

To deal with the pure boundary value problem we will require the following assumption which ensures
that the problem comes with a good L2?-well posedness theory. We stress that this assumption is not
required for in the initial boundary value problem .

Assumption 2.1 (L?-well posedness) We assume that the pure boundary value problem is L2-well
posed in the following sense. For all v > 0 for all f € L2(Q), (g1,92) € L2(9Q1) x L2(0%2) there eists
a unique solution u to , u € L%(Q), its traces (U)g,—0, Ujzy—0) € L%(@Ql) X L%(@Qg) and u satisfies the
energy estimate

1
7||U||%3(Q) + ||U|z1:0||%3(agl) + ||“|x2:0”21;3(392) <C (7|f||%3(9) + ||91||2Lg(391) + ||92||%2(392)> (8



where the constant C > 0 does not depend on . In the spaces with weight L% are defined by: for X C Q
LX) :={ueD(X)\e "uec L*(X)}, normed by ||u3. (x) = / e 2 u(t, x)|? do dt.
7 X

This kind of concept of well posedness is a straightforward generalization of the one of [Kreiss, 1970]
in the half-space geometry. Let us however point that for corner problems the requirement that the traces
are L? in not harmless at all. Indeed it permits to avoid the pathological counterexample to uniqueness of
[Métivier and Rauch, 2017] in which under a spectral property on the Sarason matrix the authors manage to
construct a solution with traces in L? and an other one with traces which are not in L? giving consequently
a non uniqueness result.

Let us stress that Assumption [2.1] is not harmless. We refer to Paragraph [2.4] for the proof that this
assumption is satisfied for symmetric non characteristic problems with strictly dissipative boundary condi-
tions.

2.2.2 Assumption on Sarason matrix

As we will see in Paragraph [2.4)and as it is pointed in the work of Sarason [Sarason, 1962] and in the work of
Métivier and Rauch [Métivier and Rauch, 2017, the Sarason matrix namely the matrix A7'A, has a large
influence on the behaviour of the solution to hyperbolic corner problems. To establish our persistence of
regularity result we will also require that this matrix satisfies a spectral property. More precisely we assume
the following

Assumption 2.2 Assume that the boundary 01 is non-characteristic then we assume that the real eigen-
values of Sarason matriz A7 Ay (if they exist) are negative.

Let us comment that compared to the assumption in [Sarason, 1962] (see Theorem Assumption
is a little stronger because essentially the assumption of Sarason is the same except that it is required to
hold on Jordan blocks only. As pointed in [Métivier and Rauch, 2017] if Sarason matrix has a non trivial
Jordan block then it can lead to non uniqueness if we allow in the definition of strong well-posedness a weak
enough control of the trace.

Assumption has the advantage to be an easily algebraically checkable assumption and as we will see
in Section [ it is also satisfied by a lot of examples of physical interest.

Without enter into technical details, Assumption [2.2] is used in the proofs in order to recover from
the control of the radial derivatives (rd;)®u for « € [0, s] the whole control of the anisotropic derivatives
ek k91902 where ay 4+ ay = a, k € [0, a]. So that if Assumption fails the results of persistence
of regularity still hold but with a rather weak control of the solution.

2.3 Main results

In this paragraph we state the main results of the article. Firstly we state the result of persistence of
regularity for the pure boundary value problem (see Theorem [2.1) and then we state the analogous
results for the initial boundary value problem (see Theorems and [2.3]).

2.3.1 Persistence of the regularity for the pure boundary value problem

In order to state precisely our main result we need to introduce some norms and functional spaces.
We define for s € N*, and 0 < p < s the following modification of the classical Sobolev space H*(f2),

HP(Q) = {uED’(Q)\ for a0, EN,6 €N o+ B+15| <sand o+ 8 <p,

Vk € [0,a + 8], 2¥a3 P *000l 8%y e Lg(Q)}



for the whole space and let for k € [1, 2]
HP(08u,) := {u €D (00%)\ fora € N,§ € N1 o 4[5 < sand a <p,

(23 1x03_1) 0% € L?Y(Q)}

for the boundaries. Where for a multi-index § = (8o, 83, ..., 54) € N'*4-2 we defined 8 := 92083 - - - 83“".
We introduce the following norms on H3?(€2); for u € H3P (1)

a+p

Hu'ﬁ{i”’(Q) = Z Z ||$lf$§+6 8f8§3 U||%:;(Q)
at+B<p,atp+[8|<s k=0

the norm on the boundaries being defined similarly.

In the previously defined Sobolev type spaces, the index s stands for the maximal degree of regularity
while p stands for the maximal degree of regularity with respect to the normal derivatives d; and 0. Note
that we have weights with respect to the variables x1 and x2 and that the space includes the usual tangential
Sobolev space H>?  (see [Rauch, 1985]) defined by

v,tan

HP Q) :={ueD(Q))\ (£101)*(2202)P0%u € L2(Q),Va+B<p, a+B+]0 <s}.

v,tan

Indeed choosing k& = « in the norm on H3P(Q2) and using the fact that (zx0y)* = Z;O;:o Ayl o

for (AS)ap C R shows that HJ'T, () C HZP(Q) which is consequently an extension of HJT,, () with

anisotropic weights in x1 and xo. This anisotropy comes from the fact that in the following proof we will
have to consider the angular derivatives 0y := —x201 + 102, which mix the weights in front of the differen-
tiation operators 01 and do and not only the radial derivative rd, = 101 + x20s.

In the following we will use the following space for r := \/x% + x3

A (Q) :={ueD(Q)\VIe[0,s], r'uc H*'(Q)},

it is equipped with the obvious norm; for u € J2°(€2)

S
2 L L, 112
Hunqus(g) = ZZ; Ir u||Hi,sfe(Q)-

We define the spaces J°(0€), for k € {1,2} similarly.

Our first main result establishes a strong well-posedness result for the pure boundary value problem in
high order weighted Sobolev spaces. The first part of the theorem gives some a priori energy estimate for
regular solutions while the second statement gives the regularity of the solution in the high order Sobolev
type spaces J22°(£2).

Theorem 2.1 Let s > 0 under Assumptions and then there exist yp := yo(s) > 1 and C :=Cs >0
such that if for v > vo, u € H(Q) is such that L(O)u € (), Biujz,—o € H(00) and Baujp,—o €
A2 (082) then we have the a priori energy estimate: ¥y > 7o

||U\\3f;(9) + ||U\z1:o||3f;(aﬂl)+||u|m:0Hiz@s(ang) (9)
<C (||L(3)U||§gs(g) + ||Blu|m1:0\\3f;(anl) + ||B2U|m2:0||§f;(anz)> .
Conversely under Assumptions assume that for some v > 0 f € (), (g1,92) € 7 (9) x
A (0Q2) and consider
LOu=f in Q,
Biujg,—0o =91 on 9%y, (10)
Boujg,—o = g2 on 0Qs.



We assume that the dual problem to (L0) comes with a good high order well-posedness theory see Assumption
4.1, Then the unique solution u to (10) given by Assumption lies in %’if(Q) Moreover u satisfies the
energy estimate there exist v, C > 0 such that Vv > v

1
Hallpzor < € (1 1Besian + Il ony + Nollesion ) (1)

where C' depends on the coefficients of L(0) and on s.

The a priori energy estimate that is to say the first statement of Theorem is demonstrated in Sec-
tion [3] the regularity of the solution is then obtained by a slight modification of the duality method of
|[Lax and Phillips, 1960] see also [Benoit, | is demonstrated in Paragraph

From a persistence of regularity point of view Theorem is really satisfactory because it shows that
the solution u has exactly the same regularity as the sources.

Moreover it is a quite positive, interesting and encouraging fact that the spaces J7° (Q) contain all the
tangential derivatives. Indeed in [Secchi, 1996] and [Gues, 1993] such control of the tangential derivatives
(2101)*u was used in order to recover the control of the normal derivative dyu which implies the L3® bound
via Sobolev embedding.

For corner problems we can also recover the control of the normal derivatives by using two tangential
derivatives to obtain such a H?® regularity result of the solution. This claim is however behind of the scope
of the present article and will follows in a forthcoming publication.

We conclude this paragraph by the following corollary of Theorem showing that for symmetric non
characteristic problems with strictly dissipative boundary conditions then we have a good persistence of
regularity theory.

Corollary 2.1 We assume that the pure boundary value problem s symmetric with non characteristic
strictly dissipative boundary conditions and that we have Assumption[2.3. Let s € N be given then there exist
7 > 0 such that for all v > v if the sources f € H7(Q), (91,92) € K (00) x A5 (0Q2) then admits a
unique solution u € 7 (S2). This solution satisfies the energy estimate .

Proof : The proof is just a direct consequence of Theorem For symmetric operators with non charac-
teristic strictly dissipative boundary conditions because Assumption [2.2]implies the assumptions of Theorem
it applies and gives the L? well-posedness result. As a consequence Assumption holds.

From the first statement of Theorem the energy estimate @ holds for regular solutions.

It is a well-known fact that strictly dissipative boundary conditions are suitable for the dual problem so
that the dual problem to satisfies the a priori energy estimate @ this implies in particular Assumption
So that the second statement of Theorem [2.] applies and this completes the proof.

O

2.3.2 Persistence of the regularity for initial boundary value problems

Our second main result deals with the initial boundary value problem for which by linearity we assumtﬂ
to simplify that f, g1, g2 = 0. An interesting point to be noticed is that contrary to Theorem [2.I] where
the L?-well posedness is assumed in order to derive the strong well-posedness in higher oder Sobolev type
spaces then no L2-well posedness is assumed for these results. This comes from the fact that these results
are based on Lumer-Philips theorem which gives automatically the existence of a regular solution (which is
in particular L?).

Moreover let us insist on the fact that, in terms of regular well-posedness for the initial boundary value
problem, we establish the so-called semigroup well-posedness of the system that is to say that we obtain
a control of the L°(H*(T')) norm of the solution where H*(T') is some suitable functional space based upon
H*(T"). In terms of well-posedness it is the best framework that one can hopes.

1Using a remark of [[Benzoni-Gavage, 2007] page 114] here we may also consider f Z 0 but the method really requires that
g1 = g2 = 0 in order the boundary conditions to be incorporated in the domain of A
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Unfortunately compared to Theorem [2.1] for which the data and the solution relies on the same functional
space the counterpart in Theorem is that the initial solution ug and the solution u will not live in the
same functional space. The reason of this is essentially that the tangential Sobolev generated by z10; and
202 can not be compared with the usual Sobolev space.

In the following we assume that the initial datum ug lies in some weighted Sobolev space 2°(I") and we
will obtain that the solution u to lies in some kind of conormal Sobolev space. Without enter into the
details of the definition of this space let us that say it essentially acts like the usual conormal space (that
is that near the boundary {z; = 0} we have an estimate for (z40x)® and of 9 away from this boundary).
Near the corner we only have an estimate for (x107 + x202)® with each a rather weak estimate, but which
can be transformed into the same control than the one of Theorem 2.1l

To state our main results let us introduce some functional spaces and ideas.

Firstly the starting point to solve the initial boundary value problem is to write it as the pure evolution
problem

dt
Ult=0 = U0,

i =
{ u=Au  fort € [0,00[, (12)

where 4
Au:= =Y A;0;u,
j=1

and where the boundary conditions in are encoded in the domain D(A) of A. This approach has first
been introduced by Benzoni-Gavage and Serre in [[Benzoni-Gavage, 2007]-Chapter 3] for constant coefficients
boundary value problems in the half-space and then have been extended by the author in [Benoit, | to vari-
able or characteristic coefficients.

To solve we use Lumer-Phillips Theorem (see Theorem [4.1)) which applies if we can justify that both
A and its dual operator A* are (quasi)dissipative (see Definition [4.2]).

Then because we are now considering regular solution to an initial boundary value problem then some
compatibility conditions are expected (and necessary) on the datum wug. In the following discussion assume
that the solution is regular enough for the traces to be well-defined. Then we should have

[Blumzo] lt=0 = [Bgumzo] =0 = 0 so that Up, _, € ker B; and Uo,,,_o € ker Bs,
condition which is referred as the compatibility condition of order zero.
More generically let us define for k > 1, u* := (9fu)—o and u® = ug then with A = —Z?Zl A;0;
because on the one hand w is solution to (I}) we have u* = A*ug but on the other hand
afBlum:O = afBgum:O = 0 so that taking the trace uf;lzo € ker By and U’ﬁvz:O € ker Bs. (13)
This motivates the following definition

Definition 2.5 Let s € N we say that ug satisfies the compatibility conditions up to the order o < s —1 if
is satisfied for all k € [0,0 — 1]. The compatibility condition of order —1 being the empty condition.

To state the well-posedness result we introduce the following functional spaces For s € N, 0 < p < s we
first define the Hilbert space for X C I':

HP(X):={ueD(X)\V0<a<p ¥VéeN"2st a+l|f <swe have (rd;)*du € L*(X)},

rad
where for § := (d3,...,04) € N¥72 99 .= 8§3 ce 83”[ and where ro, := 1107 + x20>. It is a Hilbert space
according to the norm, for u € H>P (X))

rad

p
||UH%1-;;;(X) :Z Z \\(rar)“05UIliz(X)-

a=0|§|<s—a

11



We insist on the fact that in H’? (X) we do not require any control on the angular derivative dyu and/or

on the anisotropic weighted derivatives 27" 2k9200u, k € [0, a + f].

Then we consider the following functional spaces X ,(I") and Y*(I") in which we have good duality for-
mulas.

(T') as a subspace of H>"(T') as follows

rad

Firstly we define the space X?

rad

s (D)= {u eDM\V0O<I<s rlue H”’l(l“)} .

rad rad
In such a functional space the persistence of regularity result is the following

Theorem 2.2 Let s € N and ug € X7 ,(I') be given and satisfying the compatibility conditions up to the
order s — 1. We also assume that ug satisfies the well-preparedness assumptions

ARty € X5F(D) Vke[o,s—1],
Abug, _, € X7,(9T) VEkeo,s],vje[1,2], (14)

[ Auolls, ) < Clluollxs, )

We assume that the initial boundary value problem is symmetric, non characteristic for each side of the
boundary with strictly dissipative boundary conditions and that Assumption[2-9 holds.

Then admits a unique solution u € N5_,F([0,00[; #°~*(T)). Moreover there exists w,Cs > 0 such
that we have the energy estimate

YVt e 0,00, VEk € [0, s], ||afu(t)H%s—k(F) < Csewt||u0||X5ad(p), (15)

where the space HP(T) are defined exactly like the space HP(Q) excepted that the integrations are made on
the space T instead of the time/space Q.

Secondly to state our second main result we define the space Hilbert space Y*(T") by

rad

VA(T) = {u e D(T)\ V1€ [0,s], r'uc H:5HT) and |ullysry < oo} :

where the norm || - [|ysry comes from the scalar product

s s—lI

(U, 0)ys(p) = Z Z Z / {(r0r)*0°r'u, (rd,)*0°r'v) da (16)
1=0 a=0 |§|<s—a '€

[e3%

+/@Z

1 p=0

+/ Z((g) (xlﬁl)pQQ,a_pa‘;rlu, <z> (xlal)szﬂ_p@‘srlm dz

B p=0

« a S o )
T LI;((p) QLPQZ‘X*Pa rlu’ <p) QLPQQ,afpa rlv> d.]?,

((;) Ql’p(m@g)a_paérlu, <Z> Ql’p(xgarz)a—')aérlw dz

where we defined

C ={rel\0<uzy,x2<1}, I:={zel\zy, xz2>1},
PBr:={xel\z1>1,0<2:<1} and By :={x €T \0<x; <1, 2o > 1}

and where the differentiation operators 9, . and 9, . are defined by

p a—p
Vpe[0,a], d,,:=> MNofand 9y, , = > AP0, (17)
g=1 q=1
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The scalars A being fixed and defined in . We decompose

(U V) yery = (U V) ya gy + (U, V) yu () + (U, V) yi () + (U, V) ye (5

with obvious definitions.

The space in which lies the solution to the initial boundary value problem is then defined by

rad

(1) = {u eD'(D)\V0<I<s, rlue H* YT) and llullasry < oo}7

where the norm on #*(T") comes from the scalar product

(u, v)gs(r) = (U, V) se= () + (u, U>ys(@1) + <uaU>ys(gg2) + <U’U>HS(L,¢) )

where 7#°(¢’) has the same definition than JZ°(%¢’) except that we do not integrate with respect to the time
variable (so that we take the norm [ - || 2 (%) instead of || - || 2 (rx«))- H*(#) being the usual Sobolev space
of order s.

Finally for the initial condition we define the space

2°(T) == {ue H* )\ Vi€ [0,s], 'ue H )},

it is equipped with the norm || - [y defined by

One can see that for u € Y*(I") (or #*(I")) we have ||u]

S

Vue 2°(0), Julfr =D Ir'ullf )
=0

vy < Csllul|gsry so that 2°(T") c Y*(T).

With such definitions Y*(T") acts like a conormal Sobolev space except at the corner where we only have
a control of the radial derivatives, while ##(T") is truly a conormal Sobolev space because it contains the
tangential derivatives (x101)* (£202)*? near the corner.

