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Abstract

A recent Letter by Oberlack et al. [Phys. Rev. Lett. 128, 024502 (2022)] claims to have derived new
symmetry-induced solutions of the non-modelled statistical Navier-Stokes equations of turbulent
channel flow. A high accuracy match to DNS data for all streamwise moments up to order 6 is
presented, both in the region of the channel-center and in the inertial sublayer close to the wall.
Here we will show that the findings and conclusions in that study are highly misleading, as they
give the impression that a significant breakthrough in turbulence research has been achieved. But,
unfortunately, this is not the case. Besides trivial and misleading aspects, we will demonstrate that
even basic turbulence-relevant correlations as the Reynolds-stress cannot be fitted to data using the
proposed symmetry-induced scaling laws. The Lie-group symmetry method as used by Oberlack et al.
cannot bypass the closure problem of turbulence. It is just another assumption-based method that
requires modelling and is not, as claimed, a first-principle method that leads directly to solutions.∗∗

Next to PRL, two more papers by Oberlack et al. are called out for correction or a retraction.
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Misleading symmetry-induced scaling of turbulence statistics 1

1. A brief synopsis of what will be shown and analyzed

The present review will unequivocally demonstrate that no breakthrough or any progress in [1] has
been made “to overcome the problem related to the closure problem of turbulence” [p. 5]. Instead, the
paper [1] is seriously misleading and makes false promises.

In a nutshell, the key results of [1] are: Invariant turbulent scaling laws are derived that can
be near-perfectly matched to DNS data, where these laws are claimed to be true solutions of the
statistical Navier-Stokes equations obtained from first principles alone, i.e., without making any prior
assumptions or using any modelling approaches. Then, two so-called ‘symmetries’ are highlighted and
claimed to be a measure of the intermittent and non-Gaussian behaviour of turbulence. But, as we
will show and demonstrate in the upcoming sections, these results are either trivial or misleading or
even not true at all.

First of all, the scaling behaviour shown in Figs. 1-3 in [1] is clearly dominated by the mean flow and
says nothing about the fluctuating part. Due to the overwhelming dominance of the mean flow in the
two flow regions considered, the n-th full-field correlation in the streamwise direction Un

1 is close to
equal to the n-th power of the mean field itself, U

n
1 , i.e., the near-perfect fitting results all reveal only

the trivial aspect that Un
1 ≈ U

n
1 . This is also independently confirmed when employing an unbiased

indicator function, proving that the scaling of the full-field correlations is simply driven by the scaling
of the mean flow, regardless of the specific scaling (power or log law) used.1

Therefore, it is not surprising that only a few parameters are needed to fit the data up to high
order. In fact, with the symmetry method used in [1], it is easy to show that even fewer parameters are
already sufficient to achieve the same quality in all fitting results. Thus, once the lowest order n = 1
(the mean field) is matched, all full-field correlations of higher order n > 1 will follow suit, because in
the end it is effectively just the exponentiated mean velocity that is being matched. Said differently,
once the mean field has been fitted to data, the scaling behaviour of the full-field correlations as shown
in Figs. 1-3 in [1] is trivial to predict.

The perfect scaling of the full-field moments shown in [1] is therefore highly misleading, since it
does not lead to a correct prediction of turbulent scaling beyond the mean flow. What we see in [1]
is just the coarse structure of the mean flow and its various powers, which ultimately constitutes
only a trivial result once the scaling of the fitted mean field is known, while all the interesting and
relevant fine structure of turbulence cannot be predicted. Hence, no conclusions about non-Gaussianity
and intermittency of turbulence can be drawn from the scaling of the full-field moments, as wrongly
done in [1], simply because the mean flow in the full-field moments just dominates, thus turning
these moments into coarse quantities not sensitive enough to resolve the necessary fine structure of
turbulence in order to approach the issues of non-Gaussianity and intermittency.

It is well-known that in statistical physics the finding insight or the gain in knowledge lies in the
study of the fluctuation correlations and not in the full-field correlations which include and involve the
mean field. Already more than a century ago, Osborne Reynolds was among the first to have realized
that it is necessary to separate the fluctuating part from the mean flow when trying to analyze and
understand the intricate nature of turbulence.2 Notwithstanding this, the authors of [1] “depart here
from the usual approach” [p. 2] and instead of analyzing and showing the scaling behaviour of the
turbulence-relevant fluctuation correlations, they only show the trivial scaling relation of the full-field
correlations. By doing so, they claim to have finally found the prediction rule for the scaling of
turbulence in two regions of turbulent channel flow, the inertial and center region.

The findings asserted in [1] are not restricted to pure channel flow. From the first author’s group
it is claimed for example that they have also found the passive temperature scaling in turbulent jet

1Important to note here is that the so-called indicator-plot in [1], Fig. 1(b), is based on a biased indicator function,
and not on an unbiased one, as is usually the case. This is because the indicator function Eq. (18) in [1] is not free
of parameters. It contains the modelling parameters Bn and therefore modifies the data in bias towards the function
being used. Therefore, it does not have the same significance as an unbiased or model-free indicator function. All this
is discussed in detail in Sec. B.1.

2In particular, when studying the intermittent behaviour of turbulence driven by a strong mean flow, at which [1] aims at,
it is a clear mistake not to separate the fluctuations from the mean flow. This is because intermittency, such as observed
in fully developed turbulent channel flow, is encoded in the fine structure of the (higher order) fluctuation correlations,
and not in the coarse full-field moments, which are essentially insensitive to the detection of intermittent effects.
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flow [2], but here again only the misleading near-perfect scaling of the full-field correlations is shown.
The relevant scaling of the fluctuation correlations of the velocity field, however, was shown elsewhere
in an earlier publication, but had to be corrected in [3], with the result that their new scaling theory
is no better and partially even worse than the well-known classical one.

Now, let’s turn to and focus on the authors’ general argument, which is supposed to justify their
approach of analyzing only the full-field correlations. Their argument is that once the scaling relation
of the full-field correlations is determined, the corresponding scaling relation of the fluctuation corre-
lations can be retrieved and derived from it by just using the unique Reynolds decomposition,3 which,
for the streamwise components as studied in [1], is given iteratively by

un
1 = Un

1 − U
n

1 −
n−2∑

k=1

(

n

k

)

U
k

1 un−k
1 . (1.1)

This argument that the scaling of the fluctuation correlations R1,n := un
1 can be derived from the

scaling relation of the full-field correlations H1,n := Un
1 when only using the above mapping (1.1), is

theoretically valid with perfect (infinitely accurate) data and with knowledge of the exact full-field
scaling, but practically this argument is neither sound nor valid.

The reason for this is that such a process is very ill-conditioned: When comparing or fitting data
to the full moments and then use (1.1) to determine the corresponding fit of the fluctuation moments,
it automatically develops the error of suppressing or removing the fluctuations from the comparison
due to the large difference in magnitudes, and this error amplifies the stronger the mean flow is,
exactly as it is the case for the two particular flow regions considered in [1].4 Therefore to avoid
such ill-conditioned comparisons, the usual practice in statistical physics is to consider and work with
correlations where the background or the bulk motion has been subtracted, i.e., if possible, one should
always co-move with the phenomenon being considered.

However, this ill-conditioning problem, namely that a best-fit for Un
1 does not automatically lead

to a best-fit for un
1 when using relation (1.1), is not the only problem that the publication [1] faces.

A major key problem is that the scaling laws for the relevant fluctuation correlations un
1 , induced by

Eqs. (15-20) through (1.1), cannot be fitted to the provided data at all. For the center region of the
channel, this failure already occurs for the streamwise Reynolds stress (n = 2), while for the inertial
or so-called log-region, the mismatch starts at the next higher order (n = 3), and worsens for higher
orders in both regions. To note is that although the streamwise Reynolds stress in the log-region can
be more or less fitted in [1] by Eq. (16), it fits very unnaturally, since a quantity which only varies by
order 1 has to be fitted with parameters of order 100.

The reason for this failure is that the proposed scalings in [1] are not solutions to the statistical
Navier-Stokes equations, as incorrectly claimed, simply because these scalings are based on two non-
physical invariances (Eqs. 8-9) that violate the classical principle of cause and effect between the
fluctuations and the mean fields [3–8]. This violation is suppressed and therefore not visible when
analyzing the symmetry-based scaling of the full-field correlations, but becomes measurable and clearly
visible when analyzing the corresponding fluctuation correlations.

To note is that this symmetry-based scaling failure is not specific to channel flow. It can also
be clearly seen in other flow configurations when turbulence-relevant moments are explicitly matched
to data [3, 9–11], and simply stems from the fact that this failure is methodologically rooted in the
symmetry-based scaling approach as developed by Oberlack et al. over the last two decades.

Finally, another issue that [1] faces is that of “identical gradients” [p. 4], as emphasized and shown
in Fig. 3, which is not a pure turbulence phenomenon. It is a trivial universal aspect that can also be
obtained by simply exponentiating the laminar profile, as we will now show and discuss in the next
section as our first point to clarify and put the results of [1] into the right perspective.

3This argument is not explicitly mentioned in [1], but can be read elsewhere, e.g., most recently in [2] on p. 8: “there

is a unique relation between the instantaneous and the fluctuation approach, which simply allows us to change from one

approach to the other.”
4Important to note here is that when using relation (1.1) to only extract the fluctuation data from the full-field data

itself, then such a process is not ill-conditioned, as analyzed and discussed in Sec. C. The problem with using (1.1) is when
curve-fitting the moments, i.e., when trying to determine the scaling exponents from the data, where a best fit in the
full-field moments then does not automatically lead to a best fit in the fluctuation moments when (1.1) is used. In other
words, to achieve a best fit for the fluctuation moments, they have to be fitted separately from the full-field moments.
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2. The trivial and misleading aspects of [1]

The matching result in channel-center, shown in Fig. 3 in [1], is a trivial result, since the same profile
structure of parallel lines and the same fitting result can also be obtained with the corresponding
laminar flow. Fig. 1(a) shows the corresponding laminar case for the same flow parameters as used in
Fig. 3 in [1]: The set of symbols displays the powers of the laminar quadratic profile (in deficit form)
up to order n = 6 (from bottom to top). The solid lines show the best fit to these profiles, based on
the turbulent scaling law Eqs. (19-20) in [1], with the same number of fitting parameters (σ1, σ2, α′, β′)
and the same fitting-range in x2/h as in Fig. 3 for turbulent flow. From this simple finding, three
conclusions can already be drawn that refute [1]:

(1) The structure of parallel lines as emphasized and shown in [1] is not a feature of turbulence.
It’s a universal result, irrespective of whether the flow is turbulent or not. Important is only
to represent the flow fields in deficit form and to normalize appropriately, in order to get such
a structure of uniformly distributed parallel lines in a log-log-plot. The origin of this structure
lies trivially in the leading quadratic term when asymptotically expanding around the global
maximum in channel-center.5 When reducing the upper fitting range of x2/h from 0.7 already
to slightly lower values, the two scaling exponents rapidly converge to the same trivial value
σ1 = σ2 = 2, both for the laminar as well as for the turbulent case. The claim in [1] that σ1 ≈ σ2 is
the result of anomalous scaling due to “intermittent behavior” [p. 5] is therefore neither plausible
nor given.6 Further illustrative examples can be taken from [13].

(2) Since the result shown in Fig. 3 in [1] is universal and since Eqs. (19-20) scales in the laminar case
just as well as in the turbulent case, it makes the derivation of Eqs. (19-20) based on new sym-
metries superfluous and unnecessary. In other words, the so-called “statistical symmetries” in [1]
are not essential to predict this universal scaling behaviour. The classical scaling symmetries
of the Navier-Stokes equation for the mean profile (n = 1) are already fully sufficient to scale
all higher full-field moments in the streamwise direction, due to the overwhelming dominance of
the mean field in those type of correlations.

(3) In a hierarchy of profiles obtained by exponentiation of a base-profile, it is clear that the base-
profile, i.e. the lowest-order profile n = 1, dictates the scaling behaviour of all higher-order
profiles n > 1. In laminar flow this base profile is the laminar field, while in turbulence it’s the
mean field, which will be shown and proven next.

The channel flow considered in [1] is driven by a strong mean velocity field U1 that significantly exceeds
the magnitude of the fluctuations in the system. Hence, when matching to a full-field correlation Un

1

that is fully aligned in the streamwise direction (i = 1), as done in [1], where Un
1 then contains n times

the mean velocity field U1, the matching of Un
1 simply degenerates to a matching of the mean field

itself to the power n, i.e. to U
n

1 . This is shown in Fig. 1(b), where the symbols show the full-field
correlations Un

1 (n ≥ 1) from [1], while the solid lines show the mean field and its powers U
n

1 up to
order n = 6 (from bottom to top), where, and this is important, only the lowest order n = 1, that is,
only the mean field U1 has been fitted.

Fig. 1(b), which corresponds to Fig. 3 in [1], shows the universal result of parallel profiles in channel-
center, but now for the turbulent case. Instead of two scaling (σ1, σ2) and two shifting (α′, β′) para-
meters, as used in [1], only a single scaling exponent σ1 with a single shift parameter C ′

1 was needed
in Fig. 1(b) to obtain for all higher-order moments qualitatively the same fitting result as shown in [1].
A not surprising result for such a simple structure of parallel lines, where the scaling of the whole set

5In fact, for any function f(x) whose limit at zero is finite and non-zero, limx→0 f(x) = f0 6= 0, the set of functions
in deficit form |fn − fn

0 | will appear parallel when shown in a log-log-plot in the range 0 < x < ǫ < 1, where the parallel
alignment is of course to be understood in an asymptotic sense: the smaller the range ǫ, the better this alignment, and
the higher the exponentiation n gets, the smaller will be the range ǫ. The n-independent and thus constant slope m for
this set of parallel lines is given by m = limx→0 log(|f(x)n − fn

0 |)/ log(x), for all n > 1.
6The key word “intermittency” is used several times in [1], although it is not clear from the context what exactly is

meant by it. Nowhere in the text a definition or explanation is given to what type or kind of intermittency they refer to.
For example, to attribute in fully developed turbulence the globally constant scaling invariance Eq. (9) as a measure of
intermittency is not plausible. As is well known, intermittency breaks global scaling in fully developed turbulence and
instead gets replaced by local and non-constant scaling, which can be modelled by using e.g. the idea of multi-fractals [12].
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Figure 1: (a) Corresponding laminar case of Fig. 3 in [1], where Un
1 = U

n

1 holds trivially. The symbols display
the different powers of the laminar quadratic profile (in deficit form) up to order n = 6 (from bottom to top);
the solid lines are the best-fit using the turbulent scaling law Eqs. (19-20) from [1]. (b) Comparison plot to
Fig. 3 in [1]. The symbols display the turbulent full-field correlations Un

1 in deficit form, exactly as in [1], while

the solid lines show the n-th power of the mean velocity field U
n

1 (in deficit form) up to order n = 6 (from bottom
to top). Here, only the mean velocity (n = 1, bottom curve) was fitted according to the turbulent scaling law
Eqs. (19-20). Therefore, instead of four (σ1, σ2, α′, β′), only a reduced set of two parameters (σ1, C′

1) is needed
to fit all full-field moments as shown. The data for the full-field moments was extracted and digitized from
the plots in [1] using the software [14] and then compared to the database provided, with no visible difference
between them. The values of the fitted parameters used in both figures are listed in Appendix B.

is already encoded in the lowest-order moment (n = 1), i.e. in the mean velocity profile U1, and with
all higher-order moments then automatically given by its n-th power U

n
1 .7

Important to note here is that since the two scaling exponents in channel center are defined in [1]
through the group parameters as σ1 = (1−aSt/aSx)+aSs/aSx and σ2 = 2·(1−aSt/aSx)+aSs/aSx, the
successful reduction to only σ1, as shown in Fig. 1(b), implies that aSs is redundant, thus proving
that their so-called “intermittency symmetry” (Eq. 9) is not needed or not of any relevance to scale
the full -field correlations. The two classical scaling symmetries (Eq. 6), with the group parameters
aSt and aSx, already prove to be fully sufficient. In the next sections, we even demonstrate that this
“intermittency symmetry” Eq. (9) has to be discarded, because only when excluding it, the fluctuation
correlations can be matched to the data, otherwise not. This just proves again that this scaling invari-
ance Eq. (9) is nonphysical, as has been proven already several times before [3–9, 11, 15]. The same
is true also for the nonphysical translation invariance Eq. (8).

Now, due to the overwhelming dominance of the mean velocity field considered, a structure of
parallel profiles is not necessary to successfully apply this reduced full-field matching process also to
other flow regions of the channel. Fig. 2, which corresponds to Fig. 1(a) in [1], shows the best-fit of the
mean profile U1 for the inertial sublayer, once modelled as a log-law (Fig. 2(a)) and once modelled as a
power law (Fig. 2(b)). The matching to all higher-order moments H1,n>1 = Un

1 (from bottom to top)
is then automatically obtained again by just taking the n-th power of the fitted mean field U1. Instead
of seven fitting parameters (κ, B, ω, α, β, α̃, β̃), as used in [1], only two parameters were used here
again to qualitatively obtain the same result again as shown in [1]: For the log-law modelled version
in Fig. 2(a), these two parameters are (κ, B), while for the power-law modelled version in Fig. 2(b),
they are (ω, C1).

