
HAL Id: hal-03580931
https://hal.science/hal-03580931

Submitted on 18 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automating XML document transformations with
structuring mapping result

Amar Zerdazi, Myriam Lamolle

To cite this version:
Amar Zerdazi, Myriam Lamolle. Automating XML document transformations with structuring map-
ping result. CSREA EEE, 2007, Las Vegas, United States. �hal-03580931�

https://hal.science/hal-03580931
https://hal.archives-ouvertes.fr

Automating XML document transformations with
structuring mapping result

Amar ZERDAZI, Myriam LAMOLLE

LINC – Laboratory of Paris VIII

140, rue de la Nouvelle France 93000 - Montreuil, France
Tel.: +33148703464 – Fax: +33148703467

{a.zerdazi, m.lamolle}@iut.univ-paris8.fr

Abstract. This paper describes a transformation of XML documents from one structure to another could
be generated on previously established mappings introduced in our earlier work. That work characterized
certain general conditions under which a semi-automatic transformation is possible. The system generates
a transformation between two structures of the same document class. We begin by introducing the chosen
structure of the mapping result. Then we describe how we generate automatically a transformation script
based on such structured mapping result.

Keywords: script XSLT, structuring mapping transformation, XML document.

1 Introduction

Today’s web-based applications and web services publish their data using XML, as this helps interoperability
with other applications and services. The heterogeneity of XML data has led to recent research in schema
matching, schema transformation, and schema integration for XML. The development of algorithms that
automate these tasks is essential to many domains. As the number of applications that utilize heterogeneous
XML documents grows, the importance of XML documents transformations increases greatly. Currently,
such transformations are manually using specific languages such as XSLT [11]. XSLT, a recommendation of
the World Wide Web Consortium, is a language, itself written in XML, with powerful computing capability
encoding transformation of XML documents. An XSLT program is a set of template rules, each of which has
two parts: a pattern that is matched against nodes in the source document and a template that can be
instantiated to form the result document. The usual procedure to write such stylesheet requires an analysis of
both the semantics and the structures of the source and target XML files to discover similarities between
them.

The goal of this paper is to propose an approach for automating the transformation of XML documents. We
focus on two fundamental problems. First, we address the problem of how to automatic the identification of
semantic relationships between XML schemas. To this, we have proposed in previous work a matching
framework that incorporates several matching criteria and detects mappings as well as complex mappings.
Second, given such mappings, we need to perform the actual transformation of XML documents from a
source schema to a different, yet related target schema. The paper is organized in the following way. In
section 2, we summarize some examples of recent schema matching algorithms that incorporate XML
structural matching. Section 3 gives a brief overview of our formal data model for XML schema and a set of a
set of primitive transformation operations. Section 4 presents the core of this paper. We essentially proceed in
two steps, structuring mapping result and generating XSLT transformations (figure 1). We give an example
that illustrates our approach. Finally, Section 5 concludes the paper.

mailto:@iut.univ-paris8.fr

FIG 1 – Process of automating transformations.

2 State of the art

Many solutions have been proposed in order to automate XML documents transformations. Approaches can
be distinguished along the following three dimensions: schema translation, schema matching, and XML
document restructuring.

Schema translation. Clio [7] translates the data source schemas, XML or relational, into an internal
representation. After the mappings between the source and the target schemas have been semiautomatically
derived, the target schema is materialized from the data of the sources, using a set of rules and the mappings.
DIXSE [9] transforms the DTD specifications of a set of source XML documents into an internal conceptual
representation, using some heuristics to capture semantics and further input from domain experts. ARTEMIS
[1], [2] supports the analysis and reconciliation of sets of heterogeneous relational schemas by measuring the
similarity of element names, data types, and structures. The LSD system [3] uses machine-learning techniques
to match a new data source against a previously defined global schema. LSD is based on the combination of
several match result obtained by independent learners.

Schema matching. Cupid [4] is a hybrid approach that considers both tag names and hierarchical structures
of schema. The similarity between an element of the first schema and an element of the second schema relies
on the similarity of their components hereby emphasizing the name and data type similarities present at the
finest granularity level. SF (Similarity Flooding) [6] is a hybrid approach based on the ideas of similarity
propagation. The SF algorithm is implemented as part of a generic schema manipulation tool that supports, in
addition to structural SF matcher, a name matcher, schema converters and a number of filters of choosing the
best match candidates from the list of ranked map pairs returned by the SF algorithm. [10] offers a novel
integration approach that uses semi-automatic schema matching to produce source-to-target mappings. A
recent survey of automatic schema matching [8] classifies approaches respecting to the schema matching.

