
HAL Id: hal-03580974
https://hal.science/hal-03580974

Submitted on 28 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Managing Master Data with XML Schema and UML
Ludovic Menet, Myriam Lamolle, Amar Zerdazi

To cite this version:
Ludovic Menet, Myriam Lamolle, Amar Zerdazi. Managing Master Data with XML Schema and
UML. 2008 International Workshop on Advanced Information Systems for Enterprises IWAISE ’08,
Apr 2008, Constantine, Algeria. pp.53-59, �10.1109/IWAISE.2008.11�. �hal-03580974�

https://hal.science/hal-03580974
https://hal.archives-ouvertes.fr

Managing Master Data with XML Schema and UML

Ludovic Menet
Orchestra Networks

75 boulevard Haussman
75008 Paris. France

ludovic.menet@orchestranetworks.com

Myriam Lamolle, Amar Zerdazi
IUT de Montreuil. Université de Paris 8.

140 rue de la nouvelle France
93100 Montreuil. France

{m.lamolle, a.zerdazi}@iut.univ-paris8.fr

Abstract

To manage parameters, the majority of Information
Systems is concerned by heterogeneity in both data and
solutions. Consequently, the management of this data
becomes complex, inefficient, insecure and expensive. The
need to use a structured formalism to handle complex
data appears. We suggest a data integration solution
based on a XML architecture. This architecture embeds a
Master Data Management in the Information System. The
unification of Master Data is primarily done by the
definition of models. These models are XML Schema
documents describing complex data structures. We
propose to enrich the structure and the semantics of these
models by defining a metamodel. In the metamodel, we
introduce semantic object relations for defining links
between concepts. The resulting metamodel is used to
define an UML profile and to optimize operations such as
models validation, data factorization and trees
representation. Moreover, UML profile is exploited to
make easier the definition of models.

1. Introduction

In the frame of the interoperability of heterogeneous
data sources, two main data integration approaches exist:
the virtual approach (or mediator) [1] and the materialized
approach (or data warehouse) [2]. We suggest an
implementation of the second approach by an XML [3]
architecture called EBX.Platform. This architecture
allows companies to unify the management of their
strategic data without any changes in their databases or
their existing applications. This unification is conducted
in three ways: (i) definition of the main data model
through the XML Schema language, (ii) persistence in a
common repository, specific to the product, in a remote or
integrated database, (iii) availability of a generic user-
friendly web tool interface for data consulting, for
updating and for synchronizing the repository with the
Information System of the companies.

One of the major benefits of EBX.Platform for
companies is that the repository manages the inheritance
of instances. The abilities of data factorization brought by
inheritance and by EBX allow data duplication and

related problems (costs and risks) to be avoided. To
implement the mechanism of inheritance, a first
conceptual model has been realized. This paper presents
our XML solution of data integration and the
improvement of the conceptual model by the definition of
an object metamodel. The resulting metamodel is used for
defining an UML profile which enables us to describe a
formal approach of design of Master Data models.

2. EBX.Platform

The company Orchestra Networks proposes Master
Data Management software called EBX.Platform. Based
on Java and XML Schema, EBX.Platform is a standard
and non-intrusive solution that helps companies unify and
manage their reference business data and parameters
across their Information System.

2.1. Master Data Management (MDM)

The Master Data Management is a way to unify,
manage and integrate references data across the
Information System of the company. These data can be of
several kinds:

• Products, services, offers, prices.
• Customers, providers.
• Lawful data, financial data.
• Organizations, structures, persons.

Currently, the majority of Information Systems is

concerned by heterogeneity in both data and solutions. In
this framework, there are three kinds of heterogeneity:

• Heterogeneity of storage systems (databases,
directories, files…).

• Heterogeneity of formats of data (files owner, XML
documents, tables…).

• Heterogeneity of solution to manage the different
types of data.

Consequently, the management of the data becomes

complex, insecure, inefficient and expensive. Moreover,
using different applications to manage this diversity
involves some redundancy in both data and tools.

An Information System without Master Data
Management (MDM) presents some issues such as:

• No unified vision of the references data.
• Duplicated data in several systems.
• No coherence between companies and subsidiary

ones.
• No single tools for users.