Important to note here is that the used log-law for the mean velocity field Eq. (15) in [1] is an
empirical assumption made by Oberlack et al., and not a necessary condition that results from theory.
A properly performed Lie-group invariance analysis does not restrict to a particular scaling function in

7It is trivially clear that the more parameters for the fitting process are used, the better the result. A natural extension
of the parameter-set is achieved by exploiting the fact that the full-field moment equations Eq. (4) in [1] are linear, thus
allowing to superpose symmetries and its induced invariant functions. For example, in channel-center this will yield the
higher orders in the asymptotic expansion

∑

n≥2
cn(x2/h)σn of the mean field U1 around the global maximum, where a

reduction to a polynomial power series (σn = n) already appears to be sufficient. The fit of the higher-order full-field
moments H1,n≥2 are then again automatically obtained by taking the corresponding powers U

n
1 of the fitted mean field.
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Figure 2: Comparison plots to Fig. 1(a) in [1]. The symbols display the turbulent full-field correlations Un
1 in

the inertial region, exactly as in [1], while the solid lines show U
n

1 , the n-th power of the mean velocity field
up to order n = 6 (from bottom to top). In both plots only the mean velocity itself (n = 1, bottom curve) was
fitted: in (a) according to the turbulent scaling law Eq. (15) and in (b) according to Eqs. (16-17), but for n ≥ 1,
which also is a valid symmetry-induced scaling law for the mean velocity field in the inertial range (see text).
That is, in the inertial sublayer the mean velocity field is once modelled as a log-law (a) and once as a power
law (b). In both cases, however, since only a single field is fitted again, a reduced set of only two parameters
is needed again to fit all full-field moments as shown: instead of the seven parameters (κ, B, ω, α, β, α̃, β̃)
as used in [1], only (κ, B) were used in (a), and (ω, C1) in (b). Again, the data for the full-field moments
was extracted and digitized from the plots in [1] using the software [14] and then compared to the database
provided, with no visible difference between them. The values of the fitted parameters used in both figures are
listed in Appendix B. The corresponding indicator functions are shown and discussed in Sec. B.1.

the inertial sublayer, as incorrectly claimed in [1] — for a detailed account, see e.g. [16]. Also the claim
on p. 3 that the wall-friction velocity is symmetry breaking, with the effect that aSx − aSt + aSs = 0,
is a plain assumption and not dictated by Lie-group theory. It’s a reverse-engineered ansatz just to get
the log-law as a “symmetry-induced” result.8 In fact, a correct analysis shows again that when putting
the translation group parameter for the mean flow to zero, the wall-boundary condition U1 = 0 can be
well implemented in Eq. (11) without breaking the invariance transformation in the mean velocity field.
This is simply because with U

∗
1 = eaSx−aSt+aSsU1 in its unshifted form now, the wall-condition U1 = 0

gets mapped to U
∗
1 = 0, i.e. invariantly to the same boundary condition again, irrespective of whether

aSx −aSt +aSs is zero or not. Hence, the wall-friction velocity uτ need not to be symmetry breaking as
claimed, with the effect therefore that the Lie-group method also allows a power scaling for the mean
velocity profile in the inertial sublayer, U

+
1 = C1(y+)ω (Eq. (10) for aSx − aSt + aSs 6= 0, aH

1{1} = 0),
as successfully shown in Fig. 2(b).

Finally it is to note that for all turbulence-based results shown in this section through Fig. 1(b) and
Figs. 2(a)-(b), only classical symmetries were used: the two inviscid scaling symmetries (Eq. 6 in [1]),
the translation symmetry in wall-normal direction (not shown but used in [1]), and the Galilean boost
symmetry in the streamwise direction (not used in [1]), where the latter symmetry serves as the correct
substitute for the nonphysical field-translation symmetry Eq. (8). Since for the full-field correlations
Un

1 up to order n = 6 in both channel center and inertial sublayer only the mean velocity field (n = 1)
needs to be fitted, we naturally obtained a 2-parameter scaling model as shown in the figures above.
Using Occam’s razor, a 2-parameter model is then to be preferred over the unnecessary multi-parameter
scaling models Eqs. (15-17) and Eqs. (19-20), thus making all the new “statistical symmetries” in [1]
dispensable, let alone the fact they are not even symmetries but only nonphysical equivalences that
violate the classical principle of cause and effect and therefore should be discarded in the first place, as
was already shown and proven before in [3–9, 11, 15], and here once again shown by the next section’s
Fig. 3, which will be discussed next.

8It should be clear that we do not exclude the log-scaling as the more appropriate scaling for the mean velocity
profile in the inertial sublayer. Here we only want to stress that when applying the method of Lie-groups in turbulence
correctly, it does not result into a specific scaling function as claimed in [1]. In fact, an infinite number of different scaling
functions can be obtained when performing a symmetry analysis without any prior assumptions (see Sec. A), simply due
to that the statistical equations of turbulence are unclosed, making their admitted set of symmetries thus also unclosed
— see e.g. [10, 15, 16] for a full and complete Lie-group invariance analysis to certain turbulent flow configurations.
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3. The incorrect aspects of [1] about symmetries and solutions

Simply put, the Lie-group symmetry method cannot bypass the closure problem of turbulence, since it
only shifts the closure problem of equations to a closure problem of symmetries. All results obtained by
this method are assumption-based results and not first-principle results as claimed by Oberlack et al.
When applying this method to turbulence, major assumptions are made that are not visible to the
reader who is not familiar with Lie-groups (see the discussion in Appendix A for further details). It is
an ad hoc method too, not free of assumptions. In the end, the Lie-group method in turbulence is
effectively no different to the classical invariance method of von Kármán and Prandtl. Not solutions
to the statistical Navier-Stokes equations are produced, but only possible candidate functions are
obtained that either are useful or not to describe turbulence data to a certain degree of accuracy.
However, in contrast to the classical invariance method, the Lie-group symmetry method in turbulence
is also able to produce a large set of nonphysical invariances, which cannot be realized by simulation
or experiment. This leads us to the “solutions” Eqs. (15-20) in [1].

Although the symmetry analysis in [1] is set up for arbitrarily orientated correlations in turbulent
shear flow, the analysis always only leads to isotropic scaling results, and this irrespective of the length
scale considered. That is, also when generalizing the three streamwise scaling symmetries Eqs. (6-7,9)
to symmetries of the governing equation (Eq. 4) for arbitrary directions i, their scaling exponents
will always remain independent of the coordinate direction. Consequently, all differently orientated
correlations will scale identically in [1], which obviously is a non-realistic result in a highly anisotropic
flow as channel flow. This circumstance could be one of the reasons why in [1] only the scaling of the
full-field correlations in the streamwise direction is shown. Because for all other moments when they
are not fully aligned in the streamwise direction, the symmetry-induced scaling of [1] fails. The less
mean fields a full-field correlation carries, the worse the failure, in particular for all pure fluctuation
correlations Ri,n = un

i , where the mean field in all components has been subtracted, the failure is most
pronounced. For example in the spanwise direction i = 3, the symmetry-induced results are such that
they even lead to a contradictive scaling [17], a finding not cited and shared with the reader in [1].

Another reason why in [1] only the full-field and not the turbulence-relevant fluctuation correlations
are shown, is that when changing the representation in the streamwise direction from the full-field
H1,n = Un

1 to the fluctuating field R1,n = un
1 , they cannot be matched to the data anymore. For the

channel-center region this failure already starts at the level of the Reynolds stresses (n = 2), as shown
in Fig. 3(a), while for the region of the inertial sublayer it starts at the next higher order (n = 3), as
shown in Fig. 3(b) — although n = 2 can be fitted in this layer, it fits very unnaturally (see Sec. B.2).

To generate Fig. 3, we proceeded as follows: the unique mapping (1.1) was used to equivalently
rewrite the scaling laws Eqs. (15-17) and Eqs. (19-20) in [1] from the full-field to the fluctuation corre-
lations. Since that unique mapping only acts on the left-hand side of those scaling laws, while their
right-hand side, i.e. the modelling side, remains untouched, the correct and consistent approach would
therefore be to take for the fluctuation correlations the fitted values of the full-field correlations. But,
when using those fitted parameter values from [1], it inevitably leads to an even larger discrepancy→֒ 4

than what is already shown in Fig. 3. Hence, we had to use a new best set of values for the fitting
parameters, and what is shown here is the ultimate best-fit that results from comparing even different
norm functions such as the Euclidean vs. the infinite norm. Thus, no better fit can be found in this
ill-conditioned setting — even when considering significantly smaller fitting domains.

This failure in Fig. 3 clearly shows that neither Eqs. (15-17) nor Eqs. (19-20) is a set of solutions
of the moment equations, as misleadingly claimed in [1]. Because, if they would be true solutions of
the statistical Navier-Stokes equations, then a match of the full-field correlation H1,n will result to a
corresponding match of the associated fluctuation correlation R1,n and vice versa, simply because this
change is based on an analytical one-to-one map (1.1) that maps solutions to solutions and therefore
does not change the solution manifold (up to numerical stability issues associated with this map).9

But, for Eqs. (15-17) and Eqs. (19-20) the solution manifold does change when applying this unique
mapping, as can be clearly seen, respectively, from the mismatch in Fig. 3(a) and Fig. 3(b) already in
the lowest moments and for which no better fits can be found,10 hence, they cannot be solutions.

9The numerically most stable result will of course be obtained by applying the unique mapping (1.1) only after
all small-magnitude correlations (fluctuation correlations) have been fitted. In other words, when fitting to data, the
mapping H1,n → R1,n is ill-conditioned,→֒ 4 while the inverse mapping R1,n → H1,n is not.

10Note, since no better fits can be found, the failure in Fig. 3 is structural and no longer a numerical stability issue.
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Figure 3: (a) Comparison plot to Fig. 3 in [1]. The symbols display the fluctuation correlations un

1
(in deficit

form) of the three even orders n = 2, 4, 6 (from bottom to top).11 The data points were obtained by extracting
the full-field moments from the corresponding figure in [1] and then transforming them into the representation
of the fluctuation moments using the unique relationship (1.1). Hence, the discrete points shown (connected
with a thin line) correspond exactly to those points shown in Fig. 3 in [1] when transforming from the full-field
to the fluctuation correlations. Obviously, the higher moments are not yet fully converged, indicating that
the performed DNS in [1] either needs to be run longer or spatially resolved better, or both. Therefore, only
the lowest fluctuation moment n = 2 was fitted according to its associated scaling law Eq. (19) in [1] (when
transformed accordingly). The result is shown by the red solid line. A clear failure, proving that the scaling
law cannot be matched to turbulence-relevant data already at the lowest level n = 2, and thus further proving
that it cannot be a solution to the statistical Navier-Stokes equations as claimed in [1].
(b) Comparison plot to Fig. 1(a) in [1]. The symbols display the fluctuation correlations un

1 in wall-units for
n = 2 (squares) and n = 3 (diamonds). The data points were obtained again as described in (a). The black
solid line shows the best-fit to the second moment and the red line to the third moment, each according to
their associated scaling law Eq. (16) in [1] (when transformed accordingly). While the second moment can be
well fitted, though very unnaturally, over the whole range 400 < y+ < 2500 specified by [1], the fitting of the
third moment fails. Thus, the scaling law Eq. (16) for the inertial sublayer too cannot be a solution.
It should be noted that the failure in (a) and (b) is quite robust, i.e. even when fitting on significantly smaller
ranges, it results in the same ill-shaped profiles as shown above by the red line. Ironically, the failure stays
invariant under scaling of the fitting domain. For all details on the fitting process in both (a) and (b), see
Appendix B. The extracted and then transformed data used in the above plots were carefully compared with
the directly transformed data from the provided database of [1], with no difference in the end result visible.

This failure, that all scaling laws in [1] are not solutions of the statistical Navier-Stokes equations
is not a singular case due to channel flow. It has also been shown and proven for zero-pressure-gradient
(ZPG) turbulent boundary layer flow [11] (see Sec. 5). Therein it is even shown that the fitting process
improves by several orders of magnitude and becomes well-defined again for all higher-order moments
as soon as one excludes from the modelling process all nonphysical symmetries, which without reason
or proof were declared in [1] to be a measure of “non-Gaussianity and intermittency”. The same
experience was also made in turbulent jet flow [3], but subsequently obscured again in [2] by showing
the misleading “nicely collapse” of the full-field correlations again.

Also, in the case of turbulent channel flow with wall-transpiration, the claim in [18] of a universal
log-law for different transpiration rates is not true. The authors provided a correction [19], but it’s
still flawed. The correction is even worse than the original version, as DNS data that was previously
considered consistent has now been changed into inconsistent data. For a varying transpiration rate at
fixed Reynolds number, the mean velocity profiles do not collapse, as incorrectly claimed and shown
in Fig. 9(a) in [18], and again in the falsely corrected Fig. 1(a) of [19] 12 — not even approximately do

11To avoid a too busy plot, we only show the situation of the even moments. The odd moments (n > 1) are no better.
12Since Fig. 1(a) in [19] is not a correction to Fig. 9(a) in [18], and since the latter figure cannot be reproduced from the

original DNS data provided, the pressing question is: How did the authors manage to create this perfect Fig. 9(a) in their
original article [18] ? The same question also applies to the construction of Fig. 7 in [20], another figure of Oberlack et al.

that cannot be reproduced from the data provided. In this case, too, exactly the same problem: Although a correction
is given by [3], it does not provide a correction to the original Fig. 7. Instead, a completely new figure based on new
results is presented and therefore unrelated to the original one. Hence, also in this case, the same central question: How
and with what tools did the authors manage to do the original Fig. 7 in [20] ?
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they collapse — thus invalidating their universal log-law. All details and the proof to our claims can
be found in Appendix E. Therein we also provide a simple physical explanation for why the profiles
cannot collapse.

Returning to [1], finally note that Fig. 3(a) also reveals the separate problem that the higher-order
moments generated by the DNS in [1] cannot be relied upon to show the correct scaling. The noise in
the correlations for n > 2 is still significant and can only be attributed to the fact that the performed
DNS in [1] is not well and sufficiently resolved, either in time or in space, or both.

4. A physically consistent symmetry-based modelling approach

In this section we will demonstrate how the scaling behaviour of the turbulence-relevant fluctuation
correlations R1,n = un

1 can be modelled by using a physically consistent Lie-group-based symmetry
approach. However, as we will show at the end of this section, a consistent modelling approach does
not necessarily mean or guarantee that the results obtained thereby also match the data. Like any
other analytical method when used in turbulence research, the Lie-group-based symmetry approach
is also just another trial-and-error approach.

To keep the approach simple and concise, we will not generalize the idea here to arbitrary cor-
relation orders, but will limit ourselves only up to order n = 3. The generalization to higher orders
n ≥ 4 and even to correlations other than the streamwise direction is then more complicated, but not
impossible. It is the idea of this section we want to bring across, not the technical details. To note
is that the following analysis is a symmetry-based modelling approach and not a symmetry-based
solution approach to turbulence. All invariant functions determined below are only possible but not
guaranteed solutions of the statistical Navier-Stokes equations, in complete contrast, of course, to
what is claimed in [1], where all invariant functions are declared as “solutions”.

The first modelling assumption we make is to take the inviscid Euler equations (ν = 0) as the
governing equations

∂tUi + Uk∂kUi = −∂iP, ∂kUk = 0, (4.1)

with its two classical scaling symmetries (as in [1])

S1 : t∗ = ea1t, x∗
i = xi, U∗

i = e−a1Ui, P ∗ = e−2a1P,

S2 : t∗ = t, x∗
i = ea2xi, U∗

i = ea2Ui, P ∗ = e2a2P,






(4.2)

as the basis to model the scaling in the inertial sublayer and the center-region of turbulent channel flow.
In [1], it is incorrectly claimed that the viscous Navier-Stokes equations “in the limiting case ν → 0
possess two scaling symmetries, i.e., in principle exactly like the Euler equation” [p. 2]. The intention
of this statement is clear: it should give the impression that for high-Reynolds-number turbulent flows
the validity of the two symmetries (4.2) is not a model assumption, but a fact, analytically derived by
Oberlack on “the basis of a multiscale expansion in the correlation space r in Ref. [10]” [p. 2]. However,
the multiscale analysis in that cited paper, and presented in more detail e.g. in [21], is misleading
and not justified because the scales were just naively separated in a reverse-engineered form instead
of performing a correct singular asymptotic analysis as it should have been done.

