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Abstract

This paper is devoted to the study of a new family of distributions based on a
sine transformation. In some situations, we show that the new family provides a
suitable alternative to the so-called sine-G family of distributions, with the same
number of parameters. Among others, some of its significant mathematical proper-
ties are derived, including shapes of probability density and hazard rate functions,
asymptotic, quantile function, useful expansions, moments and moment generating
function. Then, a special member with two parameters, using the inverse Weibull
distribution as baseline, is introduced and investigated in detail. By considering
this new distribution as a statistical model, the parameters are estimated via the
maximum likelihood method. A simulation study is carried out to assess the per-
formance of the obtained estimators. The applications on two real data sets are
explored, showing the ability of the proposed model to fit various type of data sets.

Keywords: Trigonometric distributions; Moments; Inverse Weibull distribution;
Real life data sets.

Resumen

!Department of Statistics, Government Degree College, Khairpur Tamewali, Ba-
hawalpur, Pakistan; and Department of Statistics, The Islamia University of Bahawalpur,
Pakistan. (zafii68@gmail.com).

2Université de Caen, LMNO, Campus II, Science 3, 14032, Caen, France.
(christophe.chesneau@gmail.com).

3Corresponding author.

4Department of Statistics, The Islamia University of Bahwalpur, Pakistan.
(mtahir.stat@gmail.com).

23



A New Sine-G Family of Distributions 54

Este articulo esta dedicado al estudio de una nueva familia de distribuciones basadas
en transformaciones de la funcién seno. En algunas situaciones, mostramos que la
nueva familia ofrece una alternativa adecuada a la llamada familia de distribucio-
nes sine-G, con el mismo nimero de pardmetros. Entre otros, se derivan algunas
de sus propiedades matematicas significativas, que incluyen formas densidad de
probabilidad y funciones de tasa de riesgo, funcién asintotica, funciones de cuantil,
expansiones dtiles, momentos y funcién generadora de momentos. Luego, se intro-
duce e investiga en detalle un miembro especial con dos parametros, que utiliza la
distribucién inversa Weibull como linea base. Al considerar esta nueva distribucion
como un modelo estadistico, los parametros se estiman via los métodos de méxima
verosimilitud. Se lleva a cabo un estudio de simulacién para evaluar la eficiencia de
los estimadores obtenidos. Se exploran las aplicaciones en dos conjunto de datos
reales, mostrando la abilidad del modelo propuesto para ajustar varios tipos de
conjuntos de datos.

Palabras claves: Distribuciones trigonométricas; distribucién inversa Weibull;
conjuntos de datos de la vida real.

1 Introduction

A challenging work for the statistician is to construct flexible models for
modeling various types of data. Generally, this allows to reveal new fea-
tures of real life phenomena and provide advised predictions. In this re-
gards, numerous families of distributions have been created via various tech-
niques (differential equations, induction of location, scale, shape parame-
ters, compounding, weighting ...), each giving flexible models, with specific
properties. Among the most useful families of distributions, there are the
Marshall-Olkin-G family introduced by [1], the exp-G family introduced by
|2, the beta-G family introduced by [3], the gamma-G family developed by
[4], the RB-G family introduced by [5], the TX-G family introduced by [6],
the Weibull-G family developed by [7], the sine-G family developed by [8] and
[9], the cos-G family developed by [10] and the generalized odd Gamma-G
family introduced by [11].

This study proposes a new family of distributions following the spirit of
the sine-G family by [8] and [9]. A brief description of the sine-G family is
presented below. For a given cumulative distribution function (cdf) G(z),
the sine-G family is defined by the cdf given by

F(x) =sin (gG(:ﬂ) : x e R.
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This family has multiple merits including the following ones. (i) It is simple
(ii) F(z) and G(z) have the same number of parameters; there is no addi-
tional parameter, avoiding any problem of over parametrization (iii) Thanks
to the trigonometric function, F'(x) has the ability to increase the flexibility
of G(x), providing new flexible models. Thus, it enriches the literature of
new trigonometric distributions and models, which is welcome in view of the
statistical impact of the few existing ones (as the sine distribution introduced
by [12], the cosine distribution introduced by [13], the circular Cauchy distri-
bution introduced by [14], the beta trigonometric distribution developed by
|15], the sine square distribution introduced by |16] or the new trigonometric
exponential distribution introduced by [17]). All these aspects are described
in details in [8], [18], [9] and [10], with a special focus on the exponential cdf
for G(x) in [8] and a special focus on the inverse Weibull cdf for G(z) in [18].
In these cases, complete data analyzes show that the sine-G model consider-
ably increases the flexibility properties of the former model (corresponding
to G(x)), showing better fits in comparison to some serious competitors.