EBX.Platform is a MDM solution based on powerful

concepts to solve these problems.

2.2. EBX.Platform’s concepts

EBX.Platform is based on two concepts: (i) an
adaptation model which is a data model for a set of
Master Data. It is an XML Schema [3] document and (ii)
an adaptation which is an XML instance of the
adaptation model which contains Master Data Values.
Using XML Schema allows each node of the data model
corresponds to an existing data type according to the
W3C standard [3] to be specified. EBX.Platform supports
the main XML Schema datatypes, as well as multi-
occurrence complex types. Indeed, the XML Schema
formalism allows us to define constraints (enumeration,
length, lower and higher limit, etc.), information about
adaptation and its instances (access connector, Java
factory class, access restriction, etc.) and layout
information (label, description, formatting…) to be
specified for each node of the schema. For each node of
the adaptation model, declared possible instances,
corresponds a node in the adaptation. If an adaptation
model has several adaptations, we consider that an
adaptation tree is handled. The figure 1 presents an
adaptation model and its instances as an adaptation tree.

Figure 1. An adaptation model and its instances.
In an adaptation, each node has the following

properties: (i) An adaptation value; if this value is not

defined in the current adaptation then it is inherited from
its ancestor (parent adaptation), recursively. If no ancestor
defines a value, then the value is inherited, by default,
from the data model. (ii) An access right for descendants;
the adaptation node can be either hidden (to descendants),
in read only (for the descendants), or in read/write (for the
descendants).

These powerful concepts are deployed on a specific
architecture made of several components. The figure 2
presents the architecture of EBX.Platform.

Figure 2. Architecture of EBX.Platform.

The architecture presented in the figure 2 is based on
three important components:

• EBX.Platform Engine is based on a technology that

allows to manage multiple instances of Master Data in a
core repository. EBX.Platform Engine main features are
data validation, data configuration, life cycle management
and access rights management.

• EBX.Platform, with EBX.Manager, provides both
business and technical users with a Web-based tool for
Master Data Management. EBX.Manager dynamically
generates a rich User Interface from Master Data models
without any programming. The figure 3 shows the
graphical interface generated from an adaptation model.

Figure 3. EBX.Manager web-based tool.

• EBX.Platform services allows to integrate Master
Data with Information Systems. It provides import/export
features and integration with third party tools, such as
EAI, ETL, ESB, directories. Custom MDM services can
be developed using a standard Java API. Indeed, using
our Java API it is possible to integrate new features in
EBX.Platform. For example, services can be used to
perform some reporting, data historization, management
of processes etc... In the figure 4, we have illustrated the
use of services defining a workflow engine.

Figure 4. Example of a workflow service.

In this custom service, it is possible to define tasks for

users. The mechanism of workflow enables to define
ordered tasks to be performed by users. Each task of the
process has to be fully realized before the next one. For

example, this service can be used for the management of
projects where tasks are assigned to teams in a precise
order.

Our solution presents a way to unify master data from
several data sources. The existing works on data
integration [6] [7] [8] [13] [14] are focused on conceptual
models without semantic relations between concepts; in
the extension of our works, we propose to enrich the
metamodel of the adaptation models adding some
specifics objects concepts.

3. Meta-modelling “object”

We introduce object features which are added to the
conceptual model and we propose a metaschema of an
adaptation model in order to consolidate both the
conceptual model and the existing data validation. Our
first goal is to add object metadata to the adaptation
model. We can use the following notions in terms of
relations between objects such as generalization,
specialization and dependence (aggregation or
composition). To illustrate these concepts, let’s take an
example frequently used in some UML [5] academic
cases. This example defines five concepts, Person,
Teacher, Student, University and Department. These
concepts are semantically linked. More precisely the
concept Person is the generalization of Student and
Teacher, and the concept University is a composition of
Departments. These semantic links have strong impacts in
data factorization and optimization. Let us consider in our
example the notion of dependence (more precisely the
composition) between University and Department
concepts. The composition implies that there cannot be
instances of the Department concept without instances of
the University concept. An optimization can be made for
the instance deletion process; the deletion of an instance
of the University concept implies that all dependent
instances (departments) will be removed. However, in the
case of an aggregation between these concepts, the
aggregated instances (departments) will not be deleted if
they are used by other concepts.

