N

N

An Adaptation of Our Ada95/02 Binding to Provide
Persistence to the Java Language: Sharing and Handling
of Data between Heterogeneous Applications Using
Persistence
Thierry Millan, Myriam Lamolle, Frédéric Mulatero

» To cite this version:

Thierry Millan, Myriam Lamolle, Frédéric Mulatero. An Adaptation of Our Ada95/02 Binding to
Provide Persistence to the Java Language: Sharing and Handling of Data between Heterogeneous
Applications Using Persistence. Reliable Software Technologies - Ada-Europe’ 99, 1622, Springer
Berlin Heidelberg, pp.320-331, 1999, Lecture Notes in Computer Science, 10.1007/3-540-48753-0_ 28 .
hal-03580876

HAL Id: hal-03580876
https://hal.science/hal-03580876v1
Submitted on 18 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03580876v1
https://hal.archives-ouvertes.fr

An Adaptation of our Ada95/02 Binding to Provide
Persistence to the Java Language: Sharing And Handling
of Data between Heterogeneous Applications using

Persistence
Thierry MILLAN, Myriam LAMOLLE Frédéric MULATERO

IRIT - CNRS (UMR 5055) MIRA

Université Paul Sabatier Département de Mathématiques

118, route de Narbonne Université Toulouse Le Mirail

31062, Toulouse Cedex FRANCE 5, allée Antonio MACHADO
Tel. (+33) (0)5 61 55 86 32 31058 Toulouse Cedex
Fax. (+33) (0)5 61 55 62 58 Tel. (+33) (0)5 61 50 42 20
E-mail: (millan, lamolle) @irit.fr E-mail: mulatero@univ-tlse2.fr

Abstract. This paper sets out the results of our research relating to persistence
in Ada and interoperability between applications written using heterogeneous
languages. In this paper, we compare the different features of Ada, Java and
02. By making this comparison, we aim to propose a general framework in
order to interconnect different applications using the persistence concept. In
addition, we propose an example of the co-operation between Ada and Java
using O2. We conclude our paper by comparing our approach with the different
approaches proposed by other studies on the same subject.

Keywords. Persistence, Ada 83, Ada 95, Java, Object Oriented Database
Management System, O2, interoperability, data environment

Introduction

The aim of our project is to propose an efficient solution to save, restore and
exchange data [1]. We use the concept of persistence to save the application’s context
in an object oriented database and retrieve it from the database. The object oriented
database management system (OODBMS) O2 manages the database. We use the
interconnection capability provided by O2 to exchange data. A prototype of an
interface [2] between Ada and O2 has been developed to validate our studies in this
area. This prototype use an O2 database management system version 4.6 and Ada
version 95 (gnat compiler 3.10p). It runs on a sparc station ultra 1 with solaris 2.5.
Performance tests have been performed and are presented in [1, 2]. In addition, we

mailto:mulatero@univ-tlse2.fr

extend the results of our previous studies on persistence in order to propose a solution
to manage persistent environment with other object oriented languages (e.g. C++,
Java). The aim of this generalization is to permit the exchange of data between
applications written using heterogeneous languages. The main advantage of this
approach is the possibility to delegate certain treatments to applications written in a
more appropriate language. For example, it is possible to delegate to a Java
application the visualization of the data created by an Ada application. In this way the
use of Java makes the realization of an application that accesses data through a
network more easy.