Fact is, the symmetries (4.2) are not admitted by the Navier-Stokes equations, not even to leading
order within a symmetry perturbation for small viscosities ν → 0. In other words, the Navier-Stokes
equations cannot be converted into the Euler equations by just employing any exact or approximate
Lie-group invariance transformation.

To model the scaling of the mean velocity field in channel flow, we also consider the Galilean boost
symmetry in the streamwise direction admitted by (4.1)

G : t∗ = t, x∗
i = xi + c1δi1 · t, U∗

i = Ui + c1δi1, P ∗ = P. (4.3)

The next step is to consider the 1-point moment equations of the governing model-equations (4.1),
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where we truncate the infinite hierarchy of moments at order n = 3:

∂tUi + ∂kUiUk = −∂iP , ∂kUk = 0,

∂tUiUj + ∂kUiUjUk = −Ui∂jP − Uj∂iP ,

∂tUiUjUk + ∂lUiUjUkUl = −UiUj∂kP − UjUk∂iP − UkUi∂jP .







(4.4)

Now, since we are interested in the scaling of the streamwise fluctuation correlations un
1 of statistically

stationary turbulent parallel shear flow, we can now Reynolds decompose the above symmetries and
the moment equations via Ui = Ui + ui. Since the wall-normal coordinate y = x2, and, for the
pressure, also the streamwise coordinate x1, are the only statistically relevant coordinates in this flow
configuration, the above moment equations (4.4) for the dynamics of the streamwise fields, i.e., the

equations for ∂tU1, ∂tu2
1 and ∂tu3

1, then respectively reduce to

∂2 u1u2 = −∂1P ,

∂2

(

u2
1u2 + 2U1 u1u2

)

= −2
(

U1∂1P + u1∂1p
)

,

∂2

(

u3
1u2 + 3U1 u2

1u2 + 3U
2
1 u1u2

)

= −3
(

U
2
1 ∂1P + u2

1∂1P + 2U1u1∂1p + u2
1∂1p

)

,







(4.5)

which, when inserting each lower-order equation into the next higher-order one, can be simplified to

∂2 u1u2 = −∂1P ,

∂2 u2
1u2 + 2 u1u2 ∂2U1 = −2 u1∂1p,

∂2 u3
1u2 + 3 u2

1u2 ∂2U1 = −3
(

u2
1∂1p − u2

1 ∂2u1u2

)

,







(4.6)

where the mean streamwise pressure gradient is a constant: −∂1P = K > 0, where K = u2
τ /h, with

uτ the friction velocity and h the half-height of the channel. Next to the symmetries (4.2) and (4.3),
which in Reynolds-decomposed form read

S1 : t∗ = ea1t, x∗
i = xi, U

∗
i = e−a1Ui, P

∗
= e−2a1P , u∗

i = e−a1ui, p∗ = e−2a1p,

S2 : t∗ = t, x∗
i = ea2xi, U

∗
i = ea2Ui, P

∗
= e2a2P , u∗

i = ea2ui, p∗ = e2a2p,

G : t∗ = t, x∗
i = xi + c1δi1 · t, U

∗
i = Ui + c1δi1, P

∗
= P , u∗

i = ui, p∗ = p,







(4.7)

and which indeed, as can be easily verified, are symmetries also of the reduced moment equations (4.6),
we further include in our analysis the following statistical invariance of (4.4) (up to the order of the
fields appearing therein)

T : t∗ = t, x∗
i = xi, U

∗
i = Ui, P

∗
= P,

uiuj
∗ = uiuj + c2δi1δj1, uiujuk

∗ = uiujuk + c3δi1δj1δk1, ui∂jp
∗

= ui∂jp,

uiujukul
∗ = uiujukul + c2Tijkl + c4δi1δj1δk1δl1, uiuj∂kp

∗
= uiuj∂kp,

with Tijkl = uiujδk1δl1 + ujukδl1δi1 + ukulδi1δj1 + uluiδj1δk1 + uiukδj1δl1 + ujulδi1δk1.







(4.8)

This transformation will model the statistical streamwise-translational invariance in the governing
equations (4.1). By this we first mean that (4.8) is an invariance admitted by the subsystem of
moment equations (4.4) in the streamwise direction, which, when Reynolds-decomposed, are given
by (4.6) and, hence, is a valid invariance of stationary turbulent channel flow in the streamwise
direction we are interested in here — for a more general translation invariance, a more general ansatz
than (4.8) must of course be sought. Secondly, since this invariance is not induced by an underlying
symmetry of the governing equations (4.1) and further, since these equations are statistically unclosed,
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the invariance (4.8) thus only corresponds to a statistical equivalence13 transformation of (4.1), exactly
as the two statistical invariances Eqs. (8-9) proposed in [1]. But, unlike to [1], where those two
invariances are nonphysical and cannot be realized by any transformation of the governing equations
because of violating the classical principle of cause and effect between the fluctuations and the mean
fields [3–8], we shall now prove that the above proposed invariance (4.8) is fundamentally different to
the similar-looking statistical translation invariance Eq. (8) in [1], for the single but important reason
that (4.8) can be realized by an appropriate transformation of the governing equations.

If in the governing equations (4.1) the fluctuating fields ui, p (which are obtained by Ui−Ui, P −P )
get transformed as

t∗ = t, x∗
i = xi, u∗

i = ui + η · δi1, p∗ = p, (4.9)

where η = η(t, x) is an arbitrary random space-time field with zero mean, such that to all orders it is
statistically independent of the governing fluctuation fields for velocity ui and pressure gradient ∂jp,
i.e., such that

η = 0, ηm ui1 · · · uin∂jp = ηm · ui1 · · · uin∂jp, ∀n, m ≥ 1, (4.10)

then the fluctuation correlations will transform as (up to order n = 4)

uiuj
∗ = uiuj + η2 δi1δj1, uiujuk

∗ = uiujuk + η3 δi1δj1δk1, ui∂jp
∗

= ui∂jp,

uiujukul
∗ = uiujukul + η2 Tijkl + η4 δi1δj1δk1δl1, uiuj∂kp

∗
= uiuj∂kp,






(4.11)

from which, if compared with the invariance (4.8), yields the following realizability conditions

c2 = η2, c3 = η3, c4 = η4. (4.12)

Now, since the parameters c2, c3, and c4 are defined as space-time constants, the simplest generating
random field η(t, x) to yield such constant moments is to let the field be an uncorrelated process in
both space and time (white-noise process)

η(t, x)η(t′, x′) = η2 · δ(t − t′)δ(x − x′). (4.13)

Since we further want to specify these three translation parameters c2, c3, and c4 independently
of each other, we need a non-Gaussian probability density function (PDF)14 to generate and extract
the random numbers for η(t, x), which then gets assigned to each space-time point independently.
Hence, the realization conditions (4.12) constrains the random field η = η(t, x) to be a non-Gaussian
white-noise process.15

The construction of a PDF from its moments is not uniquely determined.16 To obtain a unique
result, further fundamental constraints have to be placed (see e.g. [27, 28]). However, for the PDF-
construction of η from the three moments (4.12), the nonuniqueness problem is not of concern here,
since the only issue here is just to find at least one realization for η. Quite the contrary, the more
realizations exist, the easier and more effective the construction of η.

13An equivalence transformation acts in a weaker sense than a symmetry transformation. While a symmetry maps
solutions to solutions of the same equation, an equivalence only maps equations to different equations of the same class.
However, if the equations mapped by an equivalence differ only in the existing parameters and not in some unclosed
functions, then an equivalence transformation can also map a solution of one equation to a corresponding solution of
another equation, but otherwise not. For more details, see e.g. Sec. 2 in [11] and the last two footnotes in [22].

14A PDF-independent method can also be used to generate a non-normal univariate random variable with pre-specified
moments. For example, the polynomial approach of [23], expanding the targeted non-normal variable η into powers of a
normal (Gaussian) variable z with zero mean and unit variance, i.e., η =

∑n

m=0
amzm, with the m-th moment of the

standard normal distribution: zm = 2m/2−1(1 + (−1)m)Γ(m/2 + 1/2)/
√

π. The coefficients am are determined to match
the values of the targeted moments ηn, which then leads to a system of nonlinear equations that can be solved numerically.
As shown in [24], this method extends to the multivariate case φ = (φ1, . . . , φn), to then comply with a pre-specified
covariance matrix Cij = φiφj , using the technique of matrix decomposition. The Cholesky decomposition is usually used
to map uncorrelated to correlated normal random variables, but it can also be used to map non-normal ones [25].

15To extract the random numbers for η from a Gaussian PDF is obviously not adequate. There, only the first two
moments can be specified independently. All higher-order moments are expressible by these two, simply because a
Gaussian is fully determined by its first two moments.

16For example, the PDF by Heyde fα,k(x) = (x
√

π)−1 exp(− ln(x)2)(1 + α sin(4kπ ln(x))), |α| ≤ 1, k ∈ N, x ≥ 0, taken
from [26], illustrates very effectively the nonuniqueness problem of the moments: Although the PDF depends on the
parameters α and k, all its moments do not depend on them. Therefore, even if the moments are known to all orders,
they do not uniquely determine the underlying PDF.
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It is rather the other issue of the moment problem we need to solve here, namely to find a non-
negative function f(x) ≥ 0 from a given but finite set of moments 17

µk =

∫ ∞

−∞
xkf(x)dx, k = 0, . . . , M, (4.14)

on the infinite interval −∞ < x < ∞. By using the maximum entropy approach (e.g. as in [27]),
the functional structure of the unknown density f(x) is restricted to

f(x) = exp



−
M ′
∑

k=0

λkxk



 , M ′ > M, mod (M ′, 2) = 0, (4.15)

supplemented by the condition that the first M + 1 moments be given by µk,
∫ ∞

−∞
xkf(x)dx = µk, k = 0, . . . , M, (4.16)

being M + 1 nonlinear equations for the unknown Lagrange multipliers λk in (4.15), which then can
be solved numerically. The remaining Lagrange multipliers in (4.15), i.e. all λk for k = M +1, . . . , M ′,
are left arbitrary and can vary freely in order to stabilize the numerical search algorithm — only the
highest Lagrange multiplier λM ′ (where M ′ is even) is restricted and chosen to be positive λM ′ > 0
and larger in value than all lower multipliers, λM ′ > |λk|, for all k < M ′, to ensure convergence.

Hence, since we found a realization of η (4.9), we have also found a cause for the statistical invari-
ance (4.8). However, it should be clear that the causal transformation (4.9) itself is not a symmetry
of the fluctuation equations of the governing equations (4.1). It is a non-invariant transformation that
maps the unclosed fluctuation equations of (4.1) to a new and different set of fluctuation equations,
but in such a way that when taking statistical averages, it emerges as an invariance (4.8) of the induced
moment equations (4.4), considered here in their reduced form (4.6). In other words, on the coarse-
grained (averaged) level, the statistical invariance (4.8) emerges as an effect from a non-invariant
cause (4.9) on the fine-grained (fluctuating) level.18

Combining now all the aforementioned invariances S1, S2, G (4.7) and T (4.8) to determine the
corresponding invariant scaling functions for the mean velocity U1 and the moments of the streamwise
fluctuations un

1 in the statistically stationary and fully developed regime of turbulent channel flow,
we arrive (up to order n = 3) at the following characteristic system 19

dx2

a2x2
=

dU1

(a2 − a1)U1 + c1
=

du2
1

2(a2 − a1)u2
1 + c2

=
du3

1

3(a2 − a1)u3
1 + c3

. (4.17)

The general solution of (4.17) can generate two types of invariant functions, either a log function (for
a2 = a1) or a power function (for a2 6= a1). In the following we will only consider the latter case, once
by solving (4.17) in the deficit-form representation for the center region of the channel

U
(0)
1 − U1

uτ
= C ′

1

(
x2

h

)σ

,
un

1
(0) − un

1

un
τ

= C ′
n

(
x2

h

)nσ

, n = 2, 3, (4.18)

and once in the wall-units representation for the inertial sublayer

U
+

1 = C1
(
y+)γ + B1, un

1
+

= Cn

(
y+)nγ

+ Bn, n = 2, 3, (4.19)

with the C-parameters all being integration constants, and the group constants all comprised in the
remaining parameters.20

17When referring to η in (4.9)-(4.13), the only given moments are: µ0 = 1, µ1 = η = 0, µk = ηk = ck, k = 2, 3, 4.
18This fact, that the cause itself need not to be a symmetry in order to induce a symmetry as an effect, can also be

illustrated very nicely by the example of the diffusion equation: Its underlying fine-grained discrete random walk does
not admit the variable transformation t∗ = c2 · t, x∗ = c ·x as a symmetry transformation; only when coarse-graining this
stochastic process, to yield the continuous and diffusive Fokker-Planck equation, it will turn into a scaling symmetry,
resulting, however, from the cause of a non-invariantly transformed or changed random walk. For more details, see [5].

19How to generate a characteristic system from Lie-group symmetries and equivalences, see e.g. [29–37].
20Note that although the scaling laws (4.18) and (4.19) are similar to those in [1], there is a decisive difference between

them. Here they directly apply to the fluctuation correlations and not through a transformation over the full-field
correlations, as in [1].
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Figure 4: (a) The symbols show the second moment of the streamwise fluctuation field in deficit form, presented
in the same arrangement as before in Fig. 3(a). The solid line shows the best-fit according to the scaling law (4.18)
in the range 0 < x2/h < 0.15, leading to the exponent 2σ ≈ 2. The dashed line shows the best-fit for the same
scaling law, but for the range 0.15 < x2/h < 0.7, resulting in 2σ ≈ 1.5. However, since the best-fit for the
mean velocity field yields the exponent σ ≈ 2 over the whole range 0 < x2/h < 0.7, the scaling law (4.18) turns
inconsistent over this whole range.
(b) The symbols show the second moment (squares) and the third moment (diamonds) of the streamwise
fluctuation field in wall units, presented in the same arrangement as before in Fig. 3(b). Based on the best-fit
of the mean velocity field (n = 1) according to the scaling law (4.19), which yields γ ≈ 0.12 in the whole range
400 < y+ < 2500, the solid line through the square symbols shows the best-fit of the second moment according
to the same scaling law (4.19), but for n = 2. The left solid line through the diamond symbols shows the best-fit
of the third moment (n = 3) in the fitted range 400 < y+ < 600, based on the already fixed scaling exponent
γ ≈ 0.12. As shown in the figure, the fitted range can then be extended to the lower end 150 < y+ < 600.
The right solid line through the diamond symbols shows the best-fit of the third moment (n = 3) in the fitted
range 1500 < y+ < 2500, based again on the same fixed scaling exponent γ ≈ 0.12. As shown in the figure, the
fitted range can then be extended to the upper end 1500 < y+ < 5000. Thus, in contrast to (4.18), the scaling
law (4.19) can be consistently applied. All fitted values can be taken again from Appendix B.

In Fig. 4(a) the best-fit of (4.18) for n = 2 is shown. As can be seen, there is no global power-law
scaling for the second moment. The scaling is rather divided into two regions: A region very close to
channel center 0 < x2/h < 0.15, with the trivially predictable scaling exponent 2σ ≈ 2 (see Section 2),
and an adjacent region further away from it, 0.15 < x2/h < 0.7, with a different scaling of 2σ ≈ 1.5.

However, this subdivision is not the problem of the scaling law (4.18), since each region can still be
fitted by it — the specified range in [1] is simply too long to exhibit global scaling behaviour for the
fluctuation moments. The core problem lies in the consistency of the scaling exponent σ, namely that
when fitting the mean velocity according to (4.18), we trivially get an exponent also close to 2 (due to
the universal aspect discussed in Section 2, particularly in footnote 5), and since σ is the same symbol
in (4.18) for both moments, we get the inconsistent relation 2σ = σ for the range 0 < x2/h < 0.15,
and the mismatch between σ ≈ 2 and σ ≈ 0.75 for the range 0.15 < x2/h < 0.7.

From this we can conclude that the symmetry-based modelling assumptions made in this section
leading to the scaling law (4.18) are not applicable to the center region of turbulent channel flow.
Other invariances and different arguments have to be found to generate a consistent scaling law in
this region, which will be done in the next section, Sec. 4.1.

Based on the best-fit of the first moment, in Fig. 4(b) the best-fit of the scaling law (4.19) for the
second and third moment in the inertial sublayer is shown. The squares refer to the data of the second
moment (n = 2), and the diamonds to the third moment (n = 3), while the solid lines display the
best-fit for each moment in the region 400 < y+ < 2500, for the same range as specified in [1].