Generalization and specialization relations are used to
factorize data in our system. In the generalization case,
common attributes are gathered in a general concept. For
example, attributes such as first name and last name are
common to the concepts Student and Teacher. These two
attributes are migrated to the concept Person to factorize
data, avoiding duplication of their definition in the
concepts Student and Teacher. In the same way as [12],
we propose some metadata to be included in the XML
schema to implement these notions. As W3C suggests it,
the XML Schema extensions that we add are defined in
the « appInfo » element (labelled concept_object_name
at the third line of the figure 5).

…<xs:annotation>

<xs:appinfo>
<osd:concept_object_name/>

</xs:appinfo>
</xs:annotation>…

Figure 5. XML Schema extension representing an
object relation.

We propose to apply our extensions on the previous
example. The figure 6 represents an UML diagram
defining the relations of our example.

Figure 6. UML class diagram.

In this diagram the University concept has a
composition relationship with the Department concept.
The composition is represented in an adaptation model as
the following:

…
<xs:complexType name=”University”>

<xs:sequence>
<xs:element name=”dept” type=”Department”>

<xs:annotation>
<xs:appinfo>

<osd:composition/>
</xs:appinfo>

</xs:annotation>
</xs :element>

…
<xs:sequence>

</xs:complexType> …

Figure 7. Definition of a composition in an adaptation
model.

The figure 8 presents the relation of specialization

between the Teacher concept and the Person concept.

…
<xs:complexType name=”Teacher”>

<xs:sequence>
<xs:element name=”relation” type=”Person”>

<xs:annotation>
<xs:appinfo>

<osd:specialization/>
</xs:appinfo>

</xs:annotation>
</xs:element>

…
<xs:sequence>

</xs:complexType> …

Figure 8. Definition of a specialization in an
adaptation model.

By defining XML Schema extensions in the elements

annotation and appInfo, it is not necessary to provide a
schema allowing the structure of these extensions to be
de-fined. One of the resulting issues is that the validation
of these extensions is fully delegated to the validation
engine of EBX.Platform, and not to the XML Schema en-
gine. We have defined a metaschema of an adaptation
model describing the structure of the concepts provided
by EBX.Platform to avoid this issue.

The existing works [6] [7] [8] based on data
warehouses define several way of integration of data
sources. In our solution this integration is done across the
definition of a global data model. This one can be realized
automatically or manually using some particular
technologies implying a wide knowledge about them. We
propose to use formalism, such as UML, for defining a
data model. Moreover, the adding of objects features, that
we have realized, allows us to use the semantic
functionalities of UML for the definition of models.

4. Definition of an UML profile

The definition of an adaptation model is made through
the XML Schema technology. The use of XML is adapted
to the needs of EBX.Platform which implies a wide
knowledge of this language. There are many XML
Schema tools but on the one hand the user can use the
XML Schema features which are not implemented by
EBX and on the other hand he is not guided about the
extensions of EBX. As a result, formal-ism must be
implemented to make this modeling easier. In addition to
its modeling abilities, UML allows profiles [4] [5] to be
defined. A profile specializes the UML formalism for an
application field or a particular technology. Many profiles
have been developed for several goals, for example a
profile for expressing all the semantic of CORBA [9], a
profile defining the features of EJB, or a profile for the
persistence of semantics of our metamodel.

The adequate process for the definition of a profile is
as the following:

− Definition of the domain of the profile, i.e. the
metamodel defining the concepts and the relations
between these ones.

− Technical definition of the profile establishing the
matching between UML concepts and the ones defined in
the profile.

− Definition of an example simple and concrete of the
profile.

4.1. Definition of the domain of the profile

The first step has been realized previously by defining

the metaschema of an adaptation model. This metaschema
is used to describe the technical definition of our profile.

4.2. Technical definition of the profile

 The table 1 presents the technical definition of our

UML profile.

