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Abstra
t

This paper is devoted to the study of a new family of distributions based on a

sine transformation. In some situations, we show that the new family provides a

suitable alternative to the so-
alled sine-G family of distributions, with the same

number of parameters. Among others, some of its signi�
ant mathemati
al proper-

ties are derived, in
luding shapes of probability density and hazard rate fun
tions,

asymptoti
, quantile fun
tion, useful expansions, moments and moment generating

fun
tion. Then, a spe
ial member with two parameters, using the inverse Weibull

distribution as baseline, is introdu
ed and investigated in detail. By 
onsidering

this new distribution as a statisti
al model, the parameters are estimated via the

maximum likelihood method. A simulation study is 
arried out to assess the per-

forman
e of the obtained estimators. The appli
ations on two real data sets are

explored, showing the ability of the proposed model to �t various type of data sets.

Keywords: Trigonometri
 distributions; Moments; Inverse Weibull distribution;

Real life data sets.
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Este artí
ulo esta dedi
ado al estudio de una nueva familia de distribu
iones basadas

en transforma
iones de la fun
ión seno. En algunas situa
iones, mostramos que la

nueva familia ofre
e una alternativa ade
uada a la llamada familia de distribu
io-

nes sine-G, 
on el mismo número de parámetros. Entre otros, se derivan algunas

de sus propiedades matemati
as signi�
ativas, que in
luyen formas densidad de

probabilidad y fun
iones de tasa de riesgo, fun
ión asintoti
a, fun
iones de 
uantil,

expansiones útiles, momentos y fun
ión generadora de momentos. Luego, se intro-

du
e e investiga en detalle un miembro espe
ial 
on dos parámetros, que utiliza la

distribu
ión inversa Weibull 
omo línea base. Al 
onsiderar esta nueva distribu
ión


omo un modelo estadísti
o, los parámetros se estiman vía los métodos de máxima

verosimilitud. Se lleva a 
abo un estudio de simula
ión para evaluar la e�
ien
ia de

los estimadores obtenidos. Se exploran las apli
a
iones en dos 
onjunto de datos

reales, mostrando la abilidad del modelo propuesto para ajustar varios tipos de


onjuntos de datos.

Palabras 
laves: Distribu
iones trigonométri
as; distribu
ión inversa Weibull;


onjuntos de datos de la vida real.

1 Introdu
tion

A 
hallenging work for the statisti
ian is to 
onstru
t �exible models for

modeling various types of data. Generally, this allows to reveal new fea-

tures of real life phenomena and provide advised predi
tions. In this re-

gards, numerous families of distributions have been 
reated via various te
h-

niques (di�erential equations, indu
tion of lo
ation, s
ale, shape parame-

ters, 
ompounding, weighting . . . ), ea
h giving �exible models, with spe
i�


properties. Among the most useful families of distributions, there are the

Marshall-Olkin-G family introdu
ed by [1℄, the exp-G family introdu
ed by

[2℄, the beta-G family introdu
ed by [3℄, the gamma-G family developed by

[4℄, the RB-G family introdu
ed by [5℄, the TX-G family introdu
ed by [6℄,

the Weibull-G family developed by [7℄, the sine-G family developed by [8℄ and

[9℄, the 
os-G family developed by [10℄ and the generalized odd Gamma-G

family introdu
ed by [11℄.

This study proposes a new family of distributions following the spirit of

the sine-G family by [8℄ and [9℄. A brief des
ription of the sine-G family is

presented below. For a given 
umulative distribution fun
tion (
df) G(x),
the sine-G family is de�ned by the 
df given by

F (x) = sin
(π

2
G(x)

)

, x ∈ R.
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This family has multiple merits in
luding the following ones. (i) It is simple

(ii) F (x) and G(x) have the same number of parameters; there is no addi-

tional parameter, avoiding any problem of over parametrization (iii) Thanks

to the trigonometri
 fun
tion, F (x) has the ability to in
rease the �exibility

of G(x), providing new �exible models. Thus, it enri
hes the literature of

new trigonometri
 distributions and models, whi
h is wel
ome in view of the

statisti
al impa
t of the few existing ones (as the sine distribution introdu
ed

by [12℄, the 
osine distribution introdu
ed by [13℄, the 
ir
ular Cau
hy distri-

bution introdu
ed by [14℄, the beta trigonometri
 distribution developed by

[15℄, the sine square distribution introdu
ed by [16℄ or the new trigonometri


exponential distribution introdu
ed by [17℄). All these aspe
ts are des
ribed

in details in [8℄, [18℄, [9℄ and [10℄, with a spe
ial fo
us on the exponential 
df

for G(x) in [8℄ and a spe
ial fo
us on the inverse Weibull 
df for G(x) in [18℄.

In these 
ases, 
omplete data analyzes show that the sine-G model 
onsider-

ably in
reases the �exibility properties of the former model (
orresponding

to G(x)), showing better �ts in 
omparison to some serious 
ompetitors.