The well-posedness result in such a space is the following;:

Theorem 2.3 Let s € N and ug € 2°(T") satisfying the compatibility conditions up to the order
s—1. We assume that the initial boundary value problem is symmetric, with non characteristic mazimal
dissipative boundary condition as defined in Paragraph[2.1.34 Let us also assume that Sarason matriz satisfies
Assumption . Then there exists a unique solution u € M;_yEF([0,00[; #5~*(T)) to ([1). Moreover we
have the energy estimates that there exist w, Cs > 0 such that

vt e [0,00], Vk € [0, 5], [0Fu(®)llwe(r) < Coe'lluollge ry. (18)

We end up this presentation paragraph by some comments on Theorems and

Let us first remark that for s = 0 the conditions imposed on the datum wg are void so that ug can be
chosen arbitrary in L?(T). In particular this gives for free the L? well-posedness result.

Theorem gives from (only) a control on the radial derivatives of the initial datum ug a complete
tangential control of the solution.

It seems rather delicate to bypass the well-preparedness assumption . Indeed the issue here is that
if ug € X*(I) then it is clear for all tangential j, 9;up € X*(T') but because X2 ,(I') is defined with
the derivatives x10; and 220> so that it is not obvious that A;01up € X3 4(T) and As0rug € X7 ,(T).
This well-preparedness assumption is however removed in Theorem but we pay some price on the

regularity on the solution.
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e Concerning the persistence of regularity point of view Theorem is sharp but it is rather fair to say
that compared to the data uy we have some losses of regularity for the solution v near the boundaries
in 2.3l There are two kinds of losses.

1. The first one comes from the fact that in ¥ we only have a control of the tangential derivatives
while ug is controlled by the normal derivatives.

2. The second point is more delicate and comes from the definition of Y*(T"). Indeed near the
boundaries (to fix the ideas let us consider %;) we only recover a control of the unmixed derivatives
Z;‘:O 01 p(7202)*7P and not a whole control of the decoupled derivatives 05 (1202)P for a+ < s.
This comes from the fact that near the boundaries the operators of differentiation are not defined
by 2101 and x202 but one of then is defined by 9;, the other one being defined by z205 so that
we can not use the radial and angular derivatives in order to recover the control of the uncoupled
derivatives. However if we have a control of one of the normal derivative 0; or 9, near the corner
some partition of unity arguments enable us to show that the control near the boundary can in
fact be transformed into the usual Sobolev one.

2.4 Comments about the L?-well-posedness Assumption: the L? theory

The following paragraph exposes a framework for which Assumption [2.1] is known to hold. The results
exposed here are generalizations of the ones of [Benoit, 2015] to variable coefficients. We stress in particular
that it is the only part of the article where the coeflicients are authorized to vary.

Assumption [2.1]is of course far to be harmless. Indeed the full-characterization of the boundary matrices
B, and B, leading to the L?-well posedness of the quarter space problem boundary value problem is far
to be clearly understood instead of the one of the analogous problem in the half-space (see for example
[Kreiss, 1970]-[Chazarain and Piriou, 1981]-[Benzoni-Gavage, 2007]).

However, there is a framework, the one of the so-called strictly dissipative boundary conditions for
which Assumption [2.I] can be verified. Let us introduce the following definitions with are straightforward
generalizations to the ones of Paragraph to variable coefficients

Definition 2.6 (Strictly dissipative boundary conditions) The boundary condition By (resp. Ba) on
the side O (resp. OQa) is said to be strictly dissipative if

V (t,z2,2") € 00, YV u € ker By (t,z2,2"),u # 0, we have (A1(t,0,za, 2" )u,u) < 0.

(resp. V (t,z1,2") € 009, Vu € ker Ba(t,z1,2"),u # 0, we have (As(t,z1,0,2" )u,u) <0).

It implies (we refer to [[Benzoni-Gavage, 2007]-Chapter 3] for a proof) that if i = 1,2 there existe;, C; > 0
such that for all u € RN we have the inequality

eilul® + <E(t,x3,i,x’)u7u> < Ci|Bi(t, 2’ 25— )ul>. (19)
where A~1(t7.’172,$/) = Ay(t,0,29,2") and Z;(t,xl,x’) = As(t,x1,0,2"). We also require that B; is onto and
that ker B; is maximal for the previous property.

We will also require the coefficients of the corner problem to be symetric in the following sense.

Definition 2.7 (Symmetric coefficients) The hyperbolic operator L(9) is said to be symmetric if
Y (t,z) € Q, AJT(t,x) = Aj(t, x).

Finally let us assume that the two sides of the boundary are non characteristic in the sense that

Definition 2.8 (Non characteristic boundary) The side of the boundary 9y (resp. 082) is said to be
non characteristic if
V(t,x) € Q, det A1 (¢, z) # 0 (resp. det A2(t,x) #0).

The proof exposed bellow strongly relies on the ”weak=strong result” of Sarason [Sarason, 1962], the
other arguments being classical. Indeed the proof is a three steps proof
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1. Establish an a priori energy estimate is made in Paragraph (which comes from free thanks to
the strict dissipativity).

2. Construct a weak solution. In order to do so we will use a slight modification of the so-called duality
method of [Lax and Phillips, 1960]. We refer to Paragraph

3. Show that the weak solution is a strong one to conclude. This result comes from the ”weak=strong
result” of Sarason [Sarason, 1962]. It is the technical part of the proof. For a sake of completeness the
result of Sarason is recalled in Paragraph [2.4.3|

The result is the following:
Theorem 2.4 We consider the corner problem
LOwu=f in Q,

Biujg,—o = g1 on 0y, (20)
Batjp,—o = g2 on 08,

for which we assume that the coefficients A;, satisfy
A1 = Al(.’El,iEQ) S Cgbl(Ri), A2 = A2(£E1,£L'2) S %bl(R%r), and V] > 3 Aj = Aj(t,if) € Wl’OO(Q)7

%, being the et of €1 functions with bounded derivatives and where the boundary matriz Bj = Bj(x3_;) lies
in €°(Ry). Assume that this problem admits non characteristic strictly dissipative boundaries in the sense
of Definitions [2.6 and [2.8 and that it is symetric in the sense of Definition[2.7 Assume moreover that in a
neighborhood ¥ of (0,0) the eigenvalues \ of the matriz A1_1A2 satisfies the following

1. The multiplicity of X remains constant on V.

2. The real eigenvalues and the imaginary parts of the complex eigenvalues remains either positive either
negative away from zero on ¥ .

3. In its Jordan decomposition (AT'A2)(0,0) does not admit a non trivial Jordan block associated to a
real positive eigenvalue.

There em’stﬂ Yo > 0 such that for all v > v if f € L%(Q), (g1,92) € L?,((?Ql) X L%(@Qg) then the problem
admits a unique solution u € L2() with traces (g, =0, Ujzy—0) € L2(Q1) x L2(8Q). Moreover the
solution u satisfies the energy estimate: there exists C > 0 such that for all v > g

7||UH%3(Q)+||U|m:0”%g(am) + ||U|a;2:0||%3(692) (21)
1
<C (,YHL(a)U%g(Q) + H31U|z1:0||%3(agl) + ||B2U|m2—0%2(392)> .
The proof of this result occupies the three following paragraphs.

2.4.1 A priori energy estimate

Because we are in the particular framework of strictly dissipative boundary conditions, with symmetric matri-
ces Aj, the a priori energy estimate which is the technical point in the analysis of Kreiss [Kreiss, 1970], which
is far to be well established for corner problems, comes for free. Indeed we have the following proposition

Proposition 2.1 Assume that the problem
L(O)u+ Du = f in Q,

Bl(t7x27x/)u|m1:0 =4gi on 891,
B2<t7x17x/)u|x220 = g2 on 6927

2The coefficient v only depends on the dimension d and the coefficients Aj
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where D € L>®(Q, Mnxn(R)), is symmetric with strictly dissipative boundary conditions. Also assume that
the coefficients A; € W1>°(Q) then there exists vo > 0 such that if u is a regular enough solution to then
u satisfies the energy estimate: there exists C' > 0 such that for all v > 7y then

2 2 2
W||UHL3(9)+||U|x1:o|\L3(anl) + ||U|m2:0||L3(392)
1 2 2 2
<C <7||L(8)UL§(Q) + HBlulam:OHLg(an) + | Battjz,=oll72(50,) | -
where we stress that the constant C' depends on the coefficients but not on .
Proof : We introduce v = e~ *u where u stands for a regular solution to (20). We have L(0)v +yv+ Dv =

e~ "¢ L(8)u. Multiplying by v and integrating over § gives from the symmetry assumption

27||U||2L2(Q)_/ <A1‘zlzole1:0av\ac120> dt da’ dzg —/ <A2‘12:0U\x2:077}|x2:0> dt dz’ day
891 892

d
-I-/ (Dv,v) dtdx = 2/ e " L(O)u - vdtdz + Z/ ((0j4;5)v,v) dtdz.
Q Q j=179

Let M := max;cqy 4] [|0;A4;] (o) and choose for example v := 2Md. Then for all v > v we have from
Young inequality combined with the strict dissipativity property

(v — ||DHL°°(Q))||’UH%2(Q)_HUIMZOH%Q(an) + ||U\12:0||2L2(891)

...
<C (7|€ T LO)ullF2 0y + |1 Broje,—oll 7200, + |BQU|."£2—0|%2(891)>

so that if we choose for example 7 := max(7, 2| D| 1= (q)) We obtain the desired estimate for w.

2.4.2 Existence of a weak solution

The existence of a weak solution to is shown by duality and follows the same ideas that the ones exposed
in [Lax and Phillips, 1960] see also [[Benzoni-Gavage, 2007]-Section 9.2].

Such method will also be a little refined in Paragraph in order to establish the regularity of the
solution to the pure boundary value problem so that recalling this method here is a good preliminary
work.

However the definitions of weak solutions are the ones used in [Sarason, 1962] and differ a little from the
one used in [Lax and Phillips, 1960]. This little modification is made to apply the ”weak=strong” result of
[Sarason, 1962]. Let us first introduce the so-called dual problem of and the functional spaces that will
be used in the following.

Definition 2.9 (Dual problem of ) The pure boundary value problem
L*@w=f in §,

Gy (t7 T2, x/)v|a:1:0 = 51 on 8017 (22)
Co(t, 21,7 )Vjgy—0 = g2 on 08,

is a dual problem of if for all regular functions u and v we have the duality formula:

2
<L(8)U7U>L2(Q) - <U>L*(8)”>L2(sz) == Z <Nj“\rj:07 Cj”\w_j:0>L2(an) + <Bj“\mj:07 ijlrj:0>L2(an) ’
j=1

for some matrices N;,C; € M(prj)xN(]R), M; € M, «n(R) satisfying the decomposition

Y (t,ws_j,2’) € 09, Aj = CTN; + MT'B;. (23)
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The following proposition is a standard result whose proof can be find for example in [[Benzoni-Gavage, 2007]-
Lemma 9.4].

Proposition 2.2 Deﬁmﬁ
d d
0):=—0,— Y AT0; =Y ;A7
j=1 j=1

then for j = 1,2 there exist matrices N;,C; € (¢° N LOO)((?Q]-,M —p;)xN(R)) and a matriz M; € (£°N
) (99, My, x v (R)) such that the pure boundary value problem (22) is a dual problem of (2).
The matrices C; are characterized by

Y (t,z3_j,2') € 0y, ker Cj = (A ker B;)™*, (24)
the matrices N; are onto and satisfy
ker B; Nker N; = {0}.

Finally for all matrices characterized by if the boundary conditions of are strictly dissipative
then the boundary condition of the dual problem are strictly dissipative.

In particular, for later purposes let us remark that if the operator L(0) is symmelric it implies that we
have the following sign property: for j € {1,2}

VovekerCj, v#0, <A'jv,v> > 0. (25)

We introduce the following functional space in order to define the weak solutions of . For xy € R we
introduce the Hilbert product space .%y := L2(Q) x L2 (9Q1) x L*(8€;) equipped with the product norm

for (u, @) € Z , (w18)l, = lllZa ey + 18 2 oy + 121 oy
Following [Sarason, 1962] we define the following notions of weak solutions

Definition 2.10 (Weak solutions to L(d)u = f) Let v >0 and f € L2(Q). We then say that the triplet
U = (u,u",7%) € 7, is a weak solution to L(d)u = f if for allv € H' (Q) there holds

<f, >L2(Q <U, L*(a)U>L2(Q) = — <141ﬂ17 v|m1:0>L2(691) - <142ﬂ27 7}|1-2:0>L2(692) .

Definition 2.11 (Weak solutions to (2)) Let v > 0 and (f,g1,92) € .%,. We then say that the triplet
U = (u,u*,u?) € .7, is a weak solution to if U is a weak solution of L(O)u = f in the sense of Definition
and if moreover we have

Blﬁl =01 and Bgﬂz = g2.

Note that with such a definition we do not require @' and @2 to be the traces of Ujg, =0 and uz,—q S0 that
we are free to modify a little the traces values obtained via the usual use of Riesz representation theorem.
The main result of this paragraph is the following proposition:

Proposition 2.3 (Existence of a weak solution of (2)) Let v > 0 and (f,g1,92) € -%,. Assume that
the pure boundary value problem is symmetric, non characteristic with strictly dissipative boundary
conditions then it has a weak solution U € .7, in the sense of Definition

Proof : Let v > 0 we introduce the space
X_y = {ZL% := (L*(8)v, C1v)z, 0, C2¥|z,—0) where v € HiW(Q)} .

From Proposition there is no loss of generality by assuming that the matrices Cy, Cs are strictly
dissipative for the dual problem so that from Proposition we have the dual energy estimate that
is

[l < C5l£7 0], (26)

3Note that this part of the proof does not require the symmetry of the coefficients.
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Let (f,91,92) € €, we introduce the form £: X_, — R defined by
UL ) = (f, ’U>L2(Q;]RN) + <917 Mlv‘$1:0>L2(BQI;Rp1) + <927 M2’0|$2:0>L2(802;sz) .

We have from Cauchy-Schwarz and Young inequalities

(L ) < C [0l (o) + Iomi=ol22 o) + Ioes=oll3z_(o0y)]

where C' depends in particular on f, g1,g2 and on ||[Mi||1~@0,), [|M2ll1~@0,). Using the a priori energy

estimate we obtain |[((Z*v)| < C,|L*v||»_,. Consequently from Hahn-Banach theorem the form £ can

be extended by continuity up to .#_, and from Riesz representation theorem there exists U := (u, u',u?) €

7_ such that
K(g*’l}> = (u, L*(a)U>L2(Q) + <E17 Cl’U|gg1:0>L2(891) + <@27 CQ'U\:EQ:0>L2(3Q2) )
so that from the definition of ¢ the triplet U satisfies

<fv U>L2(Q) - <“7 L*(a)v>L2(Q) = <91’ Mlv\061:0>1;2(391) + <y1’ 01U|r1:0>L2(aQI) (27)
1
- <927M2”\12:0>L2(692) +(u ’CQU|$1:0>L2(692) :

In the rest of the proof we modify the boundary couple (u',u?) in some (@', %?) defined in such a way

that the right hand side of becomes —(<A1617v|x1:0>L2(691) + <A252,v‘z2:0>)L2(392) showing that
U = (u,u',u?) € H, is a weak solution to L(d)u = f. To conclude we verify that such a U in fact gives a
weak solution to (2).

Because for all (¢, z3_;,2') € 98, the matrices N; and B; are onto we can write v/ = N;u’ and g; = Bjh;
with @, h; € L2(€;RY). So that

- <gj7MjU\wj:0>L2(an) + <@j’ Oj”\wj:0>L2(an) == <Ajﬂj7v\wj:0>L2(an) J
with . 4
w = A7 (M] Bjh; — CT N;w) .

Consequently the triplet U := (u, @', u?) € #, is a weak solution to L(9)u = f.
To conclude we verify that for j = 1,2 we have Bjﬂj = g;. From the definition of W we can directly
compute
Bjw = —B;A;'C] Ny + B;jA;'M] B;h;,

and the desired equality comes from the relations BjAj_lcer 7 =0and BjAj_lM JT B; = B, which are direct
consequences of decomposition and the definition of the dual problem.
Indeed because RY = ker N; @ ker B; it is sufficient to compute BjAj_lC’jTNju for u € ker B; and

BjAjfleTij for v € ker N;. But using (23)) we can write
BjA}lchjU = BjA}l (AJ — MJTB]) u = 0,
BjA}leBjU = BjA]l (AJ — C;TNJ) v = BjU.

2.4.3 Uniqueness of the weak solution

To show the uniqueness of the weak solution and that the conclusions of Assumption [2.1]are satisfied for sym-
metric non-characteristics operators with strictly dissipative boundary conditions we use the ” weak=strong”
lemma of [Sarason, 1962]. In order to do so we introduce the following definition for strong solutions.

Definition 2.12 (Strong solution(s) to L(d)u = f) Let~y >0 and f € L2(Q) then U = (u,u",u*) € .57,
is said to be a strong solution to L(O)u = f if there exists a sequence (u™)nen C D(Q) such that

T ([T = (s ool o), + @) = 220y = 0.
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In order to show that weak solutions are in fact strong ones we will apply the result of [Sarason, 1962].
Let us recall precisely the statement of this resuhﬂ

Theorem 2.5 ([Sarason, 1962]-Theorem 3.1) Consider L := 01+ A(x1,22)02+B(x1,x2) be an operator
acting on Ri. We assume that

1. The matrices A € €'(R%) and B € €°(R%).

2. Let X\ € R be a real eigenvalue of A(0,0) corresponding to a non-simple eigenspace of A(0,0), then the
line y = \x lies outside of Q (that is A < 0).