This paper proposes a comparative study between the Java language, the Ada

language and the O2 OODBMS. This comparison aims to show that the O2
OODBMS could be used as a common platform between Java and Ada in order to
exchange data. Besides, O2 respects the recommendations of the Object Database
Management Group [3] recommendations. These recommendations provide the
features that an OODBMS must respect in order to facilitate interconnection between
several OODBMS, or between an OODBMS and applications using the CORBA
standard. In this paper, we only present the features concerning the handling of data.
However, we do not propose to take into account the persistence of “Ada task” , “Java
thread” or “Java AWT classes”. In this paper, we also propose an example that shows
the advantages of such co-operation between heterogeneous applications.
In the first part of this paper, we will present our experience concerning persistent
environments. We will also provide our definitions of persistence. We will also
provide a short presentation of the binding between Ada and O2. In the second part of
this paper, we will propose a comparative study of Ada 95, Java and O2. The aim of
this comparison is to demonstrate that the Ada 95/02 binding can be an interesting
base for a Java/O2 binding. In the third part of the paper, we will provide an example
of how these bindings can be applied to manage the data handled by an airplane
simulator. Finally, we will conclude by presenting a quick discussion concerning
studies carried out in relation to persistence for the Ada and Java languages. We will
also present the advantages of such a binding when used to facilitate data exchange
independent of the language that creates and handles data. This exchange can be
performed independent of the medium (DBMS, OODBMS, etc.) used as
interconnection platform.

Persistence and persistent environment

Our previous work on this subject

The emergence of new applications (computer-assisted design, technical
management of documents, Internet, Intranet, etc.) needs to be supported by both
database functionality and advanced treatment capacities.

The database management systems offer high storage and data handling
functionality. However, they are not sufficient when complex algorithms are required.
The Ada language enables one to write complex algorithms; However, the Ada
programmer remains totally in charge of the efficient storage and handling of high
volume of data. That is why couplings between databases management systems and
programming languages are valuable.

Definitions

Persistence using Ada 83

The method we propose relies on the following principle [5]: each data to be
handled, has to be linked to a typed identifier. Ada is a strongly typed language,
which means all identifiers require a type which is statically set at compile time. In
addition, in order to maintain a strong typed system, which is necessary to set up
reliable applications, persistent data should be separated neither from the identifier to
which it is linked nor from the type of this identifier. Thus, we consider the concept
of persistence at the identifier level rather than at the data level.

In Ada, we define persistence as the property that allows the triplet (identifier,
data, type) to survive after the program run-time.

In that context, the program data environment [5] is the set composed of the
identifiers declared in the program, the identifiers' type and the data linked to these
identifiers.

A persistent data environment is a part of the program data environment which
survives once the program run-time ends.

The entire environment of a program is not necessarily persistent. A
distinction should therefore be made between the persistent environment and the
non-persistent (transient) environment. With such a persistent environment, it
becomes possible to re-use part of the program’s data environment. It simplifies the
design of applications and improves, among other things, the quality of the software.

It is possible to represent the program data environment by an oriented graph
structure [5] where identifiers and data are the graph nodes, and where links between
them are the graph edges. A persistent environment is a sub-graph defined by the
identifiers, all the data linked to the identifiers and the identifiers' type.

P1 [. :
Persistent Environment
Vi[3[dZ] linked to V2, V3 persistent
roots
V233 4— |—gp- Environment
V3 T
o Temporary Environment
VA

Fig. 1. Persistent environment

Note:

In our definition of a persistent environment, we do not distinguish between data
built with the access constructor and the other data. With regard to non access data,
we consider that there is only one link between the data and its identifier (see V1 in
Figure 1).

Persistence using Ada 95

The object concept is important because it makes the application design easier and
it improves the integration between the Ada language and the OODBMS O2.
In Ada, the addition of object concepts allows us to:

e extend types by addition of new attributes and new operations ;
e identify types at run-time ;
® handle values of several specific types and choose an operation at run-time [6].

For this reason, we must improve the rule of “propagation of persistence by
reachability” in order to take this new characteristic into account:

— To be persistent, a data ‘d’ must be linked to an identifier or a data whose type is
the same as, or an ascendant of, the type of the data ‘d’.

To apply this rule, we must re-define persistence through the quadruplet (identifier,
type, data, tag of the data):

— persistence is a property that lets a quadruplet (identifier, type, data, tag of the
data) exist after run-time.

This addition permits the coherence of programs to be retained at the time of the re-
use of the environment. Besides, for the persistence instance to exist, all the attributes
of a type must be persistent. By way of illustration, we provide the following
example: Let a type A derive from a type B and type A uses the types C and D; if
persistent instances can exist in type A, persistent instances must also exist in types B,
CandD.