These ni
e features are the motor of this study. Indeed, we introdu
e a

new family of distributions 
hara
terized by a 
df based on the sine fun
-

tion, 
alled the new sine-G family of distributions. We show that, in some

situations, the new sine-G models provide an interesting alternative to the

sine-G models, with possible di�erent targets in terms of modeling. In a �rst

part, we de�ne the new family, with 
omments, dis
ussions and 
omparisons

with the former sine-G family. Then, we give a 
omprehensive a

ount of

its general mathemati
al properties, su
h as shapes of probability density

and hazard rate fun
tions, asymptoti
, quantile fun
tion, useful expansions,

moments and moment generating fun
tion. As in [9℄ for the sine-G family,

we fo
us our attention on a spe
ial member based on the inverse Weibull


df for G(x), providing a new two-parameter distribution with heavy right

skewed tail. For the 
orresponding model, we investigate the estimation of

the parameters by the method of maximum likelihood, with a simulation

study illustrating their 
onvergen
e. Then, two pra
ti
al data sets are ana-

lyzed, showing that the 
orresponding model has a better �t to the standard

sine-G model, and other useful 
ompetitors. Several numeri
al and graphi
al

referen
e tools are 
onsidered (AIC, BIC, A∗
, W ∗

, K-S, P-P Plots. . . ), all

of them are favorable to the proposed model, attesting its interest for the

statisti
al so
iety.

The new sine-G family is presented in Se
tion 2, along with some of

its general mathemati
al properties. The spe
ial member using the inverse
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Weibull distribution as baseline is investigated in Se
tion 3. Then, it is 
on-

sidered as a statisti
al model in Se
tion 4, with estimation of the parameters,

simulation and appli
ations. Some 
on
luding remarks end the study in Se
-

tion 5.

2 New sine-G family of distributions

2.1 De�nition and motivations

Let us now de�ne the new sine-G family of distributions (N-sine-G for short),

with dis
ussion. The N-sine-G family is 
hara
terized by the 
df given by

F (x) = sin
(π

4
G(x)(G(x) + 1)

)

, x ∈ R. (1)

The idea behind the N-sine-G family of distributions is to put into the sine-

G family of distributions a balan
ed 
ompromise between two 
dfs: the 
df

G(x) and the squaring 
df [G(x)]2. Indeed, we 
an write F (x) as

F (x) = sin
(π

2
H(x)

)

,

where H(x) denotes a 
df de�ned as the uniform mixture ofG(x) and [G(x)]2,
i.e.,

H(x) =
1

2
G(x) +

1

2
[G(x)]2.

The idea of doing a 
ompromise between G(x) and [G(x)]2 also belongs to the
so-
alled transmuted-G family of distributions introdu
ed by [19℄. Moreover,

one 
an observe that H(x) is a 
entral member of the transmuted-G family;

we 
an express H(x) as: H(x) = G(x) + λG(x)(1 − G(x)) with λ = −1/2.
Also, one 
an note that the N-sine-G 
orresponds to the sine-H family.

On the other side, thanks to the inequality [G(x)]2 ≤ H(x) ≤ G(x) and
the fa
t that the sine fun
tion is in
reasing on (0, π/2), we have an immediate

sto
hasti
 ordering; the N-sine-G 
df 
an be bounded by two 
dfs: one of the

sine-G family and the other of the sine-G

2
family, as

sin
(π

2
[G(x)]2

)

≤ F (x) ≤ sin
(π

2
G(x)

)

.

In this sense, the N-sine-G family provides a simple alternative to the sine-G

family, with di�erent target in terms of modelling. This pra
ti
al aspe
t will
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be developed in Se
tion 4. Also, observe that no new parameter has been

added, respe
ting the prime idea of the sine-G family.

Table 1 lists some members of the N-sine-G family of (
ontinuous) distri-

butions, sele
ted for their potential usefulness. At this stage, let us mention

that the one using the inverse Weibull 
df will be the obje
t of all the atten-

tions in Se
tion 4.

Some se
ondary remarks are now formulated below. Using standard

trigonometri
 formulas, we 
an express F (x) as

F (x) = sin
(π

4
G(x)

)

cos
(π

4
[G(x)]2

)

+ sin
(π

4
[G(x)]2

)

cos
(π

4
G(x)

)

.

Using well-known inequalities involving the sine fun
tion, we have the fol-

lowing bounds for F (x) in terms of power 
df of G(x):

π

2
[G(x)]2 − π3

48
[G(x)]6 ≤ F (x) ≤ π

2
G(x).

2.2 General mathemati
al properties

The general properties of the N-sine-G family of distributions are des
ribed

in this subse
tion.

2.2.1 Central fun
tions

First of all, suppose that G(x) is the 
df of a given univariate 
ontinuous dis-

tribution. Let g(x) be a pdf 
orresponding to G(x). Then, by di�erentiation

(almost surely), the pdf 
orresponding to F (x) is given by

f(x) =
π

4
g(x) [2G(x) + 1] cos

(π

4
G(x)(G(x) + 1)

)

, x ∈ R. (2)

The hrf 
orresponding to F (x) is given by

h(x) =
f(x)

1− F (x)
=

(π/4)g(x) [2G(x) + 1] cos ((π/4)G(x)(G(x) + 1))

1− sin ((π/4)G(x)(G(x) + 1))
, x ∈ R.