As before for the center region, we face again a global scaling problem, but now at higher order:
While the second moment can be well fitted over the whole range according to (4.19), this is not
possible for the third moment. We chose to split the region into two separately reduced regions,21

400 < y+ < 600 and 1500 < y+ < 2500, for two reasons: First, the range of the inertial sublayer for

21Important to note here is that such a split is not possible for the full-field scaling law in [1]. A best-fit fails even on
such smaller regions. For any region, the result will always be the ill-shaped parabolic-like profile as shown in Fig. 3(b).
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higher moments may be smaller than for lower moments and may shorten either towards the lower
or the higher end. Therefore, it is not necessary that the second and the third moment have the
same length of fitting range. Second, the used DNS results of [1] cannot be relied too much upon
for moments beyond the Reynolds-stress n = 2, since obviously the higher moments are not yet fully
converged, as was revealed in Fig. 3(a). Thus, the third moment may suffer of a not yet fully developed
inertial sublayer, as can also be independently seen from the small oscillations present in the data even
in the reduced ranges 400 < y+ < 600 and 1500 < y+ < 2500.

However, unlike the scaling (4.18) proposed for channel center, the scaling law (4.19) for the inertial
sublayer does not lead to any inconsistencies. The best-fit result for the mean velocity yields the scaling
exponent γ ≈ 0.12, which remains valid also for the second and third moment. Interestingly, as shown
in Fig. 4(b), the fitted scaling law for the reduced ranges 400 < y+ < 600 and 1500 < y+ < 2500 can
be extended to the longer ranges 150 < y+ < 600 and 1500 < y+ < 5000, respectively.

Hence, we can conclude that the symmetry-based modelling assumptions made so far in this
section are more applicable to the inertial sublayer than to the center region of turbulent channel flow.
However, due to the infinite degree of freedom in choosing an invariance in unclosed systems, this
drawback in channel center can be easily resolved, as will be shown next.

4.1. Implementation of a realizable statistical scaling invariance in channel center

In order to model the universal structure of parallel lines in channel center with invariant functions,
as shown in Fig. 1 for the full-field correlations Un

1 , which trivially will also hold for the fluctuation
moments un

1 , due to being all non-zero in channel center (see footnote 5), we need a third scaling
invariance to fix the scaling exponent of the set of moments (4.18) to the universal value 2. That it’s
here in this case exactly the value 2, and no other value, is rooted in the trivial fact that in channel
center all un

1 have a non-zero local extremum that start off quadratically, thus leading to a trivial
quadratic power-law scaling (x2/h)2 for all un

1 close to channel center. Sure, the further away we move
from channel center, the less it will be a pure quadratic scaling, since the higher-order Taylor terms
slowly start to get relevant — for more illustrative examples, see also Figs. 1-3 in [13].

Two points should be noted here: First, that a third scaling invariance is necessary to model equal
scaling for moments of different order is based on the idea of [1], though redundant for instantaneous
moments (see Sec. 2), it will here be consistently implemented now with a different statistical scaling
invariance being physically realizable and by not violating the principle of causality, as the invariance
Eq. (9) in [1] clearly does. Second, since the universal structure of parallel lines considered in this
subsection is just trivial Taylor asymptotics around channel center, and not some special turbulent
flow property, it is obvious that such a trivially predictable scaling does not need to be modelled.
We do so nevertheless, to show, for completeness, how next to the already implemented statistical
translation also a statistical scaling invariance can be consistently added to the analysis.

Now, to model the universal quadratic scaling of the streamwise fluctuation moments un
1 in channel

center with invariant functions, we consider the following statistical scaling invariance of (4.4) (up to
the same order as the foregoing statistical translation invariance (4.8)):

Q : t∗ = t, x∗
i = xi, U

∗
i = Ui, P

∗
= P,

uiuj
∗ = eqij uiuj , uiujuk

∗ = eqijkuiujuk, uiujukul
∗ = eqijkluiujukul,

ui∂jp
∗

= eqij2ui∂jp, uiuj∂kp
∗

= eqijk2uiuj∂kp,

with the constraints: q12 = 0, q1112 = q11, q1222 = q22, q1332 = q33,

and for any n-th order index-permutation σ : qi1i2 ··· in = qiσ(1)iσ(2) ··· iσ(n)
, n = 1, . . . , 4.







(4.20)

However, in contrast to the statistical translation invariance (4.8), the above transformation (4.20)
is not admitted as an invariance globally for all spatial coordinate values, but only locally for values
close to x2 = 0, i.e., asymptotically close to channel center, the region we are interested in here.
Under this asymptotic constraint (see Appendix D), it can then be easily verified that (4.20) leaves
invariant the full system of moment equations (4.4) (when Reynolds-decomposed) and, hence, is a
valid invariance in channel center for statistically stationary flow.
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In the same way as discussed for (4.8), the above invariance (4.20) is also a statistical equivalence
of the governing equations (4.1), when averaged to (4.4), that can be realized by transforming the
fluctuating fields as follows

t∗ = t, x∗
i = xi, u∗

i = λi · ui, p∗ = λp · p, (4.21)

where λ = (λ1, λ2, λ3, λp) is a correlated multivariate random variable and, like the univariate random
variable η (4.10), again with zero mean and statistical independence of the governing fluctuation fields
ui and p. The realizability conditions in channel center are:

λi1λi2 · · · λin = eqi1i2 ··· in , λ1λ2 = 1, λiλp = λ2
i λ2 , λ2

i λp = λ1λiλp = λ1λ2
i λ2 = λ2

i . (4.22)

When adding now the above Lie-group Q (4.20) to S1◦S2◦G◦T (4.7)-(4.8), we then obtain to (4.17) the
following extended characteristic system, valid in the asymptotic region of channel center (x2 → 0),

dx2

a2x2
=

dU1

(a2 − a1)U1 + c1
=

du2
1

[
2(a2 − a1) + q11

]
u2

1 + c2

=
du3

1
[
3(a2 − a1) + q111

]
u3

1 + c3

, (4.23)

which then trivially achieves the aimed universal quadratic scaling in channel center for the turbulence-
relevant fluctuation moments (up to order n = 3), by fixing a1 = −a2, q11 = −2a2, q111 = −4a2.

4.2. Reiterating the causality principle for statistical symmetries

It is worthwhile to reiterate once again the fact that the two new statistical symmetries proposed
herein, the statistical streamwise translation symmetry T (4.8) (valid from channel center down to the
inertial sublayer) and the statistical scaling symmetry Q (4.20) (valid only in channel center), do not
result from a deterministic symmetry of the Navier-Stokes or Euler equations. They are symmetries
that only result from the (unclosed) averaged equations.22 Therefore they are in distinct contrast to the
statistical symmetries S1, S2 (4.2), and G (4.3), which all three have their origin in the corresponding
deterministic symmetries of the non-averaged equations.

Now, although T (4.8) or Q (4.20) do not originate from any symmetry of the underlying determin-
istic (non-averaged and thus closed) dynamic equations, here the Euler equations, they nevertheless
dynamically result from a specific non-invariantly mapped stochastic motion, T from a univariate (4.9)
and Q from multivariate (4.21) non-Gaussian white-noise process, which the Euler equations can either
realize or not. The level of confidence that the Euler equations may realize this kind of motion in the
statistically stationary regime, either intermittently or globally over the whole time, rests on the fact
that the stochastic mappings for T and Q are not some arbitrary mappings, but very specific ones,
which leave the (unclosed) averaged Euler equations to all orders 23 of the infinite hierarchy invariant.

But unfortunately, since this hierarchy is unclosed, even when taking along all infinite orders,24

there simply is no absolute guarantee that the deterministic Euler equations will permanently or
intermittently realize these particular transformations T and Q, although they are fully admitted as
symmetries to all orders by the statistical Euler equations. In other words, although the invariant
functions associated to the symmetries T and Q will solve the stationary moment equations to all orders
and reduce them to the identity 0 = 0 in the regimes where the symmetries apply, there simply is no
guarantee for unclosed systems that such a reduction will then automatically imply these invariant
functions as realizable solutions of the underlying deterministic equations. Because, particularly for

22When being mathematically precise, the statistical invariances T (4.8) and Q (4.20) have to be identified as equiv-
alences and not as symmetries, which is also true for the nonphysical invariances in [1], simply because the underlying
equations are unclosed. Although T (4.8) and Q (4.20) only act as equivalences, we nevertheless refer to them here in
this section as symmetries in order to be in line with the vocabulary in [1]. For further details on the fine but important
distinction between equivalences and symmetries in unclosed systems, see again footnote 13, as well as upcoming Sec. A
and the references therein.

23The symmetries T and Q are not restricted to the moment order as specified in (4.8) and (4.20), respectively. They
can be readily extended to any higher order in the unclosed hierarchy.

24An infinite hierarchy of elements which does not converge, irrespective of its representation, cannot be considered as
closed, even when taking along all its infinite elements. The unclosed statistical hierarchy of the Navier-Stokes or Euler
equations is of such a category. A detailed discussion on this issue can found e.g. in Sec. 1.1 in [38].
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the unclosed systems resulting from the statistical Euler or Navier-Stokes equations, there still is
an infinite pool of other possible symmetries the deterministic equations can choose from. Hence,
as already said in the beginning of Sec. 4, all invariant functions that follow from the symmetries T

and Q are thus only possible but not guaranteed solutions of turbulent channel flow. And exactly for
this reason it is so important to recognize what the invariances T and Q really are, namely only being
equivalences that map (unclosed) equations to different (unclosed) equations of the same class, and not
as being true symmetries that map solutions to different solutions of the same set of (closed) equations.
This careful distinction will avoid making fundamental mistakes, as it happened in [1] and also in all
other previous publications of M. Oberlack since he first published on this topic in 2001.

After this clarification we can now turn to the subject of this section. The decisive difference
between the statistical symmetries T and Q proposed herein, and the statistical symmetries Eqs. (8-9)
proposed in [1], is that the latter ones have no cause at all from which they can emerge. As can be
rigorously proven,25 no cause exists or can be constructed such that they can dynamically emerge from
the underlying deterministic equations. Hence, the confidence level that the statistical symmetries
Eqs. (8-9) proposed in [1] can be realized by the Euler or Navier-Stokes equations is exactly zero. This
is shown by us through the red lines in Fig. 3(a)-(b), a severe mismatch between the invariant functions
induced by the symmetries Eqs. (8-9) and the DNS data, thus proving that these invariant functions
are not realized by the deterministic equations that the DNS solves. In particular, the inconsistency in
these invariant functions already starts at order n = 2, and then systematically infects all higher orders
with increasing intensity. Another clear and independent indication that the symmetries Eqs. (8-9)
in [1] are not realizable and thus nonphysical is that the matching to the moments will improve by
several orders of magnitude as soon as one discards these symmetries or puts them to zero, as shown
e.g. in Sec. 5 in [11], or by Oberlack et al. themselves in [3].

The explanation why the symmetries Eqs. (8-9) in [1] are not realizable and therefore fail is simple:
They violate the classical principle of cause and effect. There simply is no cause for these symmetries
on the deterministic (fine-grained) level such that they can emerge as an effect on the averaged
(coarse-grained) level. In other words, no cause at all exists from which Eq. (8) or (9) can emerge as a
symmetry transformation. In clear contrast of course to the statistical symmetries T (4.8) and Q (4.20)
proposed herein, or the ones presented in [15], or in other third party studies (see the discussion and the
references in Sec. 1 in [5]), which all have a dynamical cause on the deterministic (fine-grained) level.
The cause is mostly a non-invariant fine-grained collective motion organized such that when viewed
on a larger space-time scale a symmetry on the coarse-grained level is observed. In the very same way
as for example the course-grained (macroscopic) diffusion equation acquires a scaling symmetry from
its underlying fine-grained (microscopic) motion of a random walk which itself does not admit this
scaling symmetry (see [5] for a detailed analysis and discussion). In other words, the cause itself on
the fine-grained level need not to be a symmetry in order to induce a symmetry as an effect on the
coarse-grained level.

Therefore, if a dynamical symmetry on a large space-time scale is observed, then a cause in
form of a specific motion on a smaller space-time scale must exist (at least in classical physics),
simply because the large-scale symmetry needs to emerge or to be generated from something, where,
as already said, the cause itself need not to be a symmetry in order to generate a symmetry on a
higher dynamical level. And exactly such a necessary cause-effect relationship does not exist for the
statistical symmetries Eqs. (8-9) in [1]. They are causeless and therefore nonphysical. In the end they
are just mathematical artefacts of the unclosed statistical equations.

This necessary cause-effect relationship that need to exist for statistical symmetries (at least in
classical physics), can now be used as a guiding modelling principle whenever symmetries get deter-
mined from unclosed systems that result from a course-graining process of an underlying dynamical set
of closed equations that can be directly simulated or measured. Because, for as soon as such obtained
symmetries violate this principle of cause and effect, for example as the symmetries Eqs. (8-9) in [1]
globally do in having no cause at all from which they can originate, then they can be immediately
ruled out as possible candidates, simply because the level of confidence is exactly zero that they can
be realized by the underlying dynamical equations.

25See e.g. Sec. I in [4], Sec. 3 and Appendix A in [6], and Appendix B in [15].
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A. On the usefulness of a Lie-group symmetry analysis in turbulence

The method of Lie symmetry groups is a successful tool to either model dynamical rules that should
admit a certain given set of symmetries, or to provide deep insight into the structure of the solution
space for a given but closed set of dynamical equations, including the possibility to even allow for
their full integration (see e.g. [29–37]).

The (statistical) equations of turbulence, however, are different, both conceptually and practically.
These equations are mathematically unclosed and need to be modelled empirically. Hence, caution
has to be exercised when extracting new (statistical) symmetries from the unclosed and unmodelled
theory itself, not to run into any circular arguments. For example, to derive new symmetries from
unclosed equations to then use them in order to close those same equations again, is such a circular
argument [39]. Also, to explore the solution structure of unclosed equations with new symmetries only
admitted by those unclosed equations, turns out to be inconclusive, not only because the admitted set
of symmetries is unclosed by itself, but also, once a particular choice from such an infinite (unclosed)
set of possible symmetries is made, there is a high chance that a nonphysical symmetry will be chosen
which is not reflected by experiment or numerical simulation.

All these well-known and crucial facts are not mentioned in [1], nor in any of the first author’s
previous publications ever since his first paper [40] on turbulence and symmetries appeared more than
two decades ago — a key paper of his which is even technically flawed [16] in that the Lie-group
symmetry analysis has been misapplied (see Appendix F).

Among one of the basic facts not understood by Oberlack et al. ever since is that for unclosed sys-
tems the concept of symmetries breaks down and gets replaced by the weaker concept of equivalences.
It is not a semantic sophistry to carefully distinguish for differential equations between symmetry and
equivalence transformations, because a symmetry transformation maps a solution of a specific (closed)
equation to a new solution of the same equation, while an equivalence transform acts in a weaker sense
in that it only maps an (unclosed) equation to a new (unclosed) equation of the same class — and
therefore, since equivalence transformations map equations and not solutions, they do not allow for the
same insight into the solution structure of differential equations as symmetry transformations do.26

In particular, when generating invariant functions from equivalence transformations, as constantly
done and argued by Oberlack et al. for the non-modelled and unclosed equations of turbulence, they
do not constitute solutions of the unclosed system, but only possible candidate functions for a possible
solution. In other words, they perform as invariant functions which only possibly but not necessarily
can serve as useful turbulent scaling functions. Moreover, since their invariance analysis also never
makes any choice or specification on which differential and integral variables the unclosed terms may
depend, it always results into an infinite-dimensional equivalence group. Thus, the admitted set of
equivalences is never closed by such an approach, when properly and correctly performed. Therefore,
within the Lie-group invariance analysis itself an own closure problem is generated, with the result
that any thinkable invariance can be derived and not only those few reported by Oberlack et al.
Ultimately this means that the choice of an invariance is made by the user and not dictated by theory.

Referring again specifically to [1], the search for new “symmetries” from the unclosed equations
of Eq. (4), even when considering the entire infinite and non-modelled set, inevitably leads to an
infinite dimensional and thus unclosed Lie-algebra, where (nearly) any invariant transformation and
hence (nearly) any desirable scaling law can be generated. The simple reason for this is that at
each order of the infinite hierarchy almost any change due to a variable transformation can always be
balanced or compensated by an unclosed term of the next higher order.27 Ultimately one has an infinite
set of invariant possibilities to choose from when performing a full and correct Lie-group symmetry
analysis for unclosed equations. A crucial information which is not shared with the reader in [1].

26Of course, this does not mean that equivalence transformations are not useful. For example, they can be successfully
applied to classify unclosed differential equations according to the number of symmetries they admit when specifying
the unclosed terms (see e.g. [41–47]). A typical task in this context sometimes is to find a specification of the unclosed
terms such that the maximal symmetry algebra is gained. Once the equation is closed by a such a group classification,
invariant solutions can be determined. But in how far these equations and their solutions are physically relevant and
whether they can be matched to empirical data is not clarified a priori by this approach, in particular if such a pure
Lie-group-based type of modelling is carried out completely detached from empirical findings.

