Myriam Lamolle
email: m.lamolle@iut.univ-paris8.fr

Amar Zerdazi
email: a.zerdazi@iut.univ-paris8.fr

Ludovic Menet
email: ludovic.menet@orchestranetworks.com

CONCEPTUAL FRAMEWORK FOR XML SCHEMA MAPPING

Keywords: Mapping, node similarity, schema integration, XML Schema

Today's web-based applications and web services publish their data using XML, as this helps interoperability with other applications and services. The heterogeneity of XML data has led to recent research in schema matching, schema transformation, and schema integration for XML. In this paper, we propose an approach for mapping integration for XML schema. The basic idea is to drive direct as well as complex matches with their associated transformation operations from the computed element similarities. The representation of a mapping element in a source-to-target mapping clearly declares both the semantics correspondences as well as the access paths to access and load data from source into a target schema. We detail our mapping generation process and proceed in four steps to specify a formal representation of a source-to-target mapping in order to discover structural mappings between XML schemas. street

INTRODUCTION

Today's web-based applications and web services publish their data using XML, as this helps interoperability with other applications and services. The heterogeneity of XML data has led to recent research in schema matching, schema transformation, and schema integration for XML.

In this paper, we propose an approach for mapping integration for XML schema. The basic idea is to drive direct as well as complex matches with their associated transformation operations from the computed element similarities. The representation of a mapping element in a source-totarget mapping clearly declares both the semantic correspondences as well as the access paths to access and load data from source into a target schema.

The paper is organized as follows. Some related works are presented in section 2. In sections 3 and 4, we respectively give a brief overview of our formal model for XML schema (XML Schema graph) and highlight a set of structure transformation operations. Section 5 presents the core of this paper.

We detail our mapping generation process and proceed in four steps to specify a formal representation of a source-to-target mapping in order to discover structural mappings between XML schemas. Section 6 concludes this paper.

RELATED WORKS

Several approaches [START_REF] Bouzeghoub | Managing the evolution of mappings[END_REF], [START_REF] Miller | Schema Mapping as Query Discovery[END_REF], [START_REF] Li | SEMINT: A tool for identifying attribute correspondence in heterogeneous databases using neural networks[END_REF] have been proposed to generate mappings when the target and the source schemas are expressed using the relational model. The approach presented in [START_REF] Kedad | Mapping Generation for XML Data Sources: a General Framework[END_REF] generates a set of mappings from a set of source schemas using linguistic correspondences between target attributes and source attributes expressing the idea that these elements represent the same concept.

In [START_REF] Popa | Translating web data[END_REF], an approach is proposed for generating mappings from one source schema to a target schema when these schemas are represented by XML Schema. In (Yu and Popa, 2004), a query rewriting algorithm which uses these mappings is proposed for integrating data sources. Other approaches have been proposed [START_REF] Claypool | Gangam: A Transformation Modeling Framework[END_REF], (Yang et al., 2003), and(Zamboulis andPoulovassilis, 2004) to generate mappings from several source schemas. These approaches comprise two steps: (i) the definition of rules to restructure each source schema according to the structure of the target schema, and (ii) the generation of mappings from these restructured schemas. In these approaches, source schemas must be restructurable with respect to the target schema in order to use them for mapping definition.

THE DATA MODEL

As already mentioned in section 2, up to now few existent XML schema matching algorithms have focused on structural matching exploiting all W3C XML schemas (W3C, 2001) features. In this section, we propose an abstract model that serves as a foundation to conceptually represent W3C XML schemas and potentially other schema languages. We model XML schemas as a directed labeled graph with constraint sets; a so-called schema graph. This graph is used in the matching process for the measure of node context similarity. A schema graph consists of series of nodes that are connected to each other through directed labeled links. In addition, constraints can be defined over nodes and links. We proposed model for XML schemas in order to define a formal framework for solving matching problems.

OPERATIONS ON MAPPING

A mapping element relates, in its simplest form, a construction (which refers to nodes and edges in the schema graph) from S to a semantically similar construction from T (respectively source and target schema graphs). Although, a source may not have a construction that directly corresponds to the target one, nevertheless target constructions may be derived from source constructions by applying a set of predefined operations. This mechanism is somehow similar to virtual views creation in data integration, where a virtual view over the source has to match a mediated schema (e.g., the concatenation of source elements firstname and lastname gives rise to a virtual element name that matches the target element name). Virtual views are also applicable to edges (e.g., the two edges author→firstname, and author→lastname are merged together into a virtual edge author→name that matches the edge author→name in the target schema). Based on this observation we borrow the notion of virtual view to formally define mappings between source and target schemas. We have been inspired essentially by research in the field of generating virtual views in data integration systems (Biskup and Embley, 2003), [START_REF] Dobre | Operators and Classification for Data Mapping in Semantic Integration[END_REF], (Xu and Embley, 2003).

