
HAL Id: hal-03580875
https://hal.science/hal-03580875v1

Submitted on 18 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Garbage Collection in Object Oriented Databases
Optimization of Unreachable Objects detection
Myriam Lamolle, Marc Gonzalez, Thierry Millan, Pierre Bazex

To cite this version:
Myriam Lamolle, Marc Gonzalez, Thierry Millan, Pierre Bazex. Garbage Collection in Object Ori-
ented Databases Optimization of Unreachable Objects detection. Workshop on Computer Science and
Information Technologies, Dec 2000, UFA, Russia. �hal-03580875�

https://hal.science/hal-03580875v1
https://hal.archives-ouvertes.fr

Workshop on Computer Science and Information Technologies CSIT’2000, Ufa, Russia, 2000 1

Garbage Collection in Object Oriented Databases

Optimization of Unreachable Objects detection

Myriam Lamolle

Marc Gonzalez

IRIT-CNRS (UMR 5055), IRIT-CNRS (UMR 5055),

Université Paul Sabatier Université Paul Sabatier

Toulouse, France Toulouse, France

lamolle@irit.fr marc.gonzalez@cisi.cnes.fr

 Thierry Millan Pierre Bazex

IRIT-CNRS (UMR 5055), IRIT-CNRS (UMR 5055),

Université Paul Sabatier Université Paul Sabatier

Toulouse, France Toulouse, France

millan@irit.fr bazex@irit.fr

Abstract
This article presents new garbage collection

algorithms to improve memory management in

Object Oriented Databases (OODB). A toward

garbage collector has highlighted a lack in the way

of optimisation about the detection and reallocation

of free memory space. In the context of OODB, the

essential idea is the detection of unreachable

objects. We propose a solution based on the graph

theory. In fact, we claim the main problem is the

graph tracing to detect unreachable object or

unreachable cycle. The cycle can be replaced by the

large cell which has the same characteristics as a

simple object. To begin the process of garbage

collection, we use a determinist method to locate

unreachable objects at the end of a transaction.

Moreover, the garbage collector reclaims the

memory space of unreachable objects. To implement

these concepts, we use a reference counting and a

strongly connected components table. Some

examples supports the concept of our algorithms, in

particular the special cases.

1. Introduction

Managing memory is still a main issue during application

runtime because new data representations (sound, picture,

movie, etc.) and new capabilities of communication

increase data volume used by applications. Moreover,

these data evolve very quickly. Thus, some data become

obsolete after some months, and even some days.

The first garbage collector (GC) forced applications to

stop in order to delete the false data and to reallocate the

memory. This however, is not reasonably good. New

developments try to overcome it by running GC in the

background. In the database context, LISP GC algorithms

are used, but they are inadequate here. However, in the

relational database context, objects (rows) are explicitly

deleted. Two main ways are used that is reference

counting and mark and sweep [1]. But, in the specific

context of Object Oriented DataBases (OODB), they must

be optimized because new constraints (concurrent access,

great data volume, transaction, data on disk, etc.) must be

taken into account. Also, we suggest another algorithm for

a centralized GC and memory reallocation.

In the following section, we present the main issues to

manage memory and the different GC in the OODB

context. In the third section, we propose a general solution

optimizing the work of the GC by using the concept of

graph and of graph’s path. The fourth section exposes in

detail the particular case, then, the particular case of

Strongly Connected Components (SCC). In the fifth

section, we describe the suggested algorithm, a reference

counting and a table of SCC to implement the GC. At the

end, we conclude this paper by future works to optimize

in the sixth section.