Stereotype Applied
to

Description

AdaptationModel Class Defines an adaptation
model.

Root Class Defines the root of an
adaptation model.

Sequence Class Defines a XML
Schema complex
element of type
<xs:sequence>.

SimpleType Class Defines an XML
Schema redefined
type.

Table Class Defines a table
element.

Table 1. Extract of the technical definition of the UML
profile representing EBX.Platform metamodel

The technical definition is used to realize the UML
profile of the adaptation models.

4.3. Concrete definition of the UML profile

The figure 9 presents a piece of the UML profile

defining the relations between the different concepts
introduced by EBX.Platform.

Figure 9. Piece of UML profile representing
EBX.Platform metamodel.

Using UML extension mechanism enables us to extend
the UML formalism to our semantic. This extension is
performed using stereotypes and marked values. Stereo-
types are employed to define a new type of element from
an existing one. We can see on the figure 9 that the
stereotypes (labelled <<Stereotypes>>) inherit from the
Class element of the UML metamodel. As a consequence,
the stereotypes will be instantiated from the metamodel
constructor in the same way that the Class element.
Tagged values specify keyword-value pairs of model
elements to set properties for existing elements or for
stereotypes. The definition of these stereotypes allows to
introduce more semantic, out of the concepts defined in
UML, that will let us to define an adaptation model with
an UML diagram.

4.4. Application of the UML profile

This section illustrates a piece of an UML model
defined with our profile and its equivalent in XML
Schema. The figure 10 represents the UML modeling of
an adaptation model defining a simplified network train.
This model is composed of concepts and relations
between these ones. It is question in our example to
highlight the objects relations that we have previously
introduced, and some adaptation model specificities such
as redefined types. Thus we have defined, in our example,
the Train concept being composed of an engine, wheels
(notion of composition), being able to have wagons
(notion of aggregation) and having some properties such
as a type and a trademark. We associate a driver of type
Person to a train. The Person concept defines properties
such as, first name, last name and a birth date. We have
also defined the property email representing the use of a
redefined type. The Email class uses the stereotype
<<SimpleType>> allowing to indicate that it is a
redefined type within the meaning of XML Schema. The
properties of this redefined type are defined in an UML

Class

<<Stereotype>>
 Table

<<Stereotype>>
Root

Legend

inheritance
<<Stereotype>>
AdaptationModel

<<Stereotype>>
 SimpleType

<<Stereotype>>
 Sequence

annotation specifying values for SimpleType::base,
SimpleType::pattern and SimpleType::whitespace. The
root of the schema is materialized by the stereotype
<<Root>>, applied to the NetworkTrain class. The
stereotype <<AdaptationModel>>, applied to the
AdaptationModelRoot class, indicates the definition of an
adaptation model. The classes defined in this model,
excepted for the class AdaptationModelRoot, are also
stereotyped <<Sequence>>. This stereotype specifies
that the corresponding class represents a complex
element, within the meaning of XML Schema, of the type
<xs:sequence>.

Figure 10. Definition of an adaptation model with
UML.

The corresponding adaptation model defining in XML
Schema is shown if the figure 11.

<!-- Start of the adaptation model -->
<xs:schema xmlns:fmt="urn:ebx-schemas:format_1.0"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->
<!--Root of the adaptation model -->
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->
<xs:element name="NetworkTrain" osd:access="--">

<xs:complexType>
<xs:sequence>
<xs:element name="train" type="trainType"

minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->

<!--Class : trainType -->
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->
<!--trainType -->
<xs:complexType name="trainType">

<xs:sequence>
<xs:element name="trademark" type="xs:string"/>
<xs:element name="type" type="xs:string"/>
<xs:element name="wagon" type="wagonType"

maxOccurs="unbounded">
 <xs:annotation>
 <xs:appinfo>
 <osd:aggregation/>
 </xs:appinfo>

 </xs:annotation>
</xs:element>
<xs:element name="engine" type="engineType">
 <xs:annotation>
 <xs:appinfo>
 <osd:composition/>