3 The data model

As we already mention in section 2, up to now few existent XML schema matching algorithms focus on
structural matching exploiting all W3C XML schemas [12] features. In this section, we propose an abstract
model that serves as a foundation to represent conceptually W3C XML schemas and potentially other schema
languages. We model XML schemas as a directed labeled graph with constraint sets; so-called schema graph.
Schema graph consists of series of nodes that are connected to each other through directed labeled links. In
addition, constraints can be defined over nodes and links. In [13], we detail the proposed model for XML
schemas in order to define a formal framework for solving matching problem. Figure 2 illustrates a schema
graph example.

address

author

num.

name

zip

university

j_ref

localisation

uri

library

street city

article journal

name

name editortitle

FIG 2 – A schema graph example.

Transformation operations. Our mapping algebra concerns a set of transformation operations, as listed
below:

– Rename: t=rename〈s〉, generates a construction1 that is the same as a construction s, but with a
different name t. For example, editor=rename〈publisher〉.

– Merge: t=merge〈s1,..si〉, generates a construction t whose value is obtained by concatenating s1,..si in
the case of strings. For example, address=merge〈street, city, zip〉.

– Split: (t1,..ti)=split〈s〉, where t1,..ti are obtained by splitting a construction s respecting to a separation
criterion. For example, (first-name, last-name)=split〈name〉.

– Parity: t=parity〈s〉, generates a construction t which has the same content and label as s. for
example, author=parity〈author〉.

4 Structuring mapping result

4.1 Mapping structure

The role of the mapping result is so semantically relate facts from the source and target schemas by
encapsulating all necessary information to transform instances of one source schema to instances of one target
schema. The nature of mapping result may be understood by considering different dimensions, each
describing one particular aspect. We have been inspired by the only work done in structuring mapping result
[5], where authors focus on mapping distributed ontologies. We restrict ourselves to the following four
dimensions of mapping result:

– Entity dimension: Specifies schema entities involved in a mapping element.
– Cardinality dimension: This dimension determines the cardinality of a mapping element ranging

from direct mapping (1:1) to complex mapping (m:n). However as is [5], we have found that in most
cases m:n mappings are not common, thus we limit ourselves to 1:n and m:1 mappings. Even when
m:n mappings are encountered, often they may be decomposed into m 1:n mapping elements.

– Transformation dimension: This dimension reflects how instances of the source are transformed
during the mapping process. Transformation dimension include the identification operations.

– Structural dimension: This dimension reflects the way how elementary mapping elements may be
combined into more complex mapping elements. Currently, we distinguish the structural relation
between mapping elements (composition) specifies that a mapping is composed of other mapping
elements.

To actually relate a given source and target schema graphs, the mapping process generates an instance of the
mapping schema containing se set of mapping elements each of which encapsulates all information needed to

1 Construction refers to nodes and edges in the schema graph.

transform instances of source nodes into instances of target nodes. Based on the four dimensions described
above, a mapping result is described as a sequence of mapping elements each of which has a:

§ A unique identifier, map_id.
§ A type of the mapping element, map_typ, specified by his cardinality.
§ A set of source entities involved in the mapping element, via <source> element.
§ A set of target entities involved in the mapping element, via <target> element.
§ A transformation element (<transformation>) including a transformation operation (identified in

section 3).
§ A set of <child_mappings> elements allowing the current mapping element to aggregate any number

of mapping elements. Those mapping elements are then called one by one and processed in the
context of the former.

4.2 Generation of mapping structure

Base on the established mapping between source and target schema [14], a mapping generator generates a
structured mapping conforming to the structure previously introduced in section 4.1. For each matching node
pair, the mapping generator traverses the target schema graph in the depth first manner and generates a new
mapping element. The following describes how mapping elements are generated based on the target node:

1. If the node is the first matchable encountered node, then generate a top level mapping element which will

serve as the entry point for the translation program.
2. For each node that is mapped, create a new mapping element.

- Assign a map_id for the created mapping element2.
- Check the mapping rules, if the node is involved in a direct match then generate a [1:1]

(map_typ=one@one) mapping element, else if it involves to a complex match then generate
either a [1:m] (map_typ=one@many) or an type [m:1] (map_typ=many@one) mapping
element.

- Assign to the source element (<source>) the actual source node.
- Assign to the target element (<target>) the actual target node.
- Assign to the transformation element (<transformation>) the operation to the discovered

operation in the mapping rule.
3. If the mapped node n is a complex node then:

- For each set of edges starting at n and having an order composition node create a
child_mappings elements for each matchable node connected to n.

