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PERFECT SAMPLING OF STOCHASTIC MATCHING MODELS
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IECL, Université de Lorraine / INRIA PASTA

PASCAL MOYAL
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Abstract. In this paper, we introduce a slight variation of the Dominated
Coupling From the Past algorithm (DCFTP) of Kendall, for bounded Markov

chains. It is based on the control of a (typically non-monotonic) stochastic

recursion by a (typically monotonic) one. We show that this algorithm is
particularly suitable for stochastic matching models with bounded patience,

a class of models for which the steady state distribution of the system is in

general unknown in closed form. We first show that the Markov chain of this
model can be easily controlled by an infinite-server queue. We then investigate

the particular case where patience times are deterministic, and this control

argument may fail. in that case we resort to an ad-hoc technique that can also
be seen as a control (this time, by the arrival sequence). We then compare

this algorithm to the classical CFTP one, and show how our perfect simulation

results can be used to estimate, and compare, the loss probabilities of various
systems in equilibrium.

1. Introduction

The study of stochastic matching models is currently a very active line of research
in applied probability. It has been demonstrated in various contexts, that these
stochastic models are suitable to capture the dynamics of a wide range of real-
time random systems, in which elements enter the system at (possibly) random
times, with a view to finding a match, that is identified as such following specified
compatibility rules, given by a given compatibility graph between classes of items.
Then, matched couples leave the system right away as soon as they found a match.
This is the case in various applications, such as, peer-to-peer applications, job-
search, public housing or college allocations, organ transplants, blood banks, car
sharing, assemble-to-order systems, and so on. These models have been introduced
in [14] for bipartite graphs (which is suitable for supply/demands-type applications)
and arrivals by couples, as a variant of the seminal works [15, 3]. To account for
a wider range of applications (e.g., dating websites, crossed kidney transplants,
assemble-to-order systems or car-sharing), they have been generalized to general
graphs (with simple arrivals) in [26], and then to hypergraphs in [31, 33] and graphs
with self-loops, in [7].

Applications such as organ transplants are subject to very strong timing con-
straints: the patients waiting for a transplant have a finite life time in the system,
and similarly, available organs are highly perishable, and must be transplanted very
quickly. Hence the need to incorporate an impatience (or reneging) parameter to
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2 PERFECT SAMPLING OF MATCHING MODELS

the system. More precisely, in this paper we address a general stochastic matching
model, as defined in [26], in which the elements have a finite (and possibly random)
patience upon arrival, before the end of which they must find a match. Other-
wise, they renege and leave the system forever. Matching models with impatience
have recently been addressed for a bipartite model and the ‘N’ graph in [16] for
a matching policy of the ‘First Come, First Matched’ (fcfm) type, and from the
point of view of stochastic optimization, for partially static policies, in [5]. On
another hand, in [22], stability conditions, together with moment bounds at equi-
librium, have been given for models in which some, but not all, classes of items are
impatient, and the matching policy is of the ‘Max-weight’ class.

It is important, however, to observe that the stationary distributions of stochas-
tic matching models are in general unknown, and that little is known about the
characteristics of the steady state. Models implementing the fcfm policy consti-
tute an exception, in which the stationary state can often be characterized in a
product form, using dynamic reversibility arguments (see, along the various mod-
els, [1, 2, 7, 30, 17]), for models without reneging. However, in the cases of models
with reneging, aside from the particular graph geometries addressed in [16], no
exact results are known. Moreover, fcfm policies are clearly not always the best
option in a real-time context: coming back to the case of organ transplants, other
criteria must be taken into account, such as the level of emergency, equity, ages
of the patients/donor, various levels of compatibilities, and so on. Mimicking the
various existing results in queueing theory, implementing policies of the ‘Match the
Longest queue’ (ml) or ‘Earliest Deadline First’ (edf) type may be profitable to
minimize loss, and it is significant that edf does not amount to fcfm if the patience
times are random.

Our aim is to analyse matching models with reneging in steady state, for general
matching policies. In view of the above discussion, we thus need to assess the
stationary distribution of the matching model at hand, without knowledge of this
distribution in closed form. As is well known, this task can be handled by simulating
perfectly, this steady state.

Perfect simulation has been a constantly active line of research in the analysis
of stochastic systems, since the pioneering works of Propp and Wilson [32], and
Borovkov and Foss [10, 11]. The underlying idea is now well known: Consider a
discrete-event stochastic system whose stationary distribution is intractable math-
ematically. Then we can study the system in steady state, by precisely simulating
samples of the stationary distribution, even though the latter is not known in closed
form, instead of approximating it by long-run trajectories. Then, various average
performance parameters at equilibrium can be assessed by Monte-Carlo techniques.

The celebrated Propp and Wilson algorithm [32] is based on coupling-from-
the-past (CFTP), namely, all trajectories of the considered Markov chain coalesce
before time 0, whenever these trajectories are initiated from all possible states of
the chain, far away enough in the past. This phenomenon is closely related to the
concept of strong backwards coupling (see e.g. [12] or Chapter 2.5 of [6]), and the
connections between the two notions are investigated for various cases of stochastic
recursions in [19]. Strong backwards coupling is the pillar of the construction of the
stationary state under general non-Markov assumptions, via the use of renovating
events, see e.g. [10, 11]. It is also a tool to construct stationary states on enriched
probability spaces, via skew-product constructions, see [25, 4, 29].

As they rely on the exact coalescence of a family of Markov chains, CFTP al-
gorithms are typically adapted to finite-state spaces and to monotonic dynamics,
using enveloppe techniques. Various authors have extended these settings: gen-
eralizing the ideas in [19], it is proven in [24] that geometrically ergodic Markov
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chains admit a CFTP algorithm of the enveloppe-type, even if they are not mono-
tonic, a result that was then generalized to a wider class of ergodic Markov chains,
in [18]. Various related approaches have then been proposed, that all rely on the
following intuitive idea: simulating from the past a more ‘simple’ recursion, and
deducing the stationary state of the recursion of interest by comparison. This is the
core idea of the so-called ‘Dominated coupling from the past’ (DCFTP) introduced
in [24], of the so-called ‘Bounding chains’ of Huber [20, 21], that are particularly
adapted to mechanical-statistical contexts, or of various enveloppe techniques for
queueing systems, see e.g. [13]. More recently, DCFTP-related methods has bee im-
plemented, together with saturation techniques, to perfectly simulate non-Markov
queueing systems, see [8] for infinite-server and loss queues, and [9] for multiple-
server queues.

This paper is a first contribution to the perfect sampling of stochastic matching
models. We introduce two perfect sampling algorithms, Algorithms 2 and 3 below,
that produce samples of the stationary distribution of stochastic matching models
with reneging, in the case where arrivals are discrete. The first algorithm simply
relies on the control of the model at hand by an infinite server queue, an algorithm
that would clearly not be optimal in a context of heavy traffic. Indeed, as was
observed in [8], as it relies on the depletion of a corresponding infinite-server model,
the coalescence time for Algorithm 2 grows exponentially in function of the arrival
rates, see [23]. Our second algorithm, Algorithm 3, is peculiar to the case where
patience times are deterministic (and so the matching policies fcfm and edf are
equivalent). In that case, we propose an ad-hoc control of the system simulated
backwards in time by the input of the system. Then, the performances in terms
of complexity and coalescence time, are way better than the usual CFTP. In fact,
both Algorithms 2 and 3 can be seen as particular cases of a more general perfect
sampling algorithm for bounded Markov chains, Algorithm 1 below, which we call
perfect sampling by control, a condition that is closely related to those under which
a DCFTP-type algorithm can be implemented.