2. Garbage Collection Background

At present, DataBases (DB) manage more and more

complex objects like multimedia data. Moreover, it is

easily possible to access to distant DS through network

(internet, intranet, etc.). So, several users can

simultaneously work on the same document, implying

different versions of this document. On the other hand,

data become very quickly obsolete. Obsolete data must be

Garbage Collection in Object Oriented Databases – Optimization of Unreachable Objects Detection 2

detected by the GC to recover memory space. The

memory space can be freed and be reallocated to new

objects. However, the object’s size is variable during his

lifecycle. The first issue to solve the reorganization of

memory to avoid scattering of object in memory. This is

baneful to system performance. Moreover, grouping

together objects allows to obtain a more important free

continuous memory space. So, this space can contain new

very large objects.

A GC is a system which detects if the data are used and

automatically deletes the unused data. It distinguishes

between reachable or unreachable objects. It is used by

OODB Manager (OODBM) because the integrity of

object memory can be violated either by the explicit user’s

deletion or the implicit deletion of program.

An OODBM, to recover memory or disk space, have two

different processes:

 Collecting unreachable objects in memory; it is the

main method to stop processes latching memory,

 Collecting unreachable objects in disk; it is the main

method to stop process latching disk space.

These two types of collection are based on reachable data

concepts:

 objects in memory are reachable if they are reachable

from other objects in the scope,

 objects of disk are reachable from roots or active

process.

It seems essential to implement an automatic process

respectively named GC and memory reallocator.

Presently, two kinds of GC are used [2]. The first one uses

reference counting [3]. The second uses the mark [4] in

which the objects of graph are tracing from roots. Then

the GC destroys all unmarked data because the GC

identifies unmarked data as unreachable objects.

2.1 Reference counting

Here, the number of references to each object is updated.

A GC based on reference counting have two main

strengths:

 it is dynamic because the memory space is

recoverable as soon as the counter is equal to zero.

 it is incremental, that is the changes of the graph are

taken into account as one goes along.

However, three weaknesses exist:

 the reference counting have a limit; a reference

counting of great size is needed to be able to count

the number of referenced objects,

 two counters are modified during an allocation; the

one of indicated object and the other of referenced

object whose the value is tested,

 the unreachable cycle of objects can never be

identified.

2.2 The Mark-Sweep Garbage Collection

The principle of these garbage collectors consist in mark

objects sequentially from a root to leaves. Marked objects

are considered alive (i.e. reachable), others objects are

dead (i.e. unreachable). This principle has fathered two

types of garbage collectors:

 Mark and Sweep [4]: in the first phase, all data,

which are reachable objects are marked. Then, in the

second phase, unmarked data is deleted.

 Copy [5]: the reachable objects are copied one by

one into a new memory address.

2.2.1. The classical Mark-Sweep [4]

The former, after having marked objects as explained

above, recycles in a second step unmarked objects (i.e.

recovery of the memory space taken by these objects).

For example, namely the database at time T (Figure 1)

with marked objects (A, B C from R1), with unmarked

objects at this time (F will be by R2 in the future), and

others that it will be never (D and E). The second step will

consist in recycle memory space busy by objects D and E.

Figure 1 Marked objects in a database at time T

2.2.2. The Copying [5]

This GC merges the two marking and sweeping phases. In

this algorithm, GC divides the memory in two parts. At

the beginning, the first space contains DB’ objects. The

other space is empty. Here also, objects are covered from

a root to leaves. Each met object is copied in the second

memory space, some to the continuation of others. No

copied objects are unreachable objects. Once the tracing

of objects is finished, GC destroys all objects of first

memory space. The second memory space becomes the

current DB on which will work the GC to its next

execution, and thus of continuation.

For example, the figure 2 shows the state of memory

spaces of a DB at the instant T-1 (zone A) and at the

instant T (zone B). At the instant T-1, the DB gets, in its

first memory space (zone A), marked objects because they

R1

A

B

C

Marked Object Visited Root

Unmarked Object No visited root

R2

F

D

E

Workshop on Computer Science and Information Technologies CSIT’2000, Ufa, Russia, 2000 3

have been reached by roots (grey objects on the figure).

The GC copies marked objects in the second memory

space (zone B) at this instant T. Then GC has to destroy

the content of the zone A.