27For explicit examples, see for instance the recent invariance analysis in [8] (Appendix A), or [10, 15, 16].
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Hence, the Lie-group symmetry method in turbulence is not free of any assumptions. It is an ad hoc
method too, not in the same but in a similar way as the classical self-similarity method used by von
Kármán and Prandtl a century ago: Instead of using an a priori set of scales, the Lie-group method
has to make use of an a priori set of symmetries, namely to select the correct relevant symmetries
from an infinite (unclosed) set. In other words, the particular selection of the additionally chosen
symmetries Eqs. (8-9) in [1] is an assumption and not a result that comes from theory, as the authors
try to convey. Because, as just referenced in the previous footnote 27, when correctly performing a
complete and systematic Lie-group symmetry analysis on the considered set of unclosed equations in
the untruncated form of Eq. (4), one gets an infinite set of functionally independent invariances, and not
only those few as first reported in [48] and presented here again through Eqs. (8-9) in [1] — to note is
that all “new” invariances in [48], or equally in [49], were obtained only through heuristics and a trial-
and-error ansatz, and not through a complete and systematic Lie-group analysis, which would have
given an unclosed set of invariances and thus an overall different conclusion, namely that the Lie-group
method alone, like any other analytical method, cannot bypass the closure problem of turbulence.

Another basic fact to be understood before applying the Lie-group symmetry method to unclosed
equations is to know whether they are based or induced by a more fundamental closed equation. If this
is the case then additional invariant modelling rules apply. For Euler or Navier-Stokes turbulence a
critical modelling rule is to not violate the classical principle of cause and effect between the fluctuating
and the mean fields (see e.g. [4–6, 8, 15]). The reason for this restriction is clear: Since the deterministic
set of Navier-Stokes equations naturally defines a causal structure on the statistically induced equa-
tions, that is, since the deterministic (fine-grained) equation implies its statistical (coarse-grained)
equations and not opposite, a strict principle of cause and effect is formulated by this asymmetric
relation which should be respected and not violated during any modelling process. For turbulence,
the following cause-effect relations between the fluctuations (cause) and their correlations (effect) can
be formulated: (1) Every statistical invariance need to have a cause at the fine-grained fluctuating
level from which it can emerge, where (2) the cause itself need not to be an invariant in order to induce
an invariance as an effect on the coarse-grained averaged level, but (3) if the cause is an invariant,
then the induced effect is automatically also an invariant, but which, however, can be intermittently
or globally broken in certain flow processes.

Therefore, to unravel the complexity of Navier-Stokes turbulence, not only the unclosed statistical
equations, but also their defining deterministic equations, the instantaneous Navier-Stokes equations
themselves, should be considered and taken into account in any modelling and solution finding process
— and not to be ignored, as done in [1], with the consequence then that two non-realizable and thus
nonphysical invariances Eqs. (8-9) get proposed, which are even falsely elevated to two very special
symmetries that apparently should “reflect the two well-known characteristics of turbulent flows:
non-Gaussianity and intermittency” [p. 1]. Both invariances clearly violate the causality principle,
since no cause on the fluctuating level exists such that the invariances Eqs. (8-9) can result as an
effect [4–6, 8, 15]. This violation then clearly shows itself as the matching failure in Fig. 3.

What we know and can say so far, when scanning the literature also beyond Oberlack et al., is that
for Euler or Navier-Stokes turbulence no breakthrough has yet been achieved when using the invariant
function method of Lie-group symmetries. Up to date, all systematic results to predict the statistical
scaling behaviour of turbulent flows with Lie-group symmetries, are either not rigorous to convince
or are not correct to be adopted. In the former case, the Lie-group symmetry results are standardly
based on strong low-order assumptions which typically turn out to be incompatible to associated
higher-order relations in showing an increasing mismatch to empirical results the higher the statistical
order gets, while in the latter case, the Lie-group symmetry results are already inconsistent from the
outset in violating certain immutable constraints already on the lowest statistical order. One reason
for this prominent failure and the missing breakthrough is that the classical Navier-Stokes theory
does not allow for a local space symmetry, in strong contrast, for example, to the theory of quantum
fields, which is based on such a symmetry, the local gauge symmetry, which successfully predicts the
unknown functional structure of the interacting fields between the various elementary particles.
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B. Parameter values for the figures shown

Fig. 1a: The basis profile (n = 1) is that of laminar channel flow U1 = UL = ρ(1 − x2/h)(1 + x2/h),
with ρ = uτ Reτ /2, and values uτ = 0.034637 and Reτ = 10049 taken from the database of [1].

The symbols in the figure are the increasing powers of UL (in deficit form), i.e. (U (0)n
L − Un

L )/un
τ ,

up to order n = 6 (from bottom to top), where U (0)
L = ρ is the value at channel center x2/h = 0. The

laminar profile UL was sampled at discrete points exactly at those locations as given in Fig. 3 in [1].
The solid lines in the figure are the best-fit using the turbulent scaling law Eqs. (19-20) from [1], with

the fitted values: σ1 = 2.0, σ2 = 1.98, C ′
1 = Reτ /2, C ′

2 ≈ 4.5823e7, C ′
3 ≈ 3.0693e11, C ′

4 ≈ 1.9094e15,
C ′

5 ≈ 9.6579e18, C ′
6 ≈ 5.7244e22, α′ ≈ 1.0213, β′ ≈ 8.8096.

Fig. 1b: The symbols in the figure display the turbulent full-field correlations Un
1 in deficit form up

to order n = 6 (from bottom to top), taken from Fig. 3 in [1].
The solid lines in the figure show in deficit form the increasing powers of the fitted mean velocity

profile U1 (n = 1, bottom curve), the only profile that was fitted in this arrangement. Using the
defining turbulent scaling law Eq. (19) from [1] for n = 1, the only fitted values are: σ1 = 1.95 and
C ′

1 ≈ 6.43, coinciding with the values in [1]. All solid lines above the lowest one (n = 1) are then just
obtained by (U

(0)n
1 − U

n
1 )/un

τ , without any further fitting needed.

Fig. 2a: The symbols in the figure display the turbulent full-field correlations Un
1 in wall-units up to

order n = 6 (from bottom to top), taken from Fig. 1(a) in [1].

The solid lines in the figure show the increasing powers of the fitted mean velocity profile U
+

1

(n = 1, bottom curve), the only profile that was fitted in this arrangement. Using the turbulent
scaling law Eq. (15) from [1], the only fitted values are: κ ≈ 0.3909, B ≈ 5.1251. All solid lines above

the lowest one (n = 1) are then obtained by just evaluating U
+n

1 , without any further fitting needed.

Fig. 2b: The symbols in the figure display the turbulent full-field correlations Un
1 in wall-units up to

order n = 6 (from bottom to top), taken from Fig. 1(a) in [1].

The solid lines in the figure show the increasing powers of the fitted mean velocity profile U
+

1

(n = 1, bottom curve), the only profile that was fitted in this arrangement. But, instead of a log-law,

the mean velocity profile was fitted here as a power law, U
+

1 = C1(y+)ω +B1, which is obtained also as
a valid scaling law in the inertial sublayer when solving Eq. (10) in [1] without the symmetry breaking
constraint, i.e. for aSx − aSt + aSs 6= 0. Since the translation group parameter for the mean velocity
field was put to zero to also invariantly map the wall-boundary conditions, i.e., since aH

1{1} = 0, which
implies B1 = 0, the only fitted parameters are: ω ≈ 0.1179, C1 ≈ 9.9991. All solid lines above the
lowest one (n = 1) are then obtained by just evaluating U

+n
1 , without any further fitting needed.

Fig. 3a: The symbols in the figure display the fluctuation correlations un
1 (in deficit form) of the

even orders n = 2, 4, 6 (from bottom to top), taken from Fig. 3 in [1] for the full-field moments and
then transformed to the fluctuation moments using the unique relationship (1.1). Hence, the discrete
points shown (connected with a thin line) correspond exactly to those points shown in Fig. 3 in [1]
when transforming from the full-field to the fluctuation correlations.

The red solid line shows the failure already at lowest level n = 2, when matching the data according
to the prescribed scaling law Eq. (19) in [1], which in the transformed representation of the fluctuation
correlation reads

u2
1

(0) − u2
1

u2
τ

= C ′
2

(
x2

h

)σ2

− U
(0)2
1 − U

2
1

u2
τ

, (B.1)

where the mean velocity field U1 is also given by Eq. (19) in [1], but now for n = 1, which trivially is
equivalent to the full-field form

U
(0)
1 − U1

uτ
= C ′

1

(
x2

h

)σ1

. (B.2)
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The fitting procedure is as follows: First the mean velocity is fitted via (B.2), where the result is then
explicitly solved for U1, and then plugged into (B.1) to fit the second moment. While the scaling
law for the first-moment (B.2) can be well fitted, with σ1 = 1.95 and C ′

1 ≈ 6.43, the fit for the
second-moment (B.1) fails, and is shown as the red line for the best-fitted values σ2 ≈ 1.94 and
C ′

2 ≈ 3.3683e2.
To note is that since the left-hand side (B.1) is negative, the whole equation has to be multiplied

by −1 in order to display it in a log-log-plot.

Fig. 3b: The symbols show the second moment (squares) and the third moment (diamonds) of the
streamwise fluctuation field in wall units, taken from Fig. 1(a) in [1] for the full-field moments and
then transformed to the fluctuation moments using the unique relationship (1.1). Hence, the discrete
points shown correspond exactly to those points shown in Fig. 1(a) in [1] when transforming from the
full-field to the fluctuation correlations.

The red solid line shows the failure for the moment n = 3, when matching the data according to
the prescribed scaling law Eq. (16) in [1], which in the transformed representation of the fluctuation
correlation reads

u3
1

+
= C3

(
y+)2ω − B3 −

(

U
+3

1 + 3U
+

1 u2
1

+)

, (B.3)

where the streamwise Reynolds-stress u2
1

+
and the mean velocity field U

+
1 are prescribed by Eq. (16)

and Eq. (15) in [1], respectively, where only the latter is trivially equivalent again to the full-field form

u2
1

+
= C2

(
y+)ω − B2 − U

+2
1 ,

U
+

1 =
1

κ
ln
(
y+)+ B.







(B.4)

The fitting procedure is as follows: First the mean velocity and the second moment are fitted via (B.4),
where each result is then plugged into (B.3) to fit the third moment. While the scaling law for the
first- and second-moment (B.4) can be well fitted, with κ ≈ 0.39087, B ≈ 4.5251, ω ≈ 0.11529,
C2 ≈ 4.3877e2, and B2 ≈ 4.7533e2,28 the fit for third-moment (B.3) fails, and is shown as the red line
for the best-fitted values C3 ≈ 3.2918e3 and B3 ≈ 4.9263e3.

Fig. 4a: The symbols show the second moment of the streamwise fluctuation field in deficit form,
presented in the same arrangement as before in Fig. 3a. The solid line shows the best-fit according to
the scaling law (4.18) in the range 0 < x2/h < 0.15, with parameters 2σ ≈ 2.0481 and C ′

2 ≈ 1.0242e1.
The dashed line shows the best-fit for the same scaling law, but for the range 0.15 < x2/h < 0.7,
resulting in 2σ ≈ 1.5314 and C ′

2 ≈ 4.0867.

Fig. 4b: The symbols show the second moment (squares) and the third moment (diamonds) of the
streamwise fluctuation field in wall units, presented in the same arrangement as before in Fig. 3b.
Based on the best-fit of the mean velocity field (n = 1) according to the scaling law (4.19), which
yields γ ≈ 0.1153 in the whole range 400 < y+ < 2500, the solid line through the square symbols shows
the best-fit of the second moment according to the same scaling law, but for n = 2. For γ ≈ 0.1153,
the fitted values are C2 ≈ −1.1355 and B2 ≈ 1.0544e1, valid also in the whole range 400 < y+ < 2500.

The left solid line through the diamond symbols shows the best-fit of the third moment (n = 3) in
the fitted range 400 < y+ < 600, based on the already fixed scaling exponent γ ≈ 0.1153. As shown in
the figure, the fitted range can then be extended to the lower end 150 < y+ < 600. The fitted values
are: C3 ≈ −0.7345 and B3 ≈ 4.4188.

The right solid line through the diamond symbols shows the best-fit of the third moment (n = 3)
in the fitted range 1500 < y+ < 2500, based again on the same fixed scaling exponent γ ≈ 0.1153. As
shown in the figure, the fitted range can then be extended to the upper end 1500 < y+ < 5000. The
fitted values are: C3 ≈ 0.1659 and B3 ≈ −4.9267.

28Note that while the second moment u2
1

+
(B.4) can be well fitted with the scaling approach of [1], as shown in Fig. 3(b),

it fits very unnaturally, since parameters of order 100 are needed to fit a quantity that only varies by order 1 (see also
Sec. B.2). This problem is then solved in Fig. 4(b).
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Figure 5: Comparison plots to Fig. 1(b) in [1]. The symbols display the data side (left-hand side) and the solid
horizonal lines the modelling side (right-hand side) of the indicator functions: in (a) for the model-free and thus
unbiased indicator function Ξn (B.9), in (b) for Γn (B.8) with ω ≈ 0.12 and data modifying parameter C1 ≈ 10.

B.1. Indicator functions to Fig. 2

Normally, the indicator function to detect a power-law or a log-law in the data is respectively defined as

Γ =
y+

F
dF
dy+

, Ξ = y+ dF
dy+

, (B.5)

where F is some statistical correlation function that can be built from the data alone, i.e., a function
that should not involve any modelling parameters. The power-law indicator function Eq. (18) in [1],
however, is not of this type. It makes use of the modelling parameter Bn,

Γn =
y+

Un
1

+
+ Bn

dUn
1

+

dy+
, (B.6)

i.e. F = Un
1

+
+ Bn, which modifies the data Un

1
+

in bias towards the modelling function used.
Therefore, in order to have a fair comparison to what is shown in Fig. 1(b) in [1] and the power-law
used herein in Fig. 2(b),

Un
1

+
=
(

U
+

1

)n

, with U
+

1 = C1
(
y+)ω, (B.7)

we will not use the model-free indictor function Γ (B.5), but instead use the function

Γn =
ln
(

Un
1

+
/ Cn

1

)

ln
(
y+
) = n · ω, n ≥ 1, (B.8)

which, like the indicator function (B.6) from [1] with its parameters Bn, modifies the data, but here
only with a single modelling parameter C1. The indicator Γn (B.8) is shown above in Fig. 5(b).

In Fig. 5(a), the indicator function

Ξn =
ln
(

Un
1

+
)

ln
(

U
+

1

) = n, n ≥ 1, (B.9)

is shown, based on the log-law model of Fig. 2(a), given by

Un
1

+
=
(

U
+

1

)n

, with U
+

1 =
1

κ
ln
(

y+)+ B. (B.10)

To note is that (B.9) is a model-free and thus unbiased indicator function, i.e., the data shown by
the symbols in Fig. 5(a) is not modified by any modelling parameter. Certainly, (B.9) also applies to
the power-law model (B.7). Hence, Fig. 5(a) demonstrates once again that the scaling of the full-field

correlations Un
1

+
is simply driven by the scaling of the mean velocity U

+
1 , independent of the specific

model used.
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Figure 6: Best-fit of u2
1 in the log-layer (black solid line), including a tiny 0.1% change in the fitted parameter

values (coloured solid lines), once for the structurally inconsistent invariant scaling law (B.11) from [1], shown
in (a), and once for the consistent invariant scaling law (4.19), shown in (b). Circles show the DNS data of [1].
The values for the black curve in (a) are (to four significant digits): ω = 0.1087, B2 = 524.9, C2 = 482.4, along
with the first-moment parameters κ and B, as given in [1]. Changing any second-moment parameter now by a
tiny amount of 0.1%, either to ω = 0.1086, B2 = 525.5, C2 = 481.9, results in each case in a large discrepancy,
as shown by the red, blue and yellow curve in (a), respectively. This demonstrates that the fit in this region
is highly unstable and thus not natural. In clear contrast to what is shown in (b). There the scaling is stable
and robust. Changing the best-fit values γ = 0.2145, B2 = 7.988, C2 = −0.1542 in (b) by the same amount
of 0.1% as in (a), results in complete insensitivity to this change on the plotting scale shown. This unnatural
high sensitivity to small perturbations in Oberlack’s symmetry-based scaling law to u2

1, as shown in (a), is not
special to channel flow. It has also already been demonstrated in turbulent ZPG-flow (see Fig. 4 in [11]).

B.2. The unnatural scaling in [1] for the Reynolds-stress u2

1
in the log-layer

What we know already from Fig. 3(b) is that although the Reynolds stress u2
1 in the log-layer can be

fitted with the scaling law from [1], it fits very unnaturally. Because, a quantity as u2
1, which varies in

the fitted region of order 1, has to be fitted with parameters of order 100. Under this scaling, given by

u2
1

+
= C2

(
y+)ω − B2 − U

+2
1 , with U

+
1 = (1/κ) ln

(
y+)+ B, (B.11)

which results directly from Eq. (16) in [1] when reformulated to the equivalent representation of the
fluctuation moments, the values of the shift and normalization parameters, B2 and C2, are both around
400 to 500 and therefore not natural. This is particularly expressed by the fact that the resulting fit
is not stable and therefore not robust. Already the smallest change in the parameter values leads to
a large discrepancy, as shown in Fig. 6(a) above.29 In clear contrast to the insensitive result of the
best-fit shown in Fig. 6(b), which is based on the structurally consistent invariant scaling law (4.19).

