
HAL Id: hal-03580944
https://hal.science/hal-03580944

Submitted on 18 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a bidirectional transformation of UML and
XML models

Ludovic Menet, Myriam Lamolle

To cite this version:
Ludovic Menet, Myriam Lamolle. Towards a bidirectional transformation of UML and XML mod-
els. International Conference on E-Learning, E-Business, Enterprise Information Systems, and E-
Government, Jul 2008, Las Vegas, United States. �hal-03580944�

https://hal.science/hal-03580944
https://hal.archives-ouvertes.fr

EEE’08

Towards a bidirectional transformation of UML and XML
models

Ludovic Menet*,** , Myriam Lamolle*

* Laboratoire d’Informatique et de Communication (LINC)
IUT de Montreuil, University of Paris8

140 rue de la Nouvelle France, 93100 Montreuil. France
+33148703461

Corresponding author: l.menet@iut.univ-paris8.fr

** Orchestra Networks, direction of R&D
75 boulevard Haussman, 75008 Paris. France

ludovic.menet@orchestranetworks.com

ABSTRACT. Since the end of the nineties, XML has become the standard to exchange and send information on Internet. The
W3C has recommended the use of XML Schema to define the structure of XML documents. To date, the graphical modelling
of XML Schema models is not standardized. The introduction of a models definition formalism is a mean to make modelling
more accessible. UML is a modelling object language which is more and more used and recognized as a standard in the
software engineering field, which makes it an ideal candidate for modelling of XML Schema models. In this paper, we
introduce the specificities of UML formalism to facilitate the definition of XML models. A semantic enrichment is done in
UML and XML Schema with the aim of achieving a bi-directional mapping between these two standards.

KEYWORDS: UML, UML Profile, XML, XML Schema, Mapping, Metamodel.

1. Introduction

It is now recognized that the XML (eXtensible Markup Language, W3C, 2000) language has become the
standard to exchange information across Internet. XML Schema (W3C, 2004) is a formalism allowing to
describe the structure of an XML document more easily than with a simple DTD (Document Type Definition).
The use of XML seems to be adapted to the definition of models but it implies an extensive knowledge of this
language. A lot of softwares such as Altova XML Spy and oXygen XML Editor have been developed to model
graphically XML Schema models as trees. These softwares allow to optimise the modelling of XML schemas
but each of them proposes a different formalism of representation. This observation allows us to think that a
standard formalism should be used in order to make easier the modelling and the exchange of these models. This
paper aims to introduce some modelling techniques of XML Schema models by the use of UML (Unified
Modelling language) class diagrams.

UML proposes a powerful graphical modelling formalism widely used in software engineering. Our
objective is to introduce all the richness of the UML formalism in order to make the modelling and the exchange
of XML Schema models easier. The introduction of the UML formalism is performed by a mapping between the
metamodels of UML and XML Schema. To do this, we proceed in several steps:

– Definition of a metamodel describing the concepts supported by XML Schema ;
– Definition of some XML Schema extensions in order to introduce the object specificities of UML. These

extensions use the mechanisms of extensions recommended by XML Schema to be conform to the norm of the
W3C;

– Definition of an UML profile to specialise UML to the semantic of XML Schema;
– Definition of the mappings between the metamodels of UML and XML Schema;
– Application of the mappings the use of the pivot format XMI (XML Metadata Interchange format) and

XSLT stylesheets describing the mappings.

EEE 2008 2

The first three points have been exposed in (Menet and Lamolle, 2007) and (Menet and Lamolle, 2008). In
this paper we will focus on the last two points.

2. State of the art

(Levendovszky, 2002) defines the mapping as a set of transformation rules of models allowing to translate
the instances of a source metamodel into an instance of a target metamodel.

 (Baïna et al., 2006) are focused on the works of (Kalfoglou and Schorlemmer, 2003) to bring a
mathematical definition of the interoperability of enterprises applications. After the study of these works, we
notice that this definition can be applied to the mapping of models. Indeed, we consider two metamodels MA and
MB, A and B are said interoperable if and only if a bijective mapping of MB A to MB that we call f exists. The
bijection of f guaranties that we can construct an instance of the B model from the instantiation of the A model
(using f) and construct an instance of the A model from the instantiation of the B model. From this definition,
three interoperability levels are defined, and mappings are identified between the languages A and B:

– Level 2: there is a total isomorphism between MA and MB. Then, all concept of MB A has its equivalent in MBB
and vice versa. This means that MA and MB are equivalents; B

– Level 1: there is a partial isomorphism between MA and MB. Then, there is a subset of MB A that we call M’A
and a subset of MBB (M’B) such as the interoperability between M’B A and M’BB is of the level 2, these subsets are
then equivalents;

– Level 0: there is no partial isomorphism between MA and MB. However, it is possible that some non
bijectives mappings exist between M

B

A and MBB. In this case, we cannot talk about a semantic interoperability
between A and B.