3. In a neighborhood of (0,0) the matriz A does not change type (meaning that its eigenvalues remain
either purely real either complex).

Let U = (u,u*,u?) € .7, be a weak solution to Lu = f then U is a strong solution in the sense of Definition

Z12

Note that the assumptions of Theoremon A;lAg combined with the fact that the coefficients A; and
As do not depend on the tangential variables (¢, ') are made in order to apply the previous theorem to the
matrix A = Al_lAg.

With this result in hand then we can easily conclude the proof of Theorem Indeed let a triplet

U= (u,u",u?) € 7, be a weak solution of (20]) given by Proposition in particular it is a weak solution
to L(Q)u = f in the sense of Definition Then by Theorem U is a strong solution to L(Q)u = f
that is there exists a sequence (u")nen C D(Q2) such that for all v > 0

lim [|U = (u", ufy, —g ufp,—o) I3, + ILQ@)u" = f[[Z2(q) = 0.

n—oo

However (u™)nen is regular so that it satisfies the a priori energy estimate of Proposition that is to
say that for all v > ¢ we have

2 2 2
W||U"||Lg(n)+HU\7§1:o||L3(691) + ||“|7§;2:o||L3(392)
1 2 2 2
<C <7||L(3)un||Lg(Q) + ||Blu|7;1:o||Lg(aﬂl) + ||B2U|T§:2:o||Lg(aQQ) .
From the triangle inequality we thus have

WHUHQLg(Q) + ||ﬂl||2Lg(anl)+HUQH%g(aﬂz)

SCWHU - (un’ UT;1:07 U|T;;2:0>||§@
1 n n n
+C <7||L(5)U ||%g(9) + ||Blu|x1:o||%g(aﬂl) + |BZU12_0||%3(3$22)) :

So that passing to the limit n goes to co we obtain that for all v > ~q:
_ _ 1 _ _
’7”””%3(9) + ||U1H%3(anl) + ||U2||2L3(892) <C (7|f||2L3(Q) + ||Blul||2L3(agl) + ||B2U|2120||%3(392)> .

However recall that U is a weak solution to (20)) so that we have Bju' = g; and Bou? = g, thus the
weak solution U satisfies the energy estimate (21)). The problem being linear it automatically implies
the uniqueness of the weak solution. This ends up the proof of Theorem showing consequently that
Assumption 2.1 applies to a non empty set of boundary value problems.

4Note that we simplify a little the statement of the result of [Sarason, 1962]. Indeed the result of [Sarason, 1962 holds for

generic corner domains and note only for our quarter space Ri.
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3 The a priori energy estimate
In this section we want to show that any (regular) solution to the pure boundary value problem

LOu=f in Q,
Biujg,—o = g1 on 08y, (28)
Baujz,—o = g2 on 0s,
satisfies the energy estimate @
The proof of such high order energy estimate is classically made by iteration on s. In Paragraph we
give the initialization for s = 1. Note that we could also use Theorem in order to initialize at s = 0
but because the step s = 1 contains all the main ingredients of the proof it is a better initialization step to

illustrate our purpose. Then the iteration process is described in Paragraph [3.2] The three main ides of the
proof are the followings:

1. We estimate the radial derivatives (rd;)*u, for all k € [0, s]. This is made using Assumption

2. We use the equation in polar coordinates to obtain explicit formulas for the (rd,)*~!du for k € [0, 5]
and [ € [0, k] essentially in terms of the radial derivatives. This uses Assumption

3. To conclude we then use explicit formulas to recover the control of the anisotropic weighted derivatives
28R 908 for o+ B € [0, s] and p € [0, + B] in terms of the mixed derivatives (rd,)*~'d}u.
3.1 The case s =1

In this paragraph we give the proof of Theorem for s = 1 in order to initialize the iterative process. We thus
consider u € ! (Q2) and we shall estimate

2

HUH%{M(Q) + ||r“||%{1«0(9) + Z Hu\zp:OH%{lJ(aQP) + ||$37p“\zp:0||%{1v0(aﬂp)v
p=1

which by definition of the Sobolev spaces H!'P(X) amounts to estimate

1
Z Z ||$If$%_k8féagu||ig(m+ Z ||85U||i3(9) + Z ||65ru||i3(m (29)

a+B=1k=0 [5]<1 |5]<1

2
+Z ||$37p537pu||%3(mp) + Z ||35U||2L3(89p) + Z ||56$37pu||%3(39p)a
p=1 l51<1 1<1

where we recall that for § = (0o, 83, ..., 64) € NITd=2 99 .= 8f°8g3 e 33“1.

Firstly let j € {t} U[3,d] := .7, 7 being the set of tangential indices. In order to simplify the notations
let Ay := Igxq4. Then clearly 0;u solves the boundary value problenﬂ

L(9)9;u = 0;L(0)u in €,
B10juj,—0 = 0;B1u|p,—9 on 08y,
B20ju|p,=0 = 0;Bat|z,—0  on 0,

so that from Assumption 2.1 we obtain the following energy estimate for tangential derivatives: for all j € &
2 2 2
’YHay'UHLg(Q)HWjU\m:o||L3(391) + ||3ju\x2=0||Lg(aQZ) (30)

1
<C <,y||ajL(8)u”2L2{(Q) + ||3jBlu|m:0||2Lg(aQI) + ||6jB2u|m—0||2Lg(aQQ)> )

5Note that we use in a non trivial way the fact that A7 and Ay do not depend on (t,z’)
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This equation gives the estimations for the second and the fifth terms in . So it remains to estimate the
terms x101u, 2014, £10-u and x202u appearing in the first and the third terms and also the rd;u and their
traces in order to conclude.

The first estimates are the most interesting ones. They are done in two steps, firstly we use the equation
in cartesian coordinates to obtain an estimate on the radial derivative 21011+ x202u = rdru and then we use
the formulation of the equation in polar coordinates to estimate the polar derivative dyu = —x201u + x102u.

Finally some simple and explicit computations then permit to express each term z101u, x201u, x10u
and zo0u in terms of rd,u and dypu in order to conclude.

We apply rd;, to the evolution equation of and we use the commutator relations

ro:.01 = 01rd, — 91 and r0.0s = Oor0y — 0o,
to obtain that rd,u satisfies the problem

L(O)ropu = ro, L(0)u+ A101u+ Az002u in Q,
—_————

:L(a)u—z]eg Aj{)ju
B1(r0rtt)|z,—0 = B12202ujz,—0 = 202 B1ujz,—9  on 08,
BQ(I‘@ﬂi)MZ:O = le181U‘r2:0 = l'lalBQU‘wz:O on 892,

where we used the classical trick consisting in expressing the normal derivative in terms of the equation
L(O)u = A101u + Axdru + Zje 7 A;0;u already used in characteristics boundary value problems in the
half-space (see [Rauch, 1985])

So that from Assumption combined with we obtain the estimate

’Y||I'5ru||2Lg(Q)+H$262U\m1:0||2Lg(891) + ||$181U|m2:0||2Lg(aQ2) (31)

1 1
<C <7|r8rL(8)u||%3(Q) + ;”L(a)unig(g) + ||x28231“\m1:0||L%(891) + |x13131u|12—0||2L3(392)>
C
+ 5 Z ||3ju||%g(§z)
jeT
1 2 1 2 1 2
<C (Mo, LO)ulEz @) + < IL@)ulldz o) + =5 D 19,L@)ullis (o)
Y v Y v Y jer v
2
1
+ > l|#3 k05 k Brtya,—oll L2 (002,) + p] > ||5jBku|xk=o||2Lg(an)>'
k=1 jeET

We complete the estimates for the terms in cartesian coordinates by estimating rd;u for j € 7. We
apply 0; to and multiply by r to obtain that rd;u satisfies

L(0)rdju =rd; L(0)u + (01r)A10ju + (02r)A20;u  in Q,
Bl(rﬁju)mzo = $26jB1’u,‘w1:0 on an,
Bg(raju)mzo = xlangum:O on 892,

using the fact that [|0ir||z(q), [|02r||L>~(@) < 1 we can apply Assumption [2.1|to derive the estimate
WHFajuH%g(sz)+||x2aju\:c1:0||%g(aszl) + ||xlaju|x2:0||2Lg(asz2) (32)
1 C
<C (7|rajL(3)u||2Lg(Q) + ”x?ajBluhn:O”L?y(an) + |$1ajB2Uzz—0||2Lg(agz)) + ;HajU”QLg(Q)
1 2 1 2
<C (S0, L@Vl ) + 510, L@ul 30

2

1 2
+ Z 7305 Byuge,=olliz 0,y + 5 10 Brtiau=ol3z o0, )
=1
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This gives the estimates for the third and the sixth terms in .

We now turn to the estimate on dpu. In polar coordinates let u(r, ) := u(r cos 6, rsinf). Then @ solves
the boundary value problem

A (0)09i + M (O)dTi +1 Y50 5 A0 = rL(@)u for (t,1,60,2") € R x Ry x [0, 2] x R4-2,
z = Biujg,—o, for (t,r,2’) € R x Ry x R472, (33)

Batijg—o = Bauz,—o, for (t,r,2') € R x Ry x RI~2

Biujp=

where the matrices o7 () := cos 0 Ay —sinfA; and 4 (0) := cos§A; + sinfAs. We now use the Assumption
on the spectrum of A;'A; in order to invert the matrix .27 (6) in the evolution equation of .

Lemma 3.1 Under Assumption the matriz </ (0) is uniformly invertible. That is for all § € [O, g],
o/ (0) is invertible that is there exists C > 0 such that

||"Q‘(71||L00([0’%]) < Oa

where C' does not depend on 6.
As a consequence because o € (€°° N L>)([0,%];Mnxn(R)) we also have that for alln >0

Hagﬂilnl;oc([o ) < Ch.

5]
' 2

Proof : The matrix o/ is clearly continuous with respect to § and we can remark that at the boundaries
o (7/2) = —A; and &/ (0) = Ay are invertible. For 6 € |0, 5[ then we can write

o(0) = cos(0) A1 (AT Ay — tan(0)) ,

so that det «7(0) = 0 is equivalent to say that tan(f) is an eigenvalue of A;lAg which is impossible because
of Assumption on the spectrum of A7 As,.

The second statement of the lemma is then shown inductively using the explicit formula for the derivative
Opa/~1 in terms of the 5‘3’;2/*1 with m < n.

O

So that from the triangle inequality we obtain the estimate:

||89UHL§(Q) = ||a€ﬂHL,2y(§,rdr) < OHJZ{A”Lw([o,g]) <||///||Loo([o, ])”rara”Lgy(ﬁ,rdr)

us
2

@)l s ey + 3 0057 5y )
jeET

where  stands for the quarter space in polar coordinates. So that

[0pull 2 () < C(||I‘3ru||Lg(Q) + e L@)ullL2 @) + Y ||1“5jUHL3<Q))-
jer

Consequently ||Gpul| r2() can be estimated by the right hand-side of and (32).

To conclude we observe that

(34)

roiu = r cos 00, u — sin 60pu.

cos 00 1u + sin 00,u = Opu rdou = rsin 00, u + cos 0y u,
—rsinf001u + r cos 00,u = Ogu

Multiplying the second line of by cos 6 and sin 6 gives

21011 = cos? rd,u — cos 0 sin 09yU and x20;u = sin 6 cos Ord,u — sin® 09,1,
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so that for k € [1,2]

||$k31u||2Lg(Q) < ||r6rUH%g(Q) + HanH%g(Q) (35)

1
< c(nruamnig(m + = S 10 @)l
v jeET
1 1
+ S [1L@ulBs o) + IrOr L@l o) + —5 3 10L@)ul: o))
’Y Y vy ’y ]eg vy
2

1
+ 5 Z ||9C37k837kBku\mk:0||i3(ank) + Z ||$37kajBk“\zk:0||ig(ank) +
k=1 jET

1
~ ||8jBkum,c_o||i3(am)> :

Proceeding similarly for the first line of gives the desired bounds on x10;u and zodu. From now on
let us fix v > 1 in order to simplify the expression of the right hand side of . Combining , and
we obtain the desired energy estimate:

||U\|§f71(sz)+||u|m1:0||3f71(ax21) + Hu\$220||§ﬁ}(3522)
< C (IL@ulZes @ + I Brtie,oll2es omy) + | Bottas =0l 0 )

as desired. This ends up the initialization.

3.2 The case s > 1

In order to show the result for s > 1 we need to introduce the following Sobolev type space: for X C
H37(X) = {u € D'(X)\ (10,)°070"u € 12(®) for 0, €N, 6 € N1, a4 §+ |6 < 5 and a+ 5 < p}
and
ﬁ‘;’p’h(X) ={ueD(X)\ (rdp)*0°u € LE/(Q) fora € N,6 e N*"' o< pand a+ 1[5 < s}.

The space ﬁﬁ’p (resp. Ef§7p7h) has full regularity s and contains at most p derivatives with respect to ro,
and Oy (resp. rdy only).
We introduce the following norm on H3?(X); for u € H3P(X)

d
lalferey = 2o 080 ulRa x),
a+B<p,a+B+|d|<s

and we define similarly a norm on H$P#(X) for u € H3P4(X)
s
HUH%;,M(X) = Z [[(rdx)*0 UH%g(xy
a<p,a+|6|<s
The proof essentially follows the one made for the initialization and is made in four steps:

1. We estimate the radial derivatives (ro,)®, 0 < a < s and the boundary terms in the initialization of
the proof of Lemma [3.2

2. Then we use iteratively such estimates to control the mixed derivatives (rd,)* 9k, for 0 < k < «.
This gives the auxiliary estimate of Proposition [3.1]

3. We show that the right hand side of can be bounded by the J°-norm of the sources (see (51)).

4. Finally we show that the interior term in the left hand side of (namely the term involving the
mixed derivatives (rd,)* %95 can be bounded by above by the H7-norm of the solution (see equation

(56))-
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We first show the following estimate in the spaces flﬁ*’(X) and ﬁ;h(X)

Proposition 3.1 For all s € N there ezists C':= Cs > 0 such that the following estimate holds

Z ||I' u”Hb s— 5 + 2 ||x2u\$1_0||Hé s—¢, H(SQ ) + Z ||:E1u|$2 OHHb s—£, h(GQ ) (36)

< c<|L<a>u||g;,s,a<m + Z IF L@l g

+Z”x2B1u\z1 0”]7]*5 S8 e0, )+Z|‘x132u|1’2 OHHS< “‘(692))
£=0

Proof of Proposition We proceed by iteration. Because of the definitions of HY0 and H'5, The
case s = 1 has been considered in Paragraph
Let s € N be such that we have the estimate

S
4
[Z:HI' u||%$s ¢ +[2:||a:2u‘11_0||H“ “(691) —|—Z||x1u|w2 0||H53 “(892) (37)
=0 0

< c(|L<a>u||p,3,s,am> S S SIC TP

=1

+Z||(EQB1U\11_0”H =L 9Qy) +Z|“T132u|xz OHHSS L8 (90, ))
{=0

we want to show the analogous result for s = s + 1.
We have

s+1 s s+1 s—0+1

02 _ 12 s+1—k—Lakas £, 112
; [[r UHI}§+1,5+14(Q) = g [|r u||ﬁ$+1,s4(m + Z Z Z [|(x0) 93 0°r u||L3(Q). (38)

(=0 |5|<f k=0
Note that the second sum in the right hand side of can also be labelled by k € [0,s 4+ 1] and ¢ €

[0,s+1—K].
To deal with the first term we write

anuanﬂwm) >y S M0 O sy + D el

=0 a+B<s—L |§|=s+1—L—(a+) £=0
aqbB ad’
1055 SED SRS SRR (CALC LCR RS Sl MR
1=0j€T a+p<s—L|§ |=s——(a+]) £=0
4 2 4 2
< (3 S Ol + L@l )+ 3 L@, g
=0 jeT —1
||m€Blu|x1=0||%$,8*4=h(301) + Z ngBQulxz:OHfi}f]»sfﬂh(agz))a
£=0 £=0
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from the estimate . To conclude we then use with u = dju so that

Z Z Hreaju”%,ivsfl(g)

1=0j€T
< C(IL@O05ul gy + D I LODsul G s g
L L
+ Z ||x2B16jU|x1:0H%’syv,s—l,h(agl) + Z ||x1326jU|x2:o||%§,sfz,u(892)>
=0 £=0
2 l
([T - Z e L)1t g

+ Z ||m231u\11—0||ﬁ9+1 s=LE90,) + Z ||xlB2u|Iz—0||j.}*+1 s—¢ h(an))
=0

where we used the fact that [rL(8),8;] =0 for j € 7. So that we have

s
Z Il gy < CNEO G sy + 3 I Ll Grse g (39)
=1
+ ez; ||.’L’231U|I1_0||H;+1 s=68(90,) + Z HxlB2u|I2 OHHS‘H s—¢ h(an))'