Persistent environment properties

In [4], M. Atkinson proposes some properties that a persistent system must respect
in order to be transparent for users. These rules are the following:

1. orthogonality to the type system and to creation;
2. propagation of persistence by inheritance or by reachability;
3. behavioral transparencys;

Our persistent environment respects the two lasts rules and the orthogonality to
creation. However, our persistent environment is not completely orthogonal to the

type system. A special Ada code must be included in the corresponding package to
have persistent instance. We ensure orthogonality only for new types’ creations. In
addition to the rules proposed by Atkinson, we add a fourth rule specially for the Ada
language. This rule is the following:

4. integration of persistence into a programming language should not involve any
changes in the language.

This rule is essential for standardized languages. Compliance with this rule avoids all
the problems that arise when modifications are made to a standardized language (i.e.
loss of the standard, ensuring that releases are coherent with new languages releases,
etc.).

Our prototype

Principle

We chose to use an object-oriented database management system (O2) because
Ada is closer to the object-oriented data model than the relational data model is.
Moreover, O2 [9] complies with the object database management group (ODMG)
standard [3]. This increases the interoperability between applications.

The Ada/O2 coupling is based on the use of the O2’s application program interface
(API). The application program interface is a library of functions which allows
interaction with the database management system, insofar as the language which
interfaces with the system (here, Ada) supports a C language interface.

Generator
system

A J

Ada Applications |

Ada Tools
Ada \g 02 Apl - Ada 02 schema
C_J
\ 02 Data exchange

between Ada
02 base and 02

Ada tools + O2 schema & base +
Generator System

Persistent Ada Tool

Fig. 2: implementation of Ada persistence

At first, a set of tools has to be designed and implemented in order to connect
an Ada application to the O2 database management system (®) (see Figure 2). These

tools allow the physical connection to O2, the management of transactions, lists, sets
and bags; they also solve the impedance mismatch between Ada and O2 types. It is
then necessary to provide programmers with two generator systems. The first
generator system generates a set of Ada packages (®) corresponding to a set of O2
classes and to an O2 database (®). The second one generates O2 classes and
persistent identifiers (an O2 base) (@) corresponding to a set of Ada packages and to
a package containing the database (®).

Communication between the Ada Application and the Database Management
System

brob ot

‘ O2Api operations written in Ada : Layer of level 0 ‘

: : :
‘ Object ‘ Gestion_ptr | System_o2
¥
I T T T T T I T 1
Set ‘ List ‘ Bag ‘ ‘Name Atome |Class_type

Fig. 3. interface architecture

The architecture [1] set up here (see figure 3) is modular and is composed of
two layers. The first one contains all the API operations written in Ada; it represents
the exact image of the O2’s API written in C. The second layer contains a set of
modules providing the services necessary to connect an Ada application with an O2
database. Each module is strongly typed and provides specific services. For example,
some modules are used to define sets, lists and bags.

From Ada 95 to Java: adaptation of the persistent environment
concept to Java using 02

In the previous part of our paper, we provided a short presentation of the work
done in relation to the Ada 83 and 95 languages. Now, we are going to present the
similarities and the differences between O2, Ada 95 and Java [7].

At present, new object oriented systems are built around the same concepts
(inheritance, polymorphism, abstract class, ...). However, Ada 95, Java and O2 are
different because they include specific functionality that represent their valuable
specificity. Our aim is to show the possible similarities between an Ada/O2 binding
and a Java/O2 binding by reference to the common and specific features of Ada and
Java.

In the following two sub-sections, we draw a difference between the functionality
that affects the data representation (inheritance, polymorphism, abstract class, ...) and
the functionality that does not affect this representation (Ada task, Java thread, Java
internet functionality, ...).

Similarities between Ada 95, Java and O2

The following table presents a quick overview of the similarities between the two
languages [6, 7, 9] and O2.

Description Ada 95 Java 02 Affects the data
functionality functionality | functionality | representation?