The interoperability of level two is the most difficult to establish in the sense that it is not common to have
two metamodels totally equivalents. In this study, we are going to establish a partial matching between MA and
MB computing the part of M’B A and M’BB compared to MA and MB getting then an interoperability of level 1
between XML Schema and UML.

B

 (Carlson, 2001) deals with the transformation of UML models to XML Schema models and in the other
way, getting then a bijective mapping between these two formalisms. The mapping realised uses an UML profile
defining some XML Schema specific concepts. This profile is used in order to extend the semantic of an UML
model to the semantic of an XML Schema model. This approach allows a mapping of a large part of the
concepts introduced by XML Schema, but does not take in count some concepts such has groups (list, union),
identity constraints (key, keyref, unique), genericity constraints (substitutionGroup), etc. Moreover, some
important UML concepts such has aggregation, composition, association and documentation, are not taken in
count during the transformation of an UML model into an XML Schema Model. This mapping has been applied
by HyperModel (Carslon, 2006). HyperModel is a plug-in for the Eclipse IDE. This tool is fully operational but
suffers of some limitations during the transformation of an UML model into a XML Schema model:

– Some concepts are not mapped (aggregation, composition, etc.);
– Some elements are mapped many times implying a redundancy of information and an inconsistency in the

target model;
– A loss of information, more precisely about cardinality constraints, appears on some models;
– Some XML Schema models generated by Hypermodel are not valid according to the specifications of the

W3C.
(Routledge and al., 2002) address the mapping between UML and XML Schema in a traditional way through

the three levels approach from the databases domain, namely the conceptual, the logical and the physical levels.
In the context of an UML class diagram, the conceptual level describes objects and their relations. The logical
level represents the XML Schema data structure through an UML profile. The physical level directly represents
the XML Schema model. As for Carlson’s works, some UML specific elements such as aggregation,
composition and other are not taken in count.

Other works have been realised in the same context by (Conrad and al., 2000), (Wu and Hsieh, 2002) and
(Kurtev and al., 2003) but also suffer of the same limitations that the works previously presented.

In (Menet and Lamolle, 2007) and (Menet and Lamolle, 2008), we have enriched conceptually XML Schema
by adding extensions allowing to define object relations, and UML by the definition of a profile specialising
UML to the semantic of XML Schema, with the aim of establishing correspondences between these two

Towards a bidirectional transformation of UML and XML models 3

formalisms. These correspondences allow us to specify bidirectional mappings between UML and XML
Schema.

3. UML / XML Schema mapping specifications

We will now introduce the rules of mapping between UML and XML Schema elements, including the
concepts describing the relations of dependency.

3.1. Classes

In our rules, an UML class is mapped to an XML Schema element (<xs:element>) having a complex
structure or to a global complex element (<xs:complexType>). In our previous works, we have introduced
through an UML profile some stereotypes specialising UML to the semantic of XML Schema. Some of these
stereotypes allow to add additional information to UML classes. So, the stereotypes <<Sequence>>,
<<Choice>> and <<All>> are used for example to indicate that a classe has to be transformed into an XML
Schema complex element having respectively a structure of the form <xs:sequence>, <xs:choice> or <xs:all>.
The notion of root element has been defined in the semantic of XML Schema with the stereotype <<Root>>. If
an UML class is declared as abstract, this property is materialised by the ‘abstract=true’ attribute in the
corresponding XML Schema element. These rules given, it is possible to perform the reverse operation, defining
an UML class from an XML Schema element having these properties.

3.2. Attributes

UML attributes are transformed into simple XML Schema element <xs:element> with the attribute value
<xs:type> a data type. The corresponding XML Schema element generated is included by a <xs:sequence>,
<xs:choice> or <xs:all> element according to the stereotype applied to the UML class. We have introduced the
stereotype <<Attribute>> in order to specify that the UML attribute has to be transformed into an XML Schema
attribute <xs:attribute> and not into an element <xs:element>.