Figure 2 Two half memory spaces for DB

An optimisation of these algorithms exists in the

generational garbage collection (half-space). Here, the

most recently created objects have the most chance of

becoming unreachable objects. The memory is not

therefore divided in two spaces but in a certain number of

generations. Each sweeping of the memory is more rapid

because only a part of the memory is cleaned.

2.2.3. Garbage Collection in the Database

context

However, these different algorithms are not viable in the

context of DB for below reasons:

 large volume of data (penalisation of users

depending on the work of GC)

 effect of swap that exists between the memory

and the disc (due to difficulty of the immediate

or deferred update)

 management of transactions: an object becoming

unreachable during the transaction can again

become reachable by the principle of rollback

(attachment/detachment [6]). Some markers-

sweepers have found a solution by posing

reading or writing locks on objects.

 concurrent accesses management that can entail

conflicts between transactions, and conflicts

between transaction and GC,

 knowing the objects complete structure is very

hard (for example, no possibility to use the

concept of free memory space by a specific

instruction of programming language).

To make viable algorithms of mark-and-sweep in the DB

context, Mulatero [7] has introduced the principle of

backward pointer. By leaving from a given object, the GC

ascends by bottom-up transitivity from object to object

until a possible root. Two cases are then possible.

In the figure 3.a, the greyed subgraph is reachable from

the object O3 to root R1.

Figure 3.a Case of reachable subgraph

In the figure 3.b, the greyed subgraph is unreachable from

object O2 because the GC ascends to object O4 and

cannot go to another object or to root.

Figure 3.b Case of unreachable subgraph

Here, the GC and the transaction work in opposed senses

therefore conflict between the two. In addition, it is

incremental therefore the GC does not cover all the DB to

recuperate the memory space. But management of

backward pointer is expensive in memory space.

Moreover, the choice of an object as the starting point of

the algorithm is made manner no determinist. It is

therefore imperative to cover all the DB before to know if

all unreachable objects have well been collected.

Taking into account these different algorithms, we

envisaged to put in place a GC in the context of DB such

that:

 capable to choose an object of manner determinist,

 incremental and executing in parallel to transactions,

 automatic,

 capable to manage the table of indexes according to

the reorganisation of objects stated in memory.

3. Garbage Collection algorithm – Focus of

this paper

The principle of our GC is to leave from dereferenced

objects. It is therefore necessary to use the concept of

transaction. Indeed, when a transaction is validated, a

given object can have lost one or several incoming

references. For example, the figure 4 shows a partial view

of DB.

Figure 4 Partial view of DB before transaction T1

R2
R1

A

B

R3

C

D

R4

YY

TT

E

R

T

S

U

R1

A

B

R3

C

D

R4

YY

TT

E

U

R2
Time T

Zone A Zone B

R1

O4O2

O1 O3

R1

O4
O2

O3O1

R1 O1

O2 O4

O3

Garbage Collection in Object Oriented Databases – Optimization of Unreachable Objects Detection 4

During the transaction T1, the link from object O1 to

object O2 is going to be cut. The figure 5 shows the new

state of DB.

Figure 5 Partial view of DB after transaction T1

The underlying idea is to process all objects that lose their

incoming reference(-s) (object O2 in figure 5) then their

following objects (object O3 in figure 5). The GC works,

in fact, by descending transitivity. This technique allows

us to no use the notion of backward pointer.

In addition, this algorithm has particularity to be

incremental to the level objects. The GC chooses objects

of determinist manner, i.e. susceptible objects to be

unreachable (loss their incoming references).

Finally, it includes the spatial locality notion of objects

(processing of next objects).

4. Study of the different cases of unreachable

objects detection

4.1 Basic case

It is the presented trivial case above (figure 4 and figure

5) and that serves as basis to our algorithm of garbage

collection. When GC detects an unreachable object Oi (its

number of incoming references is 0), the GC decreases the

incoming references number of the following objects of

Oi. Then GC cuts the link between Oi and its following

objects and frees the memory space allocated to object Oi.