This paper is organized as follows. After some preliminary in Section 2, we in-
troduce our general perfect sampling algorithm by control in Section 3. In Section
4, we introduce the general stochastic matching model with reneging, and the two
corresponding perfect sampling algorithms in sub-sections 4.2 and 4.3.2. The per-
formances of the latter algorithm are investigated in sub-section 4.3.3, and a first
application to the comparison of the steady-state performances of two matching
policy (here, edf (or in other words fcfm) and ml), is provided in sub-section
4.3.5.

2. Preliminary

In what follows, R, N and Z denote respectively the sets of real, non-negative
integers and relative integers, respectively. We also let X and V denote two sets. All
considered random variables (r.v.’s, for short) are defined on a common probability
space (Ω,F ,P).

Definition 1. Let X and V be two sets. Let k ∈ Z and x ∈ X. Let f be a mapping
from X × V to X, and (vn)n∈Z be an identically distributed sequence of V-valued

r.v.’s. We denote by
(
Xk
n(x)

)
n≥k, the stochastic recursive sequence (SRS) driven by(

f, (vn)n∈Z
)
, of initial value x at time k. Namely,

(
Xk
n(x)

)
n≥k is fully determined

by the recurrence equation{
Xk
k (x) = x ;

Xk
n+1(x) = f(Xk

n(x), vn), a.s. for all n ≥ k.
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It is immediate that
(
Xk
n(x)

)
n∈Z is a X-valued Markov chain whenever the se-

quence (vn)n∈Z is IID. Conversely, any X-valued Markov chain (Zn)n∈N of fixed
starting time k and initial value x, having transition matrix Q over X, can be rep-
resented by the SRS driven by

(
f, (vn)n∈Z

)
, where (vn)n∈Z is an IID sequence of

uniformly distributed r.v.’s on [0, 1] and f is piecewise constant and satisfies for all
x1, x2 ∈ X,

λ ({x : , f(x1, x) = x2}) = Q(x1, x2),

for λ is the Lebesgue measure, see e.g. Section 2.5.3 of [6].

Fix an SRS X :=
(
Xk
n(x)

)
n≥k. Then for all e ∈ X, we set

τX,ke (x) = inf
{
n ≥ k : Xk

n(x) = e
}
,

the hitting time of value e by
(
Xk
n(x)

)
n≥k. If (vn)n∈Z is IID, then

(
Xk
n(x)

)
n≥k is

a Markov chain, and the distribution of τX,ke (x) − k is independent of k. In that
case, we then denote by τXe (x), a generic r.v. that is so distributed.

3. A perfect sampling algorithm by control

In this section we present a perfect simulation algorithm, Algorithm 1, for pro-
cesses that are bounded, in a sense that we will make precise hereafter, closely
related to the dominated coupling from the past algorithm introduced by Kendall
in [18]. Until the end of this section, we fix three sets X,Y and V, and two mappings
f : X× V→ X and g : Y× V→ Y.

Algorithm 1 Simulation of the stationary probability of X

Require: a1, ..., aq ∈ X, b1, ..., bq, y ∈ Y, a probability distribution ν on V
r ←− −1
r0 ←− 0
Y ←− y
while Y 6∈ {b1, ..., bq} do
i←− r
Y ←− y
for j = r0, ..., r do
vj ∼ ν

end for
while i > 0 and Y 6∈ {b1, ..., bq} do
Y ←− g(Y, vi)
i←− i+ 1

end while
r0 ←− r + 1
r ←− 2r

end while
for k = 1, ..., q do

if Y = bk then
X ←− ak

end if
end for
while i > 0 do
X ←− f(X, vi)
i←− i+ 1

end while
return X
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Let us first observe the following,

Lemma 1. Let y, b1, ..., bq ∈ Y, (vn)n∈Z be a stationary V-valued sequence dis-

tributed from ν, and let Y be a Y-valued SRS driven by
(
g, (vn)n∈Z

)
. Suppose

that

(1) max
i∈J1,qK

P
[
τYbi (y) <∞

]
= 1.

Then, Algorithm 1 terminates almost surely.

Proof. Let i ∈ J1, pK such that P
[
τYbi (y) <∞

]
= 1. We show that

P

(⋃
n∈N

{
τY,−2n

bi
(y) ≤ 0

})
= 1.

But for any N ∈ N, we get that

P

(⋃
n∈N

{
τY,−2n

bi
(y) ≤ 0

})
= P

(⋃
n∈N

{
τY,−2n

bi
(y) + 2n ≤ 2n

})
≥ P

({
τY,−2N

bi
(y) + 2N ≤ 2N

})
= P

({
τYbi (y) ≤ 2N

})
,

in view of the stationarity of the input. Thus we obtain that

P

(⋃
n∈N

{
τY,−2n

bi
(y) ≤ 0

})
≥ lim
N→+∞

P
({
τYbi (y) ≤ 2N

})
= P({τYbi (y) < +∞}) = 1,

as desired. �

3.1. A control condition.

Definition 2. Let (Xn)n∈Z and (Yn)n∈Z be two SRS, respectively valued in X and Y
and q ∈ N∗. We say that (Yn)n∈Z q-controls (Xn)n∈Z, if there exists b1, ..., bq, y ∈ Y
and a1, ..., aq ∈ X such that

(2) ∀i ∈ J1, qK,∀k ∈ Z, ∀n ≥ k,
[
Y kn (y) = bi

]
=⇒

[
∀x ∈ X, Xk

n(x) = ai
]
.

b1, ..., bq are called the endpoints of Y . If q = 1 we simply say that Y controls X.

The following result establishes that under certain conditions including the con-
trol of (Xn)n∈Z and (Yn)n∈Z, Algorithm 1 terminates almost surely, and the output
is a sample of the stationary distribution of the SRS (Xn)n∈Z.

Theorem 1. Suppose that the sequence (vn)n∈Z is IID, and let X and Y be two

SRS respectively driven by
(
f, (vn)n∈Z

)
and

(
g, (vn)n∈Z

)
. Suppose that Y is positive

recurrent, and that X is q-controlled by Y . Then the Markov chain X is itself
positive recurrent, and its output is sampled from the stationary distribution of X.

Proof. Suppose that Y q-controls X, and denote b1, ..., bq, y and a1, ..., aq the corre-
sponding parameters. As the chain Y is positive recurrent we get that E

(
τYbi (y)

)
<

∞ for all i ∈ J1, qK. But by assumption we get that

∀x ∈ X, ∀i ∈ J1, qK, E
(
τXai (x)

)
≤ E

(
τYbi (y)

)
,

and so X is itself positive recurrent.
By assumption, (1) holds. So from Lemma 1, Algorithm 1 terminates almost

surely. We now show that its output is precisely that of the CFTP algorithm
for the chain X, of starting times N = −1,−2,−4, .... Let N be the backwards
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coalescence time of the chain X, that is, the smallest starting time for which the
CFTP algorithm terminates for X, or in other words

(3) N = min
{
n ≥ 0 : X−n0 (x) = X−n0 (x′) for all x 6= x′ ∈ X

}
.

Let R be the smallest termination time of Algorithm 1. Then, by the very definition
of Algorithm 1 and (2) there exists i ∈ J1, qK, a time n0 > 0 such that −R < −n0,

and such that X−R−n0
(x) = X−R−n0

(x′) = ai for all x, x′ ∈ X, x 6= x′, and thereby

(4) X−R0 (x) = X−R0 (x′) = X−n0
0 (ai), for all x, x′ ∈ X, x 6= x′.

