
HAL Id: hal-03580906
https://hal.science/hal-03580906

Submitted on 18 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design, Share and Re-use of Data and Applications into
a Federate DataBase System

Thierry Millan, Myriam Lamolle, Frédéric Mulatero

To cite this version:
Thierry Millan, Myriam Lamolle, Frédéric Mulatero. Design, Share and Re-use of Data and Appli-
cations into a Federate DataBase System. Onzièmes Journées Internationales le Génie Logiciel et ses
Applications, 1998, Paris, France. �hal-03580906�

https://hal.science/hal-03580906
https://hal.archives-ouvertes.fr


Design, Share and Re-use of Data and Applications into a Federate DataBase
System

Thierry MILLAN, Myriam LAMOLLE
Team of Pierre BAZEX

IRIT - CNRS (UMR 5055) - Université Paul Sabatier
118, route de Narbonne

31062, Toulouse Cedex FRANCE
Tél. (+33) (0)5 61 55 86 32 - Fax. (+33) (0)5 61 55 62 58

E-mail: (millan, lamolle)@irit.fr

Frédéric MULATERO
MIRA – Université Toulouse Le Mirail

Département de Mathématiques
5, allée Antonio MACHADO
31058 TOULOUSE Cedex
Tél. (+33) (0)5 61 50 42 20

E-mail: mulatero@univ-tlse2.fr

Abstract: This paper presents an architecture to federate preexisting hospital databases. This
solution  relies  on  an  oriented-object  approach,  persistence  by  reachability  and  a  new
MultiDataBase  System  (MDBS)  architecture.  The  MDBS  allows  to  develop  global
applications to exploit all the DataBase Management System (DBMS) resources distributed
across the hospital network. However, the emergency of global applications should not disturb
the  preexisting  local  application.  Furthermore,  the  MDBS  provides  data  accessibility  for
preexisting applications.

The MDBS is in charge to manage global transactions and to collect global data when no more
used.

Keywords: persistence by reachability, MultiDataBase System, oriented-object approach, re-
use

1. Introduction
A new trend  is  to  federate  preexisting  and independent  DBMS into  MDBS.  In  France,  medical
information  system are  made  up  of  heterogeneous  applications.  Each application  is  specific  to  a
medical  service.  Indeed,  radiological  services  store  and  handle  numeric  pictures.  Hematological
services store and handle results of hematological analysis results. In addition, each service stores and
handles redundant administrative information about their patients. 
This study aims at providing access to information stored in the hospital databases. Furthermore, the
following constraints must be taking under account: 

· data accessibility from preexisting applications;
· integration  of  the  preexisting  applications:  usual  users  must  not  be  disturbed  by  this

integration; 
· the emergency of global applications should not disturb the preexisting local application.

Some studies  have been carried out  yet.  In  the  MISA project  [Gan96],  the  federation of  the
existing  databases  is  done  using  an  Object-Oriented  DBMS.  This  solution  requires  a  new
DataBase Management System (DBMS). 

Our solution avoids to use an another DBMS and to define a new global schema. This solution
relies on a new MDBS architecture. A MDBS [ÖV91] provides uniform access to data managed
by DBMS that can be heterogeneous and that are distributed across a network. 
In our approach it is fundamental to preserve the autonomy of the federated DBMS (preexisting
applications,  concurrency  control,  garbage  collector,  ...).  However,  the  emergency  of  global
applications should not disturb the preexisting local application running on each local DBMS.
This solution aims at respecting DBMS autonomy.

1/6



2. Applications and objects
Two types of applications coexist in a federated MDBS.  Local applications are limited to the
manipulation of local objects stored in one DBMS. These manipulations escape to the control of
the MDBS. Global applications transparently access to shared data located in the different DBMS
federated by the MDBS.
For  each DBMS involved in  the federation,  objects are  partitioned in  three disjoint  sets  (see
Figure 2): 

· local objects are only accessed by  local applications. References between  local objects are
local to one DBMS. For example, during the radiology report redaction, this report is
local to the radiology service. The redaction is done using a local application.

· shared local objects are accessed both by local and global applications. Such objects are local
objects that  are made visible to the  global applications.  They do not contain external
references. Thus  local application not under the control of the MDBS can not reach a
global  object through a  shared  local  object.  For  example,  when the radiology report
redaction is achieved, the writer puts it into the corresponding patient's folder. This folder
is a shared local object accessible by the other hospital's services ;

· global objects are shared by  global applications under the control of the MDBS. A  global
object may contain external references, that are references to  global objects located in
remote DBMS. For example, all the reports could be put into a global set, which is a
global object, accessible from others hospitals or by family doctors via an Internet access.