To deal with the second term of the right hand side of we will use the following lemma
Lemma 3.2 Let s € N then for all k € [0,s+ 1], for all £ € [0,s + 1 — k] we have

||(I‘ar)sﬂ_k_eaga&rzun%g(n) (40)

s+1
< C(ILOulE e g +Z||rpL Yull et s.e01-0

s+1 s+1
+ Z H%Blu\m—o”mﬂ s+1-p.5(90Y) + Z ||951B2U\z2—0||Hs+1 s+1-p, u(aQQ))
p=0

For all ¢ € [0, s + 1] we also have the boundary estimate

[(2202 )S+1 ea%zu\zl 0||L2(6Q1 + [[(z101 )SH 0% 1U[zy= 0||L2(6§22) (41)

s+1
< C(I1L@)ullrrvn g +Z||rpL LR

s+1 s+1
+ Z H"I’JQ)Blu‘IIZO||ﬁ5+1=5+1*P1b(BQI) + Z ||3311)B2U\12:0||ﬁs+1,s+1fp,u(ag2))
p=0 p=0

With Lemma in hand at the step s+1 follows from . So that it concludes the proof of Proposition

|
We now turn to the proof of Lemma

Proof of Lemma [3.2] To show we proceed by finite iteration on k. The proof of comes from the

initialization.
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For k = 0 we have to show that for all £ € [0,s+ 1] and V |§] < £ we have

”(rar)ﬁlféaéréu”%gf(g) (42)
s+1
< C(IL@OuZ 100 g +Z I L)l 1 10
s+1 s+1
+ Z ||x2B1u\561 0||Hs+1 s+1-p.0(90) + Z ||:C1-B2u|m2 0HH5+1 s+1—p, U(BQQ))
p=0

For s, 4,0 fixed we have

s+1—¢

L(0)(xdp)* Tt 0ru = Y (5 *; B 5) (rd)PL(8)d°r‘u

p=0
/s +1-7
-2 ( P ) (x0e)” Y A;0;0%u
p=0 jeT
::§1,s,£ + QZ,S,Z
Moreover from the binomial formula we have the boundary values

s+1—4¢

[(r&r)S“JrZU]\M:o = l > (SJF;, - g) (Ilal)p(@@z)sﬂeprgul = (2202)* " 2hup, =0,

pZO ‘$1=0

and

[(r@r)‘s"’l_eréu} (x161>s+1_€${u|x2:05

|z2=0

so that (rd,)* T ¢d°r‘u satisfies the boundary value problem

L(0)(x8: ) T 0 u = Fy s 0 + Fosu in Q,
Bi((ro, )SH’Ea‘sreu)‘xl:O = (x282)5+1*ew§85B1u‘x1=0 on 04, (43)
Bo((r0;)*T1740°r ) gy —0 = (2101)" 1 42{0° Boujyy—g  on 99,

so that from Assumption 2.1 we have

V@) 00 G ) + [1(2202)" 1 O w0112 00y + 1 (@100)* T O 2 0,017z (00, (44)

1
<o(5 220y + ww%,s,amm
+ [ (@202)° 1 w50° Bruja, ol 22 90, + I(2101)° 2 3632U|m2:0||2L3(392))~

To conclude we then use the following bounds

4
175,003 (0 <ICT U1 g (45)

A 2
<C (@)l gy + ; I L)l G e g

+Z”x2B1“|$1 OHHSHS 800, +Z:HxlB?“Iwz 0HH5+15 “(aszg))
=0

which holds from .
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For dealing with the term .#; ; , we first remark that for £ = 0 we have

=’

S

171.00llE2 ) < C Y I(x0)70° LO)ullZz ) < CIL@)ullfysrreins g

3
I
o

For ¢ > 1 we decompose

L(O)r*u = (01v°) Au + (Oor®) Agu + v L(9)u
= ([(O1r) Ay + (927) Ag) v + PP L(D)u.

So that
s+1—2£ s+1-—¢
IF1nillz < 3 1000 T O ullz oy + 3 Nw0Pr POl
b= p=

AT ‘r 2
<|lr U||H§+1,s—(E—1),u(Q)+||I' (8)u”H;+1~+1 i (q)

s+1
< C(IL@)ulZerrcvrs gy + D T LOVE 1011
{=1

S S
+ Z ||ng1U|m1:0||§~{fy+1,sfz,n(agl) + Z “x{BQltlrQ:oHi‘_‘lff{»l,sf&h(aﬂz))
£=0 =0

where we used for ¢/ = ¢ — 1. Consequently for all ¢ € [0, s + 1] we have

s+1
121063 0y < C(IL@lZirne gy + S0 IE L@l e g (46)
£=1

S S
+ Z HngBluLm:OH%;H.sfe,n(aﬂl) + Z ||x€B2U|m:O||%5+1,sfe,n(692)>o
=0 £=0

As a consequence, (the initalization of at k = 0) follows from ([44)-([5) and (46)). This also gives
(41). This concludes the initialization part of Lemma

We assume that for fixed k, the estimate holds for all £ € [0,s +1 — k]. We want to estimate the
||(rar)S*k*fa§+1aérfu||2Lg(Q) for £ € [0, s]. From the equation in polar coordinates (see (33)) we express

Ot = o/ () rIT(_é_)/u — M ()rou — Z A;0;0;u |,
jeET

so that

—_~—

1(xde)* == C05 1 0x ul| 72 () < ll(x8r)* 0% 05 7~ (O)r L(A)r ul 72 (q) (47)

::(ﬁl
+ () O O T (0). (O)r |7 o

Z::fz
+ Z H(rar)sﬂ_k_ea&agﬂ{_l(9)Ajr€8ju||2L?y(Q)a
jET
::.]3

and we estimate each of the .#; separately.
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For .#, we first decompose
rL(9)rfu = [(O1r) Ay + (917) Ag] rlu + v L L(D)u,

and then we apply Leibniz formula on the products & ~! x u and &/~ x L(9)u so that

k k
Of o (OrLO)ru=">" (2) =P (0) [(Oir) Ay + (Orr) Ag] 2 Ofu + ) (i) o =P (0)Pr T L(9)u.

p=0 p=0

It follows using the uniform bound on &7~ ) (see Lemma that

k k
21 (Y Iwde)y T O s ) + D I D R L @)u?) (48)
p=0 p=0

2112 ‘ 2
<O (I ulgs oty + I L@l Fgn s )
and we use to estimate the first term in the right hand side.

For .#3 we use Leibniz formula on the product (&7 ~'.7(6)) x u and we bound each of the derivatives of
o/~ to obtain

k
Iy <CY ||(xde) O O |7 o (49)
p=0 !
k—1
<C( D10 0 ol g + 1| (00) O O s )
p=0
s+1
SC(HI‘ZUHI‘;’?,S—({(Q) + ||L(8)u||%§+1s+1h(9) + Z ||rpL(a)u”%s«#l,sﬁ»lfp(gl)
p=1
s+1 s+1
2 2
+ Z ||nglu|x1=0||ﬁs+1,s+1_p,u(8gl) + Z Hxll)BQU\;w:O||ﬁs+1,s+1—p,u(692))
p=0 p=0

because holds at the order k. And once again we conclude by estimating the first term from .
Finally to deal with the term .#3 we use once again Leibniz formula and we majorate the derivatives of
o/ ~1 to recover that

k
73 <O 0y O 0,00 ) < Ol B
p=0

. (50)

This time we used (39) to conclude.
We use , (49) and in . This shows that the estimate holds at the order k + 1. This
concludes the iterative process in the proof of Lemma

O

This concludes the proof of the first two steps in the proof of the a priori energy estimate. It remains to
show the first one it is made in Proposition [3.:2] and the fourth one in Proposition [3.3]

Proposition 3.2 For all s € N*, there exists C := Cs > 0 such that
L@l sy + 0 I L@l -1y < CILEN e (51)
1=1

Proof of Proposition We evaluate each term in the left hand side of (51).

28



e For the first term, by definition we have

IL(O)ulFs e Z Yo @d)m 0 LO)ullzs g

m=0 |§|<s—m

The operator (rd,)™ can be made precise in terms of 0y and d2 More precisely we have the following
formula; for a function f depending on x; and xo

m p
o s =350 3 (') ey atagorels. 2

where the value of the scalars A’ is of little interest for our discussion (we refer to for a precise
definition). So that

S p m—p
I1L(0 )u”HsSH“D <C; > Hx?xgafagaéL(a)uuigan-
m:OlJlszmazl B=1
s a+pB
<C; |o¥25 77 07 0] 0° L(0)ull72 o

e For fixed [ € [1, s] we have

L@l = S X 100050 L)l (53)

n+m<s—1|§|<s—(n+m)

It is not so clear if we have a nice formula for 9y f but we have the following lemma

Lemma 3.3 For all n € N there exist (P} g)o<a,p<n which is sum of monomial of order o+ j such
that we have the equality

n+ln—«

Gf=> > Pryorosf. (54)

a=0 =0

Proof of Lemma [3.3] We show this lemma by iteration. Clearly holds for n = 0. Assume that
holds at some order n. Then

O f =" (2201 P+ 2102P 3) 0705 f
a=0 =0
n+ln+l—a n nt+l—a

_Z Z o Py 5070, f+z Z 1Py 5 1aaa f-

a=1 B=0 a=0 B=1

Define
—2901 P B+x132 . f0o<a<n,0<8<n—a,
a5 0 ifa=n+1, =0,
0 ifa=0,8=n+1,
:r2P fl<a<n+1,0<p<n+1—aq,
ifa=0,0<8<n+1,
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and

gn . JuPls, H0sasn,1<f<ntl-a
#7700 ifo<a<n+1,B8=0,

which are all sums of monomial so that we have

n ntl—a

=" (Qus+Rig+ S )00y
a=0 B=0

]

We now complete the bound for the right hand side of by making the right hand side more precise.
We have from Leibniz formula

<m> Ao NG P xg o' o Z Z P;Lﬁaixazﬁaérlf?(a)u\\%3(9)
a=0 =0

a B
>3 Ml @F 0 T P ot 9] 0% L(O)ull3a ),
(55)

and to conclude we shall justify that in the right hand side of the order of derivation with respect
to 01 and Js is bounded by m + n and that the polynomial in front of this factor is sum of monomial
of order o ++' + B + 7. Firstly because of the set of indices in the sums we have

a++yB8+p <at+ad +n—a+p <n+m,

so that the order of derivatives with respect to 0; and J; are bounded by n + m like in the definition
of 7.
Secondly we shall justify that the polynomial in factor of the derivation operator has the good degree

with respect to 1, 5. If (0% 7 0J _"ng’ ) vanishes then the associated norm vanishes and it can be
bounded by any term appearing in the norm of J27(2) to fix the ideas we use the trivial bound

0= 252y (9 705 P2 p)ar Y o5t P L9l ) < N2t @S 00 0T 0% L(@)ul s -

If (8“ 7 8ﬁ ad P”ﬁ) # 0 it is thus a sum of monomials of degree o + 8 — o’ — ' ++' + 1’ so that the

term (8a - 85 - Py ) is of degree o+’ + 8 + 7’ like the derivative. Using the crude of majoration
of the cardlnal to av01d the extra sums we thus have justified that

I @)l o1y < Coll L@l s -

this completes the proof of Proposition

|
Proposition 3.3 For all s € N*, there exists C' := Cs > 0 such that
s a+p
a+p—k
L= % S kg Ros 080 ul < 3 Ietul sy (56)
£=0 a+B<s—L,a+pB+|5|<s k=0 =0
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Proof of Proposition We proceed by iteration on s. The initialisation for s = 1 has been estab-

lished in Paragraph (see equation )

We then assume that I, < >°;_ [lrful/?

o) for some s > 1 and we show that the same holds for I, .

We decompose

a+f

L =33 Y ke op gt s

£=0 |6|<t a+P=s+1—L k=0

=Jsq1
s a+p
—k
oy 3 S flakag PR op 050 s ul2a
£=0 a+B<s—L,a+pB+|6|=s+1—£ k=0
=K1
+ IS + Z ||I‘S+186UH2L%(Q).
[6|<s+1
So that .
I < K 4 2~g . 9+1 .
i1 < Jop1 + Koor + g el B et ) + "l a0 (57)

Relabelling the sums in Js41 and Kgyq we can thus write

s+1—0s+1—¢

Jor1 = ZZ > Z [ A e GO ST A

=0 |6|<¢ p=0 k=0
s a+p8

Ko :Z Z Z Z ||m’fxa+*8 ’“aaaﬁaéreajuuig(m

L=0 a+p<s—L,a+L+|5|=s—LjE€T k=0

By assumption we thus have

Ko < Z DIl g < D Ul Fnie g (58)

=0 jeT =0

Let 0 and ¢ be fixed we define v = v 5 := r‘0%u the aim of the following is to express the derivatives

&P 1EPaky appearing in J,y as sums of the derivatives (rdy)* 1%k for k € [0, s + 1 — 1.

Let N > 1 be fixed, k € [0, N — 1] and let v = v(x1,z2) be a given regular function, we want to isolate
the terms of higher order of differentiation in terms of d; and 9 in (rd,)" ’1*’“851). We thus decompose

N-1
(0N o = Y a oY T OR = LY 4 (59)

p=0
where for all £k € [O,N — 1], p € [0,N — 1] ozfnv’k is a sum of monomials of degree N and where for all
k € [0, N — 1], pl¥ reads as a sum of monomial of degree o + /3 times 8?851} with o + 3 < N — 1 that is

a+f
pllﬁv = Z Z Yap, kxll"z—m ka1 35“ (60)

a+pB<N—-2 k=0

where ¥, 51 € R.
Indeed let p be a monomial of degree N with respect to x; and xo we thus have

(0) (p0) P05 = wip OV TR+ wap O PO+ [11(0up) + wa(0ap)}0) TR

do=N+1 do=N+1 d°=N
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and the same holds for the operator Oy.
We consider the system of equations

= (ro:)N~ v—po :
(I‘a) U_pl '_627

L%izzr&.aN v—pN 9" —EN 2
N _ gN-1,
Ly_1=29, pN 1 _éN 1

with AN, = o, UN = [9N v,0) 2050, ..., 0) "'0]" € RN and LN = [}, eV, ... eN_]T € RV,
The following lemma descrlbeb the solutlon to l)

Lemma 3.4 For all N > 2 and k € [0, N — 1] there exist 1/)év’k, ...,w%fl functions, € with respect to 6,
such that the solution UN of ANUN = LN satisfies

Vk e [0,N —1], vV Ul = Zw“

where we stress that the z./;zj,\’*’c do not depend on r and are bounded with respect to 0.

Proof of Lemma [3.4] We proceed by iteration on N. The initialisation has been done in Paragraph

indeed gives
rUZ = cos 003 — sin 043 and rU7 = sin 002 4 cos 043,

so that the w.o" are readable.

We now assume that the solution of ANUN = LV satisfies TN 71UN = Z;V;Ol wév’k(ﬂ)%v for some AJVF

and we want to show that the same holds for the solution of .#N*1.

The aim of the following is to show that we can easily solve the system .~ *! in terms of the solution
of /. Indeed we decompose the terms (rd;)V ~*9} like in (59). Because (rd;)™ = (2101 + 2202) ()N !
and ag‘f = (—x201 + 1;182)%\771 we have

N,0 N,N-1
10y p=0 —Za0ry” p=0
aIIJVH’O = xlaNO + xga;\l’ol p€[l,N—1] and ozi,VH’N = —xzaN N-1 4 xla;\lfffl pe[l,N—1]
J?QQ%O p=N xlozNN 1 p=N
and for k € [1, N — 1] we have
:clozéVk p=20 *ng[éVk ! p=0
N,k ko - N,k—1
azz)vﬂ’k = zapF + a0 ) pe[l,N-1] or ozII,VH b= —zoa) Kt + a1 peL,N —1]
N,k o N,k—1 _
Toory p=N Tray p=N

depending on that we write (rd;)V %9} = (rd;) ((rd;)¥~17%0}) that corresponds to L} or that we write
(r0, )N ROk = 0y ((r@r)N_l_(k_l)agfl) corresponding to LY ;. Consequently for k € [0, N — 1] we thus
have

N—1
N+1 N+1 2 NkyaN— 2 NkgN
s Ly B+ Ly ——$11‘2050 FoNv + (— 37133204 "+ 2ia po1)01 PO5v + atay 05 v
p=1
N—1
2 NkyaN— 2 NkgN
+9:1x2040 FoNvy + (zlxga P aia po1)0) POYu + asay 05w

Il
—

p

N
—r2 N,k gN—p gp
=r E a, "0y T 050:0.

p=0
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So that by substituting Lg“ by lefClel + IQLQUFI we obtain

N+1 _ yN+1
L =47,

AN+1UN+1 :LN-',—I <:>{ N

ANTN =T

_ _ _ _ T
where we defined T = r? [8fv_182v,3fv_18§v, s 8éVU}T =r? [UlN'H, - U]]\\,IH]T and LkN = {Ké\], ...,611:,[_1}

where ék = xlékﬂ + xgékNH.

So that by assumption we have that for all k& € [[1, N]
rN+1U]£\7+1 Z ¢Nk Z ¢Nk EZ])V++11 + ng}])V—‘rl),
so that writing #; = rcos# and xo = rsinf and s1mphfymg by r gives

N
pNUNTE =3l R gL

p=0
where we defined
sin 91/)(])\, b p=0,
¢11)V+1’k = 51n91/JNk+00891/1p 1 pe[tL,N-1],
cos Hz/JNA p=N.