In particular, it naturally follows from (3) that we necessarily have R ≥ N , oth-
erwise all versions of the chain X starting from a time posterior to −N , would
have coalesced before 0, an absurdity. Therefore, by the definition of CFTP we
get that X−R0 (x) = X−N0 (x) for all x ∈ X. In other words, Algorithm 1 and the
CFTP algorithm produce the same output which, from (4), is given by X−n0

0 (ai).
But it is well known that the CFTP algorithm produces a sample of the stationary
distribution of X over X. This completes the proof. �

Assumption (2) is key to our analysis. Under this control condition the value of
the SRS Y forces that of X at time n, whatever the initial value of X at time N .
This is reminiscent of the concept of renovating event, as introduced by Borovkov
and Foss, see [10, 11]. Let us remind the following,

Definition 3. Let X be an SRS driven by f and (vn)n∈Z, and let A be a subset
of X. We say that (An)n∈N is a sequence of renovating events of length m and
associated mapping h : Vm → X for the chain X if for any n ∈ Z, on An we have

Xn+m = h(vn, ..., vn+m−1).

Now suppose that (2) holds for a1, ..., aq, b1, ..., bq and y. Then, it is easily seen
that for all k ∈ Z, i ∈ J1, qK and x ∈ X,

(
{Y kn (y) = bi}

)
n≥k is a sequence of

renovating events of length 1 for the sequence
(
Xk
n(x)

)
n≥k. Indeed, for all n ≥ k,

on {Y kn (y) = bi} we get that Xk
n(x) = ai, and therefore

Xk
n+1(x) = f(ai, vn) =: h(vn).

3.2. The ordered case. A typical context in which the control of the SRS X by
the SRS Y occurs, is when the two sequences are constructed on the same input,
and their driving maps satisfy some monotonicity properties, which we detail below.
Throughout this section, (E,≺ , o) denotes a partially ordered space, of minimal
point o (i.e., such that o ≺ e for all e ∈ E), and we define two mappings ϕ : X 7−→ E
and ψ : Y 7−→ E such that

|ϕ−1(o) ∩ X| = |ψ−1(o) ∩ Y| = 1.

We also suppose that there exists y ∈ Y, such that

(5) ∀x ∈ X, ϕ(x) ≺ ϕ(y).

Definition 4. We say that the mapping f : X→ E is dominated (for ϕ and ψ) by
the mapping g : Y→ E, and denote f ≺ϕ,ψ g, if

∀x ∈ X, y ∈ Y, [ϕ(x) ≺ ψ(y)] =⇒ [ϕ ◦ f(x) ≺ ψ ◦ g(y)] .

Proposition 1. In the case X = Y, we have f ≺ϕ,ψ g under either one of conditions
(1) and (2) below,

(1) ψ ◦ g is ≺-nondecreasing and uniformly lower-bounded by ϕ ◦ f ;
(2) ϕ ◦ f is ≺-nondecreasing and uniformly upper-bounded by ψ ◦ g.



PERFECT SAMPLING OF MATCHING MODELS 7

Proof. Plainly, if we assume that (1) holds, for all x, y ∈ X such that ϕ(x) ≺ ψ(y)
we get that ϕ ◦ f(x) ≺ ψ ◦ g(x) ≺ ϕ ◦ g(y), whereas if (2) holds we obtain that
ϕ ◦ f(x) ≺ ϕ ◦ f(y) ≺ ψ ◦ g(y). �

Proposition 2. Let X and Y be two SRS, respectively driven by (f, (vn)n∈Z) and

(g, (vn)n∈Z), where the input (vn)n∈Z is IID on V. Suppose that f(., v) ≺ϕ,ψ g(., v)
for all v ∈ V, and that there exists y ∈ Y such that ϕ(x) ≺ ψ(y) for all x ∈ X.
Then, if the SRS Y is positive recurrent, so is the SRS X. Moreover, Algorithm 1
for y, a = ϕ−1(o) ∩ X and b = ψ−1(o) ∩ Y terminates a.s., and produces a sample
of the stationary distribution of X.

Proof. We aim at showing that X controls Y for b, y, a. Let k, n ∈ Z be such that
n > k and Y kn (y) = b. Let x ∈ X. We show by induction on `, that for all ` ∈ Jk, nK,

(6) ϕ(Xk
` (x)) ≺ ψ(Y k` (y)).

First, from (5) we get that ϕ(Xk
k (x)) = ϕ(x) ≺ ψ(y) = ψ(Y kk (y)), so (6) holds

for ` = k. Suppose that it is true at rank ` ∈ Jk, n − 1K. Let c = Y k` (y) and
d = Xk

` (x), in a way that ϕ(d) ≺ ψ(c), by the induction assumption. Then, from
the domination assumption of f by g we obtain that

ϕ(Xk
`+1(x)) = ϕ(f(d, v`)) ≺ ψ(g(c, v`)) = ψ(Y k`+1(y)),

so (6) holds at rank ` + 1. It is therefore true for all ` ∈ Jk, nK. In particular, we
have that ϕ(Xk

n(x)) ≺ ψ(Y kn (y)) = ψ(b) = o, implying that Xk
n(x) = a. Thus Y

controls x, and we conclude using Theorem 1. �

As a conclusion, provided that f ≺ϕ,ψ g, Algorithm 1 provides a perfect sampling
algorithm for the SRS X. In fact, in this ordered case Algorithm 1 is closely related
to the DCFTP algorithms of Kendall, see [24, 18]. Specifically, as in [18] we have
an upper bound process Y that we will simulate backward in time. But as this
process is bounded, it does not have to be at equilibrium. We also have a lower
bound process, namely the constant process equal to ψ−1(o) ∩ Y. Similarly to the
sandwiching method in [32], we only have to simulate the process Y starting at
state y. When that process meets the lower bound backward in time, means that
coalescence has been detected. Then, as in [24, 18], we simulate X starting from a
single state until time 0.

A similar idea is used for the perfect sampling of loss queueing systems in [8]
using the domination of the system by an infinite server queue in some sense (an
idea that we also in the construction of Section 4.2 below) and likewise, for the
perfect sampling of multiple-server queues in [9].

Remark 1. The above DCFTP conditions are in fact reminiscent of stochastic dom-
ination conditions for the construction of stationary SRS’s in the general stationary
ergodic context. For instance, for X = E a lattice space and for ϕ = ψ = Id, Con-
dition (1) in Proposition 1 above amounts to condition (H1) in [29] for any SRS
X and Y that are respectively driven by f and g, and a common input (vn)n∈Z.
This latter condition guarantees, under general stationary ergodic assumptions, the
existence of a stationary version of the SRS X, at least on an extended probability
space, provided that a stationary version of the SRS Y exists on the original one,
see Theorem 3 in [29] (see also [25]).

4. A stochastic matching model with reneging

In this section we address the perfect sampling of the stationary state of a class of
models, which we refer to as ‘general stochastic matching models with impatience’.
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4.1. The model. We consider a general stochastic matching model (GM), as was
defined in [26]: items enter one by one in a system, and each of them belongs
to a determinate class. The set of classes is denoted by V , and identified with
{1, ..., |V |}. We fix a simple, connected graph G = (V,E) having set of nodes V ,
termed compatibility graph. Upon arrival, any incoming item of class, say, i ∈ V is
either matched with an item present in the buffer, of a class j such that i shares an
edge with j in G, if any, or if no such item is available, it is stored in the buffer to
wait for its match. Whenever several possible matches are possible for an incoming
item i, a matching policy determines what is the match of i without ambiguity.
Each matched pair departs the system right away.