Applying referential persistency [ABC+83], objects are said to be persistent if they are named or
referenced through a named object. In order to preserve DBMS autonomy, each DBMS manages
its own set of local names for persistency roots of local objects. The MDBS manages a unique set
of global names for persistency roots of global objects as pictured in Figure 2.
As mentioned above, two types of reference coexist in the federated MDBS:

· Local references are used to identify or send operations to local and shared local objects
inside a local DBMS;

· External  references are  necessary  to  access  global  and  shared  local  objects  in  the
federated MDBS context. 

While local references provide direct access to objects inside a DBMS, external reference provide
indirect access to objects across the network. As in [LQP92], an external references to object o is
composed of (see Figure 1) a local reference to an exit item stored in the local DBMS, which in
turn references an entry item stored in the DBMS containing object o, which itself contains a local
reference to object o. The reference between an entry item and an exit item is a remote reference
that can be implemented as the concatenation of a DBMS identifier and a local reference.

3. General Architecture
There is no restriction in combining global objects to construct complex objects. Figure 1 shows
an example where global object  o1 stored in DBMS1 is composed of global object  o2 stored in
DBMS2 in turn composed of object o3 stored in DBMS3 in turn composed of object o4 stored in
DBMS1. 

2/6



O2

O1

Exit item

Global reference

Entry item

DBMS1

DBMS2

DBMS3

Local reference

O3

O4

Figure 1: Combining Global Objects 

This example shows that there is no limitation in the length of the composition string of complex
objects and that  there is  no hierarchy between the DBMS involved in the composition.  As a
consequence, the same DBMS can in turn play the role of a client or a server. It is considered as a
client when  it  calls  the  interface  of  a  global  object  stored  in  a  remote  DBMS,  while  it  is
considered as a server when it implements the interface of a global object. In order to integrate a
new DBMS into the federation, two modules have to be developed, namely the DBMS client
module and the DBMS server module, so that the DBMS can play its two roles (see Figure 2 for
an example).

3/6



Client module

MDBS Server

Global
application

context

D
B

M
S 1Local

application
context

Server module

Client module

Global GC
module

Global GC
module

D
B

M
S 2

Server module

Client module

Surgery

Administration

Global GC
module

D
B

M
S 3

Server module

Radiology

Client module
Radio

Report

Global GC
module

D
B

M
S 3

Server module

Hematology

Local
Global

Global-Local

Set of patients

WWW

Hematology

A dminist rat io n

WWW Server

Radiology

MDBS

HOSPITAL

Family Doctor
WWW

Surgery

Hospital Hospital

Patient Folder

Named global  object

Data Exchange between applications

Data Exchange through a network

Data access using the WWW

External reference Local reference

Global object Local object

Global name Local name

Shared Local object
object

Legend

Persistent roots
Interface repositoryApp1

App1

App2

App2

Internet Global application context

a- General Architecture of a Hospital information
system

b- General MDBS Architecture

Figure 2: General Architecture



3.1. DBMS client module

The client module is in charge to provide both the MDBS interface to global applications and the
global object interface. The MDBS interface is composed of the following operations: connection
to the federated MDBS, disconnection, commit of a transaction and abort of a transaction. The
connect operation  initiates  a  first  transaction  for  the  global  application  and  the  disconnect
operation commit the last transaction of the application. The  commit operation must ensure the
durability of all the operations performed by the transaction (Atomicity and Durability) and must
follow a two step commit protocol since we are in a distributed context. The abort operation must
ensure that all the operations of a transaction are undone (Atomicity). The transactional aspects of
this interface are further discussed in section 3.4.
The  global  object  interface  consists  in  sending  global  object  method calls  to  the  appropriate
DBMS server module as well as to provide access to the list of global names. This can be done
following CORBA [OMG91] by mean of proxy whose objective is to encapsulate object method
calls  through  exit  items.  It  is  important  to  mention here  that  since we are  in  a  transactional
context,  each  global  object  operation  is  performed  for  one  transaction  whose  identifier  is
transmitted somehow. The simplest way to do it is to add the transaction identifier as a parameter
of the method call mechanism.
Exit  items are managed by the client  module.  Exit  items are implemented as a class of local
objects stored in the DBMS associated to the client module so that they can be referenced through
a local reference. If the exit item is already assigned to a global object, the client item creates a
new exit item so that there is one exit item per external references held in the DBMS even if they
refer to the same object. Having several exit items pointing to the same object avoids contention
on exit items due to the DBMS transaction management mechanism (an exit item updated by one
transaction is locked for the whole transaction. 

3.2. DBMS server module

The server module provides the mirror interfaces of the client module interfaces on the server
side. These interfaces provide access to the transactional facilities mentioned above and transmit
global objects methods calls to the appropriate object stored in a local DBMS through an entry
item. This can be done by mean of stubs like in CORBA.
Entry items are managed by the server module. Contrarily to exit items, entry items are not stored
in the local DBMS. In this way it is easier to provide uniform remote references in each server
module. Another advantage of implementing entry items outside DBMS is to ensure that coherent
parallel  updates  can  be  performed  on  entry  items  by  mean  of  latches [ML89]  instead  of
transactions. Latches are instant duration locks that guarantee the coherency property of parallel
updates without providing the atomicity property of transactions. 