Definition 1 (Schema alphabet): Given a schema S (in keeping with the schema graph formalism), we define the alphabet of S, ∑ S as the union of nodes and edges in the S schema graph. ∑ S =N S ∪E S .

Definition 2 (Virtual view): Given a source schema S and its alphabet ∑ S , a virtual view over S, v S is defined as a derivation from the alphabet ∑ S .

Applying a set of predefined operations O={o 1 ,…o n }.

Definition 3 (Mapping element, mapping direct, mapping complex): Let V S denotes the set of possible virtual views constructed over ∑ S . A mapping element is a function µ: ∑ S ∪∑ T , that associates an element s in ∑ S ∪V S to an element t in ∑ T . A mapping element is direct mapping if it binds an element in ∑ S (⊆V S) to an element in ∑ T and a complex mapping if it binds a virtual element v S ∈V S to a target element in ∑ T through a mapping expression defined over O.

Mappings can be combined by means of some operators giving a result that in turn is a mapping. In (Zerdazi and [START_REF] Lamolle | Intégration de Bases de données hétérogènes par une modélisation conceptuelle XML[END_REF], we extended the relational algebra so that we were able to formally define a set of operators that are defined over source and target schema nodes and that can be used to combine nodes to form complex mapping expressions.

Our mapping algebra concerns a set of transformation operations, as listed below:

§ Rename: t=rename〈s〉, generates a construction that is the same as a construction s, but with a different name t. For example, editor=rename〈publisher〉; § Merge:

DISCOVERY OF NODES AND EDGES MATCHES

Most schema matching algorithms [START_REF] Li | SEMINT: A tool for identifying attribute correspondence in heterogeneous databases using neural networks[END_REF], [START_REF] Doan | Learning to map ontologies on the semantic web[END_REF], (Mitra et al., 2000), [START_REF] Milo | Using schema matching to simplify heterogeneous data translation[END_REF], [START_REF] Palopoli | The system DIKE: Towards the semi-automatic synthesis of cooperative information systems and data warehouses[END_REF], [START_REF] Castano | Semantic information interoperability in open networked systems[END_REF], [START_REF] Do | COMA -a system for flexible combination of schema matching approaches[END_REF], [START_REF] Melnik | Similarity flooding: A versatile graph matching algorithm[END_REF], [START_REF] Noy | Anchor-PROMPT: using non-local context for semantic matching[END_REF], [START_REF] Giunchiglia | S-Match: an algorithm and an implementation of semantic matching[END_REF] produce similarity scores between source and target schemas nodes such as the ones we produce in section 5.3; however, such a mapping result partially solves the problem. First, produced similarities between individual nodes are not enough to produce access paths for retrieving data from the available sources. For example, based on previous matching techniques, we obtain a set of node matches such as the match between laboratory and laboratory, or between researcher and author or between book and book. Without matches between edges, however, it may be impossible to distinguish authors that wrote books, from authors that wrote articles. Intuitively, a source-to-target mapping should describe all the produced mappings such as one-to-one mappings, complex mappings identified using type hierarchy have to be incorporated in the matching result and further complex mappings have to be discovered. To do this, we proceed in four steps (figure 2).

Admissible Node Identification

While generating mapping elements, we apply a topdown strategy (We use the same top-down strategy as in (Xu, 2003b). However the difference is that this technique is used to discover structural similarity. In our approach, it is just for mapping generation; the structural matching has been already performed). At the top level, we establish correspondences between complex nodes of the target and source schemas. Matched complex nodes are called compatible nodes. In figure 1(a), the complex node laboratory is considered to be a compatible node since it is matched to node laboratory in the schema graph of figure 1(b), while node library is not a compatible node. Then, at the bottom level, with the guide of compatible nodes between the target and source schemas, we establish the finer-level correspondences between nodes and edge sets. Figure 3 illustrates compatible nodes.

Visually compatible nodes are depicted as colored circles and dashed lines.

Gtarget Gtarget Gsource Gsource

Context Generation for Admissible Node

After identifying admissible nodes, we proceed to construct a context for each admissible node by taking edges around a complex node n into account.