(3)

Note that, using standard trigonometri
 formulas, we 
an express f(x) as

f(x) =
π

4
g(x) [2G(x) + 1]

[

cos
(π

4
G(x)

)

cos
(π

4
[G(x)]2

)

− sin
(π

4
[G(x)]2

)

sin
(π

4
G(x)

)]

.
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2.2.2 Criti
al points and asymptoti


Some features on the variations of the fun
tions F (x), f(x) and h(x) are

des
ribed below. The 
riti
al points x0 of f(x) satisfy f ′(x0) = 0, i.e.,

cos
(π

4
G(x0)(G(x0) + 1)

) [π

2
G(x0)g

′(x0) +
π

4
g′(x0) +

π

2
[g(x0)]

2
]

−
[π

2
G(x0)g(x0) +

π

4
g(x0)

]2

sin
(π

4
G(x0)(G(x0) + 1)

)

= 0. (4)

The 
riti
al points x∗ of h(x) satisfy h′(x∗) = 0, i.e.,

4[2G(x∗) + 1]g′(x∗) cos
(π

4
G(x∗)(G(x∗) + 1)

)

+ [g(x∗)]
2

[

4π[G(x∗)]
2

+ 4πG(x∗) + 8 cos
(π

4
G(x∗)(G(x∗) + 1)

)

+ π

]

= 0. (5)

We 
an determine the nature of the 
riti
al point by determining the sign of

the se
ond derivative of the fun
tion taken at this point.

The asymptotes for F (x), f(x) and h(x) are given below. When G(x) →
0, using sin(y) ∼ y when y → 0, we have

F (x) ∼ π

4
G(x), f(x) ∼ π

4
g(x), h(x) ∼ π

4
g(x).

When G(x) → 1, using sin(y) = cos(π/2 − y) ∼ 1 − (π/2 − y)2/2 and

cos(y) = sin(π/2− y) ∼ π/2− y, when y → π/2, we have

F (x) ∼ 1− π2

8

(

1− 1

2
G(x)(G(x) + 1)

)2

,

f(x) ∼ 3
π2

8
g(x)

(

1− 1

2
G(x)(G(x) + 1)

)

and

h(x) ∼ 3g(x)

1− (1/2)G(x)(G(x) + 1)
.

2.2.3 Quantile fun
tion

Let QG(x) be the quantile fun
tion (qf) 
orresponding to G(x), i.e., satisfying
G(QG(y)) = y for y ∈ (0, 1). Then, the qf 
orresponding to F (x) is given by

QF (y) = QG

(

√

4

π
arcsin(y) +

1

4
− 1

2

)

, y ∈ (0, 1). (6)
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In parti
ular, the median given by MedF = QF (0.5) = QG(x∗) with x∗ ≈
0.4574271.

Some important pra
ti
al appli
ations of QF (y) are the following. Let U
be a random variable following the uniform distribution over (0, 1). Then,

the random variable X = QF (U) has the 
df F (x) given by (1). For a given

G(x), this 
an be used to simulate di�erent values distributed following the


orresponding N-sine-G distribution. Moreover, the quantile density fun
tion

of X 
an be obtained by di�erentiating QF (y) with respe
t to y.
On the other side, the analysis of the variability of the skewness and

kurtosis 
an be investigated based on quantile measures as the Bowley skew-

ness (see [20℄) and the Moors kurtosis (see [21℄), respe
tively. The Bowley

skewness based on quartiles is given by

B =
QF (3/4) +QF (1/4)− 2QF (2/4)

QF (3/4)−QF (1/4)
.

The Moors kurtosis based on o
tiles is given by

M =
QF (3/8)−QF (1/8) +QF (7/8)−QF (5/8)

QF (6/8)−QF (2/8)
.

2.2.4 Useful expansions

Proposition 1. The 
df F (x) given by (1) 
an be expressed as sums of power


dfs, i.e., of the form [G(x)]θ, where θ is an integer.

Proof. Using the series expansions for the sine fun
tion, we have

F (x) = sin
(π

4
G(x)(G(x) + 1)

)

=

+∞
∑

k=0

(−1)k

(2k + 1)!

(π

4

)2k+1

[G(x)]2k+1(G(x) + 1)2k+1.

Then, the binomial formula gives

F (x) =
+∞
∑

k=0

2k+1
∑

ℓ=0

ak,ℓ[G(x)]ℓ+2k+1,

where

ak,ℓ =
(−1)k

(2k + 1)!

(π

4

)2k+1 (2k + 1)!

ℓ!(2k + 1− ℓ)!
. (7)



A New Sine-G Family of Distributions 60

This 
ompletes the proof of Proposition 1. �

It follows from Proposition 1 that, by di�erentiation under the sums, we


an express the pdf as

f(x) =
+∞
∑

k=0

2k+1
∑

ℓ=0

bk,ℓ[G(x)]ℓ+2kg(x), (8)

where bk,ℓ = (ℓ + 2k + 1)ak,ℓ. Moreover, the properties of the power 
dfs of

the form [G(x)]θ 
an be used to determine transformation involving f(x) as
the integrals, and, a fortiori, statisti
al properties on X . The next subse
tion

applies this result to express moments of various kind.

2.2.5 Moments

Let X be a random variable having the 
df F (x). Then the rth moment of

X is given by µ′
r = E(Xr) =

∫ +∞

−∞
xrf(x)dx. Using the series expansions (8),

assuming that the sum and integral terms exist, we obtain

µ′
r =

+∞
∑

k=0

2k+1
∑

ℓ=0

bk,ℓ

∫ +∞

−∞

xr[G(x)]ℓ+2kg(x)dx. (9)

Note that

∫ +∞

−∞
xr[G(x)]ℓ+2kg(x)dx =

∫ 1

0
xℓ+2k[QG(x)]

rdx. This integral has

not ne
essarily a 
losed form. We 
an at least 
ompute numeri
ally by using

a standard software (R, Matlab, Mathemati
a. . . ).