The unnatural high sensitivity of (B.11) to small perturbations is the consequence of its inconsistent
structure, due to being based on two non-realizable and thus nonphysical invariances Eqs. (8-9) in [1].
This inconsistency, which starts at n = 2, then systematically infects all higher orders with increasing
intensity, so much that already at the next higher order, n = 3, the fluctuation moment u3

1 cannot be
matched to the data anymore, as shown by the red line in Fig. 3(b) — in channel center this mismatch
already starts with the Reynolds stress at n = 2, as shown in Fig. 3(a). And since this problem is
a structural one and not a convergence issue of the data or a numerical stability issue of the fitting
procedure, i.e., since in the space of all norm functions no better fit can be generated than shown in
Figs. 3(a)-(b) and since this problem continues for all higher orders, regardless of how good the DNS
data converges, proves that the scaling laws in [1] are not solutions of the Navier-Stokes equations.

29The fitting procedure in Fig. 6 only focusses on the second moment without searching for an overall best-fit when
the next higher-order moment u3

1 gets included. This results in higher accuracy, which also allows to extend the fitting
region to 400 < y+ < 3000, as it was done in Fig. 1(a) in [1], and in figure on slide 60 in [50], which has also been
fact-checked in [13]. To note is that when combining the best-fit of the second and the first moment, then (B.11) has
some advantage over (4.19), because in the former the set of parameters of the first and second moment do not overlap,
while in the latter they do, by sharing the same scaling parameter γ. This is not surprising, because (B.11) is based on
more invariances than (4.19), however, the latter with the same number of degrees of freedom as the former due to a
forced symmetry breaking in [1]. But this drawback can be solved by just searching for more realizable equivalences from
the infinite pool of possibilities. Nevertheless, in Fig. 4(b) with γ = 0.1153, a combined best-fit of the first two moments
is reached, valid even for the third moment, which cannot be reached with the scaling in [1], as shown in Fig. 3(b).
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C. On the DNS accuracy and uncertainty of the fluctuation moments

One of the tasks in a DNS or experiment is to determine the fluctuation moments, say of the third
streamwise velocity moment 30

R3 :=
〈

u3
1

〉

, (C.1)

from the computed or measured random streamwise velocity field U1. This can be done either directly
in the DNS or experiment from the random field itself by taking the difference to its mean field U1,
which basically defines the fluctuation field u1,

R3 =
〈
u3

1

〉
, u1 = U1 − U1, (C.2)

or indirectly, as a post-processing step after the DNS or experiment has concluded, through the relation

R3 = H3 − 3H1H2 + 2H3
1 , Hk :=

〈
Uk

1 〉, H1 := U1, (C.3)

by using the computed or measured full-field moments up to third order, H1, H2 and H3, the DNS or
experiment provides. It is clear that both procedures, (C.2) and (C.3), yield the very same result for
the fluctuation moment R3, if in both procedures the same computational or measuremental precision
is used.31 The simple reason is that (C.2) algebraically implies (C.3), and vice versa. This equality
we will also see confirmed in a small experiment later on.

Now, the aim of this whole Sec. C is to explicitly show in a small experiment (which will be done
in the upcoming subsection) that if the computed or measured full field moments H1, H2 and H3 are
accurate, then the fluctuation moment R3 determined via relation (C.3) is reasonably accurate as well.
This will refute any claim that the R3 values used to generate Fig. 3(b), or Fig. 4(b) is meaningless,
by arguing that relation (C.3) leads to a significant large error or uncertainty when the values of all
three summands, H3, 3H1H2 and 2H3

1 , become large. But, as we prove below, such an argument is
simply false here because it is based on wrong assumptions.

In what follows, it is important to carefully distinguish between accuracy and precision. They
are two different concepts that need to be kept separate. Precision is how repeatable a series of
computations or measurements are, that is, how close the computed or measured values approach
each other, while accuracy is how close a computed or measured value approaches an accepted or
known value.

Let’s discuss the issue of precision for relation (C.3) first: Taking the DNS values from [1] at some
fixed spatial position, say at x+

2 ≈ 1000, for the first three full-field moments (to 8 digits precise)

H1 ≈ 2.2217185e1, H2 ≈ 4.9861022e2, H3 ≈ 1.1297592e4, (C.4)

we see that we yield significantly different values for R3 from (C.3) when rounding the above
values (C.4) down to a too low precision than the DNS provides:

Precision of Hk (C.4) rounded to 8 digits 6 digits 4 digits 2 digits

Resulting value of R3 from (C.3) −2.60 −2.56 4.61 −704

The reason for this strong instability lies of course in the large values of the summands in (C.3):
Values of the order 104 get added and subtracted here, where a sufficient precision is thus necessary
to obtain a reasonable result. Hence, when determining R3 from (C.3), it is always best to use the
same precision as the DNS provides.

Now, let’s discuss the issue of accuracy for relation (C.3). Say we have the following relative
uncertainties 32 in the computed values (C.4) for the Hk:

δH1/H1 = 0.05%, δH2/H2 = 0.1%, δH3/H3 = 0.4%. (C.5)

30The brackets 〈·〉 in (C.1) denote some averaging procedure.
31In a DNS the precision is standardly double precision, i.e., the computations are up to 16 decimals precise.
32Unfortunately, the DNS database of [1] does not provide the uncertainties δHi. Hence, we guess here some reasonable

values. To guide the uncertainties for the first two moments, δH1 and δH2, we basically rely on the DNS by M. Lee and
R. Moser (2015), taken from their database for the case Reτ = 5200 (https://turbulence.oden.utexas.edu).

https://turbulence.oden.utexas.edu
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Then, since (C.3) is a polynomial relation, the uncertainty of the value R3 ≈ −2.6 33 can be determined
exactly (no linear approximation is needed here) as

δR3 = (H3 ± δH3) − 3(H1 ± δH1)(H2 ± δH2) + 2(H1 ± δH1)3 − R3

= H3(1 ± 0.004) − 3H1H2(1 ± 0.0005)(1 ± 0.001) + 2H3
1 (1 ± 0.0005)3 − R3, (C.6)

which, if the ±-signs are given unfavorably (e.g. in the order + + −+),34 leads to an extremely large
absolute uncertainty of maximal δR3 ≈ 94.7, where the relative uncertainty then is a whopping

δR3/R3 ≈ 3650%. (C.7)

The reason for this large uncertainty lies of course again in the large values of the Hk (C.4), i.e.,
despite having small relative uncertainties (C.5), the uncertainty in R3 (C.6) depends on large terms
as H3, H1H2 and H3

1 , which all are of the order 104. On the other side, however, if the ±-signs are
given favorably (e.g. in the order + − +−), then the absolute uncertainty can go as low as δR3 ≈ 4.3,
with a minimal relative uncertainty then of

δR3/R3 ≈ 165%. (C.8)

So the uncertainty of R3 must lie somewhere between these two extremes

165% < δR3/R3 < 3650%, (C.9)

if the prediction of turbulence statistics and its uncertainties were only so simple, but in reality it
is not. The uncertainty (C.9) is a wrong overestimation of the real situation. The mistake is in (C.6), in
trying to determine the uncertainty of R3 deterministically. In turbulence, this approach is wrong and
not applicable for the following simple reasons: Firstly, the Hk are stochastic quantities constructed
or measured by sampling over time, making it possible that unfavorable uncertainties can cancel
over time, where thus extreme unfavorable uncertainties can turn into statistical outliers. Secondly,
since the Hk are stochastic quantities, also their uncertainties δHk are stochastic and therefore never
certain. And thirdly, and most importantly, the construction or measurement of H1, H2 and H3 are
not independent of each other, but depend all on a single field, the full instantaneous streamwise
velocity U := U1, in the following way:

H1 =
〈

U
〉

, H2 =
〈

U2〉, H3 =
〈

U3〉, (C.10)

that is, any uncertainty in the construction of H1 will influence the uncertainty when constructing H2

and so on. Hence, a statistical method has to be used to determine the correct uncertainty of R3, and
not a deterministic one that dramatically and falsely overestimates the uncertainty.

Predicting the correct uncertainty of R3 from theory is not straightforward, and we will not pursue
it here. Instead, we perform a small and simple experiment that mimics the situation of the problem.
It will show that with a confidence level of 95% the relative uncertainty of R3 will not grow beyond
10% and with a confidence of even 99% that it will not grow beyond 12%. A huge fundamental
difference to the purely deterministic prediction (C.9) that the uncertainty can grow up to 3650% and
that it cannot go below 165%.

33When using the same precision of 8 digits as in (C.4), the value of R3 is −2.6.
34Since H1 appears twice in the relation for R3, there are obviously only 23 independent combinations as how the signs

in (C.6) can be chosen.
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C.1. An experiment quantifying the uncertainty of R3

Let’s consider an oversimplified toy-model for the full instantaneous velocity U (at a fixed point in
space) as a random variable x with the following continuous probability distribution function (PDF):

F (x) :=
1

3
· e− 1

2
(x−20.5)2

√
2π

+
2

3
· e− 1

2
(x−23.5)2

√
2π

, (C.11)

being a weighted sum of two normal distributions N1(20.5, 1), with mean µ1 = 20.5 and variance
σ2

1 = 1, and, N2(23.5, 1), with mean µ2 = 23.5 and variance σ2
2 = 1. We chose (C.11) for three reasons:

First, to have a simple distribution from which all moments can be determined exactly, second, to have
a skewed distribution so that the third central moment (analogous to the fluctuation correlation R3)
is not zero, and third, to have for the first three moments (analogous to the full-field correlations Hk)
more or less the same values with the same magnitude as in (C.4), in order to have a fair comparison
to the values used in the deterministic method (C.6). The first three moments of (C.11) are

H1 =

∫ ∞

−∞
x F (x) dx = 22.5,

H2 =

∫ ∞

−∞
x2F (x) dx = 509.25,

H3 =

∫ ∞

−∞
x3F (x) dx = 11591.125,







(C.12)

with the third central moment as

R3 =

∫ ∞

−∞
(x − H1)3F (x) dx = H3 − 3H1H2 + 2H3

1 = −2. (C.13)

Now, let’s run an experiment where we have N ≫ 1 samples of the above random variable x, which
effectively represent at a fixed spatial location the time samples of the full instantaneous velocity U
from the DNS in [1]. Since the sample size N is finite, we obtain a natural sampling error when
determining the moments Hk (C.12) from these N samples. The numerical discretization error of
the DNS is not mimicked here because it is usually small (seen at the fast convergence rate and the
small error of the first moment) and, if small enough, is not as relevant as the sampling error, which
predominately plays the key role in the statistical quality of higher order moments.35 Hence, we only
focus on the sampling error in the following to determine the uncertainty in the moments.

If we now run the experiment, say for N = 104, i.e., by generating N = 104 random numbers Xi

from the PDF (C.11), then we obtain, for example, the following realization for the three moments
Hk and the central moment R3 (another run, with the same number of samples N , will give of course
another realization, since the experiment itself is random)

Hr
1 =

1

N

N∑

i=1

Xi ≈ 22.5362, Hr
2 =

1

N

N∑

i=1

X2
i ≈ 510.897, Hr

3 =
1

N

N∑

i=1

X3
i ≈ 11647.583,

Rr
3 = Hr

3 − 3Hr
1Hr

2 + 2Hr3
1 ≈ −2.06, Rr

3 =
1

N

N∑

i=1

(Xi − Hr
1)3 ≈ −2.06,







(C.14)

where it is important to note here that we evaluate the moment R3 in two different ways and both
give the very same result, once via the relation R3 = H3 − 3H1H2 + 2H3

1 , and once directly from the
random field X itself. Therefore, in the end, it does not matter which construction method for R3

one prefers.
When comparing now (C.14) to the exact values (C.12)-(C.13), the first and most important thing

that can be seen from this experiment, already from a single but common realization, is that the
uncertainty in the Hk does not dramatically change the uncertainty in the central moment R3, as the
deterministic uncertainty propagation (C.6)-(C.9) would wrongly predict.

35The sampling error is so dominant and prevailing that it even prevents the correct prediction of the discretization
error, as discussed e.g. in [51].
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Fact is, by explicitly comparing the uncertainty of R3 from this single realization (C.14), which is

δRr
3/R3 = (Rr

3 − R3)/R3 ≈ 3%, (C.15)

with the deterministic method (C.6), based here on the uncertainties Hk from (C.14),

δHr
1/H1 ≈ 0.16%, δHr

2/H2 ≈ 0.32%, δHr
3/H3 ≈ 0.49%, (C.16)

it will give, for this particular realization, the following minimal and maximal uncertainty

50% < δRr
3/R3 < 11000%, (C.17)

which obviously is not a realistic estimate. The problem is that result (C.17), calculated by the
method (C.6), wrongly assumes that the Hk are constructed independently, but which of course is
not true. It ignores the fact that the sampling errors of Hk in (C.14) are coupled. They are finely
tuned quantities constructed over a long sampling interval from a single field X, and thus lead to a
verifiably meaningful result for R3 (C.14)-(C.15), and not to the absurd result (C.17).

To obtain a probability distribution for the values of R3, we now run this experiment, say, for
M = 1000 times (for fixed N = 104). From the obtained sample set {Rr

3 }r=1,...,M we then numerically
construct the PDF, from which we then can extract additional statistical quantities.

For instance, the standard deviation from the mean µR3 ≈ −2 is σR3 ≈ 0.1, which gives quite
a large relative spread of 5% from the mean, when compared with the relative spreads of the Hk

from their means, which in this experiment are around 0.08%, 0.16%, 0.23%, for H1, H2 and H3,
respectively.

Nevertheless, the distribution of R3 gives a 95% confidence that the uncertainty will not grow
beyond 10%, and even a 99% confidence that it will not grow beyond 12%, which clearly is in stark
contrast to the statement made by the deterministic method in (C.17), where the uncertainty in a
specific but common realization can grow up to 11000% and not below 50%, which certainly is not true.

Hence, from the above finding we can conclude that in a DNS, if sampled over a sufficiently long
time in the statistically stationary regime, the chances are almost certain that the sampled values Hk

have favorable uncertainties so that the fluctuation moment R3 can be determined with confidence,
either indirectly via R3 = H3 − 3H1H2 + 2H3

1 , or directly via R3 =
〈
(U − H1)3

〉
— both evaluations

will yield the very same result in the end.

•

Note: The above experiment was performed in Mathematica and the key commands used were:

> dist=MixtureDistribution[{1,2},{NormalDistribution[41/2,1],NormalDistribution[47/2,1]}];

> NN=10ˆ4; M=10ˆ3; (* NN: number of samples, M: number of realizations *)

> For[r=1,r<=M,r++,

X=RandomVariate[dist,NN];

H1[r]=Total[X]/NN; H2[r]=Total[Xˆ2]/NN; H3[r]=Total[Xˆ3]/NN;

R3[r]=H3[r]-3*H1[r]*H2[r]+2*H1[r]ˆ3;

R3p[r]=Total[(X-H1[r])ˆ3]/NN; (* alternative method to determine R3 *)

];

> (* constructing the PDF of R3 *)

> dataR3=Table[R3[r],{r,1,M}]; distR3=SmoothKernelDistribution[dataR3]; pdfR3=PDF[distR3,z];

> (* extracting statistical quantities *)

> mu=Mean[distR3]; sigma=Sqrt[Variance[distR3]];

> (* constructing the range of 10% error relative to the exact value R3E=-2 *)

> zL=Solve[(z-R3E)/R3E==0.1,z][[1,1,2]]; zR=Solve[(z-R3E)/R3E==-0.1,z][[1,1,2]];

> (* computing the probability that the error is within this range *)

> NProbability[zL<z<zR,Distributed[z,distR3]];
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D. System of moment equations for statistically stationary flow in channel center

The 1-point moment equations in their general form (up to order n = 3) are given by (4.4), which
will now be reduced to a system of equations for stationary channel flow in the asymptotic limit of
channel center (x2 → 0). Up to the considered moment-order, the asymptotic expansion in x2 will be
consistently of first order only here. Beginning with the moment equations of first order, i.e. with the
moment equations of mass and momentum

∂kUk = 0, ∂tUi + ∂kUiUk = −∂iP , (D.1)

in the asymptotic leading-order limit around the center x2 → 0 of stationary channel flow, they simply
reduce (in Reynolds-decomposed form) to

∂2u1u2 = −∂1P, ∂2u2
2 = 0, ∂2P = 0, (D.2)

where we used the fact that in channel flow the fluctuation moments un
1 um

2 for all n ≥ 0 are even
functions when m ≥ 0 is even, and odd functions when m is odd. This implies that in channel center
to leading order in x2 → 0 we have 36

∀m ≥ 0 even: ∂2un
1 um

2 = 0,

∀m ≥ 1 odd: un
1 um

2 = 0,






∀n ≥ 0, n + m ≥ 2. (D.3)

The second-order moment equations (4.4)

∂tUiUj + ∂kUiUjUk = −Ui∂jP − Uj∂iP , (D.4)

then reduce to 37

∂2u2
1u2 = −2u1∂1p, ∂2u3

2 = −2u2∂2p, ∂2u2u2
3 = −2u3∂3p, (D.5)

where we used the leading-order limits in x2 → 0 (∀n ≥ 0):

∂2U1 = 0, un
1 um

2 ∂kp =

{

0, for k = 1, and ∀m ≥ 1 odd,

0, for k = 2, and ∀m ≥ 0 even,
(D.6)

based on the same odd-even argument as before in (D.3), as well as the fact that in stationary channel
flow the following moments are globally zero (∀x2, ∀n1, n2 ≥ 0):

un1
1 un2

2 un3
3 = 0, ∀n3 ≥ 1 odd; un1

1 un2
2 un3

3 ∂kp =

{

0, for k 6= 3, and ∀n3 ≥ 1 odd,

0, for k = 3, and ∀n3 ≥ 0 even.
(D.7)

The third-order, and thus the last considered system of moment equations in (4.4)

∂tUiUjUk + ∂lUiUjUkUl = −UiUj∂kP − UjUk∂iP − UkUi∂jP , (D.8)

then reduces to

∂2u3
1u2 = −3

(

u2
1∂1P + u2

1∂1p
)

, ∂2u2
2u2

3 = 0, u2u3∂3p = 0, u2
3∂2p = 0,

∂2u1u2u2
3 = −u2

3∂1P − 2u1u3∂3p − u2
3∂1p, ∂2u1u3

2 = −u2
2∂1P − 2u1u2∂2p − u2

2∂1p.