4.3 Example of mapping result structuring

Let us consider the example of figure 3, where the schema graph in figure 3(a) represents the source schema
and the schema graph in figure 3(b) the source target. The goal of this example is to specify a mapping
between the source and target schemas, using the developed mapping schema. A mapping result structure
represented according to the mapping schema tends to arrange mapping elements in hierarchical way (figure
4). First, the mapping must define the two schemas being mapped. Additionally, one may specify top-level
mapping elements, which serve as entry points for the translation. In this case the mapping generator starts
specifying that the mapping element between source node laboratory and target node laboratory is the top-
level mapping element (line 1 to 4). A new mapping element is then created to describe the relation between
source node laboratory and target node laboratory (line 5). Since the target node laboratory is a complex
node described as a sequence of three children elements name, address and researcher, the mapping generator
adjust the above mapping element bay inserting three child_mappings elements (line 9, 10 and 11) in order to

2 Mapping elements map_ids are generated in an incremental automatic manner.

prepare the processing of child nodes. For each child node, a new mapping element is created. Line 13 to 18
describes the mapping between source node name and target node name, while lines 19 to 26 describes the
complex mapping between source node location and target node address.

FIG 3 – Source and target schema graphs.

FIG 4 – A structured mapping example.

5 Generating XSLT transformation

5.1 The XSLT generator

An XSLT generator is designed to generate XSLT stylesheets from the structured mapping established in
section 4. For each matching node pair, the XSLT generator traverses the both the target schema graph and
the mapping result in a depth first manner and generates template rules. The following describes the general
algorithm used by the XSLT generator in order to translate a mapping result specification into XSLT
templates. Our algorithm takes as input the target schema graph, source and target instances, and the mapping
result specification and produces an XSLT stylesheet consisting of a series of templates rules, implementing
the transformation. The XSLT generator proceeds in two steps:

1.<mapping_structure>
2. <source_schema name="laboratory1.xsd"/>
3. <cible_schema name="laboratory2.xsd"/>
4. <child_mappings map_id="m1"/>
5. <mapping_element map_id="m1" map_typ= "one@one">
6. <source name="laboratory"/>
7. <cible name="laboratory"/>
8. <transformation operation="parity"/>
9. <child_mappings map_id="m1.1"/>
10. <child_mappings map_id="m1.2"/>
11. <child_mappings map_id="m1.3"/>
12. </mapping_element >
13. <mapping_element map_id="m1.1" map_typ="one@one">
14. <source name="laboratory/name"/>
15. <cible name="name"/>
16. <transformation operation="parity"/>
17. <child_mappings />
18. </mapping_element >
19. <mapping_element map_id="m1.2" map_typ="one@many">
20. …
21. </mapping_element >
22…
23.</mapping_structure >

Step 1: initialize the generation

a. The XSLT generator tries to locate the first node of the target graph having a match candidate.

b. For non mapped nodes, it acts as follow: if non mapped target node is not mandatory, or
optional, nothing is generated, otherwise just element tags are generated in order to ensure the
validity (against the target schema) of the produced instance. Once the first mapped node is
localized, a nodes to process queue is initialized and the template rules generation can begin.

Step 2: Traverse the target schema graph and the mapping result

c. Generate a construction template for current node by using current mapping element.

d. For each child_mappings of the current mapping element, adjust the above template by inserting
more construction or apply-template rules whenever necessary.

e. For the case of atomic node, insert new construction rule and no further process is needed for

this node.

f. Add adjusted templates into XSLT stylesheet.

g. If a non mapped node is encountered, act as is step 1.b.

h. If node to process queue is non-empty, extract one node as current node and loop back to step
2.a, else return the generated XSLT stylesheet.

5.2 Example of XSLT generation

Let us consider the same source and target schema graphs of figure 3 and the mapping result of figure 4. The
two root elements laboratoryS and laboratoryT match each other, thus a match template will be defined for
driving instances of laboratoryT from instances of laboratoryS. XSLT generator traverses the target schema
graph, when node laboratoryT is visited line 4 is generated specifying the template will be instantiated when
nodes satisfying the pattern (i.e. an XPath expression) laboratory are encountered. Meanwhile line 5 and 9 are
generated specifying that these markups will appear literally in output document. Next, since the current
mapping element laboratory is a complex node. The XSLT generator prepares then for further construction of
the children nodes by generating apply-templates instructions using the XPath expression in the
corresponding mapping elements (lines 6 to 8).

The XSLT generator continues to process the root’s child node nameT. nameT is an element, thus the
following template is generated.