Inheritance Tagged type (simple) | (simple) (multiple) yes

Parallelism Task Thread - no

Dynamic data type | Access type Object class yes

Polymorphism Static and dynamic dynamic dynamic yes

Data typing Strong Strong Strong yes

In this paper, we do not discuss parallelism. However, in Java, a class can extend
the thread class and add new attributes. These attributes can have values that generate
a persistent environment consistent with the definition that we have previously
provided. In this case, we consider that only these attributes are pertinent.

02 allows to create values and objects. The values do not have identifiers. It is the
values themselves that differentiate between two values. The objects have distinct
identifiers. It is the identifiers that differentiate between two objects. In Ada 95, we
can define both values and objects. Objects are created using access types. We can
consider as values those types that do not use access. In Java, all are capable of being
objects. Indeed, we can use the “wrapper class” to encapsulate the primitives types.
This feature simplifies the binding because all data structures are identified using a
reference. Only one kind of data (object) is implemented.

Ada 95 allows for both static binding and dynamic binding. Java, like O2, only
provides for dynamic binding.

Differences between Ada 95, Java and O2

Description Ada 95 Java 02 Affects the data
functionality functionality functionality | representation?

Generic Generic - - yes

Classes’ variables and | - static - yes

methods

Interface - Interface - no

Collection - - Set, bag, list | yes

Exception management | Exception,raise | Throw, try, catch | - yes

Package Package Package - yes/no

Abstract methods and | Abstract Abstract - yes
classes

Our interface between Ada 95 and O2 uses many generic units. This solution is
better than using inheritance, because using inheritance can generate type incoherence
[8]. This incoherence may affect the behavior of the methods.

Java does not provide collection builders as part of the language. The collections

are required to access high volumes of data. These builders are part of the O2
language. In Ada 95, this feature can be efficiently replaced using generic abstract
data types. In Java, we need to use inheritance [8].
Java enables several classes to be grouped in a package. Packages are not used to
implement an abstract data types. In Ada, a package is used to create an abstract data
type, to group several abstract types or to specify libraries of sub-programs. In our
study, the Java package is not a pertinent concept influencing persistent
environments. We ignore the Java package’s concept in this paper.

02 does not support abstract classes. Ada and Java support this kind of classes.
The Ada 95 and Java compilers checks that no instance of such classes is instantiated.
An abstract class can be easily mapped into an O2 class without instance. In our
definition of persistence we state that “persistence is a property that lets a quadruplet
(identifier, type, data, tag of the data) exist after run-time”: a “type” can be an
abstract class, but the ‘“‘tag of the data” cannot.

Java and Ada support management of exception, and they consider the exception as
data. In O2, we can only save the value of an exception. In this case, we do not take
into account the specificity of the exceptions.

Java permits to define the interface of a class. This interface is a set of methods that
must be implemented in the classes using this interface. A class can implement
several interfaces. This concept does not exist in Ada 95 and O2. In addition, an
interface is a set of methods and cannot be used as type of a variable. We consider
this concept as not pertinent because an interface has no effect on the environment.
Like in C++, developer can declare static variables and methods in Java. These
variables and methods are global to all the objects of the class. Only one instance of
these variables is present in the system. Static methods permit to handle static
variables. Static variables avoid the use of global variables that can generate problems
due to side effects. However, the only possibility of storing a persistent environment
that includes static data is to define an O2 persistent root for each static variable and
to define O2 functions for each static method. In such a case, the developer must find
a way of managing the problem due to the side effects. In Ada 95, we can define
variables in the package body. These variables can be handled directly by a public
sub-program provided in the package specification.

In a word

In this part of our paper, we present the similarities and the differences between
Ada 95, Java and O2. This study allows us to compare the concept and functionality

provided by each language. The fundamental concepts of the object languages are
covered by Ada 95, O2 and Java. It is easy to define, set, bag and list abstract data
types similar to the collection builders present in O2 using inheritance or generic
units. The main difficulty of adapting this interface for Java is the transformation of
our generic packages into classes using inheritance instead of genericity. The specific
functionality (static, abstract, exception, interface) cannot be considered as pertinent
to the definition of persistent environment; this is because some of them can be easily
simulated in O2.