These nice features are the motor of this study. Indeed, we introduce a
new family of distributions characterized by a cdf based on the sine func-
tion, called the new sine-G family of distributions. We show that, in some
situations, the new sine-G models provide an interesting alternative to the
sine-G models, with possible different targets in terms of modeling. In a first
part, we define the new family, with comments, discussions and comparisons
with the former sine-G family. Then, we give a comprehensive account of
its general mathematical properties, such as shapes of probability density
and hazard rate functions, asymptotic, quantile function, useful expansions,
moments and moment generating function. As in |9] for the sine-G family,
we focus our attention on a special member based on the inverse Weibull
cdf for G(x), providing a new two-parameter distribution with heavy right
skewed tail. For the corresponding model, we investigate the estimation of
the parameters by the method of maximum likelihood, with a simulation
study illustrating their convergence. Then, two practical data sets are ana-
lyzed, showing that the corresponding model has a better fit to the standard
sine-G model, and other useful competitors. Several numerical and graphical
reference tools are considered (AIC, BIC, A*, W* K-S, P-P Plots...), all
of them are favorable to the proposed model, attesting its interest for the
statistical society.

The new sine-G family is presented in Section 2, along with some of
its general mathematical properties. The special member using the inverse
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Weibull distribution as baseline is investigated in Section 3. Then, it is con-
sidered as a statistical model in Section 4, with estimation of the parameters,
simulation and applications. Some concluding remarks end the study in Sec-
tion 5.

2 New sine-G family of distributions

2.1 Definition and motivations

Let us now define the new sine-G family of distributions (N-sine-G for short),
with discussion. The N-sine-G family is characterized by the cdf given by

F(z) = sin <%G(:)§)(G(1’) + 1)) , z eR (1)

The idea behind the N-sine-G family of distributions is to put into the sine-
G family of distributions a balanced compromise between two cdfs: the cdf
G(z) and the squaring cdf [G(z)]*. Indeed, we can write F(x) as

. (T
F(z) =sin (§H(a7)> :
where H(z) denotes a cdf defined as the uniform mixture of G(z) and [G(x))?,

H(r) = 5G() + 3G

The idea of doing a compromise between G(z) and [G(x)]* also belongs to the
so-called transmuted-G family of distributions introduced by [19]. Moreover,
one can observe that H(z) is a central member of the transmuted-G family;
we can express H(z) as: H(z) = G(x) + A\G(z)(1 — G(x)) with A = —1/2.
Also, one can note that the N-sine-G corresponds to the sine-H family.

On the other side, thanks to the inequality [G(z)]? < H(z) < G(x) and
the fact that the sine function is increasing on (0, 7/2), we have an immediate
stochastic ordering; the N-sine-G cdf can be bounded by two cdfs: one of the
sine-G family and the other of the sine-G? family, as

sin <g[G(x)]2) < F(z) < sin <gG(x)) .

In this sense, the N-sine-G family provides a simple alternative to the sine-G
family, with different target in terms of modelling. This practical aspect will
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be developed in Section 4. Also, observe that no new parameter has been
added, respecting the prime idea of the sine-G family.

Table 1 lists some members of the N-sine-G family of (continuous) distri-
butions, selected for their potential usefulness. At this stage, let us mention
that the one using the inverse Weibull cdf will be the object of all the atten-
tions in Section 4.