4.2 Several objects lost incoming references

Several objects, at the end of the transaction, can lose

incoming references. Then, it is necessary to process all

branches in parallel.

The GC is going to simulate the execution of several GC

corresponding to each action to realise on each branch.

Figure 6 Parallelisation during GC’s processing

The figure 6 shows the GC is going to process

simultaneously object O7 and object O3, then by

descending transitivity, the following objects of O3 and of

O7.

4.3 Object having one incoming reference

However, the GC can find an object that again possesses

at least one incoming reference after having processed the

preceding object.

Figure 7 Action on object O7 after dereferencing from

object O6

The figure 7 shows the deletion of object O6 by the GC.

The GC processes then the case of object O7. This last

possesses another incoming reference. A priori, the GC

cannot therefore conclude if object O7 is reachable or no.

We are going to propose solutions envisaged according to

the different cases below.

4.3.1 Detection of one root

The figure 8 exposes the case where object O7 is

connected indirectly to a root (R1).

Figure 8 Case of reachable branch

The GC concludes thanks to the detection of a root that

the object O7 is reachable. The GC stops its action on this

branch.

4.3.2 No root

The GC does not detect connected root directly or no to

the processed object.

Figure 9 Case of unreachable branch

R1 O1

O2 O4

O3

R1 O1

O2 O4

O3

R2
O7

O6O5

Addresses of objects which lost one incoming reference

got by GC after the validation of transaction.

…

…

Branch 1

Branch 2

R2
O7

O6O5

…

O8

R1 O1

O2

…
R2

O7

O6
O5

O2

O1

R2 O7
O6O5 …

R1

Workshop on Computer Science and Information Technologies CSIT’2000, Ufa, Russia, 2000 5

The figure 9 shows that the root R1 has been assigned to

the object O5 during the transaction. During of processing

of object O7 by GC, no root is detected. But the value of

incoming references counting of object O7 is 1.

Therefore, the GC stops its action on object O7 and its

next objects.

Remark: in this example (figure 9), an another GC will

begin also a processing from the object O1 (because O1 is

unreachable) what will destroy object O7 and its

following objects.

4.3.3 Detection of cycle

The GC cannot conclude directly if the object is reachable

or not when a cycle exists.

For example, the objects O2, O3 and O7 on the figure 10

form a cycle.

We are then confronted with a mathematical problem

concerning a Strongly Connected Components (SCC) of

graph [8].

It is necessary to adapt algorithms proposed by [9, 10] to

find SCC of a graph in the context of DB. The SCC is

determined in the following manner :

 constitution of the list of all direct and indirect

following objects of starting object (O7 in the figure

10)

 For all these following objects (O3 and O2 in the

figure 10), verification by descending transitivity of a

comeback on the initial object that determines the

membership or no to the SCC.

Figure 10 Detection of cycle

In figure 10, the SCC {O7, O3, O2} will be replaced by

an object called large cell possessing the same

characteristics that the other objects. It can therefore also

possess one or several incoming references. The internal

links of large cell are temporary deleted.

Then, figure 10 becomes

O5 O6

O2

O3

O7
R1

. . .

. . .

Figure 11 reduction of graph by SCC

Two configurations are then foreseeable.

Configuration1: The large cell does not possess

incoming reference. The GC destroys all internal links,

then internal objects of the large cell (figure 12) that is

considered unreachable. The GC processes the next object

of the large

cell.

O5 O6

O2

O3

O7
R1

. . .

Figure 12 Deletion of links and objects inside the SCC

Configuration2: The large cell possesses at least a

incoming (figure 11). The GC does not know if the large

cell is alive or not. The GC stops its processing about this

branch (cf. section IV.3.1 and section IV.3.2). The

internal links of SCC are restored.