(D.9)

Important to note here again is that the reduced equations (D.2), (D.5), (D.6) and (D.9) are not
globally valid equations in x2, but local equations valid only in the leading-order limit x2 → 0.

36In the asymptotic limit x2 → 0, it is clear that if un
1 um

2 = 0, then this does not imply ∂2un
1 um

2 = 0, and vice versa.
For example, in this limit u1u2 = 0, while ∂2u1u2 6= 0.

37The mean-field U1-dependence in (D.5) was eliminated by using the lower-order equations (D.2) along with the
condition ∂2U1 = 0, valid in the limit x2 → 0. This elimination is also done later in (D.9), by then using (D.5).
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E. The non-existent universal log-law in [18]

Based on our investigation [9] concerning the reproducibility of Fig. 9(a) in [18], a key figure which
should prove the sensational claim of a universal log-law in turbulent channel flow with wall transpira-
tion, the authors provided a correction in [19] upon request of the journal. However, this Corrigendum
is still flawed because the corrected figure shown is based on erroneous data. There is simply no uni-
versal log-law for different transpiration rates as claimed, and, as we will prove below, there is even a
simple physical explanation for it.

To have an orientation of the situation already at this point, here a brief summary of the facts
when comparing the results of the Corrigendum with those of the original article:

• The original article [18]: The data that was used therein was self-consistent and did not lead to
any contradictions. The main problem therein, however, Fig. 9(a) still can not be reproduced
with this data.

• The Corrigendum [19]: Fig. 1(a) can indeed be reproduced with the new data provided. The
problem now, however, is that the new data is not self-consistent anymore and leads to fundamen-
tal contradictions (see below). All plots shown in Fig. 1 are therefore not valid, particularly the
approximate collapse of curves as shown in Fig. 1(a) can not be observed when using consistent
data. What the authors want to suggest with this figure is not true and also does not exist.

The proof that the new data set in [19] is inconsistent and contradictive is based on the definition of
the mean bulk velocity UB , which is given explicitly by Eq. (2.4) in the original article [18]. Therein it
is defined as a universal constant for all Reynolds numbers and transpiration rates and has the fixed
value UB = 0.89. This universal feature of UB is again confirmed in the Corrigendum (see the caption
of Fig. 1, where UB = 0.89 for all configurations).

The data used in the original article [18] is consistent with the definition of UB . We checked
this relation Eq. (2.4) for all considered cases of different Reynolds numbers Reτ and transpiration
rates v+

0 . Indeed, when evaluating the integral Eq. (2.4) by using the original data from 2014, we get
the value UB = 0.89. We also performed a different but mathematically equivalent test, by evaluating
the integral of (Ū −UB)/uτ which should give zero, and indeed it gives zero (up to numerical accuracy).
So, in the original article [18] the data is self-consistent.

In the Corrigendum [19], however, this is not the case anymore. All plots shown in Fig. 1 are not
consistent to Eq. (2.4) anymore and lead to fundamental contradictions. The integral of (Ū − UB)/uτ

for the new data set is not zero. For example, for the cases shown in Fig. 1(c)-(d) we get exactly −1
(up to numerical accuracy), which is wrong, but not a surprising result, because, as claimed in the
Corrigendum, the original data was shifted in wall-normal direction by −1:

“The [old] plots in figure 9(a-d) were erroneously shifted vertically by 1.” [19]

However, this was and is not the case, because their old original plots in [18] were and still are
fully correct in this regard. Hence, the Corrigendum is even worse than the original publication, as
consistent DNS data has now been changed with this shift into inconsistent data.

From our point of view, the modus operandi is clear: The authors merely made a change to bring
their data in line with the incorrect symmetry-based scaling law of Eq. (1). Instead of changing or
adapting the scaling law, they modified the correct DNS data by shifting everything in the wall-normal
direction by −1. In our opinion, this demonstrates the blind faith in their obtained symmetry-based
scaling laws: If the symmetry-based scaling law cannot be matched to the data, then in their reasoning
the experiment or the numerical simulation must be wrong and need to be changed.

Due to the Corrigendum we are thus dealing here with two different data sets. One that is self-
consistent (the original data from 2014), and one that is not (the new data from 2021). However, in
both cases the authors present a plot where the curves for a fixed Reynolds number with different
transpiration rates collapse into a single curve: Fig. 9(a) in the original article and Fig. 1(a) in the
Corrigendum, based on the original and modified data, respectively. This immediately raises the
question, how is that possible?
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Figure 7: For constant Reynolds number Reτ = 480, the mean velocity profile in deficit form is displayed for
different transpiration rates: v+

0 = 0.05 (◦); v+

0 = 0.10 (•); v+

0 = 0.16 ( ⊲); v+

0 = 0.26 (�). The left plot (a)
is an exact copy of Fig. 9(a) from [18] (used with permission of JFM), while the right plot (b) is taken from
our comment [9], displaying the correct version of Fig. 9(a), as it should be, when taking their consistent DNS
data (from 2014) and plot it correctly. In both plots, the solid line represents the “new logarithmic scaling law”
of [18], also presented as Eq. (1) in [19], as the so-called universal log-law (Ū1 − UB)/uτ = (1/γ) ln(x2/h),
containing only a single free parameter γ, and being even globally constant, i.e., independent of both Reynolds
number and transpiration rate. But, as figure (b) reveals, there can be no such universal law, and there is a
simple explanation for it (see text).

The problem clearly lies with Fig. 9(a) in [18], since it can neither be reproduced with the original
2014-data, nor with the new 2021-data. With the 2014-data, the curves do not collapse into a single
curve, as incorrectly shown in Fig. 9(a) and correctly shown here in Fig. 7(b), and with the 2021-data,
the curves are not only shifted downward by 1, but also do not collapse as perfectly in channel center
as shown in Fig. 9(a). So, the question is: How did the authors manage to create this perfect Fig. 9(a)
in their original article? What was the mathematical rule behind it? How was the data changed? It’s
surely not the way as described in the Corrigendum, because, as already said, Fig. 1(a) is strikingly
different to Fig. 9(a), not only in the vertical shift, but also in the quality of the collapse.

As the final step in our proof, we now show from a physical point of view why the curves for a
fixed Reynolds number and varying transpiration rate cannot collapse into a single one for the specific
normalization (Ū − UB)/uτ , thus showing that a universal log-law cannot exist.

Fact is, the proposed normalization (Ū − UB)/uτ in [18] only works for Fig. 9(c), but not for
Fig. 9(a). The reason is that the curves in Fig. 9(a) are driven by a different physical process than
those in Fig. 9(c). The curves in Fig. 9(c) show the mean velocity profiles at a constant transpiration
rate but with different Reynolds numbers. There the normalization (Ū − UB)/uτ makes sense and
indeed leads to an approximate collapse of the curves. The curves for Fig. 9(a), however, represent the
mean velocity profiles at a fixed Reynolds number but with different transpiration rates. Obviously, the
physical process in this case is completely different, however, the very same normalization (Ū −UB)/uτ

is used. And since this normalization is independent of the transpiration rate v+
0 , there is no reason

for why the curves should collapse in this case. Hence, as correctly shown by us in Fig. 7(b), a collapse
of curves and with it a universal log-law does not exist.

The last point we would like to make on this matter is that the authors’ acknowledgement in [19] is
misleading and sarcastic, as it gives the impression that we have taken note of their Corrigendum and
therefore agreed with its content before publication. But this is not the case. Although we initiated
this Corrigendum, neither the authors nor the editor gave us the chance to see the Corrigendum before
it was accepted for publication. For then we could have raised our objection in time and a revision
could have taken place. Now the Corrigendum is a publication that is worse than the original article.
Moreover, our names are now associated with an article which is clearly wrong and whose content we
reject. For the journal, the case is closed.
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F. The importance for a correction, or if necessary, for a retraction of [40]

Our comment [16] from 2014 was the first to prove that the paper “A unified approach for symmetries
in plane parallel turbulent shear flows”, by M. Oberlack (2001) [40], is seriously flawed. The Lie-group
based symmetry approach to turbulence, as first initiated, developed and presented therein, and used
ever since by Oberlack, is not only methodologically but also technically flawed. Moreover, besides
several serious errors, it also contains a non-reproducible result.

Unfortunately, we cannot publish our comment in Journal of Fluid Mechanics (JFM), where Ober-
lack’s work was published back in 2001, because of JFM’s publication policy, which does not allow for
Comments. We also tried to force a Corrigendum from M. Oberlack through the journal, once in 2014
and once recently because of a new proof that does not require any knowledge in Lie-group theory,
but both times the editor declined, with the final argument that the paper is old and not worth to be
corrected. We see it differently, because, as can be seen with the current paper [1], the community is
again confronted with a highly misleading paper based on this 2001 work, a work from which all past
and current problems emanate and therefore requires an official correction or a retraction in order to
avert even further damage.

In the following we will present the new proof we shared with the journal. Knowledge in Lie-group
symmetry analysis is not required to follow and understand this proof. An alternative proof, which
requires some knowledge in Lie’s symmetry method, is also provided, taken from [16] to obtain a
complete picture.

F.1. Introduction

The study by Oberlack (2001) [40] is an influential paper that is still cited as a successful study today.
However, the key analytical result in [40], on which the overall conclusion of the paper is based, is
in error and cannot be reproduced. A rigourous proof for this claim is given in Sec. F.2. Knowledge
in Lie-group symmetry analysis is not required to follow and understand this proof. An alternative
proof, which requires some knowledge in Lie’s symmetry method, is given in Sec. F.4, summarizing
the full proof in our comment [16], which is also assisted by using a computer algebra system (CAS)
to validate on the results given by several different third-party symmetry software packages.

What stands out here is not only the mere fact that the author has made a severe technical mistake
which, when corrected, affects the overall conclusion of his study, but the fact that the author makes
a clear statement about his result, in how he obtained it by performing a specific mathematical step,
but which ultimately can not be realized, namely that from equation (3.15) the term “Niuj + Njui

may be factored out” [p. 308] to get to the central result (3.16).

Important to realize here is that even if the author can provide a detailed mathematical explanation
in how he managed to obtain the key crucial result (3.16) by just ‘factoring out’ the specific term
Niuj + Njui from (3.15), the result (3.16) is still in error.

In our opinion, the paper [40] should be retracted. The reason is that result (3.16) is key to the
overall conclusion of the paper. Correcting this result not only changes the overall conclusion to
the opposite as to what is claimed, it also turns numerous statements throughout the paper into false
statements, as shown and described in detail in Sec. F.5. Therefore, this paper is uncorrectable and
should be retracted according to the standards of the Publication Ethics Committee (COPE) , on the
grounds that the results and conclusion of the paper cannot be relied upon due to a major error.

Independent of this major error, the paper faces a second major technical error, namely when
going from (3.16) to (3.17). This is proven and discussed separately in Sec. F.3, which should make it
clear that this error is really independent of the error discussed before in Sec. F.2. Also, both errors
do not cancel each other, but only amplify the error in the final result (3.19).

Critical and important to know here is that the paper’s central and final result (3.19), which directly
results from the two errors in (3.16) and (3.17), represents an incomplete result that is highly misleading
and which already caused a great deal of damage in the turbulence community, and still continues
to do so. The problem with (3.19) is that it gives the misleading impression that the Lie-group
symmetry method is able to generate first-principle solutions for the mean velocity field ū1 without
making any prior assumptions, but which in reality is not the case.

https://publicationethics.org/retraction-guidelines
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Because when correcting the two above mentioned derivation errors leading to (3.19), it leads to
a fundamentally more general result in the symmetry solution ηū1 for the mean velocity than what is
claimed in (3.19). The correct solution for ηū1 was carefully derived in [16], and is shown therein on
the right-hand side of Table 1 [p. 7], while on its left-hand side (3.19) is shown.

The difference between both solutions is striking: The left-hand side shows an algebraically re-
duced result for ηū1, which gives the misleading impression that is was possible to circumvent the
closure problem of turbulence since a closed expression in the shear-normal coordinate x2, the only
independent coordinate for the mean velocity, has been derived, while the right-hand side shows the
complete opposite: It shows the correct solution, obtained when correctly performing the Lie-group
analysis, with the result that it picks up an arbitrary function F (x2), which again shows that the set
of symmetries is thus not closed — because this arbitrary function can now be used to generate any
desirable invariant scaling law for the mean velocity profile ū1(x2), and not only those specific few
mentioned in [40].

The same problem we also face with the invariant scaling solutions of the two-point velocity
correlations in [40]. This is discussed in the second point of Sec. F.4, which shows that also the
analysis for the two-point correlations in [40] is flawed, simply due to the overall fact that the Lie-
group symmetry method has been misapplied by the author. Its correct symmetry solution is given
by (A.8) in [16].

Conclusion: The main message here is that the Lie-group method alone, like any other analytical
method, cannot bypass the closure problem of turbulence. When applied correctly, the Lie-group
method only shifts the closure problem from the equations to its admitted set of symmetries. Without
modelling, nothing is gained here by using the Lie-group method. For a more detailed discussion,
see Sec. F.5 and [16].

F.2. Proof that result (3.16) in [40] is in error and cannot be reproduced

The following layout will prove that the analytical result (3.16) cannot be derived from equation (3.15)
as claimed in [40]. Crucial for the proof is to know and understand what the individual symbols in
(3.15) and (3.16) stand for:

ui : Components of the fluctuating velocity field, which globally 38 are non-zero fields, ui 6≡ 0.

Ni : All collected terms that form componentwise the fluctuating Navier-Stokes momentum equations;
see (2.11). Thus, when putting Ni to zero, they directly represent these Navier-Stokes equations,
i.e., Ni = 0 ultimately represents a differential equation.

X : A scalar differential operator which acts on functions and their derivatives, see (3.11).39

ηui : Functions that represent componentwise the infinitesimal generator for the symmetries of the
fluctuating velocity field; see (3.14) for a possible realization.

Now, in [40] it is said that equation (3.15) is the direct result of (3.12c) by “carrying out the
differentiations in (3.12c)” [p. 307]. When carrying out this step by applying the product rule of
differentiation for the differential operator X in (3.12c), we obtain the correct result

0 =
(3.12c)

X
(

Niuj + Njui

)∣
∣
∣
(Niuj+Njui)=0

=
(

NiXuj + NjXui + ujXNi + uiXNj

)∣
∣
∣
(Niuj+Njui)=0

, (F.1)

38Of course, locally for certain space-time points the fluctuating velocity components ui can map to zero, but not
globally for all space-time points.

39The prolonged part Xp up to the second derivative order is shown explicitly by (2.6) in [16].
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which is identical to (3.15), up to the preassigned evaluation constraint which got suppressed in (3.15).
As we will see now, it is important not to suppress this constraint here because it leads to information
which can be used to show that (F.1) is not an equation but a null identity. Indeed, by having a closer
look at this evaluation constraint

Niuj + Njui = 0, (F.2)

which in [40] is also defined as the “instantaneous velocity product equation” (2.12), it represents
nothing less than a differential equation that can be solved.