1. < ?xml version="1.0" encoding="UTF-8" ?>
2. <xsl:stylesheet version="1.0" xmlns:xsl=http://www.w3.org/1999/XSL/Transform>
3. <xsl:output method="xml" version="1.0" encoding="UTF-8" ident="yes"/>
4. <xsl:template match="laboratory">
5. <laboratory xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:noNamespaceSchemaLocation="laboratory_target.xsd">
6. <xsl:apply-templates select="./name"/>
7. <xsl:apply-templates select="./location"/>
8. <xsl:apply-templates select="./library/article/author | ./library/book/author"/>
9. </laboratory>
10. </xsl:template>

11. <xsl:template match="name">
12. <xsl:element name="name">
13. <xsl:value-of select="."/>
14. </xsl:element>
15. </xsl:template>

http://www.w3.org/1999/XSL/Transform
http://www.w3.org/2001/XMLSchema-instance

Next, the node addressT is processed. Since address matches split values (street, city and zip) of locationS, the
needed enclosing element tags are generated and XSLT instructions that mimic the splitting of a string are
introduced (lines 17 to 21).

The algorithm iteratively generates more templates to achieve the remaining constructions.

6 Conclusion

We presented a framework for structuring the mapping result and automatically generate XSLT programs.
The proposed mapping result consists on several mapping elements, each which covers four dimensions:
entity dimension specifying the source and target schema entities involved mapping element, the cardinality
dimension specifying the nature of the mapping element (direct or complex), the transformation dimension
specifying the used transformations operations, and the structural dimension specifying the elementary
mapping elements may be combined into more complex mapping elements. Based on such structure, we show
that we are able to generate automatically an XSLT program that translates a source instance into a target one.

References

1. Bergamaschi, S., Castano, S., Vimeracati, D.C.D., and Vincini, M.: An intelligent approach to information
integration. Int. Proc. Conference on Formal Ontology in Information Systems, (1998) 253–267.

2. Castano, S., and Antonellis, V.D.: A schema analysis and reconciliation tool environment for heterogeneous
databases. Int. Proc. Database Engineering and Applications Symposium, (1999) 53–62.

3. Doan, A., Madhavan, J., Domingos, P., and Halevey, A.: Reconciling schemas of disparate data sources: A
machine Learning Approach. Int. Proc. ACM SIGMOD conference, (2001) 509–520.

4. Madhavan, J., Bernstein, P., and Rahm, E.: Generic schema matching with cupid. Int. Proc. VLDB’01, (2001).
5. Maedche, A., Motik, B., Silva, N., and Volz, R.: MARFA: A Mapping FRAmwork for distributed ontologies.

Inter Proc. EKAW’2002, (2002) 235–250.
6. Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity Flooding: A versatile Graph Matching and its Application

to Schema Matching. Data Engineering, (2002).
7. Popa, L., Velegrakis, Y., Miller, R.J., Hernandez, M.A., and Fagin, R.: Translating Web Data. Int. Proc.

VLDB’02, (2002) 598–609.
8. Rahm, E., and Bernstein, P.: A survey of approaches to automatic schema matching. In VLDB Journal, (2001)

334–350.
9. Rodriguez-Gianolli P., and Mylopoulos, J.: A Semantic Approach to XML-based Data Integration. Int. Proc.

ER’01, (2001) 117–132.
10. Xu, L., and Embley D.W: Discovering Direct and Indirect Matches for Schema Elements. Int. Proc. DASFAA

2003, (2003) 39– 46.
11. XSLT 1.0. W3C Recommendation. XSL Transformations XSLT Version 1.0, Available at

http://www.w3.org/TR/xslt, (1999).
12. XML Schema. (2001) W3C Recommendation, “XML Schema Primer”, W3 Consortium, available at

http://www.w3.org/TR/xmlschema-0, (2001).
13. Zerdazi, A. and Lamolle, M. : Modélisation des schémas XML par adjonction de métaconnaissances

sémantiques. In ASTI’05, (2005) 29–32.
14. Zerdazi, A. and Lamolle, M.: Matching of Enhanced XML Schema with a measure of structural-context

similarity. Inter Proc. WEBIST’07, (2007).

16. <xsl:template match="location">
17. <address>
18. <street> <xsl:value-of select="substring-before(substring-after(., ' '), ' ')"/> </steet>
19. <city> <xsl:value-of select="substring-after(substring-after(., ' '), ' ')"/> </city>
20. <zip> <xsl:value-of select="substring-before(., ' ')"/> </zip>
21. </address>
22. </xsl:template>

http://www.w3.org/TR/xslt,
http://www.w3.org/TR/xmlschema-0,