 </xs:appinfo>
 </xs:annotation>

</xs:element>
<xs:element name="wheel" type="wheelType"

minOccurs="4" maxOccurs="unbounded">
 <xs:annotation>
 <xs:appinfo>
 <osd:composition/>
 </xs:appinfo>
 </xs:annotation>
</xs:element>
<xs:element name="drive" type="personType"/>

</xs:sequence>
</xs:complexType>
<!--End train -->
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->
<!--Class : wagonType -->
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->
<!-- wagonType -->
<xs:complexType name="wagonType">

<xs:sequence>
<xs:element name="trademark" type="xs:string"/>
<xs:element name="size" type="xs:integer"/>
<xs:element name="wheel" type="wheelType"

minOccurs="4" maxOccurs="unbounded">
 <xs:annotation>
 <xs:appinfo>
 <osd:composition/>
 </xs:appinfo>
 </xs:annotation>
</xs:element>
<xs:element name="seats" type="seatType"

maxOccurs="unbounded">
 <xs:annotation>
 <xs:appinfo>
 <osd:aggregation/>

 </xs:appinfo>
 </xs:annotation>
</xs:element>

</xs:sequence>
</xs:complexType>
<!-- End wagonType -->
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->
<!--Class : engineType -->
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->
<!-- EngineType -->
<xs:complexType name="engineType">

<xs:sequence>
<xs:element name="trademark" type="xs:string"/>
<xs:element name="power" type="xs:integer"/>

</xs:sequence>
</xs:complexType>
<!—End engineType -->
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->
<!--Class : wheelType -->
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->
<!-- wheelType -->
<xs:complexType name="wheelType">

<xs:sequence>
<xs:element name="trademark" type="xs:string"/>
<xs:element name="size" type="xs:integer"/>

</xs:sequence>
</xs:complexType>
<!—end wheelType -->
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->
<!--Class : personType -->
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->
<!-- personType -->
<xs:complexType name="personType">

<xs:sequence>
<xs:element name="firstName" type="xs:string"/>
<xs:element name="lastName" type="xs:string"/>
<xs:element name="birthDate" type="email"/>
<xs:element name="email" type="xs:date"/>
<xs:element name="address" type="addressType"/>

</xs:sequence>
</xs:complexType>
<!—End personType -->
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->
<!--Class : addressType -->
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->
<!-- adresse -->
<xs:complexType name="addressType">

<xs:sequence>
<xs:element name="number" type="xs:string"/>
<xs:element name="street" type="xs:string"/>
<xs:element name="city" type="xs:string"/>
<xs:element name="cp" type="xs:string"/>
<xs:element name="country" type="xs:string"/>

</xs:sequence>
</xs:complexType>

<!-- adresse -->
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->
<!--Class : seatType -->
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->
<!-- seatType -->
<xs:complexType name="seatType">

<xs:sequence>
<xs:element name="numero" type="xs:string"/>
<xs:element name="marge" type="xs:string"/>
<xs:element name="taille" type="xs:string"/>

</xs:sequence>
</xs:complexType>
<!-- end seatType -->
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->
<!--Class : emailType -->
<!--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -->
<!--Email Type -->
<xs:simpleType name="email">
<xs:restriction base="xs:string">
<xs:whiteSpace value="preserve"/>
<xs:pattern value="{[0-9a-Z]*@[0-9a-Z]*.[0-9a-Z]*}"/>
</xs:restriction>
</xs:simpleType>
<!-- End of email type -->
<!-- End of the adaptation model -->
</xs:schema>

Figure 10. Definition of an adaptation model with
XML Schema.

By defining a metamodel, we improve the process of

data validation which enables us to use the XML schema
validation engine in an automatic way. Moreover, the
definition of a UML profile allows us to ensure that the
designer uses the semantic strictly defined by
EBX.Platform, avoiding some XML Schema specificities
which are not managed. We associate a generator of XML
Schema code to this UML profile which makes the
definition of an adaptation model easier and more secure.