3.3. Cardinalities

UML cardinalities are transformed into attribute <xs:minOccurs> or <xs:maxOccurs> held by the
corresponding element. Cardinalities may concern associations, aggregations, compositions and attributes.

3.4. Natives data types

The natives data types defined by UML such as int, double, float, string, etc., are mapped to the
corresponding XML Schema entities, repectively <xs:int>, <xs:double>, <xs:float>, <xs:string>, etc.

3.5. Redefined data types

A redefined data type allows to specify constraints on data types or to define new business types. We have
defined the stereotype <<SimpleType>> allowing to indicate that the corresponding UML element is a
redefined type. In UML, we defined the properties of the redefined data type with an annotation. The
corresponding XML Schema element is constructed from the information defined in this annotation. In our
mapping, we include the XML Schema constraints on data types. It is then possible for a redefined data type to
specify some constraints conform to the specification of the W3C such as length, min/max length, enumeration,
fractionDigits, totalDigits, min/max Inclusive, min/max Exclusive.

3.6. Generalisation / Specialisation

An UML class stereotyped <<abstract>> is declared as abstract and is a generalisation of one or many
concepts (classes). In our previous works, (Menet and Lamolle, 2007) and (Menet and Lamolle, 2008), we have
defined XML Schema extensions allowing to materialise “object” relations. Generalisation and specialisation
are mapped in XML Schema to an element with the following extension:

<xs:annotation>
 <xs:appinfo>
 <osd:generalisation> < !-- or specialisation -->
 <osd:conceptPath>
 Path of the sub / super concept in the schéma
 </osd:conceptPath>
 </osd:generalisation > < !-- or specialisation -->
 </xs:appinfo>
</xs:annotation>

EEE 2008 4

3.7. Aggregation and composition

The aggregation (respectively composition) is mapped to an XML Schema element with the following
extension:

<xs:annotation>
 <xs:appinfo>
 <osd:aggregation /> < !-- respectively composition -->
 </xs:appinfo>
</xs:annotation>

UML cardinalities are represented by the XML Schema attributes <xs:minOccurs> et <xs:maxOccurs>.

3.8. Notes and documentations

Documentation or a note is a low variant of constraint; it is a text for the reader but not executable by a
computer. In an UML class diagram, a note is linked to the element it refers. Notes and documentations are
translated into XML Schema by the following extension:

<xs:annotation>
<xs:documentation xml:lang = « en_EN »>

<osd:description> Text </osd:description>
</xs:documentation>

</xs:annotation>

The xml:lang attribute allows to specify the associated language to the note or documentation.

4. Mappings application

We have presented in the previous section the mappings between UML and XML Schema basic elements.
UML is a graphical formalism for models representation and XML Schema is a description language for
structured models. The application of our mappings needs to be able to represent XML Schema and UML
models in a common formalism.

4.1. XML Metadata Interchange Format (XMI)

XMI is a formalism of models representation, recommended by the ODMG (Object Management Group,
1999) created for the purpose to exchange models between modelling tools. The UML representation of a model
represents the abstract level of this one; the concrete level is materialized by the XMI representation of this
model. XMI can be used as a pivot format to represent and manipulate an UML model. An XMI document has
the structure of an XML document. An XMI document contains two important parts: a “header” and a
“content”. The “header” part defines the information about the model such as owner, description, date, etc. The
“content” part defines the content of the model, i.e. the classes, stereotypes, associations, etc. Several softwares
(such as ArgoUML, Rational Rose, Objecteering, etc.) include some functionalities of import and export of
UML models in the XMI format. However, these softwares can generate for the same UML model a valid XMI
document but not having the same structures, making difficult the exchange of models between applications.
The major drawback requires us to apply our own mappings to generate XML Schema, correspondingly to the
W3C standards, in order to facilitate the exchange and interoperability of models between applications.

4.2. XSL Transformation

XMI can be used to represent an UML model as an XML document, then allowing to establish a correlation
between an UML model and an XML Schema model. XSLT is a language allowing to apply transformation
rules to an XML document producing an other XML document. These transformation rules are described in an
XSL stylesheet. The figure 1 describes the process of transformation:

Towards a bidirectional transformation of UML and XML models 5

UML model
 XMI

XML Schema
model

 XSLT
ProcessorXSL style sheet

Transformation

Fig. 1. XSLT process transformation.