From µ′
r, we 
an dedu
e the mean of X given by E(X) = µ′

1, the varian
e

of X given by V(X) = µ′
2 − (µ′

1)
2
, the standard deviation of X given by

σ(X) =
√

µ′
2 − (µ′

1)
2
, the 
oe�
ient of variation given by CV = σ(X)/µ′

1,

the rth 
entral moment of X given by

µr = E [(X − µ′
1)

r] =

r
∑

k=0

r!

k!(r − k)!
(−1)k(µ′

1)
kµ′

r−k,

the 
oe�
ient of skewness given by CS = µ3/µ
3/2
2 , the 
oe�
ient of kurtosis

given by CK = µ4/µ
2
2, and the rth des
ending fa
torial moment ofX is given

by

µ(r) = E [X(X − 1) . . . (X − r + 1)] =

r
∑

k=0

sr,kµ
′
k,
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where sr,k denotes the Stirling number of the �rst kind.
The moment generating fun
tion ofX is given byM(t) = E(etX) with t ≤

0 (to ensure its existen
e, this domain of de�nition 
an be re�ned a

ording

to the de�nition G(x)). By assuming that the sum and integral terms exist,

we obtain

M(t) =
+∞
∑

k=0

2k+1
∑

ℓ=0

bk,ℓ

∫ +∞

−∞

etx[G(x)]ℓ+2kg(x)dx.

Note that

∫ +∞

−∞
etx[G(x)]ℓ+2kg(x)dx =

∫ 1

0
xℓ+2ketQG(x)dx. Again, we 
an de-

termine it numeri
ally for a given G(x). As usual, we have the following

relation between the rth moments and the moment generating fun
tion:

µ′
r = M (r)(t) |t=0 for any integer r.
Other probabilisti
 
an be express in a similar manner, as the 
hara
ter-

isti
 fun
tion, the 
onditional moments and the mean deviations. See, for

instan
e, the methodology of [11℄.

3 The N-sine-IW distribution

3.1 Presentation

We now present a spe
ial member of N-sine-G family of distributions with

support on (0,+∞) using the 
df G(x) of the inverse Weibull distribution

given by G(x) = e−(β/x)α
, α, β, x > 0 (see [22℄). We thus aim to 
onstru
t a

new heavy right skew model for real life data, by in
reasing the �exibility of

the former inverse Weibull distribution. Hereafter, this spe
ial member will

be 
alled the N-sine-IW(α, β) distribution. By using the 
df given by (1),

the N-sine-IW(α, β) distribution is 
hara
terized by the 
df given by

F (x) = sin
(π

4
e−(β/x)α(e−(β/x)α + 1)

)

, x > 0. (10)

By using (2) and (3) with g(x) = αβαx−α−1e−(β/x)α
, the 
orresponding pdf

is given by

f(x) =
π

4
αβαx−α−1e−(β/x)α

[

2e−(β/x)α + 1
]

cos
(π

4
e−(β/x)α(e−(β/x)α + 1)

)

,

x > 0, (11)
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and the 
orresponding hrf is given by

h(x) =
(π/4)αβαx−α−1e−(β/x)α

[

2e−(β/x)α + 1
]

cos
(

(π/4)e−(β/x)α(e−(β/x)α + 1)
)

1− sin ((π/4)e−(β/x)α(e−(β/x)α + 1))
,

x > 0.

The 
riti
al points for f(x) and h(x) 
an be obtained by solving the equations
(4) and (5), respe
tively. The asymptotes for F (x), f(x) and h(x) are given
below. When x → 0, we have

F (x) ∼ π

4
e−(β/x)α → 0, f(x) ∼ π

4
αβαx−α−1e−(β/x)α → 0

and

h(x) ∼ π

4
αβαx−α−1e−(β/x)α → 0.

When x → +∞, we have

F (x) ∼ 1− 9
π2

32
β2αx−2α → 1, f(x) ∼ 9

π2

16
αβ2αx−2α−1 → 0

and

h(x) ∼ 2αx−1 → 0.

We 
an remark that f(x) as a polynomial de
ay when x → +∞. Moreover,

when x → +∞, the asymptote of h(x) depends only on the parameter α.
Figure 1 shows the plots for f(x) and h(x) respe
tively, for sele
ted values

for α and β. Various forms of right skew tail 
urvatures are observed, at-

testing the ability of the N-sine-IW(α, β) to model a wide variety of life-time

data sets having su
h form of histogram.

3.2 Quantile fun
tion

Let us remark that the qf 
orresponding to G(x) is given by QG(y) =

β [− log(y)]−1/α
, y ∈ (0, 1). Then, by virtue of (6), the qf of the N-sine-

IW(α, β) distribution is given by

QF (y) = β

[

− log

(

√

4

π
arcsin(y) +

1

4
− 1

2

)]−1/α

, y ∈ (0, 1).

Let U be a random variable following the uniform distribution over (0, 1).
Then X = QF (U) follows the N-sine-IW(α, β) distribution. As an immediate
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onsequen
e, data distributed following the N-sine-IW(α, β) distribution 
an
be simulated. The median of the N-sine-IW(α, β) distribution is given by

MedF = QF (0.5) = β

[

− log

(

√

4

π
arcsin(0.5) +

1

4
− 1

2

)]−1/α

.

In a similar way, we 
an express the 
orresponding Bowley skewness and

Moors kurtosis. Table 2 indi
ates the values of the �rst quartile, median,

third quartile, Bowley skewness and Moors kurtosis of the N-sine-IW(α, β)
distribution for sele
ted values for α and β. We observe that the Bowley

skewness and Moors kurtosis do not depend on the parameter β.