N.B: if the SCC is unreachable, it is detected in the future

by another GC

V. General Algorithm of GC

V.1 Summary example

 The GC visits an object without incoming reference.

The GC has cut the link between object O5 and

object O6. The GC detects the unreachable object O6

(figure 13) because the number of 06’s incoming

references is 0 (cf. section IV.1). The GC eliminates

object O6 then pass to the next object O7.

Figure 13 Processing about object O6

O2
…

O3

R2 O7
O6O5

...

O2 O4

O3

R2 O7
O6O5

...

Garbage Collection in Object Oriented Databases – Optimization of Unreachable Objects Detection 6

 The GC visits an object with an incoming reference.

Determination of the SCC. In the figure 14, there is

no SCC.

Figure 14 Processing about object O7

The GC has now to determine either the presence of a root

in another branch to which object O7 belongs (section

IV.3.1) or the absence of a root (section IV.3.2).

If a SCC had been detected, the GC would have reduced

this last in large cell and would have made the processing

of section IV.3.3.

V.2 Algorithms of Garbage collection

V.2.1 Main Algorithm

Begin

If no incoming reference Then

Unreachable object and treatment of following

objects (cf. section IV.1)

Else

/* perhaps existing cycle */

If cycle Then

If SCC have incoming reference Then

Stop the process of this branch (cf. section

IV.3.3.Configuration2)

Else

Deletion of all objects of SCC (cf. section

IV.3.3.Configuration1)

EndIf

Else

No conclusion (cf. section IV.3.1 or section

IV.3.2)

EndIf

EndIf

End

V.2.2 Algorithm of function Cycle used by the

main algorithm

Begin

Put in a list next_object all no redundant following

objects of the object O (including himself)

If there exists a path from O to O Then

Cycle O

For all element E to next_objects Do

If there exists a path from E to O Then

Cycle Cycle + E

EndIf

EndFor

Deletion of internal links and of internal objects

of Cycle

return (true)

Else

return (false)

EndIf

End

V.3. Implementation of Algorithms

To implement these algorithms in the context of DB, we

need two tools, namely:

 A incoming reference counting: it is incremented one

by the transaction to each new incoming reference. It

is decreased one by the GC when the object loses an

incoming reference.

 A SCC table:

Oi … Oj … Next objects of Oi

 Oi

 Next objects of Oj

Figure 15 : example of SCC table

In our example of table (figure 15), the object Oi is the

starting point of the SCC. The first range represents all its

indirect and direct next objects. Columns memorize all

indirect and direct next objects of objects of the first

range. If the object Oi appears in the column then the

object starting point of the first range (object Oj in Figure

15) belongs to the SCC.

We tested these algorithms with O2 OODB. We remarked

a good treatment in the trivial cases and in the case of

cycles having little SCC.

V.4. Algorithm Proof and Complexity

The justification of this algorithm is made by the Tarjan’s

algorithm [FRO93] whose we have made an adaptation

for DB. This algorithm differs on the one hand, by the

simplification of research of SCC since we are interested

only in one SCC at once and not to a complete research of

all SCCs of graph, and on the other hand to the

replacement of the pile by a list.

Two properties that are very important and reused in the

proof of the Tarjan’s algorithm are:

O2 O4

O3

R2 O7
O6O5

...

Workshop on Computer Science and Information Technologies CSIT’2000, Ufa, Russia, 2000 7

 X, Y, 2 summits to the same SCC. If a summit

Z a path from X to Y Then Z to this same SCC.

 X, Y, 2 summits / a path from X to Y. If in a in-

depth tracing, one marks X Then Y will be marked

also.

The algorithm complexity is calculated according to the

complexity level of the SCC table.

V.5 Examples
Our algorithm, by using reference counting, allows it to

end its implementation, Which we will see in the

following examples.