Some secondary remarks are now formulated below. Using standard

trigonometric formulas, we can express F'(x) as
T 7T

F(z) = sin <%G(aj)) cos <%[G(m)]2) + sin <Z[G(x)]2) cos <ZG(3;’)) :

Using well-known inequalities involving the sine function, we have the fol-
lowing bounds for F'(x) in terms of power cdf of G(z):

(G@)]* = £[G@)" < Fa) <

s
18 = 26(@):

2.2 General mathematical properties

The general properties of the N-sine-G family of distributions are described
in this subsection.

2.2.1 Central functions

First of all, suppose that G(x) is the cdf of a given univariate continuous dis-
tribution. Let g(z) be a pdf corresponding to G(z). Then, by differentiation
(almost surely), the pdf corresponding to F'(x) is given by

fla) = %g(m) 2G(2) + 1] cos GG(I)(G(I) + 1)) . zeR. (2

The hrf corresponding to F'(z) is given by

h(z) = flz) _ (n/4)g(x) RG(z) + U cos (n/4)G(2)(Gx) +1)) o
1- F(z) 1 —sin ((7/4)G(x)(G(z) + 1)) ’ N '

Note that, using standard trigonometric formulas, we can express f(x) as

() zgg(z’) 2G(z) + 1] [cos GG(I)) cos (%[G(:):)P)

—sin <%[G(ZL’)]2) sin <ZG(ZB)>] .
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2.2.2 Critical points and asymptotic

Some features on the variations of the functions F(x), f(z) and h(z) are
described below. The critical points xq of f(x) satisfy f'(z¢) =0, i.e.,

cos (TG an) (Gao) + 1)) [ 24/ (o) + Zlolwo))?]

~ [56tgtwo) + Tote)] sin (TG (Glao) +1) =0 (4)

The critical points x, of h(x) satisfy h/(z,) =0, i.e.,

126(z.) + 11 (2.) cos (TG (G (w.) + 1)) + lo(o ) [a7(G )

G(x0)g'(20) +

+ 47 G(w.) + 8 cos (%G(;@*)(G(m + 1)) + W] — 0. (5)

We can determine the nature of the critical point by determining the sign of
the second derivative of the function taken at this point.
The asymptotes for F'(z), f(z) and h(x) are given below. When G(z) —
0, using sin(y) ~ y when y — 0, we have
T T

Fla) ~ 2G),  J(x) ~ Zo(a),  h(x) ~ ().

When G(z) — 1, using sin(y) = cos(n/2 —y) ~ 1 — (7/2 — y)?/2 and
cos(y) = sin(w/2 —y) ~ 7/2 —y, when y — 7/2, we have
2

s 1 2
F(z) ~1-— r} (1 — §G(5L’)(G(5L’) + 1)) ,

2

) ~ 3% 0(0) (1 566G + 1)

and
3g()

1—-(1/2)G(2)(G(x) + 1)

h(z) ~

2.2.3 Quantile function

Let Q¢(x) be the quantile function (qf) corresponding to G(z), i.e., satisfying
G(Qqg(y)) =y for y € (0,1). Then, the gf corresponding to F(z) is given by

Qrly) = Qo <\/é aresin(y) + { - %) CweOn. ()
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In particular, the median given by Medr = Qr(0.5) = Qqg(x,) with z, ~
0.4574271.

Some important practical applications of Qr(y) are the following. Let U
be a random variable following the uniform distribution over (0,1). Then,
the random variable X = Qp(U) has the c¢df F/(z) given by (1). For a given
G(x), this can be used to simulate different values distributed following the
corresponding N-sine-G distribution. Moreover, the quantile density function
of X can be obtained by differentiating Qr(y) with respect to y.

On the other side, the analysis of the variability of the skewness and
kurtosis can be investigated based on quantile measures as the Bowley skew-
ness (see |20]) and the Moors kurtosis (see |21]), respectively. The Bowley
skewness based on quartiles is given by

B Qr(3/4) + Qr(1/4) —2Qr(2/4)
Qr(3/4) — Qr(1/4) '

The Moors kurtosis based on octiles is given by

Qr(3/8) — Qr(1/8) + Qr(7/8) — Qr(5/8)

Qr(6/8) — Qr(2/8) '

M=

2.2.4 Useful expansions

Proposition 1. The cdf F(z) given by (1) can be expressed as sums of power
cdfs, i.e., of the form [G(x)]?, where 0 is an integer.