To recover the missing coordinate UNJr1 we substitute for k € [0, N — 1], L,ICVJrl by leiVH — ﬁEQLi:V+1
and we obtain the equivalence

yNJ,_l o ANQN = LNv
N+1 N+1 !
LN+ _ £N+ ,

where U := r? [OF,UN,..,UJ_|] and L = [21£] — xol}, ... 2105 _; — xQE%]T and we conclude exactly
like in the previous case.

O
We apply the result of Lemma with N = s+2—/¢ > 2 and to the function v = vse = rfoou.
We thus can write ANUN = LN with Us+2-¢ = [3S+1 Ly 05T ¢ ] € R5+2=¢ and where the datum

Lst2—t = [6‘54'2_5, ,K:ﬁ g] € R5+2+¢ where we recall that by definition £} := (rd;)N =1 7195v —plY where

Consequently we have that for all p € [0,s 4+ 1 — {]

rst1- éaerl £— papaér w= S§Z¢;+1—Z,p(9)32+2—€7
q=0
from which we deduce that for all k € [0,s + 1 —£]
s+1—¢
xllcx2+1 k8s+1 —L— papaér w = Z ,(Zg+1—€,p(9)£;+2—é (62)
4=0

where 51762 () := cost @ sin®T1—F 01/)S+1 P (6) is bounded with respect to 6.
It follows using in particular (60] that

s+1— k88+1 L— papaé

H%ﬂfz U||L3(Q)
s+1—42 s+1—¢
< Z H(rar)SH_Z_qagaérZ“HZLg(Q)+ Z ||p2+2_£||2Lg(Q)
q=0 q=0
a+f ,
<P ullir ey + Coe D D llaf a5 ™7 0Fag 0 ull}s )

a+p<s—L k'=0
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To obtain our estimate on Jsy; we sum the above inequality with respect to k, p, £ and §. We thus have

s s ats
e O LT e DD IR DD I E s A
£=0 |5|<t £=0 |§| <L a+B<s—Lk'=0
S
<C (Z Hrzu‘li~15+1,s+1—z(ﬂ) + Is)
=0 !
S
<C; Z ||r£u||%2+l,s+l—£(9). (63)

£=0

To conclude we combined , and . This shows that holds for s+ 1 instead of s and ends up
the proof of Proposition

|
To end up the proof of the a priori energy estimate at the order s 4+ 1 we combine Propositions and
B3

|

4 Regularity of the solution

In this section we establish the regularity of the solution to initial boundary value problem and to the
pure boundary value problem . This section thus contains the proof of the second statement of Theorem
[2:3]and the ones of Theorems 2.2 and 2.3] For convenience we recall here the two problems; we will consider

LOu=f for (t,x) €
Biujy,—o = g1 on (t,12,2") € 00y, (64)
Boujg,—o = g2 on (t,x1,2") € 08y,

that is to say the pure boundary value problem, and

L(O)u=0 for (¢t,z) € Q,
B1U|$1:0 =0 on (t,xg,ﬂfl) S 891,
Byujg,—0 =0 on (t,z1,2') € 0o,

Ujg=0 = Ug onzx el

(65)

the initial boundary value problem.

The existence of a regular solution to comes from a slight adaptation of the duality method in-
troduced in Lax-Phillips [Lax and Phillips, 1960] while the existence for comes from the application of
Lumer-Phillips theorem [Lumer and Phillips, 1961]. We refer to [Benoit, | for examples of applications of
these methods in the simpler geometry of the half-space.

In order to apply the method based upon Lumer-Phillips theorem we should express as a pure
evolution problem so that we write it under the following form

d
<u=Au fort>0
dt ’ (66)
=g =up ont=70,
where A is the operator defined by Au := — Zd:l A;0;ju on some domain which in particular encodes in its

definition the boundary conditions of (we refer to Proposition for a precise definition of D(A)).
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In the following we first recall for completeness the version of Lumer-Phillips that we will use in order to
show the existence of the solution to that is to say the one involving the dissipativity of the operator A
combined with the one for its dual operator A*.

Similarly the main assumption for the duality method of Lax-Phillips is to assume that the dual problem
to satisfies an a priori energy estimate and then to recover from this injectivity property on the adjoint
operator the surjectivity of the primal operator giving the existence of a solution.

So that both methods of construction of a solution to and rely in fact on a dual operator defined
on some suitable base Hilbert spaces.

The required duality formulas are stated in Paragraph but because they are a little heavy to
demonstrate their proof are postponed to Paragraph The main feature to keep in mind is that A is
essentially skew-adjoint, meaning that in some suitable Hilbert space we can write the dual operator A* can
be written under the form

A*=—-A+d (67)

where ® is some linear continuous operator.

Paragraph contains the version of Lumer-Phillips theorem that we will use in the following and
gives some elements of functional analysis.

Then assuming that the decomposition holds, Paragraph describes the Lumer-Phillips method
in two different base Hilbert space and thus gives the proof of Theorems and while Paragraph
deals with Lax-Phillips method and thus gives the proof of the second statement of Theorem [2.1

4.1 Preliminaries
4.1.1 Functional analysis framework

In this paragraph we recall for a sake of completeness and for convenience the following version of Lumer-
Phillips theorem that will be used to show the existence of a regular solution to .

In the following (X, || || x) stands for a Banach space and A denotes an operator defined on some domain
D(A). We recall the following definition for dissipative/quasidissipative operators.

Definition 4.1 (Dissipative operator) Consider A : D(A) — X an operator. We say that A is dissipa-
tive if
YA> 0, Vu e D(A), (A — Ayulx = Aullx.

Definition 4.2 (Quasidissipative operator) Let A : D(A) — X an operator. We say that A is w-
quasidissipative if there exists w > 0 such that A — wl is dissipative.

For such operators we have the following corollary of Hille-Yosida theorem characterizing the strongly
continuous semigroups of (quasi)contractions

Theorem 4.1 ([Lumer and Phillips, 1961]) Let A : D(A) — X be a closed densely defined operator.
We assume that A is w-quasidissipative and that there exists A\g > w such that A\gI — A is onto then A
generates a strongly continuous semigroup of quasicontractions T that is to say that

Jw >0, s.t. Vt€[0,00[, |T(t)]x <e“".

As pointed in the beginning of this section we will not show that Ao/ — A is onto but we change this
requirement by some property on the dual operator A*. This is why we rather consider the following corollary
of Theorem[4.1]in which the second statement just describes the definition of a strongly continuous semigroup
of quasicontractions on the solution u to the initial boundary value problem .

Theorem 4.2 Let A be a closed densely defined operator D(A) — X if A and A* are both w-quasidissipative
then A generates a strongly continuous semigroup of quasicontractions on X .
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In particular the differential equation

%u:Au t € [0,00],
Ult=0 = U0,

has a unique solution u € €°([0,00[, D(A)) N€*([0,00[, X) which satisfies the energy estimate

Jw>0,Vte0,00f, |ul)x < e“uolx-

4.1.2 Duality formulas

The only thing that is needed in order to show the regularity of the solution to problems and
is the following duality formulas for A on X2 ,(T') or Y*(T") (we recall that these spaces are introduced in

rad
Paragraph [2.3.2)).

Because the establishment of such duality formulas is rather heavy and that it is not computation free
we postpone the proofs to Paragraph

Proposition 4.1 Let s > 0 and let Z := X7 ,(T') or Z := Y*(T') then we have the following characterization
of A, D(A), A* and D(A*):
Let A: D(A) — Z be defined by Au := — Z;l:l A;0;u on
D(A) = Ds(A)={ue 2\ Aue Z,Vj € {1,2}, ujp;—0 € Z satisfies uj,,— € ker B;}.
Then the dual operator of A* : D(A*) — Z is defined on
D(A*) :=Ds(A") ={ve Z\ -Av e Z,Vj e {l,2}, vj,,—0 € Z satisfies v|,,—o € ker C}},
where the boundary matrices C; are such that we have the decomposition (see equation )
Aj = M]B;+ CTN;. (68)
Moreover there exists a linear continuous operator ® : Z — Z such that we have the characterization
A*=—-A+ 0.
To conclude let us remark that A and thus A* are closed operators and that they are densely defined because
both D(A) and D(A*) contains D(T).
4.2 The initial boundary value problem

In the following assuming that we have the duality formulas exposed above we expose the proofs of Theorems
[2:2] and 23] The proof of Theorem [2.3] is given in Paragraph ?? and the one of Theorem [2.2] is given in

Paragraph

4.2.1 Existence of a solution to (65) in Y*(T"); proof of Theorem

In this paragraph we use Lumer-Phillips theorem in the form of Theorem with X := Y*(T') in order to
show the existence of a regular solution to .

The sketch of the proof is the following:

1. Classically when one deals with compatible initial datum we will first show the result when the initial
datum wg as one extra regularity and one extra compatibility condition. We then obtain the desired
result by regularization of the initial datum.

2. We first apply Theorem to . This is made possible because thanks to the maximal dissipativity
of the boundary conditions A is dissipative. We also use Proposition in order to state the same
result for A*. This gives the existence of a solution u € €°([0, o[, D(A)) N €([0, 0o[ , ¥*(I)) to (66).
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3. Then we iteratively apply Theorem to 8tk for k € {1, ..., s} which will give the desired regularity
of the solution in terms of the space V*(I").

4. To conclude we have to justify that near the corner we can recover from the control of the radial

derivative (rd;)*rlu the control of all the anisotrops derivatives 2 T2 F2z59%1 932y this is made in

two steps
(a) Firstly we use Assumption which permits to bound explicitly the radial/angular derivatives
(rde)®d5 " u in terms of the radial derivatives (rd)*d%u.
(b) Then from the explicit estimation which controls the desired z{" T2 2591952y, in terms
of the (rdy)*8; ' “u.

We conclude by showing that away from the boundary we can recover the H® control of the solution
from the control of the 3279y ,05 o,

In the following we will intensively use the following lemma.

Lemma 4.1 Let k € N and X = X; = Y¥T) then if the boundary conditions of are maximal
dissipative then the operators A : Di(A) — X and A* : Dp(A*) — X are quasidissipative in the sense of

Definition[{.3
Proof : We first establish the dissipativity of A. Let A > 0, w > 0 to be fixed below and v € D(A), we
define f := (A + w)I — A)u. We have from Cauchy-Schwarz inequality

A+ w)llullkx = (Au, w)x < |[fllx - llullx-

The remaining of the proof consist in give a bound for the term —(Au, u)x. In order to do so, we borrow
the following formula, namely equation , obtained during the determination of the adjoint operator.
More precisely we can write that for all u € D(A)

1 1 1
—(Au,u)x = —§<U7(I)U>X - 581 - 5827 (69)

where @ is the operator given by Proposition [.1] and where the boundary integrals B; and By are explicitly
given by

/ (A1 (2202)*0°Thtt| g, =0, (2202)* O°Thuu|, —0) Az’ diza,
ory

Z / (Ag(xlal)aa‘smllu|x2:0,(xlal)aa‘sxllmm:o)dx'dxl.
a

We remark that from the definition of D(A) the term (2292)*0°xhu),, —o (vesp. (2101)*d°x{u,,—o) appearing
in the scalar product defining B; (resp. Bs) is in ker By (resp. ker Bs). Indeed these terms only involve
tangential derivatives of u),,—o € ker By or u|,,—o € ker Bs.

So that from the definition of maximal dissipative boundary conditions (see Definition we have
Bi, B2 < 0 and thus these terms are signed and can be neglected.

Consequently we have

1
At @luli = 51w, Pu)x] < [ fllx - [lullx,

so that it suffices to choose w > @ to obtain the desired dissipativity property.

The dissipativity of the adjoint A* follows essentially the same lines. So we will only give the main
ingredients. Let A > 0 and w > 0 to be chosen large enough we define for v € D(A*), f := (A +w)v — A*v.
So using Proposition [4.1] and equation we have

1
A+ @vlx + Bu+ By = 5 (v, @vhx < ||| [lo]l
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Because now v € D(A*) we have in particular V), =0 € ker C1 and v|,,—o € ker Cs so that we have By, By > 0
from the remarkﬁ . The desired dissipativity property follows by choosing w > @.

O
We first show Theorem when ug € 2°71(T') satisfies the compatibility conditions up to the order s we

will then in a second time establish the result only for ug € 2°(T") satisfying the compatibility conditions up
to the order s — 1.

We want to use Lemma for k = s to apply Theorem to . Assume for a while that ug € Ds(A)
then from Theorem there exists a unique solution u € €°([0,00[, Ds(A)) N €1([0,00[, Y*(T')) which
satisfies the energy estimate

Vit €[0,00[, u®)llysr) < e*|luol

ya(r) < lluollosr)- (70)
We now justify that ug € Ds(A). We have ug € 2°THT") € 2°(I') C Y*(T) and Aug € 2°(I") C Y*(T).
Then for j € {1,2}; ujz,—0 € 25+Y2(01;) C Y*(0T';) and because of the compatibility condition of order 0

Blu()‘xlzo = 07
B2u0\12=0 = 0.

We now want to apply Theorem to Ogu. Such function satisfies

{(?tatu — Adyu,
1

(Osu)|1=0 = Aug = u',

so that we should justify that u' € Ds_1(A). We have u! = Aug € D*(I') € Y* 1) and Au! = A?%ug €
Ds~1(T") € Y*~1(I'). Moreover for j € {1,2}; uj,,—o € D*~1/2(0I';) C D*~1(0r';) C Y*~(T') satisfies

from the compatibility condition of order one.
So that d;u € €°([0,00[, Ds_1(A)) N € ([0, 00[, Y5 H(T)) satisfies the energy estimate

rad

vt € [0, 00, [10u(t)ly—2(ry < el duolyems ) < Celuglle o). (71)

where C' depends on the coeflicients A;.
Proceeding iteratively we thus obtain that u € N;_%/([0,00[; V*~#(T')) satisfies the energy estimates

vt € [0,00[, Vk € [0, 5], (|07 u(t)]

yor(ry < Cse“|luol|gs(r). (72)

We now have to justify that near the corner dfu(t) is not only in Y*~*(%’) but that it is in J#°~%(%).
We also have to justify that the similar result holds in the interior that is to say that we can recover the fact
that OFu(t) € H*~*(.#) from the fact that it is in Y5~*(.7).

e Extra regularity near the corner: to fix the ideas let us consider the case k = 0 (the others cases
being similar). In order to show that u(t) € °(%) from the explicit bound (in which we do not
integrate with respect to t) which gives a bound for the anisotropic weighted derivatives in 52%(%) in
terms of the radial and angular derivatives, it is sufficient to justify that the ||(rd;)*~*~'9F0°r'u|| L2 (4
are finite for all 0 < k < s — .

Note that because v € Y*(I") the previous result holds for k¥ = 0. We then shall recover the control of
[[(x0p) 05~ *3°r!u| 12 (%) iteratively like it as been done in the proof of the a priori energy estimate

6This point of the proof uses in a non trivial way the fact that we can express the dual operator as —A plus some operator
in order to recover the good sign property.
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given in Paragraph From (in which we only remove the integration with respect to t) we have
the relation

(w00 DT, (73)
< wdr) PO (O) MO T, (74)
+ 310 T T (O) A Oyl (75)
€T
<C, (|0 PR, o+ 00T T, Y,

where € stands for the image of 4 in polar coordinates and where we use Assumption Leibniz
formula and the slight abuse of notation, for j € 7, 9;0° = 9°*! in the last line. So that in cartesian
coordinates we have

||(rar)8717k713§+135rlu||2L2(<g) < Cs (||(rar)57k7£353§rlu||%2(<g) + ||(rar)#lfkflaaﬂagrlU”%Z(%)) )
equation which gives the desired result iteratively.
e Extra regularity in the interior : Because of the definition of }*~%(.#) the result holds for k = 5. We

here proof of the fact that we can recover the result that 0; 'u € H'(.#) from the fact that it is in
V(). Because of the inversibility of A; we can write

d
011l 12 () < C(Hatsuﬂm(y) + 110207 | L2 (o) + Z ||8jaf_18j“||L2(y)),
j=3
so that from the triangle inequality
d
101 + Oau]| L2y > |(1 = C) 10107 "l L2y — CllOFull 2y — C Y N10;07 0jullp2 (|- (T6)
j=3

The left hand side of being finite because 9; ~*u € Y (T'). We separate several cases
— If C > 1 we thus obtain (C — 1)]|019; "u|z2(s) < [|01u + O2ull12(s). So that we obtain that
00y e L2(.7).
— For C <1
« if (1= )00 ullr2(ry < CllO5ul|p2(.0) + CZ?:3 10,0 9jul|p2(.s). Then the result is
immediate.
* il - 0)|\8laf—1u||p(y) > Cl|0full g2y + CZ?:3 ||8j8ts_18ju||L2(]) then we have from
(76)

d
(1= 10105 ull L2y < N|Ovu + Doull L2 (o) + CllOull 2oy + C Y 110,05 jull 2 ),
=3

so that 9,0 tu € L2(.7).

To obtain the fact that 8,0 'u € L?(.#) we use the inversibility of A;. We thus have justified that
¢ u € H'(F). The proof for k > 2 follows exactly the same lines and is omitted here.