A GM model with impatience is a GM model in which each entering item in the
system is assigned a patience time upon arrival. If the considered item has not been
matched at the end of her patience time, then she leaves the system forever. To
formalize this, after fixing the compatibility graph G = (V,E), and the matching
policy Φ, we set ξ = 1 as the interarrival time of items (i.e., there is an arrival at
each unit of time) and two IID sequences (Vn)n∈Z and (Pn)n∈Z, where for all n and
Pn ∈ R+ and Vn ∈ V respectively represent the class and the patience time of the
n-th item entering the system. The two sequences (Vn)n∈Z and (Pn)n∈Z are not
necessarily independent. In particular, it can be the case that the patience time Pn
of the n-th item depends on her class Vn.

The class of models defined in Section 4.1 admits the following Markov repre-
sentation. Define the set

X := {∅} ∪
∞⋃
q=1

(
R∗+ × V

)q
.

For all t ≥ 0, let Q(t) be the number of customers in the system at time t, and let
us define the profile of the system at t, as the following element of X,

(7) X(t) =

{((
R1(t), V 1(t)

)
, · · · ,

(
RQ(t)(t), V Q(t)(t)

))
if Q(t) ≥ 1,

∅ else,

where for all i ∈ J1, Q(t)K, we denote by Ri(t) (resp., V i(t)) the remaining patience
at time t (resp., the class) of the i-th item in line at time t, in the order of arrivals.
If the system is empty at t, we again set X(t) = ∅.

Definition 5. We say that the matching policy Φ is admissible if, upon each arrival,
the choice of the match amongst compatible items in line at t, if any, is made
according to the sole knowledge of X(t), and possibly of a draw that is independent
of everything else.

Remark 2. It is easily seen that matching policies that depend only on the arrival
times (First Come, First Matched, denoted hereafter by fcfm, or Last Come, First
Matched), remaining patience times (Earliest Deadline First, Latest Deadline First),
matching policies that depend on the queue sizes of the various nodes (Match the
Longest, Match the Shortest, Max-Weight) and priority policies (see e.g. [26, 22]
for details) are all admissible.

Set (Tn)n∈Z = (n)n∈Z, the arrival times to the system, and for all n ∈ Z, denote
by Xn = X(T−n ) = X(n−), the state of the system seen by the customer entered
at time n. Then we obtain the following result,

Proposition 3. For any admissible matching policy Φ, the profile sequence (Xn)n∈Z
is stochastic recursive, driven by the triplet sequence ((Vn, Pn))n∈Z, and a mapping

fΦ : X × (R+ × V ) 7−→ X that depends on Φ and possibly on a random draw
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independent of everything else. In other words we get that

Xn+1 = fΦ (Xn, (Pn, Vn)) , n ∈ Z.

Proof. The construction of fΦ is immediate: If the incoming element at n is
matched upon arrival, the couple corresponding to its match, determined by Φ,
is erased from the vector Xn; else, the couple (Vn, Pn) is added at the end of the
vector Xn. Last, the couples (possibly including the incoming couple (Vn, Pn))
whose second coordinate is strictly less than 1 at n are erased from the vector Xn

(because they will have reneged by time n + 1), and the second coordinates of all
other couples of Xn, if any, decrease by 1. �

4.2. A first Perfect sampling algorithm. We can then design a first perfect
sampling algorithm for matching models with impatience, that is simply based on
the control (in the sense of Section 3) by an infinite server system. Specifically,
denote by V and P , two random variables having respective distributions, the
generic distributions of (Vn)n∈Z and (Pn)n∈Z. Let X := (Xn)n∈Z be the patience
profile SRS defined above. In this context, we let Y := (Yn)n∈Z be a R+-valued
SRS defined by the recursion

(8) Yn+1 = [max(Yn, Pn)− 1]
+

=: g (Yn, (Vn, Pn)) , n ∈ Z.
Combining Lemma 5 of [27] with Corollary 2 in [28], we get that whenever

(9) P(P < ξ) > 0,

the Markov chain (Yn)n∈Z is positive recurrent. Consider the following algorithm,
Algorithm 2, which is a declination of Algorithm 1 started with y = m, for Y the
recursion defined by (8), q = 1, a1 = ∅ and b1 = 0. We have the following result,

Theorem 2. Under condition (9), the profile Markov chain (Xn)n∈Z is positive
recurrent. If moreover there exists m > 0 such that such that P(P ≤ m) = 1, then
Algorithm 2 terminates almost surely, and its output is sampled from the stationary
distribution of (Xn)n∈Z.

Proof. We apply Proposition 2, by setting in this case

ϕ : X −→ R+(10)

x = ((r1, v1), · · · , (rq, vq)) 6= ∅ 7−→ max {ri : i ∈ J1, qK}
∅ 7−→ 0.

As any item spends in the system a time that is less or equal to its patience time,
for any n ∈ Z, ϕ(Xn) corresponds to the largest remaining maximal sojourn time
in the system of an item in the system just before time Tn. Consequently, for any
(p, v) ∈ R+ × V , for all x ∈ X we obtain that

(11) ϕ
(
fΦ (x, (p, v))

)
≤ [max (ϕ (x) , p)− 1]

+
= g (ϕ (x) , p) .

Therefore, for any x ∈ X and y ∈ R+ such that ϕ(x) ≤ y, Then, as g(., (z, p)) is
non-decreasing on R+ we get that

ϕ
(
fΦ (x, (p, v))

)
≤ g (y, p) .

Proposition 2 completes the proof. �

4.3. Deterministic patience times. Whenever the condition (9) does not hold,
the process keeping track of the largest remaining sojourn times in the system fails
to dominate the primary Markov chain (Xn)n∈N of the system. In fact, the very
positive recurrence of the system is not granted. One then has to resort to ad-hoc
techniques to show stability, and to sample the stationary state.

In this section, we consider the particular case of constant patience time P := p ∈
N∗, so that (9) fails. For short, we denote such a matching model by (G,Φ, µ, p). We
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Algorithm 2 Simulation of the stationary probability of X - Matching model with
impatience

Require: a probability distribution ν on V × R+

r ←− −1
r0 ←− 0
Y ←− m
while Y 6= 0 do
i←− r
Y ←− y
for j = r0, ..., r do

(vj , pj) ∼ ν
end for
while i > 0 and Y 6= 0 do
Y ←− [max(Y, pi)− 1]

+

i←− i+ 1
end while
r0 ←− r + 1
r ←− 2r

end while
if Y = 0 then
X ←− ∅

end if
while i > 0 do
X ←− fΦ(X, (vi, pi))
i←− i+ 1

end while
return X

show that such systems are always positive recurrent, and construct an alternative
perfect sampling algorithm that is another declination of Algorithm 1, and is again
based on the control condition defined in Section 3. In this particular case, the
profile Markov chain can be simplified, so as to obtain the following alternate,
simpler, Markov representation of the system state,

Definition 6. For all n ∈ Z, the word-profile of the system just before time n is
defined by the word

X̃n = w1 · · ·wp ∈ (V ∪ {0})p,

where for all i ∈ J1, pK,

wi =

{
Vn−p+i−1 if the item entered at n− p+ i− 1 was not matched before n;

0 else.
.