3.3 Moments

LetX be a random variable following the N-sine-IW(α, β) distribution. Then
X has a rth moment if and only if r ∈ (0, 2α). Indeed, there is no problem

for x → 0 and for x → +∞, we have

xrf(x) ∼ 9
π2

16
αβ2αxr−2α−1,

and

∫ +∞

1
xr−2α−1dx exists as a Riemann integral if and only if r ∈ (0, 2α).

For given values for r, α and β, the integral expression of µ′
r 
an be evaluated

numeri
ally. On the other hand, for r ∈ (0, α), the rth moment of X 
an be

obtained by the formula given by (9), i.e.,

µ′
r =

+∞
∑

k=0

2k+1
∑

ℓ=0

bk,ℓ

∫ +∞

−∞

xr[G(x)]ℓ+2kg(x)dx.

The integral terms 
an be expressed via gamma fun
tions, as developed be-

low. Let us 
onsider the gamma fun
tion Γ(x) =
∫ +∞

0
tx−1e−tdt with x > 0.

By the 
hange of variable y = (ℓ+ 2k + 1)(β/x)α, we have

∫ +∞

−∞

xr[G(x)]ℓ+2kg(x)dx = αβα

∫ +∞

0

xr−α−1e−(ℓ+2k+1)(β/x)αdx

= βr(ℓ+ 2k + 1)r/α−1Γ
(

1− r

α

)

.
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By noti
ing that (ℓ+2k+1)r/α−1bk,ℓ = (ℓ+2k+1)r/αak,ℓ, where ak,ℓ is given
by (7), we have

µ′
r = βrΓ

(

1− r

α

)

+∞
∑

k=0

2k+1
∑

ℓ=0

ak,ℓ(ℓ+ 2k + 1)r/α.

In parti
ular, the varian
e V(X) and the standard deviation σ(X) 
an be

determined, as well as the 
oe�
ients CV, CS and CK. Table 3 shows nu-

meri
al values for for some moments of X with sele
ted values for α and β.
In parti
ular, we see that the moment in
reases as β in
rease. Moreover, we

see that the CV, CS and CK do not depend on the parameter β.

4 The N-sine-IW model

This se
tion is devoted to the 
onsideration of the N-sine-IW(α, β) distribu-
tion as statisti
al model. In parti
ular, we show that the N-sine-IW model

(NSIW for short) 
an outperform, in some senses, some existing models in

the literature.

4.1 Maximum likelihood estimation

We propose to estimate the parameters α and β of the NSIW model by

the maximum likelihood method. Let x1, . . . , xn be a sample of a random

variable following the N-sine-IW(α, β) distribution. By using the pdf f(x)
given by (11), the likelihood fun
tion is de�ned by

L(α, β) =

n
∏

i=1

f(xi) =
(π

4

)n

αnβnα

(

n
∏

i=1

xi

)−α−1

e
−

n
∑

i=1
(β/xi)α×

n
∏

i=1

[

2e−(β/xi)α + 1
]

n
∏

i=1

cos
(π

4
e−(β/xi)α(e−(β/xi)α + 1)

)

.
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The log-likelihood fun
tion is given by

ℓ(α, β) = logL(α, β)

= n log
(π

4

)

+ n log(α) + nα log(β)− (α + 1)
n
∑

i=1

log(xi)−
n
∑

i=1

(

β

xi

)α

+

n
∑

i=1

log
[

2e−(β/xi)
α

+ 1
]

+

n
∑

i=1

log
[

cos
(π

4
e−(β/xi)

α

(e−(β/xi)
α

+ 1)
)]

.

The maximum likelihood estimates (MLEs) are given by the simultaneous

solutions of the nonlinear equations: ∂ℓ(α, β)/∂α = 0 and ∂ℓ(α, β)/∂β = 0
a

ording to α and β, with

∂

∂α
ℓ(α, β) = n

(

1

α
+ log(β)

)

−
n
∑

i=1

log (xi)−
n
∑

i=1

(

β

xi

)α

log

(

β

xi

)

− 2
n
∑

i=1

e−(β/xi)
α

(β/xi)
α log (β/xi)

2e−(β/xi)
α

+ 1

+
π

4

n
∑

i=1

e−(β/xi)
α [

2e−(β/xi)
α

+ 1
]

(

β

xi

)α

log

(

β

xi

)

tan
(π

4
e−(β/xi)

α

(e−(β/xi)
α

+ 1)
)

and

∂

∂β
ℓ(α, β) =

αn

β
− α

n
∑

i=1

1

xi

(

β

xi

)α−1

− 2α
n
∑

i=1

e−(β/xi)
α

(β/xi)
α−1

xi (2e−(β/xi)
α

+ 1)

+
π

4

α

β

n
∑

i=1

e−(β/xi)
α [

2e−(β/xi)
α

+ 1
]

(

β

xi

)α

tan
(π

4
e−(β/xi)

α

(e−(β/xi)
α

+ 1)
)

.

These equations 
an not be solved analyti
ally. Numeri
al solutions exist

by the use of iterative methods su
h as Newton-Raphson type algorithms.