Proof. Using the series expansions for the sine function, we have

F(z) =sin (%G(m)(G(m) + 1))

= kZ:O % <%>2k+1 (G ()2 (G(z) + 1)2+1,

Then, the binomial formula gives

+oo 2k+1

F(x) _ Z Z ahg[G(l’)]“_%_l—I,

k=0 (=0

where

4

(DR myee (2K 4 1)!
““‘(%H)!() 02k +1-0)1 (7)
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This completes the proof of Proposition 1. [J

It follows from Proposition 1 that, by differentiation under the sums, we
can express the pdf as

+o00 2k+1

Z Z bké Z+2k (ZL’), (8)

k=0 (=0

where by = (¢ + 2k + 1)ag,. Moreover, the properties of the power cdfs of
the form [G(x)]? can be used to determine transformation involving f(z) as
the integrals, and, a fortiori, statistical properties on X. The next subsection
applies this result to express moments of various kind.

2.2.5 Moments

Let X be a random variable having the cdf F'(z). Then the rth moment of
X is given by pul = E(X") = fj;o x" f(x)dz. Using the series expansions (8),
assuming that the sum and integral terms exist, we obtain

+o0 2k+1

SNy OIS o)

Note that [ 2"[G(2)]“%g(z)dz = 1 2% [Qq(z)]"dz. This integral has
not necessarily a closed form. We can at least compute numerically by using
a standard software (R, Matlab, Mathematica. .. ).

From p, we can deduce the mean of X given by E(X) = 4, the variance
of X given by V(X) = pb — (1})?, the standard deviation of X given by
o(X) = /ph — (uh)?, the coefficient of variation given by CV = o(X)/u,
the rth central moment of X given by

e —EI(X — i) }:HT_ 1))

the coefficient of skewness given by C'S = 3/ ,ug/ ?_ the coefficient of kurtosis
given by CK = u4/p2, and the rth descending factorial moment of X is given
by

fey =E[X(X —1)... (X —r +1)] Zsrkuk,



61 Mahmood, Chesneau, Tahir

where s, denotes the Stirling number of the first kind.

The moment generating function of X is given by M(t) = E(e'X) with ¢ <
0 (to ensure its existence, this domain of definition can be refined according
to the definition G(z)). By assuming that the sum and integral terms exist,
we obtain

400 2k+1 400
o0

ME) =" by /_ e [G(x)) g (x)da.

k=0 ¢=0

Note that fj;o e [G(2)]) 2 g(2)dr = fol % etQc@) dy Again, we can de-
termine it numerically for a given G(x). As usual, we have the following
relation between the rth moments and the moment generating function:
. = M (t) |,—o for any integer 7.

Other probabilistic can be express in a similar manner, as the character-
istic function, the conditional moments and the mean deviations. See, for
instance, the methodology of [11].

3 The N-sine-1W distribution

3.1 Presentation

We now present a special member of N-sine-G family of distributions with
support on (0, +00) using the c¢df G(x) of the inverse Weibull distribution
given by G(z) = e~ B/ o, B,z > 0 (see [22]). We thus aim to construct a
new heavy right skew model for real life data, by increasing the flexibility of
the former inverse Weibull distribution. Hereafter, this special member will
be called the N-sine-IW (e, 8) distribution. By using the cdf given by (1),
the N-sine-IW(«, #) distribution is characterized by the cdf given by

F(z) = sin (%e—wx)“(e—(ﬁ/x)“ + 1)) . x>0 (10)

By using (2) and (3) with g(z) = aB*x=2"1e~(#/%)" the corresponding pdf
is given by

f(z) = %aﬁo‘x_a_le_(ﬁ/x)a [2¢7%/")% +1] cos <%e_(5/x)a (em /2" 4 1)) ,
x>0, (11)
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and the corresponding hrf is given by
h(,],’) _ (7T/4)o[ﬁax—a—le—(6/x)a [26—(5/50)0 + 1] cos ((7T/4)6_(B/x)a (6_(6/96)(1 + 1>)
1 — sin ((7‘(‘/4)6—(5/1)“ (e—(ﬁ/w)a + 1)) )
z > 0.