Example

The example that we present in this paper concerns the development of a airplane
simulator. This simulator used the Ada language to implement the treatments of data.
It used the O2 OODBMS save the scenarios and the historics of the users.

In this example, we show how to develop a cost efficient solution for the treatment
of the data stored in the simulator database (visualization, capture of new scenarios,
etc.). We use the Java language to develop these specific applications.

Framework

=
Airplane Simulator 02 |¢p Java
. (Ada language) server

Java client Java client

Java client

Fig. 4. General framework of the system

The Java server manages the transactions between distant clients. It can decrypt
and/or encrypt data, control access and verify the scenario proposed.
The Java client can decrypt and/or encrypt information provide by the Java server. It
also provides statistical tools to treat the data provided by the Java server. The main
advantage of this application is that the Java client can be easily implemented into
different platforms without any need for recompilation. The realization of the Java
client and server is relatively easy because Java provides specialized tools which
facilitate design and realization of the client-server applications. However,
applications written with Java are slower than applications written with Ada. In
addition, Ada is a standardized language.

Example of code

Ada code
package SCENARIO is
type T_SCENARIO is record

ey
end record;
type C_SCENARIO is access T_SCENARIO;
... -- Operations for the type C_SCENARIO
end SCENARIO;
with SCENARIO, SET...;
package PERSISTENT_ENV is
type SET_SCENARIO is limited private;
S1 : SET_SCENARIO; -- Persistent Data
procedure COMMIT();
procedure ABORT();
private
package PKG_SET_SCENARIO is new SET(...);--Al
subtype SET_SENARIO is PKG_SET_SCENARIO.T_SET;
end PERSISTENT_ENV ;

Java code

class SCENARIO {...;

} //end SCENARIO

package MYTOOL.PERSISTENT; //J1
import MYTOOL.PERSISTENT_TOOLS.SET;
class SET_SCENARIO extend SET {

void put (SCENARIO SCN) {//J2
super.put(SCN);};

o}
public final class PERSISTENT_ENV { //J3
static SET_SCENARIO S1; //J4 Persistent Data

PERSISTENT_ENV(){...}; //J5
public static void COMMIT() {...}; //J6
public static void ABORT() {...};
....} //end PERSISTENT_ENV

// End package

02 code
class SCENARIO type tuple {...};
ceey
end;
name SET_SCENARIO : set (SCENARIO); //01

Discussion

We use an instantiation of the generic package “Set” (AI) to simulate the set
constructor provided by the O2 language (O1).

Java does not provide generic classes . Thus, we create a class “Set ” that uses the
class “Object” as element. We use a Java package (JI) that contains the specialization
of the class “Set” to “SET_SCENARIO”. The re-definition of the “put” method (J2)
could be useful to avoid type mismatch when a programmer inserts values into the
SET_SCENARIO. Indeed, only the class “PERSISTENT_ENV” can be exported
outside the package.

We declare the class “PERSISTENT_ENV” as “final” to avoid its specialization (J3)
of this class. The persistent roots are declared ‘“static”, because there is only one
persistent environment in an application. “Static” guaranties that only one occurrence
of the persistent environment exists, even if there are several instantiations of the
class “PERSISTENT_ENV” (J4, J6). A constructor is inserted into the
“PERSISTENT_ENV” class to initiate the persistent environment. In the Ada
language, this initialization (J5) is achieved by adding code into the package body.
Indeed, it is possible to run a piece of code when the generic package is instantiated.

In this example, we see that there are several differences between the different
implementations. The general software framework is similar but the implementation
requires a special effort. It is important to carry out studies concerning solutions using
design methods (OMT, UML) to palliate this effort.

The first part of our work aims to validate a generic software framework
independent of the language features. A second part of our work must generalize the
study presented in the third part of this paper “from Ada 95 to Java” for other
languages. The last part of our work seeks to propose different modules according to
the language features. For example, we must take into account the fact that languages
support parameterized types while others do not.