We thus have justified that when ug € 25T1(T) satisfies the compatibility conditions (13]) up to the order
s then admits a unique solution u € N§_,%F ([0, 00[;2*~*(I')) and that we have the energy estimate

Vite [0,00[, Vk e IIO,S]], ||8tku(t)||gs_k(p) < 036WtHU0H@s(F). (77)
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To conclude the proof of Theorem it is sufficient to show that the same result holds for ug € 2°(T")
satisfying the compatibility conditions (13]) up to the order s — 1. In order to do so we use the following
regularization result:

Lemma 4.2 Let s € N be fized and ug € 2°(T') satisfying the compatibility conditions up to the order
s — 1 then there exists a sequence (uf),en C Z°5T1(T) satisfying the compatibility conditions up to the
order s such that lim,_, o uf = ug in 2°(T).

Proof of Lemma [4.2] This lemma is rather immediate because we are working with homogeneous com-
patibility conditions so that it is sufficient to approximate ug in 2°(T") by a sequence of regular functions
vanishing near the boundaries {x; = 0} and {2 = 0} such an approximate sequence in fact satisfies the
compatibility conditions at any order.

|
We thus introduce the initial boundary value problem
d
<u’ =Au¥ fort >0,
N (78)
Ujp=0 = Y0,

because ug is regular enough the previous discussion applies and thus for fixed v, admits a unique
solution u” € Ni_, 67 ([0,00[; % *(T')) with the energy estimates . By linearity and from the energy
estimates (77)) we can show that (u”(t)),en is a Cauchy sequence so that it converges pointwise to some
u € Ni_g6r([0,00[; Z 5 *(T)), passing to the limit in and shows that w is a solution to
satisfying the energy estimates in particular it is unique. This ends up the proof of Theorem 2.3

]

4.2.2 Existence of a solution to in X° (T'); proof of Theorem

The proof of Theorem follows essentially the same lines as the one given in the previous paragraph for
Theorem 2.3
In a first time we assume that ug € X ,(I") satisfies the compatibility conditions up to the order s.

Because it only relies on the fact that the dual operator is essentially skew-adjoint which is also true in

Xk (T') we have the analogous of Lemma

rad

Lemma 4.3 Let k € N and X = X}, = Xfad(F) then if the boundary conditions of are mazimal

dissipative then the operators A : Di(A) — X and A* : Di(A*) — X are quasidissipative in the sense of
Definition[{.3

We are then in position to apply Theorem 4.1} It is made possible because of the well-preparedness as-
sumption (I4). For instance for k = s we have ug € D,(A). Indeed we have ug € X3 ,(T'), then from
the well-preparedness assumption we have Aug € &%, (') and the trace u|,,—o € &%,4(0I';) and finally
oy, o € ker B; because of the compatibility condition of order zero. So that TheoremFiEl gives the existence

of a unique u € €°([0, oo[, Ds(A)) N €1 ([0, 00[, X*

rad

(T)) which satisfies the energy estimate
Vte [0, OO[7 ||U(t)||Xs(p) S €wt||’LLO||Xs(F).

We then apply inductively Theorem [41] to dyu like in Paragraph [£.2.1] This is made possible because of
the well-preparedness assumption This shows that u € ﬁzzo%tk([(),oo[;Xf;ik(F)) satisfies the energy
estimates

Vt € [0,00[, VE € [0, s], ||afu(t)||)(s—k(r) < Cye|Juo]| s 1y,

where at each iteration we used the well-preparedness assumption || Aug||xsry < Clluol|xs(r)-
To conclude we reproduce the arguments of Paragraph [{:2.] to justify that we can recover from the

regularity u € N;_,6F (R, ngf (I")) we can recover the full regularity of the anisotropic weighted derivatives
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that is to say that u € NJ_,CF (R4, #5,5(T)) (we use integrated over the full space instead of ¥).
This gives the proof of Theorem when ug satisfies one extra compatibility condition.
Finally we recover the result for ug € X3 ,(I") satisfying the compatibility conditions up to the order

s — 1 using an approximation procedure by regular vanishing functions near the boundaries exactly like in
Lemma This concludes the proof of Theorem

4.3 The pure boundary value problem

This paragraph is devoted to the proof of the regularity of the solution to . This proof relies on a rather
straightforward adaptation of the so-called duality method introduced in [Lax and Phillips, 1960]. The main
ideas of the modified method are the following:

1. We first introduce a dual problem to the primal problem . This dual problem has already been
introduced in Paragraph [£.1.2]

2. We assume that the dual problem to satisfies an a priori energy estimate in high order based
Sobolev space (more precisely in X2, iy (©)). So that in particular it gives us uniqueness of the solution
to the dual problem.

3. Using this uniqueness property for the dual problem we recover the existence of a solution for the

primal problem in A7, ().

4. Like in Paragraphto recover the full regularity of the solution in 7 () we use the explicit formulas
and giving the regularity of the angular derivatives 86’} in terms of the radial ones.

The most substantial modification that we make compared to the method of [Lax and Phillips, 1960] ex-
posed above is that we will apply this method to high order Sobolev space (more precisely a space containing
the radial derivatives (rd,)®) so that if we have an a priori energy estimate in high order Sobolev norms for
the dual problem then the solution to the primal problem will inherit this regularity.

We consider the Hilbert space X%, ;(T') encoding the control of the radial derivatives (rd)*, for k € [0, s—(]
of the weighted functions ru. Because we have now to deal with the time variable we introduce the following
functional spaces; for y € R and X C 2 we define

iy (X) = {u e D'(X)\VI€{0,...s}, Va € {0,...s—1},V|0| < s—a, e X (rd,)*0°rlu € L*(X)}, (79)

where the multi-index & = (89, 93, ..., 05) € N'+9=2 and where the operator the differentiation 3° now stands

for 0 := 8?0833...82‘1. This space comes with the norm ; for u € A7, ;| (X)

s s—1

lulks,, o =23 2 /X6’2’“|<r6r>“85rlu<t,z>|2dt de.

=0 a=0|§|<s—a

Proposition applies without any change because we only add in X% , (X) the tangential derivative

rad,x
0; and because the A; do not depend on ¢.

Consequently we have the duality formula: for all u € X2

ad (1) satisfying that i, —o € X7, (0h),

Ujp,=0 € Xypy  (0€) and for all v € A7, | (Q) such that vj,,—g € X7, (ON), V=0 € XJyy _, (0822)
we have the equality

(LO)u,v)xs,, (@xs,, (@ L (O)v)xs,, (@pxs,, (@ — (wPv)xs  (@yx:, (@ (80)

2
+ ) (Bjujz;=0, Mjvjz,;=0) + (Njujz;=0, CjV)z;=0) = 0,
j=1

where we defined L*(0) := —L(9) and where the duality products on the boundary are duality product
() 00,0, (09,):
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Indeed we use equality in which we do not have any cancellation of the boundary terms B; and Bs
so that we just express these terms using the decomposition .

For later purpose we define the ”complete” (in the sense that it is the one for which we have the duality
formula) adjoint operator L*(9) := L*(9) — ®. In the following we consider as a dual problem to the
pure boundary value problem

L*(Qw=f in €,
C1vjg,=0 = g1 on O, (81)
Covjgy—0 = g2 on 08y,

where C; and C5 are defined in the decomposition .

Our main assumption of the current paragraph is the following. It states that the dual problem
admits an a priori energy estimate in the high order radial Sobolev space. More precisely

Assumption 4.1 Assume that for some s € N and y > 0 for v > v, if the solution v € X}, 7(Q) is such
that f = L*(0)v € X}, () and g1 == C1vjz,=0 € Xy (021), G2 = Covjpy—o € Xy (0) then

there exists C > 0 such that for all v > v we have the energy estimate
(09,) T HU|ZE2:0H.%Yfad(BQQ)

1, ~ ~ ~
<C <7||f|g€fad(9) +119111%:, 000 + ||92||gcfad(anz)> :

Molles, @y + loter—oll:

rad

Let us indicate that from the results of Section [3] this assumption is not so restrictive or heavy. Indeed
it is in fact sufficient to assume that the dual problem is L2-well posed. In particular it is well-known
that symmetric problems with strictly dissipative boundary conditions have a good behaviour for the dual
problem so that if the primal problem satisfies such assumptions then so do its dual problem (we refer for
example to |[Lax and Phillips, 1960] for a proof of this fact).

We now show the existence of a solution u to the primal problem .

Proposition 4.2 Let s € N, under Assumption there exists v, > 0 such that for all v > Yo if the
sources f € Xradw(Q) (91, 92) € X7y, (0821) X mdﬁ(am) then the primal pure boundary value problem
(64) admits a unique solution u € dev(ﬂ)' Moreover u satisfies the energy estimate, there exists C' > 0
such that for all v > Yo

1
’Y||@||3c§adﬁ(n) <C (7||f||3cga )+ H91||Xs Lo T lg211%: ” (6(22)) (82)

If in addztzon f € 5(Q) and (g1, g2) € H7(00) x A7 (002) then u € 27 (Q). Finally if the primal
problem (64]) satisfies Assumptzonm 12.1| then u satzsﬁes the a priori energy estimate (11]).

Proof : The proof exposed here follows essentially the one used in [Benoit, | see also [[Benzoni-Gavage, 2007]-
Paragraph 4.5.3].

We introduce the following subset of X (©), X defined by

rad —
X:= {L"(0)v where v € X, _ (Q) satisfies C1v|,—0 = C2vjz,—0 = 0},

and for given f € A7, (€), (91, 92) € X4, (0Q1) X X7, (0€2) the following linear form £ : X — R defined

rad,y
by
UL (0)) :=(frv)xs,, (0.x5,, () (83)
+ (91, NMvje,—0) xs, ,  (001),x5,, _ (09) T (92, NoVjz,=0)xs,,  (092),22,, _ (99)-

The main point of the following is to show that because of Assumption (.1} ¢ is continuous on X. Indeed
Cauchy-Schwarz inequality combined with the energy estimate for gives for v > v

UL @ < (TR, o0+ = (lnlie, om + I, o0) ) - IE @0l o 60

7
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and in order to show that ¢ is continuous we shall only replace L*(9)v by L*(d)v in the right hand side of

(7).
The triangle inequality and the definition of L*(9) give

IL*(O)v]l x

@ Z I O)0llxs,, @) = [1Pvllxs,, @) (85)
However using the fact that ® is continuous and the energy estimate for the dual problem we have the

estimate

[Pol|xs

rad,—~vy

@) < O]l xs

rad,—~vy

(O
@ < ;HL (a)U”Xfady,v(Q)’

so that we can choose 7 large enough such that the right hand of is positive and reads like a positive
multiple of || L (9)vx: __ (- This shows the continuity of £ on X.
From Hahn-Banach theorem we extend ¢ to the whole space X? , —y and then from Riesz representation

theorem we deduce the existence of a unique u € X5 , V(Q) such that

UL (9)v) = (u, L*(0)v)x;

rad W(Q) Xrad W(Q) : (86)

Moreover from the characterization of | ull X80 () given by Riesz representation theorem we have for
large enough the energy estimate '

1
’Y||@||?\f;am(9) <C (7||f||g(:am(9) + H91||fv:am(anl) + ”92”?\?”)7(891)) , (87)

this gives estimate (82).
We shall now verify that such u is a solution to (64). We choose v € D(Q2) and combine and
with the duality formula to obtain that for all v € D(Q),

(f,0) e — (w, L O, @, = (DO, @

so that L(0)u = f. Then choosing v € D(1) satistying Cjv|,,—o = 0 gives, using the fact that L(d)u = f,
the equality (Bgm —0— 95> M;v|s,—0). The matrix M; being onto the right hand side can be replaced by any
test function so that we end up with the boundary condition Bjw, _, = g;. This shows that u is a solution

to .

To conclude we have to justify that if f € 7°(Q) and (g1, g2) € H27(0Q) x H27(0N) then u € J23 ().
It is essentially made like in Paragraph

It is once again a direct consequence of and which permits to control respectively the norm of
the solution in X}, by the norm of f € J7(Q) and (g1, g2) € H7(0) x H(0Q2). The details are
omitted here.

rad 'y Q) Xrad —y 7ad,7'y rad —y

O

4.4 Proof of the duality formulas

In this paragraph we show that in both X ,(T") and Y*(T"), the adjoint A* of A can be written under the
form A* = —A + ¢, with ® linear continuous giving thus the proof of Proposition

As we will see in the core of the proofs it is crucial for the analysis that the base Hilbert space X%, ,(T')
or Y*(I') is defined with respect to the radial derivative and not the tangential ones.

Let us point that from now to the end of the article the multi-index ¢ := (d3, ..., 84) € N2 so that the

operator @° 1= 93* - - - 8:}‘.
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4.4.1 Duality formula in X} ,(T")
(T") we have

d
(Au,0) s (1) = ZZ > /Z {(r0r)*0°r' A;05u, (rop)*dr'v) da
=3

1=0 a=0 |§|<s—a T

_iz Z /Z {(r0p)*0°r' A;0;u, (r0y)*0°r'v) da

1=0 a=0 |§|<s—a ’ T j=1
_ Itan _ Inor

Let u,v € X*

rad

no

We first establish the duality formula for the integral term Z!*" which is simpler because it involves less
commutators than Z™°".
Because the coefficients A; are constant we have

(rde)* A;rld’u = A;(rd,)*r' 0 u. (88)

So that we have
Itom — jtan

where

Jhem = ES:Z > /Z A;0;(rd,)*0{ 05x' %u, (r0,)* 0°r'v) da

=0 a=0|§|<s—a

We conclude the derivation of the duality formula involving Z%" by making the integration by parts in
J"" because the operators 0; are tangential we have, using the symmetry of the coefficients,

jtan _ zs: Z Z / Z I'a la‘su, Ajaj(rar)aa5rlv)> dz

=0 a=0 |§|<s—a

So that there holds that

_gtan _ i Z Z / Z I'a 7<r6r)aa5rl14jajv> dz = ft‘l"’ (89)

1=0 a=0 |§|<s—a
where for a bilinear form Z := i(u,v) the notation Z stands for Z := i(v, u).

We now repeat essentially the same computations to deal with the term containing the normal derivatives
that is to say Z"°". The method is however modify firstly because r! depends on z; and x5 so we have one
commutator to deal with. Then, we also have to take care of the fact that 9; and (rd,)* do not commute any
more so that there is an other commutator to handle. Finally note that we also have to deal with boundary
terms during the integration by parts.

We have

I = iz > /Z(A rd,)*0°0;r'u, (roy)*0°r'v) da

=0 a= 0|5|<9 « =

s 2
—ZZ > /Z (L4;(057)(x0:)*0°x' M, (r0p)*0°r'v) dax
=0 a=0|§|<s—a j=1

. nor nor
;= Jnor _ prer

where £7°" := {(u,v) is bilinear with respect to (u,v).
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We now deal with the commutator 9; and (rd;)® in J"". In order to do so for a function f depending
n (t,z) we first write from the binomial formula

o

(x0e)*f =) <z) (101)"(2202)* 7" f.

p=0
Then we decompose the compositions of the tangential derivatives operators under the form
n m
Vn,meN, (2100)"f =Y _ \paloff and (w202)™f := >  Al'ah f,
q=1 r=1
where the scalars (A} )n pen are characterized by the relations
{ /\N1+pAN YN >p—1,
1_ _ 2 _ .01 —
A =M= =1
With these notations in hand we have

Fnor _ iz 3 /ZA(? r0e) r o0, (x0,)° 0 r'v) da (91)

=0 a= O|6|<s «

S a P
—ZZ > / IS (;’j) QAN Pt b 9105 A0, (x0,) D rl) d

1=0 a=0 |§|<s—a "’ p=0g¢=1r=1

S ID Y [3)3))

=0 a= 0|6|<5 «@ qg=1r=1

I nor nor nor
= JnOT — MTOT — M,

(;‘9‘) PAPAS TPl 105 A5 u, (rd,) " °rl) da

The terms M7°" and MZ5°" being bilinear with respect to « and v so that we write M} := my,(u, v). For
later purpose let use remark that by definition we have

Mo — iz 3 / (A1[0n, (x0e)*]0%rtu, (r0e)*OPrl) do (92)

=0 a=0|§|<s—a

Mper — iz 3 / (As[D, (x8) 10 r'u, (r0e)*OPrl) da (93)

=0 a=0|§|<s—a

We end up with

J"r = ZZ > / Z *rl9u), (rd,)*9°rlv) da. (94)

=0 a=0 |§|<s—a

We now perform the integration by parts in the right hand side of we obtain using the symmetry of
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the coefficients

s s—lI 2
ZZ Z /Z(ajaj((rar)arla%),(rar)@aérlw dz =
1=0 a=0 |§|<s—a ’ T j=1
s s—1 2
Y Y / S ((x0,) x' 0P u), A;0;[(x0,) 0% v)] d
1=0 a=0|§|<s—a T j=1
s s—I
=33 > (A1[(r0r) ' 0] |4, =0, [(£Dr)* O°r'0] |, o) da’ diza
1=0 a=0|§|<s—a ’ OT1
s s—I
=33y (A2[(r8p)*r' 0%u] |3y, [(xOr) “O° 1] 1, =) da’ da1,
1=0 a=0 |§|<s—a ’ T2
= _znor — Bl - BQ.
Reiterating exactly the same computations as the ones performed so far in order to express z " in terms
of (rdy)*r!d° A;0;v instead of A;0;(rdy)*r'd%v gives at the end of the day:

s s—1 2
—I =303 ) / S (@0) 2 0 u, (r0,)*0°x! A;0,0)] d (95)
1=0 a=0 |§|<s—a ’ T j=1

—nor —nor

+ LT+ LT M+ ML+ MET + My + By + Bo,

where we used the notations for Z € {£"°", M7°"} associated to the bilinear form i, Z := i(v, u).
Summing and then leads to the formula

<A7.L, U>Xﬁad(F) = — <u, AU>X:ad(F) + Bl + BQ (96)

——nor —— nor

+ LT 4 LT MTT ML+ MET + M,

To end up the proof of Proposition we should first cancel the boundary terms in . This step
is made by imposing some boundary conditions on the domains of A and A*. Then we show that all the
bilinear forms appearing in the right hand side, namely £7°" M7°" and M3°" (and the analogous terms
with the notation ~), of are continuous on X (I') x X2 (T"). So that for each bilinear form 4, Riesz
representation theorem combined with Hahn-Banach theorem permit us to write

T =i(u,v) = (u, p;v)
where ¢; : A%, ;(I') — &7, 4(T') is linear continuous and satisfies ||¢;|zxs ) = lillsxs  myxxs ()
Summing all the ¢; gives the linear continuous operator ® of Proposition [I.1] and completes the proof.