4.3. Case study

This section presents a part of an UML model and its equivalent in XML Schema after the application of the
mapping rules that we have established. We also compare this conversion with a mapping realised with
HyperModel. Figure 2 presents an UML class diagram of a simplified network train. This UML model is
composed of concepts and relations between them. In our example, we highlight the relationships of association,
aggregation, composition and redefined types. Then we have for example defined the concept Train as
composed of an engine, wheels (notion of composition), being able to have wagons (notion of aggregation) and
having properties such as a type and a trademark. We associate a driver of type PersonType with a train. The
concept PersonType defines properties such as firstname, lastname and birthday. We have also defined the
property email representing the use of a redefined type. The class Email uses the stereotype <<SimpleType>>
indicating that it is a redefined type in the XML Schema sense. The properties of this redefined type are
expressed in an UML annotation specifying values for SimpleType::base, SimpleType::pattern and
SimpleType::whitespace. The root of the schema is specified by the stereotype <<Root>>, applied to the class
NetworkTrain. The classes defined in this model are also stereotyped <<Sequence>>. This stereotype specifies
that the corresponding class represents a complex element of the type <xs:sequence> in the XML Schema
definition. From this diagram an XMI document is generated and we apply on it an XSL style sheet. This style
sheet is composed of rules defining the mapping that we have previous presented1.

Fig. 2. Exemple de modèle UML.

After the application of our mappings, we get an XML Schema model. Figure 3 presents the transformation
of the Networktrain and trainType classes and their relations, into XML Schema elements:

1. We have chosen to not present our style sheet because it is only a technical implementation of our mappings.

EEE 2008 6
... <xs:element name="NetworkTrain" osd:access="--">
 <xs:annotation>
 <xs:documentation>This diagram is the representation of a network train
 </xs:documentation>
 </xs:annotation>
<xs:complexType>
 <xs:sequence>
 <xs:element name="train" type="trainType" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
</xs:complexType>
</xs:element>
<!—Train-->
<xs:complexType name="trainType">
 <xs:sequence>
 <xs:element name="trademark" type="xs:string"/>
 <xs:element name="type" type="xs:string"/>
 <xs:element name="wagon" type="wagonType" maxOccurs="unbounded">
 <xs:annotation>
 <xs:appinfo>
 <osd:aggregation/>
 </xs:appinfo>
 </xs:annotation>
 </xs:element>
 <xs:element name="engine" type="engineType">
 <xs:annotation>
 <xs:appinfo>
 <osd:composition/>
 </xs:appinfo>
 </xs:annotation>
 </xs:element>
 <xs:element name="wheel" type="wheelType" minOccurs="4" maxOccurs="unbounded">
 <xs:annotation>
 <xs:appinfo>
 <osd:composition/>
 </xs:appinfo>
 </xs:annotation>
 </xs:element>
 <xs:element name="drive" type="personType"/>
 </xs:sequence>
</xs:complexType>
<!--End train -->
<!—Redefined type-->
<xs:simpleType name="email">
 <xs:restriction base="xs:string">
 <xs:whiteSpace value="preserve"/>
 <xs:pattern value="{[0-9a-Z]*@[0-9a-Z]*.[0-9a-Z]*}"/>
 </xs:restriction>
</xs:simpleType> ...
Fig. 3. Extract of an XML Schema model generated from an UML model with our mapping rules.

As a comparison, we have defined in HyperModel the same UML class diagram that the one presented in
figure 2, and we have then used the functionalities of transformation proposed by HyperModel in order to get an
XML Schema model. During our comparative study, we have noticed some losses of information at the end of
the transformation processed by HyperModel:

– Loss of documentation. The documentation associated to the NetworkTrain class has not been defined
during the transformation. Unlike HyperModel, our mappings handle the definition of documentation associated
to UML elements such as classes, attributes and relations (association, aggregation, etc.).

– Loss of constraints on redefined types. The constraints on the redefined type email defined in the class
<<SimpleType>> email have not been taken in count during the transformation.

– Loss of semantic about relationships between concepts. Indeed, the relationships such as association,
aggregation and composition are confused during the mapping between the UML class diagram and the XML
Schema model. The mappings we have defined explicitly express the nature of the relations between concepts
through the introduction of annotation in XML Schema models.