V.5.1 Example 1

Let’s explore the graph without cycle (figure 16):

Figure 16 Graph representing a partial view of a DB

If the transaction commits to be validated by rendering the

database in the following state (figure 17):

Figure 17 Deletion of link during validated transaction

Then the GC receives the object’s address that has lost its

incoming reference (figure 18).

Figure 18 Transmission of object’s address to GC

The GC decreases the reference counting and then we

obtain the figure 19.

Figure 19 Modification of the value of incoming

references counting of object

The incoming references counting being null, this object

is unreachable ; the GC eliminates all outcoming

references of this object then will visit all objects that

lose one or several incoming references.

Figure 20 Transmission of address of next object

At the end of the GC process, we obtain the Figure 21

Figure 21 Reference counting is null for all

unreachable objects

These unreachable objects liberate memory spaces, these

at last can be directly recuperated by new objects or

involve a memory space reorganisation by a reallocator.

The GC will pass to the reallocator free space addresses

of the same manner that the transaction passes them to the

GC, the GC passes them to the reallocator.

R1

111 1

Oi

O4O3O2

Legend:

External reference of object

Count of incoming reference

O1

n

Object’s address which lost a incoming reference

got by GC after the validation of transaction

Legend:

R1

111 1

O1 O4O3O2

R1

101 1

O1 O4O3O2

R1

001 0

O1 O4O3O2

R1

111 1

O1 O4O3O2

R1

101 1

O1 O4O3O2

Garbage Collection in Object Oriented Databases – Optimization of Unreachable Objects Detection 8

V.5.2 Example 2

Let us graph a cycle in Figure 22.

Figure 22 Graph with a cycle in a DB

The reference counting is decreased to one. Thus, the

values of reference counting is one; a research of SCC

must be begun from object O3 to determine if it is

reachable or not. We obtain, after deleting links between

SCC’s objects, a new graph (Figure 23).

O1 O2

O8

O3

O7

R1 O1

O6

O4 O5

. . .

1 1

1

100

00

0

Figure 23 Detection of large cell

After reduction of the graph, the reference counting of the

SCC represents the sum of reference counting of each

object of the SCC. The figure 24 shows the new graph

after reduction.

Figure 24 Reduction of graph

If the sum is 1 (case of configuration2 IV.3.2 in the

general algorithm) then the GC cannot conclude about this

branch. The GC processes another branch indicated by the

transaction.

V.5.3 Example 3

Lets use an example (Figure 25) when the previous case

occurs but another object is lost a incoming reference.

Figure 25 Addresses of two objects getting by GC

The case below (Figure 26) occurs after the same process

as Figure 24.

1

R1 O1 O2 O5

1

O9R2

SCC

111

Figure 26 Detection of SCC

At this point, the GC begins again its useful treatment

from object O9 (Figure 27).

Figure 27 Processing about second object’s address

The object O9 is recuperated. The GC descends on its

next object that proves to be the SCC. This is destroyed

since its reference counting is set to 0. Then the GC

processes on object O5 and that will be destroyed also.

We will end finally on the graph represented by the figure

28.

Figure 28 Graph at the end of GC processing

Finally, all objects will be found unreachable in the timely

moment. The advantage of this method, is a minimal user

penalisation since the process undertakes on susceptible

objects to be unreachable. But, a possible penalisation can

be occur during the research of SCC. However, this is

minimal compared to the great advantage that this method

2

1

1

R1

111 2

1. . .

O1 O2 O3 O5

O8

O7

O6

O4

R1

111 1

O1 O5O2 SCC

. . .

2

R1

1 2

O1 O2 O3 O5

O8

O7

O6

O4

O9R2

1st processed address

1 1 1

1

1

1

R1

11 0

O1 O2 O5

0

O9R2

SCC

1

R1 O1 O2 O5

0

O9R2

SCC

111

Workshop on Computer Science and Information Technologies CSIT’2000, Ufa, Russia, 2000 9

brings , since it allows to recuperate objects one by one

(incremental) for a weak cost.