Under standard regularity 
onditions, it is well established that the MLEs

are asymptoti
ally unbiased and normal. This last property allows us to


onstru
t approximate 
on�den
e intervals (CI) and Likelihood ratio tests

for the parameters. In parti
ular, the CIS of α and β are of the form

[L.bound, U.bound℄, where L.bound denotes the lower bound of the interval

and U.bound the upper bound, both depending on the �xed level of the CI

and the 
omponents of the estimated Fisher information matrix. See, for

instan
e, [23℄.
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4.2 Simulations

In this subse
tion, a Monte Carlo simulations study is performed to attest

the 
onvergen
e of the MLEs. This study is repeated 1000 times ea
h with

sample sizes n = 50, 100, 200, 300, 500, 1000 and parameter 
ombinations: I:

α = 0.5 and β = 1.25, II: α = 1.0 and β = 1.5, III: α = 3.0 and β = 5.5 and
IV: α = 5.5 and β = 7.25. The R-software is used. The empiri
al Biases,

mean squared errors (MSEs), 
overage probabilities (CP) of the 95% two-

sided CIs with L.bound and U.bound for the model NSIW parameters 
an

be found in Table 4. In parti
ular, with respe
t to the theory, we observe

that the biases and MSEs de
rease with in
reasing sample size. Also, in


oheren
e with the theory, the CPs of the 
on�den
e intervals are quite 
lose

to the 95% nominal levels. Therefore, the MLEs and their asymptoti
 results


an be used for estimating and 
onstru
ting 
on�den
e intervals for the model

parameters.

4.3 Appli
ations

In this se
tion, we presented the analysis of two pra
ti
al data sets via dif-

ferent models, with a fo
us on the NSIW model.

4.3.1 Data sets

Data set 1. The �rst data set 
ontains 72 survival times in days of guinea

pigs, voluntary 
ontaminated with di�erent doses of tuber
le ba
illi. The

sour
e of this data set is [24℄. The 72 values of this data set are listed below:

12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48 , 52, 53, 54, 54, 55, 56,

57, 58, 58, 59, 60, 60, 60, 60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76,

76, 81, 83, 84, 85, 87, 91, 95, 96, 98, 99, 109, 110, 121, 127, 129, 131, 143,

146, 146, 175, 175, 211, 233, 258, 258, 263, 297, 341, 341, 376.

Figure 2 (a) presents the histogram of data set 1, showing a heavy right tail,

also indi
ated by the TTT plot in Figure 2 (b). The boxplot of data set 1 
an

be seen in Figure 3 (a) and the Q-Q plot in Figure 3 (b). From these graphi
s,

we 
learly see that the normal distribution is misappropriated, motivating

the use of a model with heavy right tail, as the NSIW model for instan
e.

Data set 2. The se
ond data set 
ontains 23 numbers of million of revo-

lutions before failure of a ball bearing. The sour
e of this data sets is [25℄.
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The 23 values of this data set are listed below: 17.88, 28.92, 33.00, 41.52,

42.12, 45.60, 48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 68.44, 68.64, 68.88,

84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40

The histogram of data set 2 is given in Figure 4 (a). We 
learly see a

heavy right tail, 
on�rmed by the TTT plot in Figure 4 (b). The boxplot of

data set 2 is presented in Figure 5 (a) and the Q-Q plot in Figure 5 (b). The

normal model is 
learly not the best for this data set; a model with heavy

right tail is required, motivating the use of the NSIW model.

4.3.2 Analysis

In order to analyze data sets 1 and 2 and 
ompare the �tted models, we


ompute some well-known measures of goodness-of-�t statisti
s: the log-

likelihood fun
tion evaluated at the MLEs (ℓ̂), Akaike information 
rite-

rion (AIC), Anderson-Darling (A∗
), Cramér�von Mises (W ∗

), Kolmogorov-

Smirnov (K-S) and P-values. The statisti
s A∗
and W ∗

are des
ribed in de-

tails in [26℄. The required 
omputations are 
arried out using the R-software.

The lower values of AIC, A∗
, W ∗

, K-S statisti
s, and high P-values indi
ate

the better �t. The 
onsidered models are the proposed NSIW model, sine

inverse Weibull model (SIW) (see [8℄ and [9℄), inverse Weibull model (IW)

(see [22℄), inverse Nadarajah-Haghighi model (INH) (see [27℄), inverse expo-

nential model (IED) (see [28℄) and inverse Rayleigh model (IRD) (see [29℄).

Their 
dfs are respe
tively given by

FNSIW (x) = sin
(π

4
e−(β/x)α(e−(β/x)α + 1)

)

, x, α, β > 0,

FSIW (x) = sin
(π

2
e−(β/x)α

)

, x, α, β > 0,

FIW (x) = e−(β/x)α , x, α, β > 0,

FINH(x) = e1−(1+β/x)α , x, α, β > 0,

FIED(x) = e−α/x, x, α > 0,

FIRD(x) = e−α/x2

, x, α > 0.

Table 5 lists the MLEs and their 
orresponding standard errors (in paren-

theses) of the model parameters for the data sets 1 and 2.

All the results from Table 6 indi
ate that the NSIW model provides the

better �t as 
ompared to other models.



A New Sine-G Family of Distributions 68

Figures 6 and 7 represent all the estimated pdfs over the histogram of data

sets 1 and 2, respe
tively. Figures 8 and 9 represent all the estimated 
dfs

with the empiri
al 
df of data sets 1 and 2, respe
tively. Figures 10 and 11

show the P-Plot for the estimated models for data sets 1 and 2, respe
tively.