The critical points for f(z) and h(x) can be obtained by solving the equations
(4) and (5), respectively. The asymptotes for F'(z), f(z) and h(z) are given
below. When x — 0, we have

F(x) ~ %e_(ﬁ/x)a — 0, f(z) ~ %aﬁo‘x_a_le_(ﬁ/x)a — 0
and -
h(z) ~ Zaﬁo‘x_"_le_(ﬁ/x)a — 0.

When z — 400, we have
T a2 T o —9a-1
F(x)~1—93—2ﬁ T =1, f(x)~9ﬁozﬁ x —0

and
h(z) ~ 2ax™! — 0.

We can remark that f(z) as a polynomial decay when = — +o00. Moreover,
when = — +00, the asymptote of h(x) depends only on the parameter a.

Figure 1 shows the plots for f(x) and h(z) respectively, for selected values
for  and . Various forms of right skew tail curvatures are observed, at-
testing the ability of the N-sine-IW(a, #) to model a wide variety of life-time
data sets having such form of histogram.

3.2 Quantile function

Let us remark that the qf corresponding to G(x) is given by Qg(y) =
Bl=log(y)] ™, y € (0,1). Then, by virtue of (6), the qf of the N-sine-
IW(a, B) distribution is given by

—1/a
Qr(y) =0 [— log <\/§ arcsin(y) + i — %)] ., ye(0,1).

Let U be a random variable following the uniform distribution over (0, 1).
Then X = Qp(U) follows the N-sine-IW(a, ) distribution. As an immediate
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consequence, data distributed following the N-sine-IW (v, ) distribution can
be simulated. The median of the N-sine-IW(«, #) distribution is given by

1 RN I
Medr = Qr(0.5) =p [— log (\/; arcsin(0.5) + i 5)] :

In a similar way, we can express the corresponding Bowley skewness and
Moors kurtosis. Table 2 indicates the values of the first quartile, median,
third quartile, Bowley skewness and Moors kurtosis of the N-sine-IW(«, [3)
distribution for selected values for o and 5. We observe that the Bowley
skewness and Moors kurtosis do not depend on the parameter f3.

3.3 Moments

Let X be a random variable following the N-sine-IW («, /3) distribution. Then
X has a rth moment if and only if r € (0,2a). Indeed, there is no problem
for x — 0 and for x — 400, we have

2

s 20—
Jfrf(l') ~ 91_6aﬁ2axr 2 1’

and [ 2""2*1dx exists as a Riemann integral if and only if € (0, 2a).
For given values for r, & and 3, the integral expression of y can be evaluated
numerically. On the other hand, for r € (0, «), the rth moment of X can be
obtained by the formula given by (9), i.e.,

+o00 2k+1 +00
=33 b / 2 [G()) g () de
k=0 ¢=0 o0

The integral terms can be expressed via gamma functions, as developed be-
low. Let us consider the gamma function I'(x) = f0+°° t*~te~tdt with z > 0.
By the change of variable y = (¢ + 2k + 1)(8/x)®, we have

+oo 1o
/ " [G(:E)]“%g(x)dx — Oéﬁa / $r—a—16_(z+2k+1)(ﬁ/x)adx
N 0

[e.9]

= (04 2k+ )70 (1= 1),
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By noticing that (¢+2k+1)"/971by, , = (£ + 2k +1)"/%ay 4, where ay is given
by (7), we have

+o0 2k+1

p=pT (1 - 2) SO a4 2k + 1)

k=0 (=0

In particular, the variance V(X) and the standard deviation o(X) can be
determined, as well as the coefficients CV, CS and CK. Table 3 shows nu-
merical values for for some moments of X with selected values for o and f.
In particular, we see that the moment increases as [ increase. Moreover, we
see that the CV, CS and CK do not depend on the parameter .