In particular, if the element entered at time n − p is still in the system at time
n (its class thus appearing as the first letter of the word X̃n), it is either matched

with the incoming element at time n, or immediately lost. We call X̃ ⊂ (V ∪{0})p,
the (finite) state space of X̃. Similarly to Proposition 3, it is immediate that for

any admissible policy Φ, the sequence (Xn)n∈Z is Markov, and we denote by f̃Φ,
the (deterministic, up to a possible draw that is independent of everything else)

map f̃Φ : X̃× V → X̃, such that

X̃n+1 = f̃Φ
(
X̃n, Vn

)
, n ∈ Z.
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4.3.1. Synchronizing words. For a fixed model (G,Φ, µ, p), for any word v = v1 · · · vp
in V ∗ and any X̃ ∈ X̃, let us denote by WΦ(X̃, v) ∈ X̃, the state of a system started

at X̃ and receiving the arrivals v1, ..., vp in that order.

Definition 7. Fix a model (G,Φ, µ, p). A word w = w1 · · ·wq ∈ V ∗ is said to be
synchronizing, if

∃z ∈ X̃, ∀X̃ ∈ X̃, WΦ(X̃, w) = z.

In other words, v is a synchronizing word if all buffers synchronize to some
value X̃ when they are fed by a common arrival scenario v, whatever the initial
state. It is obvious how synchronizing words can be used for perfect simulation.
Indeed, if we start Markov chains at a time −M from all possible states, observing
a synchronizing word of length q < M amongst the arrivals (in the sense that the
classes of q consecutive incoming items are given by the letters of w, in that order),
clearly guarantees that all chains have coalesced. We first prove the existence of
synchronizing words for any discrete matching system, by providing a sufficient
condition for this.

Definition 8. Let w ∈ V ∗. We say that the word of length 2p, w = w1 · · ·w2p ∈ V ∗
satisfies the p-condition if

∀i ∈ J1, pK, ∀j ∈ Jp+ 1, p+ iK, wi�−wj .

Theorem 3. In a discrete matching model with impatience (G,Φ, µ, p), any word
that satisfies the p-condition is a synchronizing word.

Proof. Let w = w1 · · ·w2p be a word satisfying the p-condition, and let u = w1 · · ·wp
and v = wp+1 · · ·w2p. Let X̃ ∈ X̃ and 0p = 0 · · · 0︸ ︷︷ ︸

p

, be the empty state. As u is of

length p, any item present in the buffer represented by X̃ is no longer in there after
the arrivals represented by u. Therefore WΦ(X̃, u) = u′ = w′1, ..., w

′
p where for all

i ∈ J1, pK, w′i = wi if the corresponding in still in the buffer after these arrivals, or
w′i = 0 else. As w satisfies the p-condition, for any i ∈ J1, pK such that w′i 6= 0 and
any j ∈ Jp+ 1; p+ iK, we have that w′i�−wj . All elements corresponding to non-zero
letters of u′ are not matched, because their patience necessarily expires before the
arrival of a compatible item, and no letters from v can be married to a letter in
u′. Therefore if j, h ∈ Jp+ 1, 2pK are such that the element corresponding to wj is
matched to that corresponding to wh if we add v to the empty buffer 0p, then is is
also the case if we add v to the buffer u′. In other words, we get that

WΦ(X̃, w) = WΦ(WΦ(X̃, u), v) = WΦ(u′, v) = WΦ(0p, v).

As this is true for any X̃ ∈ X̃, w is a synchronizing word for z := WΦ(0p, v). �

We proceed with two technical lemmas. In what follows, for all a ∈ V ∪ {0} and
all k ∈ J0, pK we define the following word of length p,

xa(k) = 0 · · · 0︸ ︷︷ ︸
k

a · · · a︸ ︷︷ ︸
p−k

.

First observe the following,

Lemma 2. Consider a matching model with impatience (G, fcfm, µ, p), with match-
ing policy fcfm. Let a ∈ V . Then, for all k ∈ J0, p−1K, for all words w of length p,
WΦ(xa(k), w) and WΦ(xa(k + 1), w) differ at most by one letter in some position
i (substituting 0 to the i-th letter).
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Proof. Let k ∈ J0, p− 1K, and write w = w1 · · ·wp. With some abuse, in the proof
below the matching procedure of the initial state xa(k) (or xa(k + 1)) with the
arrival represented by w is itself called W fcfm(xak, w) (or W fcfm(xa(k + 1), w)).

If wi�−a for all i ∈ J1, pK, then we trivially get that

W fcfm(xa(k), w) = W fcfm(xa(k + 1), w).

Else, let i1, ..., il be the indices, in increasing order, of the letters of w matched with
letters of xa(k + 1) in W fcfm(xa(k + 1), w). There are three possibilities for the
indices (in increasing order) of the letters of w that are matched with letters of xak
in W fcfm(xak, w) (which we call for short “the indices” in the discussion hereafter):

(1) Either the first a of xak is matched in W fcfm(xak, w) with a letter of w of
indice i0 < i1.Then all the remaining a’s in xak are matched in W fcfm(xak, w)
exactly as the a’s in W fcfm(xa(k + 1), w), and so the indices are precisely
i0, i1, ..., il.

(2) Or the first a of xak is not matched in W fcfm(xak, w). Then, all the remaining
a’s of xa(k) are matched in W fcfm(xak, w) exactly as the a’s in W fcfm(xa(k+
1), w), and the indices are again i1, ..., il.

(3) Or, the first matched a of xak in W fcfm(xak, w) is matched with the letter
of index i1 in w. Then, in W fcfm(xak, w), either the indices of the matched
letters of w are the same as in W fcfm(xa(k + 1), w) (and then the last a in
xa(k) remains unmatched), or the first p−k−1 a’s of xak are matched with
letters of w at indices i1, ..., il, and the last a is matched with a letter of w
of index il+1, with il < il+1, in which case the indices are i1, ..., il+1.

If the indices are i1, ..., il, then W fcfm(xa(k), w) = W fcfm(xa(k + 1), w). If the
indices are i0, i1, ..., il or i1, ..., il+1 then there is a letter b of w that is not matched
with an a of xa(k + 1) in W fcfm(xa(k + 1), w), but is matched with an a of xak in
W fcfm(xak, w). Then, either that letter b remains unmatched in W fcfm(xa(k+1), w),
in which case W fcfm(xa(k + 1), w) and W fcfm(xa(k), w) differ only at index i0 (or
il+1), where there is a b in W fcfm(xa(k + 1), w) and 0 in W fcfm(xa(k), w). Or, b
is matched with a letter c of w in W fcfm(xa(k + 1), w). Then, either the letter
c remains unmatched in W fcfm(xa(k), w), in which case W fcfm(xa(k + 1), w) and
W fcfm(xa(k), w) differ only at the place of that letter c in W fcfm(xa(k), w), where
there is a 0 in W fcfm(xa(k + 1), w). Or, c is matched with another letter b′ in in
W fcfm(xa(k), w), in which case we can repeat the same procedure for b′ instead of
b. As we have a finite number of letters in w, we eventually stop with a letter being
present in a buffer and 0 in the other. In all cases, the buffers W fcfm(xa(k+ 1), w)
and W fcfm(xa(k), w) differ only by one letter. �

For all X̃ ∈ X̃, let us denote

T (X̃, a) = Card
{

letters X̃i of X̃ : xi − a
}
.

It follows from the above that

Corollary 1. Let w be a word of length 2p such that for some i ∈ J1; pK and
j ∈ Jp+ 1; p+ iK, we have wi − wj. For such couple {i, j}, and k ∈ J0, 2pK, let

xi,j(k) =


xwi(k) if k ∈ J0, p− 1K,
02p if k = p,

xwj (2p− k) if k ∈ Jp+ 1, 2pK.