In all these �gures, we observe a ni
e �t for the NSIW model. In parti
ular,

the NSIW model reveals to be visually favorable to the SIW model, whi
h

remains the best of the 
onsidered 
ompetitors. Last but not least, the

NSIW model 
an present better goodness-of-�ts to more sophisti
ated model,

with three parameters or more. For instan
e, this is the 
ase for the three

parameter gamma inverse Weibull (GIW) model introdu
ed by [30℄ satisfying

AIC = 786.5 and BIC = 793.3 for data set 1 (see [30, Table 1℄), and AIC

= 232.5 and BIC = 235.9 for data set 2 (see [30, Table 2℄).

5 Con
luding remarks

In this paper, we introdu
e the N-sine-G family of distributions as an alterna-

tive to the sine-G family proposed by [8℄ and [9℄, in
luding a two-parameter

NSIW distribution with de
reasing and upside-down bathtub hazard rates.

We investigate several of its stru
tural properties su
h as asymptotes and

shapes, quantile fun
tion, linear representation in terms of exponentiated

distributions, moments and moment generating fun
tion. The model pa-

rameters are estimated by the maximum likelihood method. A Monte Carlo

simulation study is presented to verify the adequa
y of the estimates. Then,

two pra
ti
al data sets are 
onsidered, as well as strong 
ompetitor models.

A

ording to several goodness-of-�t statisti
s, the proposed model provides


onsistently better �ts than the others. We hope that the proposed fam-

ily and its generated models will attra
t wider appli
ations in several areas

su
h as reliability engineering, insuran
e, hydrology, e
onomi
s and survival

analysis.
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Tab. 1: Some members of the N-sine-G family of distributions des
ribed by

their 
dfs.


df G(x) Support 
df F (x) Parameters

Uniform (0, θ) sin
(

π
4
x
θ
(x
θ
+ 1)

)

(θ)
Ar
sin (0, 1) sin

(

1
2
arcsin(

√
x)( 2

π
arcsin(

√
x) + 1)

)

-

Exponential (0,+∞) sin
(

π
4
(1− e−λx)(2− e−λx)

)

(λ)
Weibull (0,+∞) sin

(

π
4
(1− e−(βx)α)(2− e−(βx)α)

)

(α, β)
Inverse Weibull (0,+∞) sin

(

π
4
e−(β/x)α(1 + e−(β/x)α)

)

(α, β)
Burr XII (0,+∞) sin

(

π
4
{1− [1 + (x/s)c]−k}{2− [1 + (x/s)c]−k}

)

(c, k, s)
Logisti
 R sin

(

π
4
[1 + e−(x−µ)/s]−1

(

[1 + e−(x−µ)/s]−1 + 1
))

(µ, s)
Gumbel R sin

(

π
4
exp(−e−(x−µ)/σ)

{

exp(−e−(x−µ)/σ) + 1
})

(µ, σ)
Normal R sin

(

π
4
Φ((x− µ)/σ) {Φ((x− µ)/σ) + 1}

)

(µ, σ)
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Fig. 1: (a) Curves for the pdf f(x) (b) Curves for the hrf h(x) for sele
ted
values of the parameters.
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Tab. 2: First quartile, median, third quartile, Bowley skewness and Moors

kurtosis of the N-sine-IW(α, β) distribution for the following sele
ted
parameters values in order (α, β): (i): (2.5, 0.3), (ii): (2.5, 1), (iii):
(2.5, 2), (iv): (3, 5) and (v): (6, 1).

QF (1/4) MedF QF (3/4) B M

(i) 0.265 0.331 0.422 0.161 1.332

(ii) 0.884 1.103 1.407 0.161 1.332

(iii) 1.767 2.207 2.814 0.161 1.332

(iv) 4.511 5.427 6.645 0.142 1.314

(v) 0.950 1.042 1.153 0.094 1.279

Tab. 3: Some moments of the N-sine-IW(α, β) distribution for the following

sele
ted parameters values in order (α, β): (i): (2.5, 0.3), (ii): (2.5, 1),
(iii): (2.5, 2), (iv): (3, 5) and (v): (6, 1).

E(X) E(X2) E(X3) E(X4) V(X) σ(X) CV CS CK

(i) 0.364 0.156 0.084 0.069 0.023 0.153 0.420 2.861 32.967

(ii) 1.213 1.731 3.105 8.496 0.259 0.509 0.420 2.861 32.967

(iii) 2.426 6.923 24.842 135.939 1.036 1.018 0.420 2.861 32.967

(iv) 5.814 37.634 279.681 2543.236 3.828 1.957 0.337 2.183 16.624

(v) 1.065 1.163 1.303 1.505 0.028 0.167 0.156 1.164 6.219

Histogram of x

x

D
en

si
ty

0 100 200 300 400

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

i/n

T
(i/

n)

(a) (b)

Fig. 2: (a) Histogram (b) TTT plot for data set 1.
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Tab. 4: The Bias, MSE, CP, L.bound and U.bound obtained from simulation

of the NSIW model.