4 The N-sine-IW model

This section is devoted to the consideration of the N-sine-IW(«, §) distribu-
tion as statistical model. In particular, we show that the N-sine-IW model
(NSIW for short) can outperform, in some senses, some existing models in
the literature.

4.1 Maximum likelihood estimation

We propose to estimate the parameters a and § of the NSIW model by
the maximum likelihood method. Let z,...,x, be a sample of a random
variable following the N-sine-IW(«, ) distribution. By using the pdf f(x)
given by (11), the likelihood function is defined by

n n

- ot AYe?
' i=1

.H [2e= (/70" 4 1] HCOS (%—(ﬁ/mm(e—(ﬁ/mi)a 4 1)) _
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The log-likelihood function is given by
l(a, B) = log L(ev, B)

—nlog(4> + nlog(a) + nalog(5) — (a+1)ilog(xi) _ Xn: (a%)a

1=1

+Zlog [2e~(B/20% 4 1] +Zlog [COS<4 ~(B/zi) (o=(B/wi)" +1))].

=1

The maximum likelihood estimates (MLEs) are given by the simultaneous
solutions of the nonlinear equations: 9¢(«, 8)/0a = 0 and 9l(«, 5)/08 = 0
according to o and [, with

e b )-S5 (2) e (2)

=1

22 O (5o (5

2¢—(B/z)* 41

+ % ZZ:; 6_(5/502')‘1 [26_(6/“)“ i 1} <ﬁ) log (g) tan <%6—(5/Ii)a (6—(5/%)“ L 1))

8

2

and

—(B/zi)®

0 _an 1B\ (8"
%“Q’@—T@a(z) Ry

n __Z (612" [9e=(8/20" 4 1] (ﬁ) tan <4 (/) (= Bz 1)>,

X

These equations can not be solved analytically. Numerical solutions exist
by the use of iterative methods such as Newton-Raphson type algorithms.
Under standard regularity conditions, it is well established that the MLEs
are asymptotically unbiased and normal. This last property allows us to
construct approximate confidence intervals (CI) and Likelihood ratio tests
for the parameters. In particular, the CIS of o and [ are of the form
[L.bound, U.bound|, where L.bound denotes the lower bound of the interval
and U.bound the upper bound, both depending on the fixed level of the CI
and the components of the estimated Fisher information matrix. See, for
instance, [23].
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4.2 Simulations

In this subsection, a Monte Carlo simulations study is performed to attest
the convergence of the MLEs. This study is repeated 1000 times each with
sample sizes n = 50, 100, 200, 300, 500, 1000 and parameter combinations: I:
a=05and =125 I a=1.0and =15, III: « = 3.0 and § = 5.5 and
IV: @« = 5.5 and § = 7.25. The R-software is used. The empirical Biases,
mean squared errors (MSEs), coverage probabilities (CP) of the 95% two-
sided CIs with L.bound and U.bound for the model NSIW parameters can
be found in Table 4. In particular, with respect to the theory, we observe
that the biases and MSEs decrease with increasing sample size. Also, in
coherence with the theory, the CPs of the confidence intervals are quite close
to the 95% nominal levels. Therefore, the MLEs and their asymptotic results
can be used for estimating and constructing confidence intervals for the model
parameters.

4.3 Applications

In this section, we presented the analysis of two practical data sets via dif-
ferent models, with a focus on the NSIW model.

4.3.1 Data sets

Data set 1. The first data set contains 72 survival times in days of guinea
pigs, voluntary contaminated with different doses of tubercle bacilli. The
source of this data set is [24]. The 72 values of this data set are listed below:
12, 15, 22, 24, 24, 32, 32, 33, 34, 38, 38, 43, 44, 48 | 52, 53, 54, 54, 55, 56,
57, 58, 58, 59, 60, 60, 60, 60, 61, 62, 63, 65, 65, 67, 68, 70, 70, 72, 73, 75, 76,
76, 81, 83, 84, 85, 87, 91, 95, 96, 98, 99, 109, 110, 121, 127, 129, 131, 143,
146, 146, 175, 175, 211, 233, 258, 258, 263, 297, 341, 341, 376.
Figure 2 (a) presents the histogram of data set 1, showing a heavy right tail,
also indicated by the TTT plot in Figure 2 (b). The boxplot of data set 1 can
be seen in Figure 3 (a) and the Q-Q plot in Figure 3 (b). From these graphics,
we clearly see that the normal distribution is misappropriated, motivating
the use of a model with heavy right tail, as the NSIW model for instance.
Data set 2. The second data set contains 23 numbers of million of revo-
lutions before failure of a ball bearing. The source of this data sets is [25].
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The 23 values of this data set are listed below: 17.88, 28.92, 33.00, 41.52,
42.12, 45.60, 48.80, 51.84, 51.96, 54.12, 55.56, 67.80, 68.44, 68.64, 68.88,
84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40