Remark: the GC could begin from object O9. The second

pointer had located on object with outcoming reference

counting equal to 0. Thus, we know the object has been

processed previously.

VI. Conclusions and Future works

The memory management has always been a main

problem during application running. At present, in the

way of hardware, the relative cost of this memory has

strongly decreased. On the other hand, the new data

representations (images, sounds, etc.) and the

communication capabilities have increased the data

volume used by applications. Moreover, this data evolves

very quickly. And some data becomes obsolete after some

months, and even some days.

The first garbage collectors which managed memory

stopped the running applications. This is unacceptable.

New ways of research try to overcome this problem by

using garbage collectors processing in the background of

applications.

Two relevant ways are known as reference counting and

mark. [JON99]. In the OODB context, they must be

optimised. In fact, the reference counting is incremental

and used alone but cannot detect the cycles of unreachable

objects. The mark is very costly in time because of the

tracing of an entire OODB. But it does not guaranteed the

detection of all unreachable objects. Remember:

 the improvement of security by using locks in reading

or writing in the mark and sweep; but the time cost

increases!

 The improvement of the process speed to doing

together the mark step and sweep step in the

recopying; but the fragmentation cost increases!

We propose a incremental garbage collector (GC)

concurrently to transactions. The main objective is to not

stop the transactions during reclaiming and reallocating

the free memory space; so, this GC processes in

background.

The GC works about the unreachable objects from the

objects’ graph. The algorithm of the objects process

seems relevant if the database has no big cycle (in term of

objects quantity). But, this algorithm must be improved if

the database has big cycles. Deleted objects set memory

space which is recovered by objects reallocator.

The future works will concern the improvement of

algorithm and of reachable objects regrouping in the same

page by the reallocator. We suggest several solutions to

integrate the running of the reallocator in the global

management of memory. The first one consists to run the

reallocator by GC after the end of the deletion of

unreachable objects. This solution allows recovery of

most pages during transactions. The second solution

consists to run the reallocator after database saving.

The choice of a solution depends on performance tests of

efficiency. We shall also try to test the performances of

parallel GC and with multiprocessors. Then, we shall

improve the GC implementation to use the journal of

databases to know exactly the nature of cycles (size,

quantity of objects, etc.).

Acknowledgments

We thank Mark Hogarth for his help with translation.

References

1. Jones R, Lins R. “Garbage Collection – Algorithms

for Automatic Dynamic Memory Management”. John

Wiley and sons Editor 1999

2. Cooper R. “Object Databases – An ODMG

approach”, Vol 1. Database technology series.

Thomson Computer Press, 1997.

3. Collins G. E. “A method of overlapping and erasure

of lists”. Communications of the ACM. 1960;

3(12):655-657

4. McCarthy J. “Recursive functions of symbolic

expressions and their computation by machine”.

Communications of the ACM; 1960; 3:184-195

5. Minsky M. L.”A Lisp garbage collector algorithm

using serial secondary storage”. In: Technical Report

Memo 58(rev.). Project Mac, MIT, Cambridge, MA,

1963

6. Amsaleg L. Conception et réalisation d’un glaneur

de cellules adapté aux SGBDOO client-serveur. PhD

thesis, University of Paris IV, Paris, 1995

7. Mulatero F, Thevenin J-M, Bazex P. “A global

Garbage collector for Federated Database

Management Systems”, In: Wagner R. R. (ed)

Database and Expert Systems Applications, IEEE

Computer Society, Wien, 1998

8. Bergé C. “Graphs and Hypergraphs”, North Holland

Publ. Comp., Amsterdam, 1973

9. Froidevaux C, Gaudel M-C, Soria M. “Type de

données et Algorithmes”, Collection informatique.

Ediscience International, 1993

10. Gondran M, Minoux M. “Graphes and Algorithmes”,

Collection de la direction des études et recherches

d’électricité de France. Eyrolles, Paris, 1990