Let also u(k) = W fcfm(xi,j(k), w1 · · ·wp), for all k ∈ J0, 2pK. Then, there exists an
integer k in J0, 2p−1K, such that u(k) = z1 · · · zp differs from u(k+1) = z′1 · · · z′p by
only one letter in some position l, such that zl − wj, z′l = 0, and for all h ∈ J1, pK,
z′h = wh or z′h = 0. Moreover we have that T (u(k), wj) = 1 and T (u(k+1), wj) = 0.
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Proof. By Lemma 2, for all we have that k ∈ J0, 2p − 1K, u(k) and u(k + 1) differ
at most by one letter in some position i (one being wi, the other being a 0).
Therefore, for all k ∈ J0, 2p − 1K, |T (uk, wj∗) − T (uk+1, wj∗)| ≤ 1. Now notice
that 2 ≤ T (u(0), wj), because gathering the words xi,j(0) and w would lead to at
least p + 1 wi’s out of 2p letters - so at least two wi must remain in u(0). On
the other hand, we also have that T (u(2p), wj) = 0, because any letter of w1 · · ·wp
that can be matched with wj get matched in u(2p) with the letters of xi,j(2p). As
a consequence, there exists a rank k ∈ J0, 2p − 1K such that T (uk, w

∗
j ) = 1 and

T (uk+1, w
∗
j ) = 0. The remaining statements follow readily from Lemma 2. �

Theorem 4. Consider a matching model with impatience (G, fcfm, µ, p). Let w
be a word of length 2p of V ∗. The following conditions are equivalent:

(i) w satisfies the p-condition;
(ii) w is a synchronizing word.

Proof. In view of Theorem 3, only the implication (i) ⇒ (ii) remains to be proven.
For this, we reason by contraposition. So let w be a word of length 2p such that
wi − wj for some i ∈ J1; pK and j ∈ Jp + 1; p + iK. Let i∗ ∈ J1; pK and j∗ ∈
Jp + 1; p + i∗K such that wi∗ − wj∗ and j∗ = inf{j ∈ Jp + 1; 2pK, ∃i ∈ J2p − j; pK
wi − wj}. We denote u = w1 · · ·wp and v = wp+1 · · ·w2p. Let k∗ be the integer
obtained in Corollary 1 for i ≡ i∗ and j ≡ j∗. Then, we get u(k∗) = d1 · · · dp
and u(k∗ + 1) = e1 · · · ep, where u(.) is defined in Corollary 1. We will prove
that W fcfm(u(k), v) 6= W fcfm(u(k + 1), v), which will show in turn that w is not a
synchronizing word.

Let i1, ..., il be the indices (in increasing order) of letters of v that are matched
with letters of u(k) in W fcfm(u(k), v), and i′1, ..., i

′
h be the indices (in increasing

order) of letters of v that are matched with letters of u(k+1) in W fcfm(u(k+1), v).
Now le us define the following sets,{
I0 = ∅;
Im+1 = Im ∪ {inf {j ∈ Jp+ 1, p+m+ 1K \ Im : wj − dm+1}} , m ∈ J0, p− 1K.

At each step of this construction we add to the set Im the index of the letter that is
matched with dm+1 in W fcfm(u(k), v), if any, as in FCFM, dm+1 is matched with
the first compatible letter that has not been matched to a previous letter of uk. In
particular, we finally obtain that Ip = {i1, ..., il}. In the same way, we define the
sets{
I ′0 = ∅;
I ′m+1 = Im ∪ {inf {j ∈ Jp+ 1, p+m+ 1K \ I ′m : wj − em+1}} , m ∈ J0, p− 1K,

and the same argument leads to I ′p = {i′1, ..., i′h}.
If in Corollary 1, the letter a that can be matched with w∗j in u(k) (and be

replaced by a 0 in u(k + 1)) is at position m, then by construction of j∗,u(k)
and u(k + 1), a will be matched with wj∗ in u(k). So the mth step is different
for W fcfm(u(k), v) and W fcfm(u(k + 1), v). For every other step m′, as dm′�−wj∗
and em

′

�−wj∗ , we add the same letter, if any, to Im′−1 and I ′m′−1. So we have
Ip = I ′p ∪ {j∗}. Let n1 (resp., n2) be the total number of letters from v that are
matched in W fcfm(u(k), v) (resp., W fcfm(u(k + 1), v)). As the total numbers of
matched letters are even, both n1 + |Ip| and n2 + |I ′p| are even. But as |Ip| and |I ′p|
are of different parity, so are n1 and n2. Thus,

W fcfm(xi∗
,j∗(k∗), w) = W fcfm(u(k∗), v) 6= W fcfm(u(k + 1), v)

= W fcfm(xi∗
,j∗(k∗ + 1), w),

and w is not a synchronizing word. �
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We have proven that the p-condition is a necessary and sufficient condition for
being a synchronizing word of length 2p in the case where the matching policy is
fcfm. It is not the case for all matching policies. For example, for the match-
ing policy lcfm (Last Come, First Matched’), it can be proven that there exists
synchronizing words of length b 3p

2 c, so that any suffix of those words that would
not satisfy the p-condition would still be a synchronizing word. However, as we
prove hereafter, the p-condition is a simple criteria, that can be used to construct
an efficient perfect sampling algorithm.

4.3.2. A second perfect sampling algorithm. We are now in position to introduce
a perfect sampling algorithm for the state of a matching model with deterministic
patience.

Definition 9. Consider a model (G,Φ, µ, p), and define for all k ∈ Z, the SRS

Ỹ :=
(
Ỹ kn

)
n≥k

on the set Ỹ = {∅} ∪
⋃2p
j=1 V

j , as follows:
Ỹ kk = ∅;
Ỹ kn+1 = g̃(Y kn+1, vn+1)

:=

{
v1 · · · viVn+1, if Y kn = v1 · · · vi ∈ V i with i < 2p

v2 · · · v2pVn+1, if Y kn = v1 · · · v2p ∈ V 2p
, n ≥ k,

in a way that for all n ≥ k+ 2p, Ỹn represents the last 2p arrivals to the system at
time n.

Consider the following algorithm, Algorithm 3. It consists of another declination
of Algorithm 1, started with Ỹ = ∅, for Ỹ the recursion of Definition 9, b1, ..., bq,

the words satisfying the p-condition, and a1, ..., aq, the states of X̃ after the arrival
of b1,...,bq, respectively.
We have the following result,

Proposition 4. X̃ is recurrent positive. Moreover, Algorithm 3 terminates a.s.,
and its output is sampled from the stationary distribution of X̃.

Proof. We can easily show that Ỹ q-controls X̃, with q the number of word satisfying
the p-condition. Let w be a word satisfying the p-condition. By Theorem 3, w is a
synchronizing word. Thus for all k ∈ Z and n ≥ k, we get in particular that

(12)
[
Ỹ kn (∅) = w

]
=⇒

[
∀x̃ ∈ X̃, X̃k

n(x̃) = WΦ(∅, w)
]
,

which implies that Ỹ controls X̃ over all words satisfying the p-condition. We
conclude using Theorem 1. �

Remark 3. Observe that Ỹ is not irreducible, however it reaches its recurrent class
in 2p iterations. So for all w satisfying the p condition, we still have that

P(τ Ỹ∅ (w) <∞) = 1.