Consequently we conclude the proof of Proposition by showing the three following lemmas. The first
one asserts that the boundary terms vanish as expected. The two others show the boundedness of the various
operators appearing in the duality formula.

More precisely in Lemma [£.5] we show the boundeness of £°" essentially by the application of Cauchy-
Scharwz inequality.

Lemma [4.6|establishes the result for the operator M7°" and M5°". As we will see in the proof this result
is a little more tricky and uses in a non trivial way that our base Hilbert space is defined via tangential
derivatives.

Lemma 4.4 With A : D(A) — X?

rad

(T') and A* : D(A*) — X3,,(T) defined in Proposition [4.1] we have
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Lemma 4.5 Let L"°" be previously defined. Then for all s > 0 there exist a continuous linear operator
wr 2 X5 () — X5 (1) such that the following equality holds for all u, v € X2, ,(T')

rad

Lror — <u’ SDZU>XS d(l—\).

The analogous result also holds for .

Lemma 4.6 Let M7°" and M35°" be defined as above. Then there exists a continuous linear operator
om @ XS () = X2 (L) such that the following equality holds for all u, v € X3 ,(T")
M71107- + Mgor = <U, (me>Xfad(F)'

——nor

The analogous result holds for the operator ﬂ?or + M,
So that with Lemmas [4.5 and [4.6] in hand we can show that for all u, v € X2 ,(T') we have the identity
<A’LL, ,U>X'fad(r) = — <u, A’U>X7§ad(p) + Bl + 82 + (u, ¢U>X'fad(r)7 (97)

while with both Lemmas and we end up with the duality formula that for all w € D(A) and for
all v € D(A*)

<A’LL7 ’U>X:ad(F) = —<’U,7 A’U>X1§ad(p) + <’U,, (I)’U>erad(p). (98)
We start by the proof of Lemma [4.4]
Proof of Lemma [4.4] This lemma is a direct consequence of the definition of the dual boundary conditions.

We only show that for v € D(A) and v € D(A*), By = 0. In order to do so, we recall the decomposition
of A; in terms of the boundary matrix By and the dual matrix Cj:

Al = MiTBl + ClTNl

So that using this decomposition in the expression of B; gives

s s—I

Bi=> > > (B1[(r8y)°r'8%u] |4, =0, M1 [(£y) 8%t 0] 1, =) da’ Ao (99)

1=0 a=0 |§|<s—a Y OT1

s s—lI

+ Z Z Z (N1[(r0r)*r'0°u)| s, —0, C1[(x0r) 01 0] |, —o) d’ das.

1=0 a=0 |§|<s—a ’ OT1
However for all functions f depending on z; and x5 we have
[(r8:)*0°r! flj2, =0 = (2202)*0°xh fi, —0,

so that the first term in the right hand side of vanishes because by definition of D(A) we have that
Ujy,—o € ker By. Similarly the second term in the right hand side of vanishes because by definition of
v e D(A*).

|
We now proceed to the proof of Lemma [4.5
Proof of Lemma [4.5] Clearly it is sufficient to establish the result for the terms without the notation -.
As already mentioned it is sufficient to show that £™°" is bilinear continuous on X ,(I') x X2 ,(T"), the

existence of the operator defined in Lemma follows from Riesz representation theorem.
We use Cauchy-Schwarz inequality twice to estimate

1/2
s s—I 2
DI /Z|l(r8r)o‘rl_185Aju|2dx x |[vllas ),
I=1 a=0|§|<s—a T j=1

1/2
s—1s—I—1 /

<L (Y T /Fy(z+1)(rar)arlaéu\2dx < |lo]

=0 a=0 |§|<s—a
SCA1,2 ||u||XS

rad

XS (@)
(r X HUHX;‘M(F)-
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We conclude by the proof of Lemma

Proof of Lemma [4.6] We now turn to the boundedness of the operator M7 °" + MZ%°". In order to do so
we use equation combined with the following lemma

Lemma 4.7 Let o € N, there exists an operator T such that we have the factorisations
[31, (r@r)“} = Taal and [82, (I‘ar)a] = T“@g. (100)
Moreover from equation , T is explicitly given by

a p—la—p

To:=3"3"%" (Z) (q+ DAL A0 Palzbof o5 (101)

p=0q¢=0 r=1

Before to give the proof of this lemma let us indicate that it is this result which make us working with the
radial derivative (rd,)® in the whole duality method and not directly with the derivatives (z101)** (z202)2
for which, at the end of the day, the solution will be regular with respect to. Indeed the previous lemma is
true only for the radial derivative and fails for example if one considers the derivative x191220,.

Proof of Lemma [4.7] We proceed by iteration. For o = 0 then the result is satisfied with 70 = 0. Assume
that for a given o € N we have [01, (r0)¥] = T%01 and [0s, (rdy)¥] = T“02. We then consider, using a
standard property on commutators

(01, (r0r)*T]

(rdp)® [01,10p] + [O1, (xrOr)*] rOy
(rdp)*01 + T*O1 10,
=(r0p)*01 + T [01,10:] + T 1001 .

So that we can write
(01, (r0;)* ] =TT 0y with T = (vd,)* + T*T" + T°r0;,
the definition of T®*! being independent on §; we can then easily show by reiterating the same computations
that we also have [62, (r@r)o‘*l] = Tat19,.
|

Using this result we have
s s—lI
MPT M= / (T A10,0°r"u, (r0;)*0°r'v) + (T A20,0°r'u, (rd;)*°r'v) da
1=0 a=0|§|<s—a T
s s—I a—1lp—la—p

=->> > /F O3> <;‘?‘> (q+ DAL A Palab0f 05 Ad v u, (r0;)*0°r'v) dw,

=0 a=1|§|<s—a p=1q=0r=1

where we used the fact that from the definition of A, A107 = —A — As9> combined with the expression of

T given in . Note that we also use the fact that 70 = 0 in order to change the lower bound in the

sum on « and we do not write the vanishing terms corresponding to p = 0 and p = « in the interior sum.
Using Cauchy-Schwarz inequality twice thus gives

|M’IiLOT “FM?OT‘

s s—lI a—2 p a—1—p o 2 1/2
(XX T [EXT () @it ar) el
=0 a=1|§|<s—a P lp=0g¢=1 r=1
—1 1/2
a—1 4951, 12
< Z Z Ca/r‘(rar) Adr'u|” dx X lollxs (-

=0 a=1|§|<s—a
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To show that this right hand side is bounded by Cs||ul[x= () % [[v[lx= () we use the same method than
for characteristic boundary values problems in the half-space exposed in |Benoit, |.
We introduce, Z, the following subset of D(T") defined by

Z = {u € D(F) \ (A101 + AQ@Q)XS (F)u = 0},

rad
then Z is non empty and for all u € Z we have the identity
APrtu =" A;0;0°r u + 1(ir)r T A 00w + 1(pr)r' T A0,
JET

so that on Z the operator A only add a tangential derivative plus an operator of order zero.
Consequently we have for u € Z, with a slight abuse of notations

M+ Mg
s s—I s s—I 1/2

=2 DYDY /|(r3r)a7136r171u|2 SRS /|(rar)afla5+1rluy2 dz | x ollas o
=1 a=1|§|<s—a T 1=0 a=1|6|<s—a T

1/2
s s—Il—-1 /

<C [ Nulyezmy+D- Do D /Fy(rar)aaérlufdx x [[vllaes, vy

=0 a=0 0<|f|<s—a

<Csllullxs, ) * llvllx;

rad

™)-
We can thus apply Hahn-Banach theorem which ensures that M7°" + MZ3°" can be extended to the whole
space X35 (T')? such that the extension satisfies |[M7"+M35"| < Clluf|xs ) X[[v]lxs ) on X% ,(T)?. Then

rad rad rad rad
Riesz representation theorem gives the existence of some linear continuous operator ¢,, : X3 ,(I') — X2 ,(T)

such that we have the equality

Vu, v e &q(l), MI? + M3 = (u, om(v))xs, ()

4.4.2 Duality formula in Y*(T)

In this paragraph we use the computations exposed in the previous paragraph in order to derive the needed
duality formula in the functional space Y*(T).

Before to establish the duality formula we introduce some notations. The set of index of the partition of
I' is denoted by I := {%, %), B>, .#}. We then define the following differentiation operators (all depending
on a, we omit this dependency in order to simplify the notations)

[e%

8‘@” = (rar)aa 8@1 = Z <z) Ql,p(xzaQ)aip’ 8332 = Z <Z) (xlal)pQ2’a_p and aﬂ = Z (Z) Q17PQ27G—P'

p=0 p=0 p=0
Let u, v € Y*(T") be given, we shall compute
(Au7v>ys .= _tan _ nor

where we defined

s s—lI d

d
Ztan = Z Z Z [g Z<A38J (r@r)aatsrlu, (I‘ar)()éa‘sv> dz + /@ Z<a@1 65Aj8ju, 8@1 85rlv> dx
j=3

1=0 a=01§|<s—a L j=3

d d
+ Z<8@2Aj6jrlu; 8332661‘Z’U> dl‘ + / Z<8]85A]3]rlu7 8j85rl’u> da?
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and

s s—I

2 2
=% Yy é D (A;0;(r0:)* v u, (r0:)*0°r'vy da + [ > (0,0°A;0;1'u, 08, r'v) du
j=1

1=0 a=0 |§|<s—a A1 j=1

2 2
+ | > (02,4;0;x'u, 0,0°r'0) dx—l—/ > (0507 ;055 0, 0,,0°r ) da
%, < St
J j
Like for the duality formula in X? ,(I') we treat the terms Z'*" and Z"°" separately. For Z'*" we can
reiterate the same computations as the ones performed in Paragraph we do not have any commutator
to deal with because the A; are constant. Indeed the operators J; is tangential so that the integration by
parts (0;A;0%u, 3°v) becomes (0°u, A;0;0°v) does not see the decomposition of I and does not involve any
boundary term.

We thus can write
tan

_Itan — j

We then proceed to the term involving the normal derivatives namely Z"°". The computations follows

essentially the ones performed for Zt®" see also the ones of Paragraph However we have to pay attention
to two points:

1. The first one is that because of the partition of I' boundary terms along {z1 = 1} or {zo =1} will
appear when we make the integration by parts with respect to 0;. However as we will see this boundary
terms vanish because of the definition of the operators 9 , and 95 -

2. The second one is that in the proof of the boundedness of the operator M7°" + M5°" which relies on
the commutators of 9 and dy with (rd,)® we used in a non trivial way the fact that our base Hilbert
space was defined with respect to the radial derivative to avoid the bad terms A;9; and A3ds coming
from the definition of A (see Lemma. This is not true any more because the radial derivative only
acts on ¢, not on the whole space.

What saves the day is that, to fix the ideas we consider the area %, we can use the equation in order
to express the bad derivative A0y = —A — A10,. We then treat the term involving A like in Lemma
Concerning the term involving A;0; this term can be controlled in %, because the operator Qlyp
naturally gives the control of the normal derivative 9.

Reiterating the same kind of computations than the ones performed for 74" (but in which we deal with
the commutators [r!, 9;] and [0.4, ;]) we obtain that

s s—lI 2
TUT == M M= YL Y Y Y Y / (0j(A;040°r' 1), 040°x'v) dar,  (102)
Aer® Aerb 1=0 a=0 [§|<s—a A j=1
::lnor

Where for A € T the operator L7 is defined by

s s—I

2
Lor=> %% /Z<z(ajr)aAaﬁrl*1Aju,aAaﬁrlmdx,
AT

1=0 a=0 |§|<s—a
and where we used the fact that for all p € [0, a] we have the identity [0, ,,,01] = [95 ,_p,02] = 0 in order
to obtain

s s—1

M= Z Z Z lg(Al[Bl, (rdy)*d°ru, (rd,)*d°r'v) dz (103)

=0 a=0|§|<s—a

+ / <Z QQ,OL_:DA:[ [81, (1’181)p]86rlu, 532 851‘[@) dlL’7
B

2 p=0
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and

MG = iz Z / (Ag[Bs, (rdy)*)dr u, (rd,)*drt) da (104)

=0 a=0 |§|<s—a

/ Zal pA2(02, (2202)77)0°r'u, Op, 8°r'v) da
i

1 p=0
The commutators in (L03) and (104) can be explicited like in (91]).

The end of the determination of the adjoint operator is rather clear. We make the integrations by parts
in J"°" and then we reiterate exactly the same computations as the ones exposed from the beginning of
this paragraph on the term Ajaj(rar)aa%. Let us stress that from the definition of the operators 9, , and
05 o—p the boundary terms along {z; = 1} or {3 = 1} appearing during the integration by parts vanish.
Indeed let us for example consider the term involving A;0; in Z"°". We fix [,a and § and let f := 9°rlu
and g := 0°rlv then we have

3 / (410104, Dag) da

Aerb
=— Z/ (Oaf, A1910.49) dz + B,

AeT?

+/ /Rd 2<A1 [(x0e)* [, =1 [(£Or) V], =) da’ da (105)
/ / ZAl K )am (2101)P f} ZK;‘) 0y op(101)P ] ) da da

Rd—2 p=0 |z1=1 p= |z1=1

—/1/ <ZA [(“)a (2205) pf} ; {(O‘)a (xa)w} ) do! da
0 Juoe 1 D 1,p\+b2 2) . 17p . p £1,p\ 202 g - 2
e - o - o ’

_/1 /RPE_% Kp) Oy Ll 1,;){(1’) al’paz”g} m:lmx e

where gl is defined bellow.
Then recall that we write (rop)*f = >0 >0 ) D 0C ( ) AAY Pa{ah 0105 f so that

[(rar)af]\zlzl = Z Z

a—p
P 1

a o— T 1
(5) s rago1os ) o
=0 q:l r—=
«

—0 <z> ($262)Q7P(Q17pf)|:v1:0’

p

and consequently the first boundary term in the right hand side of (105]) is compensated by the third one
and similarly the second term in the right hand side of (105]) is compensated by the fourth one.

Consequently we end up with the duality formula

(Au,v)y = — (u, Av)y + By + By + M7 + M™ + M5 + My™ + > L7r (106)
Ael®

where By and B, stand for the boundary terms along {z; = 0} and {z5 = 0}appearing in the integration by
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parts. They are given by for k € {1, 2}:

Z Z / /d (23 _103_)*0 u] k:O,[(xg_kag_k)aa%] Iwk:())dx’dxg_k
Rd—2

a=0§|<s—a

/ /Rd 2 63 k("a u] z,=0" [Q37k,aaév}‘xkzo> dﬂ?/d.lﬁg_k.

a= 0 [§|<s—a

In order to conclude we have to show the analogous of Lemmas [.4] and [£.6] for the new Hilbert space
Y#(I"). The proofs of Lemma in the space Y*(T") follow exactly the same as the one in the space X% (T
so that they are omitted. Similarly the proof of the fact that the £’ give rise to bilinear continuous forms
follow the same lines than Lemma .5

Because on the other hand Lemma relies on the fact that we work with the radial derivative (roy)®
which is not true any more on the whole space then we give in the following its proof.

Lemma 4.8 Let M7 and M5 be defined in (L03)) and (104) then there exists a linear continuous operator
ol 2 Y3(T) = Y3(T) such that we have the equality
Vu,v € Y'(T), MI”" + MG = (u,5,0) ys(r).-

——nor

The analogous result holds for ﬂl + M,

Proof of Lemma (4.8 We have

M 4 MO = ZS:Z > / ((A1]01, (x8:)] + Ay [0s, (rdy)*] 8rtu, (rd,)*d°rlv) da (107)

=0 a=01§|<s—a

/ Z (99,0—pA1[01, (2101)P 10°rtu, 0,0°r') da
%

2 p=0
/ Z 81 pAQ 32 (Igaz)a p] 35rlu lea‘;r ’U>
B

1 p=0

For the first term in the right hand side of (107) we have radial derivatives so that we can proceed exactly
like in Paragraph (see Lemma we thus obtain the bound

s s—I

Y Y / (A1 [0y, (£0e)™] + Ap [D, (x8:)*] Fr'u, (£De)*DPrto)

=0 a=0[§|<s—a

. (108)

To conclude we shall then establish such bounds for the others terms in the right hand side of (107). In the
following we give the bound for the term defined on %, the analysis is the same for the one defined on 4.