Conclusion

Other studies have been carried out in relation to persistence. Up to now, these
studies have related to the persistence of the Java language [10, 12]. However, an
Australian team has presented a solution for managing persistent Ada object [11]. [10,
11, 12] propose solutions 100% pure Java or 100% pure Ada. These solutions provide
an outstanding result with no type mismatch. However, these solutions are very
restrictive and do not provide solutions for exchange data. Thus, interconnection
between heterogeneous applications is difficult.

The Java solutions allow the class schema to be saved with the persistent
environment. This feature avoids problems of incoherence between applications class
schema and the corresponding persistent environment class schema when classes are
modified. This solution implies a verification of the coherence at each run-time. The
solution that we propose in this paper provides the same feature but we do not provide

for any verification. This verification will be implemented later. In addition, the
solution [12] can be easily connected with the ObjectStore database. In this case, we
will have also a coupling between a high level language and a database which
complies with the ODMG recommendations.

The first prototype has shown the feasibility of a such coupling. The test we
performed has shown that performance is good when the number of transient data
handled is greater than the number of persistent data handled. At present, we are
carrying out a study to generalize the previous work to all languages supporting
abstract data type implementation. After this study, we will perform tests concerning
the performances of our system, when we distribute data and treatment through a
network. Indeed, we want to perform tests in relation to a system in which the
treatments are distributed through heterogeneous applications. In addition, we are
thinking of replacing the O2 OODBMS by ObjectStore in order to carry out study and
which will allow us to compare the Ada/O2 binding and the Ada/ObjectStore binding.

Acknowledgments

The authors would like to thank Julian Cockain for reviewing this paper and for
suggesting a number of helpful linguistic improvements.

References

[1] T.Millan
Ada et les Systemes Orientés objets: les Environnement Persistants au Travers d’un
Systeme de Gestion de Bases de Données Orienté Objets
University Paul Sabatier Thesis; 14 September 1995 — Toulouse (France)
[2] T. Millan, P. Bazex
Ada/O2 Coupling: A solution for an Efficient Management of Persistence in Ada 83 -
Reliable Software Technologies - Ada-Europe’96 - Lecture Notes in Computer Science
1088; Springer-Verlag - Page 396-412; 10-14 June 1996 - Montreux (Switzerland)
[3] R. Cattel
ODMG 93: The Object Database Management Group - Edition Morgan Kaufmann, 1994
[4] M. Atkinson & O. Peter Buneman
Type and Persistence in Database Programming Languages - ACM Computing Surveys
-vol. 19, n° 2 - June 1987
[51 T. Accart Hardin T. & V. Donzeau-Gouge Viguié
Conception et outils de programmation. Le style fonctionnel, le style impératif avec
CAML et Ada - InterEditions, 1992
[6] J.Barnes
Programming in Ada 95 - Addison-Wesley Publishing Company, Inc., 1996
[7] P. Niemeyer, J. Peck
Exploring Java - Edition O'Reilly & Associates, Inc., 1996
[8] B.Meyer

(9]

[10]

[11]

[12]

Conception et Programmation par Objet : pour un Logiciel de Qualité -

Edition InterEditions, 1990

02-Technology

The O2 User Manuel version 4.6

M. J. Oudshoorn, S. C. Crawley

Beyond Ada95: The Addition of Persistence and its Consequences -

Reliable Software Technologies - Ada-Europe’96 - Lecture Notes in Computer Science
1088; Springer-Verlag - Page 342-356; 10-14 June 1996 - Montreux (Switzerland)
M. Atkinson; L. Daynes; M.-]J. Jordan; T. Printezis; S. Spence

An Orthogonally Persistent Java - ACM SIGMOD Record, December 1996

G. Landis; C. Lamb; T. Blackman; S. Haradhvala; M. Noyes; D. Weinred
ObjectStore PSE: a persistent Storage Engine for Java

Object Design, Inc. (Internet document)