4.3.3. Efficiency of Algorithm 1. In this section we analyse the coalescence time of
Algorithm 1. We first provide a bound for the average number of iterations of the
algorithm to see the coalescence time, and then for the corresponding horizon in
the past. We have the following,

Proposition 5. Let I be the number of iterations of Algorithm 1 to detect coales-
cence, and T = −p2I be the corresponding starting time. Then, we have that

E [−T ] ≤ 2p

qp,µ
,
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Algorithm 3 Simulation of the stationary probability of X̃ - Matching model with
deterministic patience

Require: a probability distribution ν on V
r ←− −1
r0 ←− 0
Ỹ ←− ∅
while Ỹ 6∈ {b1, ..., bq} do
i←− r
Y ←− y
for j = r0, ..., r do
vj ∼ ν

end for
while i > 0 and Ỹ 6∈ {b1, ..., bq} do

Ỹ ←− g̃(Ỹ , vi)
i←− i+ 1

end while
r0 ←− r + 1
r ←− 2r

end while
for k = 1, ..., q do

if Ỹ = bk then
X̃ ←− ak

end if
end for
while i > 0 do
X̃ ←− f̃Φ(X̃, vi)
i←− i+ 1

end while
return X

where

qp,µ = P [V1 · · ·V2p satisfies the p condition] .

Proof. For any integer n ≥ 1, we let for all i ∈ N∗, zni be the word of length 2p
representing the arrivals into the system between time −p2n + (i − 1)2p and time
−p2n + i2p− 1 included, in the order of arrivals. We also let

Kn = inf {i ∈ N∗ : zni satisfies the p-condition} .
The independence of arrivals implies that the r.v.’s Kn, n ∈ N∗ are identically
distributed (but not independent) of geometric distribution of parameter

qp,µ = P [V1 · · ·V2p satisfies the p condition] .

Now, it readily follows from Theorem 3, that for all n ∈ N∗, I ≤ n in particular if
there has been an arrival array satisfying the p-condition between times −p2n and
−1 included, that is, if 2pKn ≤ p2n. Consequently, for all n ∈ N∗ we get that

P [−T > p2n] = P [I > n] ≤ P [2pKn > p2n] = P
[
2pK1 > p2n

]
.

This readily implies that −T ≤st 2pK1, where ≤st denotes the strong stochastic
ordering. We deduce that

E [−T ] ≤ 2pE
[
K1
]

=
2p

qp,µ
.

�
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Whenever the arrival measure µ is uniform over V , the latter results specializes
as follows,

Corollary 2. If the graph G = (V,E) is of size n and µ is uniform over V , we get
the bounds

E [−T ] ≤ 2pn2p

N(G, p)
, E [I] ≤ 1 +

2pLogn− LogN(G, p)

Log2
,

where N(G, p) is the number of words of V ∗ satisfying the p-condition.

Proof. The results readily follow from Proposition 5, observing that in this case

qp,µ =
N(G, p)

n2p
·

�

For a given G and a given p, computing the number N(G, p) of words satisfying
the p-condition, is of crucial interest to assess the efficiency of Algorithm 1. As
Corollary 2 demonstrates, a function of the latter quantity provides bounds for the
expected values of |T | and I. We now turn to a specific evaluation of N(G, p), and
for this, we first need the following definition,

Definition 10. Let (G = (V,E),Φ, µ, p) be a discrete matching model with impa-
tience. For any word w = w1 · · ·w2p satisfying the p-condition, the vision of w is
defined as the word Zw gathering, in their order of apparences, all distinct letters
of the second half of w. In other words, we set

(1) Zw1 = wp+1,
(2) For all i ∈ J1, p− 1K,

Zwi+1 =

{
Zwi , if wp+i+1 ∈ Zwi ;

Zwi wp+i+1, if wp+i+1 /∈ Zwi ,

and Zw ≡ Zwp .

In what follows, for any word z = z1 · · · zl, we denote by β(z) the cardinality of
the set of nodes that are incompatible with all letters of z, namely

β(z) = Card
{
v ∈ V : ∀i ∈ J1, lK, v�−zi

}
.

We have the following,

Proposition 6. Let (G = (V,E),Φ, µ, p) be a discrete matching model with im-
patience, and let H(G) be the set of words having distinct letters, that form a
permutation of a set U ⊂ V that is such that E(U) 6= V . Then, the number N(G, p)
of words satisfying the p-condition is given by

N(G, p) =
∑

z=z1···zl∈H(G)

∑
{1=k0<k1<···<kl−1<kl=p}

l∏
j=1

jkj−kj−1−1(β(z1z2 · · · zj))kj−kj−1 .

Proof. For any word z = z1 · · · zl ∈ V ∗ having l distinct letters, and any word
w = w1 · · · w2p of vision z, denote the integers

kw0 = 1;

kwi = inf
{
j ∈ Jp+ 1, 2pK, wj = zi+1

}
, i ∈ J1, l − 1K;

kwl = p.

Let 1 = k0 < k1 < · · · < kl−1 < kl = p be a fixed family of integers. For any

i ∈ J1, l − 1K, there are
∏i
j=1 j

kj−kj−1−1 possible permutations of the i first dis-

tinct letters z1, ..., zi appearing in the second half of w such that (kw0 , k
w
1 , ..., k

w
i ) =
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(k1, k2, ..., ki+1), as the letters of indices p+kw0 , p+kw1 , ..., p+kwi are fixed and there
are j allowed letters between the indices kwj − 1 and kwj . Moreover, for any such

i there are also
∏i
j=1 β(z1z2 · · · zj)k

w
j −k

w
j−1 words of length ki, having only letters

that are incompatible with z1, ..., zi. Therefore, for any fixed family of integers
1 = k0 < k1 < · · · < kl−1 < kl = p, the number of such words w satisfying kwi = ki
for all i, equals

∏l
j=1(jβ(z1z2 · · · zj))kj−kj−1 , and so the number of words satisfying

the p-condition and having z has a vision is given by

(13) Nz :=
∑

{1=k0<k1<···<kl−1<kl=p}

l∏
j=1

jkj−kj−1−1(β(z1z2 · · · zj))kj−kj−1 .

Last, to get N(p) we must sum the above quantity over all possible visions of
words satisfying the p-condition. To characterize this set, observe that any vision z
necessarily has distinct letters, forming a permutation of set Uz ⊂ V . If E(Uz) 6= V ,
then there exists a letter i ∈ V \ E(Uz), and z clearly is a vision for any word w
whose prefix of size p is ii · · · i and whose suffix of size p is a permutation of the
elements of U . If now E(Uz) = V , as for any word w satisfying the p-condition and
having vision z we must have wp 6∈ E(Uz), we get to an immediate contradiction.
Thus it is necessarily and sufficient that E(Uz) 6= V for z to be a vision, which
concludes the proof. �

4.3.4. Example. To illustrate the efficiency of Algorithm 1 in the case of determin-
istic patience times, we consider the simple non-trivial example of the so-called paw
graph G of Figure 1.

1

2

3 4

Figure 1. The paw graph.

As the above results demonstrate, for any p, to compute the number N(G, p) of
words satisfying the p-condition we first need to determine the set of all possible
visions H(G) of G. In the present case we readily obtain that

H(G) =
{

1, 2, 3, 4, 13, 14, 31, 34, 41, 43, 134, 143, 314, 341, 413, 431}.

It is then immediate to compute β(z) for all z ∈ H(G) using (13). We obtain

N1 = 3p, N2 = 1, N3 = 2p, N4 = 2p, N13 = 3
24p − 2.3p, N14 = 3

24p − 2.3p,

N31 = 1
24p − 2p, N34 = (p− 1)2p−1, N41 = 1

24p − 2p, N43 = (p− 1)2p−1,

N134 = 3.22p−1 − (2p+ 4)3p−1, N143 = 3.22p−1 − (2p+ 4)3p−1,

N314 = 22p−1 − 4.3p−1 + 2p, N341 = 2.3p−1 − (p+ 1)2p−1,

N413 = 22p−1 − 4.3p−1 + 2p, N431 = 2.3p−1 − (p+ 1)2p−1.