We cluster a set of nodes and edges with a complex node as a conceptual component in the schema graph. We call this the context of n. The context for an admissible node n consists of a set of nodes and a set of edges among those nodes. For a given admissible node n, we construct such a context as follows:

1. Including all atomic directly node related to the admissible node n. 2. Including all non-admissible nodes directly connected to n with their connected atomic nodes and connected non-admissible nodes.

We continue this procedure until we find an admissible node. 3. If a directly connected admissible node is also similar to an atomic node, it is also included in the context of n. 4. Including all nodes having an association relationship with n and their respective context.

Including all containment relationships

between nodes in the context of n.

Example: Figure 4 illustrates a schema graph of Figure 3 after context construction. The context of the admissible node laboratory includes atomic nodes name and location and non-admissible node Library. The context of admissible node Article includes referential node Journal and its context. The context of node laboratory includes the admissible node address, since address is similar to a leaf node (location) belonging to the context of a matched node laboratory.

Node Mappings Generation

At this stage, we have completed with the top-level comparison between source and target schema graphs. We are now ready to detect node and edges matches at the bottom level. For each matching pair (n S , n T) which represented two admissible nodes in source and target schema graphs, we make use of the node similarity score generated in previous work (Zerdazi and Lamolle, 2007) to settle node matches. The following gives examples on how we proceed.

Example 1: Let the schema in Figure 5(a) be the source schema and the schema in Figure 5(b) be the target schema. Consider the two admissible nodes, source node laboratory (laboratory S) and the target node laboratory (laboratory T), we first settle nodeset matches between both source and target contexts that hold with the highest node similarity score. As an example, we settle the match pair (name S , name T) using a parity operator.

Example 2: The target node address T is both similar to the source nodes laboratory/location S and author/address S with approximatly the same scoring. This is due in the case of laboratory/location to the fact that ancestor context similarity is high and in the case of author/address to the fact that leaf context similarity is high (Zerdazi et al., 2006). Since target node laboratory/address and source node author/address belong to non-admissible complex nodes while target element laboratory/address and source element laboratory/location belong to two admissible contexts, a match is then derived between source node laboratory/location and target node laboratory/address. Moreover, since we have decided to map a non-leaf node with a leaf node, a complex mapping with split operation can be deduced.

Access Path Generation

With the available correspondences between nodes in source and target schemas, we further discover matches between edges. As in [START_REF] Xu | Source Discovery and Schema Mapping for[END_REF], the recognition of edges matches starts by locating an edge set e T in G T . Then, based on nodes n T connected by e T , we can locate a set of nodes that correspond to n T in G S , from which we either locate or derive an edge set e S that corresponds to e T . We essentially focus on the discovery of access paths in order to retrieve source data when performing transformations. For each target element t, we first define the access path indicating where matched source elements are localized, then the discovered transformation operation and finally the conditions under which the mapping element holds true.

It is widely accepted that the matching process cannot be fully automated. Thus is necessary to incorporate user feedback on the matching task. The following stage will be validating mapping result and constraint filtering.

CONCLUSION

In this paper, we have presented a framework for discovering structural mappings between XML schema. This approach produces a set of mappings for a target schema considering a set of source schemas and a set of correspondences; each target mapping has different semantics.

Since the result of our approach is a set of structural mappings, one interesting perspective is to take advantage of these multiple semantics; the system should be able to select the mapping that best fits the needs of a specific user, using preferences or quality criteria. To achieve this goal, the users are invited to validate the final mapping result with having the possibility to add, delete or update mapping elements. The accuracy of a matching system considerably reduces post-matching user efforts. Another perspective of our work is the maintenance of the mappings. In dynamic environments such as the Web, data sources may change not only their data but also their schemas and their semantics. Such changes must be reflected in the mappings. Mappings left inconsistent by a schema change have to be detected and updated. It is important therefore to develop techniques for automatically adapting mappings as schemas evolve. Authors in [START_REF] Velegrakis | ToMAS: Mapping Adaptation under Evolving Schemas[END_REF] proposed a mapping adaptation technique, but which essentially deals with relational schema changes).

Figure 1 :

 1 Figure 1: a schema graph example.

Figure 2 :

 2 Figure 2: Mapping generation process.

Figure 3 :

 3 Figure 3: Example of a schema graph after admissible node identification.

Figure 4 :

 4 Figure 4: Example of a schema graph after context generation.

Figure 5 :

 5 Figure 5: Source and target schema graphs after context generation.

 (a) Schema graph source (Gs) (b) Schema graph cible (GT)

Data Integration. PhD thesis, Brigham Youg

University. Yang, X., Lee, M. L., Ling, T. W., 2003. Resolving structural conflicts in the integration of XML schemas: a semantic approach.