n Initial Bias MSE CP L.bound U.bound Initial Bias MSE CP L.bound U.bound

50 α 0.5 0.015 0.003 0.95 0.410 0.619 1 0.028 0.013 0.94 0.819 1.236

β 1.25 0.045 0.095 0.95 0.696 1.894 1.5 0.017 0.033 0.94 1.167 1.867

100 α 0.5 0.008 0.002 0.94 0.435 0.580 1 0.015 0.006 0.95 0.869 1.161

β 1.25 0.039 0.050 0.95 0.865 1.712 1.5 0.009 0.016 0.94 1.261 1.757

200 α 0.5 0.003 0.001 0.95 0.452 0.554 1 0.009 0.003 0.96 0.907 1.111

β 1.25 0.016 0.023 0.95 0.970 1.562 1.5 0.000 0.008 0.95 1.325 1.674

300 a 0.5 0.004 0.000 0.95 0.463 0.546 1 0.003 0.002 0.95 0.920 1.086

β 1.25 0.000 0.014 0.95 1.013 1.488 1.5 0.002 0.006 0.94 1.359 1.646

500 α 0.5 0.001 0.000 0.96 0.469 0.534 1 0.004 0.001 0.97 0.94 1.068

β 1.25 0.009 0.009 0.95 1.073 1.445 1.5 0.001 0.003 0.95 1.39 1.612

1000 α 0.5 0.001 0.000 0.95 0.478 0.524 1 0.001 0.001 0.95 0.956 1.046

β 1.25 0.000 0.004 0.96 1.119 1.381 1.5 0.001 0.002 0.95 1.422 1.579

n Initial Bias MSE CP L.bound U.bound Initial Bias MSE CP L.bound U.bound

50 α 3 0.085 0.109 0.95 2.458 3.712 5.5 0.162 0.385 0.96 4.512 6.813

β 5.5 0.020 0.051 0.94 5.096 5.944 7.25 0.017 0.026 0.94 6.963 7.571

100 α 3 0.036 0.051 0.94 2.601 3.472 5.5 0.074 0.181 0.95 4.775 6.374

β 5.5 -0.001 0.023 0.95 5.198 5.801 7.25 0.010 0.012 0.95 7.043 7.477

200 α 3 0.030 0.027 0.94 2.723 3.337 5.5 0.046 0.085 0.95 4.985 6.108

β 5.5 0.004 0.013 0.94 5.290 5.717 7.25 0.001 0.006 0.95 7.098 7.405

300 a 3 0.009 0.017 0.94 2.760 3.258 5.5 0.018 0.054 0.95 5.062 5.974

β 5.5 0.002 0.008 0.94 5.327 5.678 7.25 0.000 0.004 0.95 7.124 7.376

500 α 3 0.005 0.010 0.95 2.813 3.197 5.5 0.017 0.033 0.94 5.164 5.871

β 5.5 0.005 0.005 0.95 5.369 5.641 7.25 0.001 0.002 0.95 7.153 7.348

1000 α 3 0.003 0.005 0.95 2.867 3.139 5.5 0.002 0.018 0.94 5.253 5.751

β 5.5 0.000 0.002 0.94 5.404 5.596 7.25 0.000 0.001 0.96 7.181 7.319
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Fig. 3: (a) Boxplot (b) Normal Q-Q plot for data set 1.
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Fig. 4: (a) Histogram (b) TTT plot for data set 2.
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Fig. 5: (a) Boxplot (b) Normal Q-Q plot for data set 2.
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Tab. 5: MLEs and their standard errors (in parentheses) for the data sets 1

and 2.

Distribution α β

Data set 1

NSIW 1.187246 59.277943

(0.09749533) (4.89936841)

SIW 1.087296 78.679016

(0.09010003) (7.12214888)

IW 1.415099 54.154478

(0.1172978) (4.7819604)

INH 1.837227 25.777213

(0.6195688) (11.9194201)

IED 60.09902 -

(7.082733) -

IRD 2124.003 -

(250.2112) -

Data set 2

NSIW 1.555214 52.354276

(0.221727) (5.828250)

SIW 1.418507 64.874725

(0.2050217) (7.9449506)

IW 1.834041 48.612750

(0.2691721) (5.8731302)

INH 12.265650 2.913329

(46.28737) (11.59465)

IED 54.98987 -

(11.46618) -

IRD 2235.817 -

(466.2137) -
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Tab. 6: The statisti
s ℓ̂, AIC, BIC, A∗
, W ∗

, K-S and P-value for the data

sets 1 and 2.

Distribution ℓ̂ AIC BIC A∗ W ∗
K-S P-value

Data set 1

NSIW 391.114 786.228 790.7813 0.7421414 0.128227 0.12022 0.2491

SIW 391.8296 787.6592 792.2125 0.815797 0.1390462 0.12695 0.1962

IW 395.6491 795.4722 799.8516 1.283477 0.2148432 0.15231 0.07082

INH 400.4679 804.9357 809.4891 1.427511 0.2398301 0.14121 0.1132

IED 402.6718 807.3437 809.6203 0.9225515 0.1561167 0.18466 0.01474

IRD 406.7674 815.5347 817.8114 1.994931 0.3371843 0.26145 0.0001062

Data set 2

NSIW 113.9501 231.9001 234.1711 0.2910172 0.03847493 0.09927 0.9604

SIW 114.3037 232.6073 234.8783 0.340215 0.04477491 0.10618 0.9335

IW 115.7833 235.5666 237.8376 0.5546877 0.07517144 0.13261 0.7654

INH 119.027 242.054 244.325 0.76066 0.1063972 0.22877 0.1536

IED 121.7296 245.4592 246.5947 0.3238192 0.04286789 0.30567 0.02099

IRD 115.967 233.934 235.0695 0.6101612 0.0835341 0.14293 0.6831
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Fig. 6: Plots of the estimated pdfs for data set 1.
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Fig. 7: Plots of the estimated pdfs for data set 2.
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Fig. 10: P-P Plots of the estimated models for data set 1.
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Fig. 11: P-P Plots of the estimated models for data set 2.