We explicit [0, (£101)P] = 2o _, )\{;x’f*l&‘f so that using the definition of A we have
« a p—1
Z 1[04, (101)P] O°rlu = Z Z q+1)0y 0 N 201 AD r'u
p=0 p=14¢=0
=NY¢
a p—1
— ZZ q+ 10y o AL 12507 A20,0° r'u,
p=1q=0
::./\/'X‘2
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so that we are leading to consider the terms A4 and N4, separately. By Cauchy-Schwarz inequality and the
triangle inequality we have

s s—l1

‘ZZ Z /ﬂ<ZQ2,a7p[ala($131)p]A155rlu,8@28‘5rlu>dx

=0 a=0|§|<s—a 2 p=0
s s—lI 1/2
<C Z Z Z / |/\/'Xrlu|2 dx X [Jv]lys(ry
1=0 a=0 |§|<s—a ’ %2
s s—1 1/2

+C ZZ Z /332 |N22rlu|2 dx x ||v]

=0 a=0|§|<s—a

y=(T)s

and to conclude we just have to study the numbers of derivatives in N'§, and in N'§. For convenience we
recall that by definition of the base space Y*(I') in the area %> we can take normal derivatives d; and

tangential derivatives (z10;) of ?%u. Using the definition of O we have

2,a0—p

a a—p
+y 0y ag“a%%)

p=1r=1

a—1
+ Z !327a_p85rlu|>

p=0

[0

NGl <C.s (Z

p=1

p—loa—p

z Z 219705 0°rlu

q=1r=1

a—p
E o0l

r=1

<Cs < (z101)P!

=
-

a—1
<C, < |(2101)7 0,0—p0°r'ul + > \az,apaérluo ,

p=0 p=0

Q

so that we obtain the desired bound (the second term in the right hand side being bounded inductively)

s s—l1

D) DD DR IR A I
B2

=0 a=0|§|<s—a

Do (r)- (109)

To conclude we reiterate the same computations for the term N§ (without the normal derivative d2) we
obtain

a—1 «
IN§rlu| < C (Z |(€101)702,0-1-pAD°r'ul + \aw_pAaérluO : (110)
p=0 p=1

in which we remark that each operator of differentiation in the right hand side in now of order o — 1. We
conclude by introducing like in Paragraph the subspace Z of D(T) by(

2= {ue D)\ A1) + Aydy)u = 0} .

For v € Z, A adds one derivative with respect to 9’ and on zero order term. Because the operators in the
right hand side of (110) are of order o — 1 we have the desired estimate that for all u € Z

s s—I

YN Y [ wartaf de <

=0 a=0 |§|<s—a

Dsry (111)

estimate that can be extended to the whole space Y*(I") thanks to Hahn-Banach Theorem. So that from
(L07)-(109) and (111f) the form MT°" + MZ°" is bilinear continuous on Y*(I') x Y*(I"). Riesz representation

theorem then concludes the proof.

O
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5 Applications

In this section we give some examples of physical interest for which Assumption about the spectrum of
the corner matrix A;'A, is satisfied. We borrow some of the examples of [luang and Temam, 2014]. The
list exposed here being probably far to be exhaustive.

5.1 The wave example
In the following we consider the 2d-wave equation
Ofu— (0 +03)u = f for (t,z) € R x RY.

It is well-known that this scalar second order partial differential equation can be written in the following
first order system of partial differential equation

WU + AU +U =f inQ,

B =0 Q

1U\x1_0 21 on 02y, (112)
BaU|zy—0 = 92 on 9,
Uji—o = o on T,

for suitable boundary matrices By, Bs € Mi«2(R) so that it is a simple exercise to determine the boundary
matrices giving rise to strictly dissipative boundary conditions.
In (112)) the coefficients A;, Ay are given by

1 0 01
a=ly O] A=) )

_ 0 1
Al 1A2 = |:1 0:| 9

which clearly has +i as eigenvalues so that Assumption [2.2]is satisfied.

We thus have

5.2 Inviscid shallow water equation

The inviscid shallow water equation (SWE) in two dimensions reads after linearisation around the constant
state (ug,vo, ¢o) € R? x Ry, ug,vo # 0 in the form

0U + A101U + A20,U + CU =0, (113)

where U := (u,v,¢)T is the vector encoding the velocity (u,v) € R? and the height of the fluid ¢ € R, and
where the coefficients A; Ay and C are explicitly given by

u 0 g vg 0 0 0 —f O
A;:=10 wuw O0|,A:=]|0 v9 g| andC:=|f 0 O0f,
¢0 0 (') 0 ¢0 () 0 0 0

where f stands for the Coriolis parameter and where g > 0 is the gravitational acceleration. In the following
we assume that u3 # goo, v3 # gdo and uZ + v3 # ggo so that in particular the matrices A; and Ay are
invertible.

Moreover it is easy to see that their eigenvalues are respectively given by A\ g = ug, A1+ = ugt/u3 + g¢o
and A2 g = vg, A2+ = vg £ \/V3 + g¢o, so that independently on the sign of uy and vy, 4; and Ay have at
least one positive eigenvalue so that there is non trivial boundary conditions to be imposed in addition to
the partial differential equation (113]).

We now discuss Assumption We consider A € C an eigenvalue of AflAg it is characterized by

det(As — AA;) = 0 < (vo — Aug) - [(uf — dog)A? — 2ugvoA + v§ — dog] =0,
<:>(U0 — )\UQ)P(/\) =0
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showing that Z—z is a (real) eigenvalue of AflAg. So that in order that Assumption holds we assume
that ug and vy have opposite sign. As a consequence the fluid of linearisation can be incoming/outgoing or

outgoing/incoming, in order that Assumption [2.2] holds.

To conclude the study of Assumption we investigate the roots of P. Its discriminant A = 4¢gg(u3 +
v3 — ggo) so that if |(ug,v0)|?> < gdo the roots of P have non trivial imaginary part and thus Assumption

applies.
If |(ug,v0)|? > g¢o, the roots of P are real and they are given by

L. U0t = v/og(ug + 0 —dog) _ . Ay 1= Moot Voog(u + v5 — $og)

ud + dog ud + dog

equation in which we see that A, < 0 if and only if uZv? > ¢og(u3 + v3 — ¢og). So that Assumption can
be satisfied even if |(ug,vo)|? > goo.

)

So that to apply Corollary 2.1] or Theorem [2.3] then assuming that the boundary conditions are strictly
dissipative only the symmetry assumption of the coefficients is missing. Equation (113)) is of course not
symmetric but it is Friedrichs symmetrizable. Indeed if we introduce the diagonal matrix

0

1 0
S=10 1 0]>o,
00 £

%o

and the change of unknown V := S'/2U then we recover the equation

OV + A0V + A0,V + CV =0, (114)
where
N up 0 Vgoo B vy O 0
A :=8Y24,8Y2=1 0 wy 0 | and Ay:=8Y24,8"Y2 =10 v V9o (115)

Vgoo 0 ug 0 +gdo o

are now symmetric. Of course because of its special form Assumption on AflAg is equivalent to the one
on A7'A; so that Corollary and Theorem apply to (114)).

5.3 Euler equation
In this paragraph we consider the 2d-Euler equation
Op+u-Vp+pV-u=0,

for (t,x) e RxRY, {du+ (u-V)u+p-'Vp=0, (116)
Oie+u-Ve+ p~1pV-u=0,

where p € R, stands for the density of the fluid, u := (u,v) € R? denotes the velocity and where e € R
stands for the internal energy. In we close the system by imposing the pressure law p = p(p,e). After
linearisation around the constant state (uq,vo, po,€0), we use the notation ug := (ug, vg) with wug, v # 0,
Euler equation reads under the form

U + A10U + 9.U =0, for (t,z) € R x R

where U := (u,v, p,e)” and where the coefficients are given by

Ug 0 p%appo p%aepo Vo 0 . 0 . 0
L 0 UQ 0 0 L 0 Vo 20 9pP0 pjaepo
Al = Po 0 o 0 and A2 = 0 o v 0 5
piopo 0 0 Ug 0 p%po 0 Yo
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where we introduce the notations py := p(po, €0), 9pp0 = (9,p)(Po, €0) and depo := (0ep)(po, €0). For later
purpose, assuming that the system ((116)) is hyperbolic so that we have d,po+ p%poaepo > 0, we also introduce
0

the local speed of sound ¢ := ,/0,po + p%poﬁepo.
0
The eigenvalues A\; of A; and \s of As are given by

)\170 = U, )\270 =1 and )‘Li = Ug + C, )\27:‘: = Vo +c.

So that to ensure that both A; and A, have at least one positive eigenvalue and not four we impose that if
ug < 0 (resp. vg < 0) then —uy < ¢ (resp. —vg < ¢) and if ug > 0 (resp. vo > 0) then ug < ¢ and vy < c.

We now turn to a discussion about Assumption We have the following characterization of the
eigenvalues of A7 A,

det(A7 Ay — M) = 0 < (vg — Aug)? - [(ug — )A* = 2uguoA +v§ — ?] =0
& (vg — Aug)?P(\) = 0.
Consequently A\ := Z—g is a real eigenvalue of multiplicity two so that in order that Assumption holds
we assume that wg and vy have opposite sign. The fluid of linearisation is thus outgoing/incoming or
incoming/outgoing.

To fix the ideas we assume that ug < 0 while vy > 0. We conclude the discussion by considering the roots
of P. Tts discriminant is given by A := 4c?(u3 + v3 — ¢?). So that if |ug| < ¢ meaning that the reference
state is subsonic then the roots of P have non trivial imaginary part and Assumption [2.2] holds.

Conversely if the fluid is supersonic meaning that |ug| > ¢ then the roots of P are given by

- ugvy — ¢/ |ugl? — 2 ugVp + ¢y/|ugl? — 2

= and Ay :=
ud — 2 ul — 2

)

and we remark that because we imposed —uy < ¢ then A\_ > 0 independently on the value of ug so that
Assumption [2.2] fails.

We can not apply directly the results of the article to because of the lack of symmetry of the
coefficients. However it is well-known that Euler equations are Friedrichs symmetrizable. Indeed following
for example [[Benzoni-Gavage, 2007]-Paragraph 13.2.3] in the independent set of variables (p,u, s) where s
stands for an entropy we can write under the form

S(8; + A101 + Axdy) =0,

VN =]

where the matrices S is definite positive and where the matrices Sgl are symmetric. Our analysis can be
extended mutatis mutandis to systems with a definite positive matrix S in front of the 9;. Once again because
Assumption for AflAg is equivalent to the one on AflAg Theorems or can be apply to Euler
equations if the boundary conditions are strictly dissipative for instance. We refer to [[Benzoni-Gavage, 2007]-
Paragraph 14.2] for a discussion about the dissipative boundary conditions for Euler equation.

6 Comments, conclusion and prospects

In this article we give several results (namely Theorems and and establishing a persistence
of regularity result for hyperbolic boundary value problems defined in the quarter space. The first one,
Theorem deals with the pure boundary value problem and gives a sharp result in terms of persistence
of regularity because the space in which we control the solution is the same as the one of the data of the
problem.

The second one, Theorem applies to the initial boundary value problem . On the one hand, it
is really satisfactory because it applies to the natural space H*(T') but one the other hand because away
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from the corner we can not totally decouple the derivatives using the trick consisting in expressing these
derivatives in terms of the radial and angular derivatives then Theorem comes with a somewhat loss of
regularity which will be studied in a future contribution. More precisely we will show that up to pay some
extra tangential derivatives (in the spirit of [Gués, 1993]-[Secchi, 1996]) we can control the normal derivatives
O1u and O-u in the whole space.

In order to simplify as much as possible the exposition we choose to work in this article with constant
coeflicients establishing the analogous of Theorems or for variable coefficients is a required step if one
wants to deal with quasilinear problems. However let us point that in some case the analysis of this article
can be easily extend to variable coefficients.

Indeed let us assume that the coefficients A; only depend on the tangential space variable ’. Then the
previous analysis applies if we take care to the two following points

e The first one is the establishment of the a priori energy estimate of Section |3 But a careful reading
of the proof show that imposing such variable coefficients will only influence the proof when one uses
the energy estimates to recover the control of the tangential derivatives d;u, j € .7 and of the radial
derivatives (rdy)®. In both cases z’-variable coefficients only add a commutator in these estimates
which is a zero order term so that it can be easily controlled, assuming that ~ is large enough.

e The second one is in the establishement of the duality formulas of Paragraph The proofs being
unchanged except that we have to deal with some extra commutators. For example when we deal with
the commutator [867 Ajﬁj] then the bilinear form

s s—I

d
T =33 3 / S (o) Y (g) 8,(0°° 4,0%), (r0,)*&°r') da,
=3

1=0 a=0 |§|<s—a B<s

will appear in the duality formula. However it is not difficult to show that like £™°" this bilinear form
is continuous so that it will only contribute in the duality formula to the operator ® and the remaining
of the analysis is unchanged.

The same modifications can also be performed to deal with variable coefficients with respect to time except
that at present time we can only deal with the pure boundary value problem . Indeed the establishment
of the duality formula in A7, (©) can be performed even if we have a dependency with respect to t. In the
author’s knowledge it is the first example of well-posedness for time depending coefficients boundary value

problems in corner domains.

Similarly the proof of the duality formula Y*(T") does not see such a dependence. However the point
explaining that we can not deal with time variable coefficient for the initial boundary value problem
is that the domain of the operators D(A) now depend on t so that a precise analysis shall be performed.
We however have good reasons to believe that some existing results in the litterature (like for example the
well-known [Kato, 1956]) can be used to deal with such time depending coefficients.

Establish the analogous of Theorems [2.1] and [2.3] with coefficients depending on the normal variables
or x5 seems to be however more delicate than the dependency with respect to (¢,2’). Indeed,

e The derivation of the a priori energy estimate and more precisely the decoupling of the derivatives
using the radial and the angular derivatives is a little more delicate because in the expression of the
angular derivatives the matrices .# and &/ now depends on x; and o giving rising to a lot of extra
terms.

e The second point is in the establishment of the duality formulas. When the A; depend on z; and z»
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then when we have to deal with the commutator [(rd;)®, A;] then the following bilinear forms appear:

s s—lI

=3 S

1=0 a=0|§|<s—a

d o p a-pg—lr—1
/rBZ 2 2 (3) (’2) @ NS Pafand; (0710578 A7)0 05! 0], (x0r)*0r'v) da
j=1 p=0¢g=1 r=1 t=0 k=0

s s—lI

=3y

1=0 a=0|§|<s—a

d o a—pqg—1
/FZE 2 @ @ NAS P, [(0f1 Ay)005r'00u) , (x0:) 0 r'v) da
Zm=Y Y Y

1=0 a=0|§|<s—a

d « p a—pr—1
/ O33N <;) (g) NPXS Pt [(05F A;)0005r 00 u] , (x0,)* 9 rtv) dar
e

j=1 p=0g¢=1 r=1 k=0

Contrary to the other commutators like £7°" it seems delicate to show that these terms give rise
to continuous bilinear forms. One assumption that may help is to assume that the coefficients are
constants outside some compact set of R% x R?~2 so that one can recover the same index on z{ and
on &% in the previous formulas. However the main difficulty is then that one have to control the
uncorrelated derivatives (x10;1)?(x202)"u in terms of (rd,)® which only gives a control of the sum of

the correlated derivatives (x101)P(2202)* Pu for p € [0, a].

Consequently showing the analogous of Theorems [2.1] and [2.3] for normal variable coefficients os left for future
studies.

Finally we would like to discuss some prospects about the use of Sobolev embedding in order to recover
from our persistence of regularity results the L> norm of the solution u. As already mentioned before the
persistence of regularity result Theorem because it gives a decorrelation of the derivatives in the full
space and not only near the corner like Theorem shall be more convenient for this purpose.

Because we have in particular a full control of the tangential derivatives (z10;)®(2202)?, o+ B < s then
we are not really far to an H?® estimate. Indeed following the result of [Gues, 1993] or [Secchi, 1996] for
example to recover the control of 9w then it is sufficient to control (z10;1)01u that is to say a control of the
mixed tangential/normal derivative.

Because as already pointed our problem has a large similarity with characteristic boundary velur prob-
lems, we have reasons to believe that the analysis of [Gues, 1993] and [Secchi, 1996] can be used. However
one key point in these analysis is that to initialize the proof they use that some part of the normal derivative
O1ul can be estimated for free (more precisely u! stands for the part of the solution lying in the space on
whoch A; is invertible). The control of the full normal derivative d;u is then recover via the control of the
tangential ones.

In our problem we can of course invert A; on the whole space but we only have then that 0,4 depends on
Al_lAgagu which is not known to be L?. So that if one wants to use the analysis of characteristic boundary
value problems then one shall find a subspace on which we can infer that both d;u! and dyu! are in L2.
This point is also left for future studies.
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