Towards a bidirectional transformation of UML and XML models 7

5. Conclusion

The need to communicate and to exchange is the result of various evolutions in the model development
process. Indeed, the increasing size and complexity of models, the heavy use of networks and the intervention of
different specialists in the field in the design imply communication and exchange. We have seen that we can
facilitate communication between people by using a common formalism, UML in our case, as an abstraction of
any technical language. UML is a powerful and flexible modelling language and XML became a standard for
data interchange on the Web. The use of these two technologies addresses interoperability and a standard means
of exchanging and defining models. The introduction of UML has been realised by the creation of matches
between XML Schema and UML, matches that have enabled to define bidirectional mappings between these
two standards. Introducing extensions in a XML Schema model and defining an UML profile, we get an
interoperability of level 1 between UML and XML Schema filling some limitations that we have presented in
sections 2 and 4. Indeed, our extensions allow us to establish some matches between concepts that have not been
taken in count in previous works such as the notions of aggregation, composition, documentation, etc. Managing
the notions of aggregation and composition allows to highlight explicitly the semantic links between elements
and then bring important information about their life cycle.

The following of our works will be focused on the improvement of our mappings for example considering
the definition of OCL (Object Constraint Language) (OMG, 2002) constraints and the development of a tool
allowing to define UML and XML schema models in order to make the semi-automation of the mappings and
the validation of models by the experts of the domain easier.

6. References

Altovan XMLSpy. http://www.altova.com/xmlspy

Ambler S. « Persistence Modeling in the UML», Issue of Software Development. August. http://www.sdmagazine.com ,
1999.

Carlson D., Modeling XML Applications with UML: Practical e-Business Applications. Addison-Wesley Inc., 2001.

Carlson D., «Semantic Models for XML Schema with UML Tooling», In Proceedings of the 2nd International Workshop on
Semantic Web Enabled Software Engineering, 2006.

Conrad R., Scheffner, D. and Freytag, J.C., « XML conceptual modeling using UML », Proceedings of the 19th
International Conference on Conceptual Modeling (ER’2000), 2000.

Iyengar, S., A. Brodsky, XML Metadata Interchange (XMI). Proposal to the OMG Object Analysis & Design Task Force
RFP 3: Stream-based Model Interchange Format (SMIF), Object Management Group. http://www.omg.org. (1998).

Kurtev, I., Berg, K.V., Aksit M., UML to XML-Schema Transformation: a Case Study in Managing Alternative Model
Transformations in MDA. Forum on specification and Design Languages. (2003)

Levendovszky T., Karsai1 G., Maroti1 M., Ledeczi1 A., Charaf H., « Model Reuse with Metamodel-Based
Transformations », In Proceedings of the 7th International Conference on Software Reuse: Methods, Techniques, and
Tools, p. 166 -178, 2002.

Menet L., Lamolle M., « Meta-modelling “object”: expression of semantic constraints in complex data structure »,
Proceedings of ERIMA07’. p. 104-108, Biarritz, France, 2007.

Menet L., Lamolle M., « Managing Master Data with XML Schema and UML », International Workshop on Advance
Information Systems for Enterprises (IWAISE). Constantine, Algeria, 2008. (To appear)

Routledge N., Bird L., Goodchild A., « UML and XML schema », In Proceedings of the 13th Australasian Database
Conference, pp 157-166, Melbourne, Australie, 2002.

ODMG. The Object Data Standard : ODMG 3.0. Morgan Kauffman Publishers, 1999.

OMG. Response to the UML 2.0 OCL. http://www.omg.org/docs/ad/02-05-09.pdf ,2002.

oXygen XML editor. http://www.oxygenxml.com

W3C. Extendible Markup Language (XML) 1.0. W3C XML Working Group, http://www.w3/org/TR/REC-xml (2000)

W3C. XML-Schema Part 1: Structures 2nd Ed. 2004 http://www.w3.org/TR/xmlschema-1 (2004)

Wu I.C., Hsieh S.H., “An UML-XML-RDB Model Mapping Solution for Facilitating Information Standardization and
Sharing in Construction Industry”, In Proceedings of the National Institute of Standards and Technology. Gaithersburg,
Maryland. September, 2002.

http://www.altova.com/xmlspy
http://www.sdmagazine.com/
http://www.omg.org/
http://www.omg.org/docs/ad/02-05-09.pdf
http://www.oxygenxml.com/
http://www.w3/org/TR/REC-xml
http://www.w3.org/TR/xmlschema-1