Now, since equation (F.2), as set by its own construction rule on p. 302 in [40], has to be valid for
all possible flow configurations ui, which again have to satisfy the underlying fluctuating Navier-Stokes
momentum equation Ni = 0, it consistently follows that the general solution of equation (F.2) can
only be

Ni = 0, ∀ui, ∀i, (F.3)

which also is clearly seen when equivalently rewriting (F.2) as

Nj = −uj

ui

· Ni, ∀ui, ∀i. (F.4)

That Ni = 0 (F.3) is the only possible solution to (F.2), is consistent with the fact that the very
existence of equation (F.2) is only due to the underlying existence of Ni = 0 itself, because (F.2)
originally resulted from equation Ni = 0 in the first place. Hence, equation (F.2) can be identified as
the equivalence 40

Niuj + Njui = 0 ⇔ Ni = 0, ∀ui, ∀i, (F.5)

and therefore relation (F.1) can be equivalently written as

(

NiXuj + NjXui + ujXNi + uiXNj

)∣
∣
∣
Ni=0

= 0, ∀ui, ∀i. (F.6)

When evaluating the above relation,

Ni

∣
∣
∣
Ni=0, ∀i

︸ ︷︷ ︸

=0

· Xuj + Nj

∣
∣
∣
Ni=0, ∀i

︸ ︷︷ ︸

=0

· Xui + uj · XNi

∣
∣
∣
Ni=0, ∀i

︸ ︷︷ ︸

=
(3.12b)

0

+ ui · XNj

∣
∣
∣
Ni=0, ∀i

︸ ︷︷ ︸

=
(3.12b)

0

= 0, (F.7)

we see that the first two terms do not contribute, while the last two terms vanish because of the
constraint equation given by (3.12b). Hence, in reality, equation (F.1) is not an equation but just a
null identity 0 = 0, which directly transfers to (3.15) and it’s prior results (3.12b-c), when based on
the constraint (2.12) as given and constructed in [40].41

But the above null-result (F.7) is clearly at odds with the non-null result (3.16) given in [40].
Important to recognize here is the explanation by the author how this result (3.16) from (3.15) was
obtained. It is said that

“The last two terms [of (3.15)] do not contribute to the constraints for the infinitesimals since
Niuj + Njui may be factored out. Due to (2.12) this term cancels” [p. 308].

It is exactly the content of this sentence which cannot be reproduced. In fact, there is no possibility
that Niuj + Njui can be factored out from the last two terms in (3.15). The author should provide a
clear mathematical explanation how he managed to do so.

In addition it should be noted that it’s not true that the last two terms do not contribute. As
already shown above in (F.7), it is exactly the opposite: It are the first two terms in (3.15) which do
not contribute when applying (2.12), and not the last two. This can be clearly seen again also from

40The equivalence (F.5) can also be read as that the solution space of Niuj + Njui = 0 is identical to that of Ni = 0.
41Or, put in other words: If (3.15) is seen as an equation, then, along with (2.12), it is fully redundant to (3.12b), i.e.,

it does not provide any new information than what (3.12b) already gave — for more details on this redundancy issue,
please see [16]. Therein we even performed a full and complete symmetry analysis (assisted by CAS), which offers a
further independent proof of this redundancy.
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a different perspective, by choosing, for example, the simple (diagonal) specification i = 1 and j = 1
in (3.15), which then simplifies to:

2N1 · Xu1 + 2u1 · XN1 = 0. (F.8)

Now, when using equation (2.12) as done and explained by the author, which for the chosen specifi-
cation i = 1, j = 1 then reads

2N1u1 = 0, (F.9)

and which then again is equivalent to

N1u1 = 0 ⇔ N1 = 0, ∀u1 6≡ 0, (F.10)

we see that due to this result N1 = 0, it are the first two (here additively combined) terms in (F.8)
which do not contribute, and not the last terms as falsely claimed, as these are still bound to the
differential operator X and therefore cannot be directly evaluated through the constraint N1 = 0.
Hence, for the specification i = 1, j = 1, the constraint equation (2.12) reduces relation (3.15) to the
form

2u1 · XN1

∣
∣
∣
N1=0

= 0, ∀u1 6≡ 0, (F.11)

which is equivalent to

XN1

∣
∣
∣
N1=0

= 0, (F.12)

being thus finally identical to result (3.12b), and also consistent again to the result (F.7) as it was
derived above. This demonstration just shows again that (3.15), along with (2.12), is fully redundant
to (3.12b).42 It does not lead to any new information as it’s falsely proposed through (3.16).

F.3. Proof that result (3.17) in [40] is in error

The following layout will prove that if we assume (3.16) to be a correct result, then equation (3.17)
cannot be derived from (3.16). In other words, in this proof we will ignore all previous findings of
Sec. F.2 above and pretend that the result (3.16) is correct, exactly just as the author did in [40] to
get from (3.16) to (3.17). But, as will be shown now, equation (3.17) does not follow from (3.16). We
start with (3.16) and then follow the approach as it’s described below (3.16) in [40], namely that

“The term Niuj +Njui may again be separated out from (3.15) [sic].43 Since this term also cancels
out due to (2.12) we obtain the remaining restrictions” [p. 308].

Thus the first step is to separate out Niuj +Njui from (3.16), which indeed is a true observation that
can be done: Inserting into (3.16) the result for ηui , which is correctly given by (3.14) as 44

ηui = [a1 − a4]ui +
(

a2u3 + ḟ1 − g1

)

δi1 +
(

− a2[u1 + ū1] + ḟ2

)

δi3, (F.13)

equation (3.16) can be reformulated as

0 = Niηuj + Njηui

= [a1 − a4]
(

Niuj + Njui

)

+
(

a2u3 + ḟ1 − g1

)(

Niδj1 + Njδi1

)

+
(

− a2[u1 + ū1] + ḟ2

)(

Niδj3 + Njδi3

)

, (F.14)

where Niuj + Njui has been separated out as the first term. The second step now is to make use of
the constraint (2.12), namely that Niuj + Njui is zero. This then sets the first term in (F.14) to zero,
reducing this equation and therefore (3.16) thus to

(

a2u3 + ḟ1 − g1

)(

Niδj1 + Njδi1

)

+
(

− a2[u1 + ū1] + ḟ2

)(

Niδj3 + Njδi3

)

= 0. (F.15)

42Or, equivalently: (3.12c) is fully redundant to (3.12b), since obviously (3.15) & (2.12) is equivalent to (3.12c).
43Typo mistake: Instead of (3.15) it should read (3.16).
44For the sake of better readability, we suppress all dependencies in the solution functions of ηui

.
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The final argument in [40], then, is that this equation (F.15) can only be fulfilled if the terms in the
first and third bracket add to zero, i.e., if

a2u3 + ḟ1 − g1 = 0,

−a2[u1 + ū1] + ḟ2 = 0,






(F.16)

which exactly is result (3.17). But such a deduction is not valid. Equation (F.15) does not necessarily
imply (F.16), because the second and fourth bracket can also become zero, which, in fact, are exactly
zero by construction!

Because, as already explained in the case of Sec. F.2, when applying the constraint equation (2.12),
i.e., Niuj + Njui = 0, it’s equivalent to applying Ni = 0, ∀i (see explanation to (F.5)). Hence, when
applying (2.12) to (F.14), it correctly reduces to

0 = [a1 − a4] · 0 +
(

a2u3 + ḟ1 − g1

)

· 0 +
(

− a2[u1 + ū1] + ḟ2

)

· 0, (F.17)

which then just turns into the identity relation 0 = 0 from which no information can be extracted. In
other words, when applying (2.12) to (3.16), as done in [40], it just turns into a null-identity and not
to the additional constraint equations (3.17).

The restrictions (3.17) simply do not exist, and therefore no symmetry breaking is triggered as
falsely claimed by the author from (3.17) onwards. The final result (3.19) in [40] is thus not only
wrong but also seriously misleading since it gives the misleading impression that the Lie-group sym-
metry method in turbulence is able to analytically circumvent the closure problem of turbulence,
because (3.19) shows that in the symmetry finding process no arbitrary space-dependent functions for
the mean-flow symmetry generator ηū1 were picked up, but which in reality is not true!

The correct result for (3.19) is given on the right-hand side of Table 1 on p. 7 in [16]. Important
to note is the difference in the result for ηū1 , where the correct result on the right-hand side includes
an arbitrary function in the shear-normal direction x2, representing thus a non-closed result which
ultimately just states that the closure problem in turbulence cannot be bypassed through only using
the Lie-group symmetry method.

F.4. Further points for correction in [40]

Although the two errors pointed out in Secs. F.2 and F.3 are central errors, in that they change the
overall conclusion of the paper once corrected, these are not the only errors that can be found in [40].
There are three more technical errors, two major ones (Pt. 1 and 2 below) and one minor one (Pt. 3),
all being independent of each other and which all need to be corrected.

1. The first technical mistake is in (3.12a-c) and relates to the Lie-group symmetry method itself. In
our comment [16] we claimed this to be the key mistake in [40] as it lies at the heart of that study.
For the investigation here, however, the strategy was changed in that (3.16) and (3.17) are declared
as the key mistakes, in order to make this investigative review as simple and easy as possible, since
no knowledge in Lie-group theory is required to understand the issues raised by the cases in Secs. F.2
and F.3. But the origin of those two errors is already hidden in (3.12a-c). Because instead of

XC |C =0 = 0,

XNi|Ni=0 = 0,

X(Niuj + Njui)|(Niuj+Njui)=0 = 0,







(F.18)

the correct determining system of equations, in order to perform a correct and in particular a complete
Lie-group symmetry analysis, is not given by (F.18)≡(3.12a-c), but by

XTn|Tn=0 = 0, with Tn := (C , Ni, Niuj + Njui), (F.19)

with the key difference to be noted in the evaluation constraint, where C = 0, Ni = 0, and as well as
Niuj + Njui = 0 have to be evaluated simultaneously and not separately as in (F.18). The reason is
that these three system of equations form a strongly coupled system in which each cannot be solved
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on its own. A correctly applied Lie-group symmetry analysis then tells us that in order to get the
complete and full set of symmetries for such a coupled system, one has to evaluate the X-derivative of
this system by all available constraints simultaneously. Hence, the symmetry ansatz (F.18), and thus
(3.12a-c) in [40], is a misapplication of the Lie-group symmetry method.

At first sight it is surprising that ansatz (F.18) leads to a more restrictive set of symmetries
than (F.19). One would think that since (F.18) contains fewer evaluating constraints than (F.19),
that the former will lead to a more general solution than the latter. But it is just the other way
around. The reason is that XTn = 0 without any evaluations induces a highly overdetermined system
which thus can only be made less restrictive the more equations get inserted into this system through
additional evaluation constraints, as only this reduces the number of equations to make the system
less overdetermined and therefore less restrictive.

In other words, the symmetry condition XTn = 0 without any evaluations is more restrictive than
XTn|{E}=0 = 0 when including a set of evaluations {E} = 0, and the more elements this evaluation set
has, the less restrictive the symmetry solution is. And this is exactly the reason why the analysis in [40]
leads to such a highly restricted result (3.19), which is falsely claimed as the result of a symmetry
breaking, but which in reality is not true, since the Lie-group method was not correctly applied.

As already explained before, the correct application of the Lie-group symmetry method leads to
a far less restrictive symmetry result. For instance, for the mean-flow symmetry generator ηū1 it
leads to the inclusion of an arbitrary space-dependent function as shown on the right-hand side of
Table 1 [p. 7] in [16]. This correct result just states that the Lie-group symmetry method alone, like
any other analytical method, cannot bypass the closure problem of turbulence. A statement opposite
as to what is falsely claimed in [40].

2. As for the symmetry solution of the mean flow, also the solutions for all velocity correlations
are less restrictive when performing the symmetry analysis correctly. Under the constraint (B8), the
symmetry solution (B7) for the two-point correlations in [40] is not complete. The correct solution is
given by (A.8) on p. 13 in [16], which now involves arbitrary functions in both x2 and the correlation
distance r = (r1, r2, r3).

Hence for the correlations too, a Lie-group symmetry analysis does not provide any clue how
they should scale, since through their arbitrary functions any desirable scaling law can be generated.
Once more this result just shows again that without modelling to numerical or experimental data,
the closure problem cannot be bypassed, irrespective of whether we consider the mean flow or any
correlation.

3. The results (B7) and (B8) as they stand are only true for the non-rotating case (Ωk = 0).
For the rotating case (Ωk 6= 0) additional terms arise. Also, the symmetry analysis gets more in-
volved since the correlation equations do not decouple anymore, as falsely claimed by saying that
in order to obtain the results (B7) and (B8) “only the equations for R22 in (B1), pu2 in (B3) and
u2p in (B4) need to be examined, because these equations decouple from the other components in the
tensor equations” [p. 325]. This statement is only true for the simple non-rotating case.

F.5. List of all false statements made in [40]

1a. “the purpose of (2.12) [the velocity product equations] regarding the symmetry properties of plane
shear flows is quite different” [p. 302]

1b. “(2.12) is crucial to find self-similar mean velocity profiles consistent with the second moment
and all higher-order correlation equations” [p. 307]

1c. “the major difference between the classical turbulence modelling approach and the present procedure
is the treatment of equation (2.12)” [p. 309]

All these statements regarding the constraint equation (2.12) are not true, because, as was shown
Secs. F.2 and F.3, the equation (2.12) is fully equivalent or redundant to Ni = 0, the fluctuating
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Navier-Stokes equations themselves. Thus equation (2.12) has no impact on the symmetry properties
of the flow. In particular the crucial symmetry-breaking property which is attributed to (2.12) on p. 308
does not exist.

2a. “In the case of the logarithmic law of the wall, the scaling with the distance from the wall arises
as a result of the analysis and has not been assumed in the derivation.” [p. 299]

2b. “important to note that group theoretical arguments very much guide the finding ... where the
mean velocity profiles are applicable.” [p. 306]

2c. “This is an assumption in the classical derivation [von-Kármán-derivation] of the log law of
the wall but is a result of the present analysis.” [p. 312]

2d. “The theory is fully algorithmic and no intuition is needed to find a self-similar mean velocity
profile.” [p. 321]

All these statements regarding the use of the Lie-group symmetry method in turbulence and its
generated solutions are wrong and seriously misleading, because they all claim that this method can
analytically generate first-principle solutions for the scaling problem of turbulence without modelling
or making any assumptions, and therefore implying that the Lie-group method is able to analytically
circumvent the closure problem of turbulence. But this is not true.

First of all, the above statements in [40] are the result of the fact that the Lie-group method itself
has been misapplied by the author. Because when correctly applying this method, the exact opposite
conclusions are found. Arbitrary space-dependent functions in the symmetry solutions arise, which
allow to generate any desirable scaling law for the statistically stationary flow configurations being
considered. Without prior modelling or assumptions in the analysis, the Lie-group method alone does
not give any information as how turbulence should scale.

A key aspect to be recognized here is that since the statistical equations of turbulence are unclosed,
so is their admitted set of Lie symmetries. Unclosed equations, as those considered in [40], inevitably
lead to infinite dimensional and therefore unclosed Lie-algebras, which means that any invariant
transformation can be generated, and thus also any desirable scaling law. Ultimately one has an infinite
set of invariant possibilities to choose from when performing a full and correct Lie-group symmetry
analysis for unclosed equations — see e.g. [10], or [15], for further case examples in turbulence.

For example, if we consider for the mean velocity field the “log-law condition” as described in
Sec. 3.3.2 on p. 312 in [40], then the correct corresponding scaling law which will be obtained from a
correctly performed Lie-group symmetry analysis, is not given by (3.29), but by (see (2.23) in [16] for
its derivation)

ū1 =

∫
F (x2)

a1x2 + a3
dx2 + C, (F.20)

where F is a completely arbitrary function in the integration variable x2. The log-law, for instance,
is then obtained by the assumption that F should be a globally constant function in x2. But also any
other choice for F can made, with the result that any desirable scaling law for the mean flow can be
generated. The Lie-group analysis itself does not tell us how this function F should be chosen. The
correct result (F.20) is just an alternative yet more complicated representation for the unknown mean
velocity function ū1. One thus gained nothing in using the method of Lie-groups, one just shifted the
problem from one unknown function ū1 to another unknown function F , explicitly showing that the
closure problem of turbulence thus cannot be bypassed when using this method.

Hence, the Lie-group symmetry method in turbulence is not free of assumptions. It is an ad hoc
method too, not in the same but in a similar way as the classical self-similarity method as first used by
von Kármán and Prandtl a century ago: Instead of using an a priori set of scales, the Lie-group method
has to make use of an a priori set of symmetries, namely to select the correct relevant symmetries from
an infinite (unclosed) set. Even when including all unclosed higher order correlation equations, one
still gets an infinite and therefore unclosed set of functionally independent invariances if the analysis is
properly performed, and not only those few as always reported by M. Oberlack up to this day. In other
words, the Lie-group method in turbulence is effectively no different to the classical invariance method
of von Kármán and Prandtl.
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