5. Conclusions and perspectives

We propose a generic solution of data integration
based on the XML technology. Indeed, our solution is
able to integrate data from several kinds of sources such
as databases or XML documents. We have seen that every
adaptation model is an XML Schema standard document.
Some XML Schema features are difficult to handle for the
designer of models. Graphical XML Schema tools exist
but they are not restricted to our semantic and they cannot
be aware about the extensions brought by EBX. So, we
have proposed a metamodel to validate adaptation models
in a transparent way by using the XML Schema validation
engine. We have also presented how the use of UML

profiles makes easier the definition of an adaptation
model.

The follow-up to our work will be the enrichment of
our metamodel for the Master Data Management module
allowing semantic constraints to be expressed and
validated according to profiles (for example business
language). We will develop two ways. The first one is the
modelling methods and constraint expression (expression
of facets). Formalism design as UML will allow EBX
schema modelling. The created schema is validated by
this modelling based on rules. The second one is the
integration of constraint expression according to profiles
(constraints on types or between concepts). This notion
supports a semantic to the represented concepts and
expressions of dependency.

We will take into account the ODMG [10] standard
features (ODMG, 1999) to EBX formalism (inheritance
notion about the models directly specified in the schema,
such as specialization, generalization, dependence, etc.),
the UML formalism, the ad-vantages of OWL language
dedicated to the ontology definition [11], and the
advantages of conceptual graphs for the expression of
relations and of constraints between concepts. The
features of OWL and of conceptual graphs will be used to
perform inferences on data allowing some optimizations.

6. Acknowledgements

We would like to thank Orchestra Networks for there
support to our research.

7. References

[1] Lenzerini M. (2002), Data Integration: A Theoretical
Perspective, 21st ACM SIGMOD International Conference on
Management of Data / Principles of Database Systems
(PODS’02), p. 233-246.

[2] Widom, J. (1995) Research Problems in Data Warehousing.
In Proceedings of the 1995 International Conference on
Information and Knowledge Management (CIKM), Baltimore,
Maryland.

[3] W3C. (2004) XML-Schema Part 1: Structures, 2nd Ed.,
http://www.w3.org/TR/xmlschema-1.

[4] Mahmoud N. (2003) VUML: a Viewpoint oriented UML
Extension, 18th IEEE International Conference on
Automated Software Engineering (ASE'03), pp.
373-376.

[5] Pilone D., Pitman N. (2006), UML 2.0 in a Nutshell,
O’Reilly (Eds).

[6] Baril X. and Bellahsène Z. (2003). XML Data
Management: Native XML and XML-Enabled Database
Systems. Chapter Designing and Managing an XML
Warehouse, pp.455–474. Addison Wesley Professional.

[7] Gofarelli, M., Rizzi, S., Vrdoljak, B. (2001). Data
Warehouse Design from XML Sources, In Proc. The 4th
ACM Intl Workshop on Data Warehousing and OLAP
(DOLAP01), pp. 4047, Atlanta, 2001.

[8] Design of XML Document Warehouses, In Proc. Data
Warehousing and Knowledge Dis-covery, 6th
International Conference, DaWaK 2004, pp. 114,
Zaragoza, Spain, 2004.

[9]OMG Document. “CORBA specifications”.
http://www.omg.org/technology/documents/for
mal/profile_corba.htm.

[10] ODMG (1999) The Object Data Standard: ODMG 3.0,
Morgan Kauffman Publishers.

[11] Kalfoglou Y. Schorlemmer M. (2003) Ontology mapping:
the state of the art. The Knowledge Engineering Review 18(1)
pp. 1-31.

[12] ZERDAZI A. LAMOLLE M (2005) Modélisation des
schémas XML par adjonction de métaconnaissances
sémantiques, 2ème rencontre des Sciences et Technologie de
l’Information, ASTI, Clermont-Ferrand.

[13] S. Abiteboul, S. Cluet, G. Ferran, M.-C. Rousset. «
The Xyleme Project ». Computer Net-works 39, 2002.

[14] Delobel, C., Reynaud, C., Rousset, M.C., Sirot, J.P.,
Vodislav, D.: « Semantic integration in Xyleme : A
uniform tree-based approach ». Data and Knowledge
Engineering 44, (2003). 267-298.