Summing the above and rearranging, we obtain that

N(G, p) = 1 + 22p+3 − 3p+1 − 4(p+ 3)3p−1.
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p N(G, p) Bound for E [I] Bound for E [−T ]
1 8 2 4
2 42 3,608 24,381
3 216 5,245 113,778
4 1050 6,964 499,322
5 4872 8,750 2152,250
6 21834 10,586 9220,784
7 95352 12,460 39412,874
8 408378 14,360 168274,189
9 1723176 16,283 717831,830
10 7187946 18,223 3059320,779

Table 1. Efficiency of Algorithm 1.

Then, applying Corollary 2 and Jensen’s inequality we obtain the following bound
for the average number of iterations of Algorithm 1 to detect coalescence,

E [I] ≤ 1 +
2p Logn− LogN(G, p)

Log2

= 1 + 4p−
Log

(
1 + 22p+3 − 3p+1 − 4(p+ 3)3p−1

)
Log2

=: BI ,

and the average starting time T to detect coalescence is bounded by −p2BI . In
Table 1, we specify the number of words satisfying the p condition, together with the
corresponding bounds for E [I] and E [−T ], for various values of the deterministic
patience p.

Complexity comparison. After having provided a bound for the average coales-
cence time for algorithm 1, we now compare the number of operations necessary to
complete Algorithm 1, to the number of operations necessary to complete the clas-
sical CFTP algorithm, consisting of running chains started from all possible states,
in parallel. To compare those two algorithms, we need to specify what we mean by
operations: We say that an algorithm does one operation if it compares two letters
of V , to determine if they are equal or not or if the two letters are connected in G.
It is intuitively clear, that the two algorithms can be basically decomposed into a
sequence of such operations:

• In the CFTP algorithm, the match of the incoming individuals amounts
to an investigation of the set of stored compatible items in a determinate
order, and thereby, of a sequence of such operations. Second, so does the
test of equality of the current states of all Markov chains, at any given time.
• In Algorithm 1, testing the p-condition at all time is again a sequence of

operations, and so does the construction of the dynamics of the recursion,
from the coalescence time on.

To estimate the number of operations in the two algorithms, for two values of p
(3 and 6), we have first drawn realizations of Erdös-Rényi graphs G of parameters
(n, q), that are conditioned to be connected, for various values of the size n and
of the connectivity parameter q. We have then tracked the average number of
operations for 10 realizations of both algorithms, on the same graph each time.
The results are presented in Table 2 and 3.

The results gathered in Tables 2 and 3 tend to indicate that Algorithm 1 is much
more efficient than CFTP, and that the performance gap is particular important for
sparse graphs. This last fact is an intuitively clear consequence of the fact that the
proportion of words satisfying the p-condition is decreasing in the number of edges.
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p = 3 q = 1
8 q = 2

8 q = 3
8 q = 4

8 q = 5
8

n = 4, CFTP 2416.7 3282.0 3599.7 3251.1 2046.3
n = 4, Algo 1 116.8 397.0 206.8 114.3 153.7

n = 5, CFTP 4886.2 3697.8 5002.8 5613.5 5382.1
n = 5, Algo 1 78.7 109.8 200.6 128.4 316.8

n = 6, CFTP 7594.9 7213.3 5313.6 5782.5 7967.6
n = 6, Algo 1 88.3 57.2 86.4 98.8 354.3

n = 7, CFTP 10200.0 10168.3 10033.4 9815.9 6503.9
n = 7, Algo 1 91.5 97.0 64.5 215.8 969.8

n = 8, CFTP 14758.1 14801.3 13651.0 18418.9 9894.3
n = 8, Algo 1 43.8 51.1 99.5 472.5 559.7

Table 2. Average number of operations of the algorithms for 10
repetitions with p = 3 and multiple values of (n, q).

p = 6 q = 1
8 q = 2

8 q = 3
8 q = 4

8 q = 5
8

n = 4, CFTP 553824.3 404463.5 462846.5 414874.3 340403.4
n = 4, Algo 1 6698.2 19479.7 17081.5 19740.5 18955.1

n = 5, CFTP 1366869.5 1005914.9 1057218.6 825084.5 764241.6
n = 5, Algo 1 7072.9 5165.1 82885.1 20386.7 46694.7

n = 6, CFTP 3210451.1 2800719.4 2661488.8 2196083.3 1746776.8
n = 6, Algo 1 4480.4 8156.2 6443.1 13585.9 143461.3

n = 7, CFTP 5769456.0 7699737.3 5134146.9 4186587.2 1872563.7
n = 7, Algo 1 5202.6 5536.9 6117.6 45067.6 591669.1

n = 8, CFTP 17509320.0 11375878.3 8355567.8 5383480.2 4598709.4
n = 8, Algo 1 1474.8 3570.3 9801.6 55099.9 963611.5

Table 3. Average number of operations of the algorithms for 10
repetitions with p = 6 and multiple values of (n, q).

For q ≥ 6
8 however we observe cases where the Algorithm 1 doesn’t terminate in a

reasonable amount of time.

4.3.5. Estimating of the loss probability for ml and fcfm. Algorithm 1 returns a
random variable that is distributed from the stationary distribution of the system.
This result can be of critical use, to compare the performance of systems, for which
no exact characterization of the steady state is known. As an example, we are able
to assess the asymptotic loss rate of items of every class. We use this to compare
two matching policies in steady state: Match the Longest (ml) and First Come,
First Matched (fcfm).

Let (G = (V,E),Φ, µ, p) be a discrete matching model with deterministic im-

patience, and X̃ =
(
X̃n

)
n∈Z

be the Markov chain of the system. Let π be the

stationnary distribution for X and for all (i, j) ∈ V 2 such that (i, j) 6∈ E,

Ai,j = {x = x1 · · ·xj ∈ X, x1 = i and the arrival is of class j in a buffer x}.
The asymptotic loss rate of items of class i is denoted by

(14) ρ(i) := lim
N→+∞

N∑
n=1

1Ai
n

N
,
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ρ ρ(1) ρ(2) ρ(3) ρ(4) ρ(5)
fcfm 0.0293 0.00026 0.00032 0.0132 0.0152 0.00032
ml 0.03122 0.00028 0.0003 0.01536 0.01486 0.00042

Table 4. MC Estimates for the asymptotic loss rates for 104 rep-
etitions of Algorithm 1 for a random Erdös-Renyi graph of param-
eters n = 5, q = 0.6, for p = 5 and µ the uniform distribution.

where for all n,

Ain = {An item of class i is lost at time n}.
An immediate first step analysis implies that

(15) ρ(i) =
∑
j∈V

π(Ai,j)ν(j),

so ρ(i) can also be interpreted as the probability to lose an item of class i in the
system at a given instant, in steady state. Reasoning similarly,

ρ =
∑
i∈V

ρ(i)

is the asymptotic loss rate of items (of any class) in the system, and can also be
seen as the probability to lose an item (of any class) at a given time, in steady state.
Using equation 15 we can then estimate those asymptotic loss rate by running our
perfect simulation algorithm 1, and then estimating π(Ai,j) for all i, j ∈ V , by a
Monte-Carlo estimate.

Table 4 presents the results over 104 simulations, for G a random Erdös-Renyi
graph of parameters n = 5, q = 0.6, conditioned on being connected, for p = 5,
and for µ the uniform distribution. Both matching policies fcfm and ml are im-
plemented on the same samples each time. We observe that the overall asymptotic
loss rate is slightly, but consistently lower under fcfm than under ml, although
nominal loss rates of given nodes can be higher under fcfm.
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