3.3. About Transaction Management

The specificity  of  database objects  is  that  they have to  respect  the  ACID properties  [GR93],
namely: Atomicity, Coherency, Isolation and Durability. Global objects as well as local objects
must  satisfy  ACID  properties.  Consequently,  database  objects  are  manipulated  through
transactions. 
The MDBS distinguishes global transactions accessing global and shared local objects from local
transactions executed on each DBMS. A global transaction is supported by one local transaction
per DBMS involved in the global transaction. As a global transaction commits, the commitment
of the involved local transactions is synchronized though a two phase commit protocol [GR93].
Commercial  DBMS  provide  a  standard  interface  for  the  two  phase  commit  protocol.  This
interface is encapsulated by the DBMS client and server modules.

3.4. Garbage Collection [MTB98a] [MTB98b]

The purpose of the global GC is to make sure that entry items, global object cells and exit items
are destroyed when no more used. On the other side, the purpose of a local GC is to collect the



local objects no more used in a DBMS. The global GC is a distributed task and implemented by
modules associated to each DBMS. 
Each component DBMS is supposed to have its own local GC and none assumption is made on
the behavior of the local GC. It has the following interesting properties: 

· there is no interaction between the global GC and the local GC;
· it is incremental;
· it requires few interactions with transactions; 
· it is able to detect dead object cycles that are frequent in a DBMS context; 
· it is able to collect objects without accessing the whole database;
· and global synchronization of DBMS sites is not required; 
· The Global GC works exclusively on entry and exit items without accessing global object

cells stored in DBMS. Consequently it implies few I/O overhead for the DBMS. 

4. Conclusion
This paper presents a concrete example of the MDBS use. We show how to federate existing hospital
DBMS without any modification of the local applications. 
We consider data as objects with three visibility levels according to their use (local, shared local and
global objects). The MDBS satisfies the constraints expressed in the introduction. The main difference
with other approaches (MISA [Gan96]) is that this solution does not need an external database as
common base to  federate  the  local  databases.  Consequently,  this  solution presents  the  best  cost-
effectiveness ratio thanks to the re-use of the preexisting databases, software and hardware, and the
minimization of the training times. 

Currently,  we are carrying out  studies concerning the development of persistent  application using
heterogeneous  languages  (Ada,  Java[MM98]).  Such  bindings  could  offer  valuable  solutions  to
develop global applications that exploit global objects (Internet applications using Java for example).
Furthermore, they could also make easier the migration of local applications to global applications. 

References 
[ABC+83] M.  Atkinson,  P.  Bailey,  K.  Chisholm,  P.  Cockshott,  R.  Morrison,  An  Approach  to  Persistent

Programming, Computer Journal, 26(4), 1983
[Gan96] B. Gandner, MISA : Medical Information System Architecture – Application Multibase, Mémoire

présenté en vue d’obtenir le diplôme d’ingénieur CNAM en Informatique, June 1996
[GR93] J. Gray, A. Reuter, Transaction Processing: Concepts and Techniques, Morgan Kaufmann, 1993.
[LQP92] B. Lang, C. Queinnec, J. Piquer,  Garbage Collecting the World,  Conf. Record of the Nineteenth

Annual ACM Symposium of Principles of Programming Languages, 1992
 [MM98] T. Millan, F. Mulatéro,  coupling between languages and Object Oriented Database Management

Systems  to  exchange  data  between  applications  developed  using  heterogeneous  languages,
Expersys'98, Virginia, United-States of America, November 1998

[MTB98a] F.  Mulatero,  J.-M.  Thevenin,  P.  Bazex,  Multi-Base  Garbage  Collector  Algorithms, BDA'98,
Hammamet, Tunisia October 1998

[MTB98b] F.  Mulatero,  J.-M.  Thevenin,  P.  Bazex,  A  global  Garbage  Collector  for  Federate  Database
Management Systems, Dexa 98, Vienna, Autria, September 1998

[OMG91] Object Management Group,  The Common Object Request Broker Architecture : Architecture and
Spec., OMG Document Number 91.12.1 Revision 1.1, 1991

[ÖV91] M. T. Özsu, P. Valduriez,  Principles of Distributed Database Systems,  Prentice-Hall Int. Editions,
1991


	1. Introduction
	2. Applications and objects
	3. General Architecture
	3.1. DBMS client module
	3.2. DBMS server module
	3.3. About Transaction Management
	3.4. Garbage Collection [MTB98a] [MTB98b]

	4. Conclusion
	References