The histogram of data set 2 is given in Figure 4 (a). We clearly see a
heavy right tail, confirmed by the TTT plot in Figure 4 (b). The boxplot of
data set 2 is presented in Figure 5 (a) and the Q-Q plot in Figure 5 (b). The
normal model is clearly not the best for this data set; a model with heavy
right tail is required, motivating the use of the NSIW model.

4.3.2 Analysis

In order to analyze data sets 1 and 2 and compare the fitted models, we
compute some well-known measures of goodness-of-fit statistics: the log-
likelihood function evaluated at the MLEs (¢), Akaike information crite-
rion (AIC), Anderson-Darling (A*), Cramér—von Mises (IW*), Kolmogorov-
Smirnov (K-S) and P-values. The statistics A* and W* are described in de-
tails in [26]. The required computations are carried out using the R-software.
The lower values of AIC, A*, W* | K-S statistics, and high P-values indicate
the better fit. The considered models are the proposed NSIW model, sine
inverse Weibull model (SIW) (see [8] and [9]), inverse Weibull model (IW)
(see |22]), inverse Nadarajah-Haghighi model (INH) (see [27]), inverse expo-
nential model (IED) (see [28|) and inverse Rayleigh model (IRD) (see [29]).

Their cdfs are respectively given by

Fysrw(z) = sin (%e_(ﬁ/w)a(e_(ﬁ/w)a + 1)) ., x,a,8>0,

Fsrw(x) = sin <ge_(ﬁ/$)a> , x,a,0 >0,

(z)
(z)
Fry(z) =e B/ 2 a,8>0,
(z)
(z)
(z)

Finm(r) = 61_(1+5/I)a> z,a,3 >0,
Figplz) =" z.,a>0,
Frap(z) = e ®/* ., x,a> 0.

Table 5 lists the MLEs and their corresponding standard errors (in paren-
theses) of the model parameters for the data sets 1 and 2.

All the results from Table 6 indicate that the NSIW model provides the
better fit as compared to other models.
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Figures 6 and 7 represent all the estimated pdfs over the histogram of data
sets 1 and 2, respectively. Figures 8 and 9 represent all the estimated cdfs
with the empirical cdf of data sets 1 and 2, respectively. Figures 10 and 11
show the P-Plot for the estimated models for data sets 1 and 2, respectively.
In all these figures, we observe a nice fit for the NSIW model. In particular,
the NSIW model reveals to be visually favorable to the SIW model, which
remains the best of the considered competitors. Last but not least, the
NSIW model can present better goodness-of-fits to more sophisticated model,
with three parameters or more. For instance, this is the case for the three
parameter gamma inverse Weibull (GIW) model introduced by |30] satisfying
AIC = 786.5 and BIC = 793.3 for data set 1 (see [30, Table 1]), and AIC
= 232.5 and BIC = 235.9 for data set 2 (see [30, Table 2|).

5 Concluding remarks

In this paper, we introduce the N-sine-G family of distributions as an alterna-
tive to the sine-G family proposed by [8] and [9], including a two-parameter
NSIW distribution with decreasing and upside-down bathtub hazard rates.
We investigate several of its structural properties such as asymptotes and
shapes, quantile function, linear representation in terms of exponentiated
distributions, moments and moment generating function. The model pa-
rameters are estimated by the maximum likelihood method. A Monte Carlo
simulation study is presented to verify the adequacy of the estimates. Then,
two practical data sets are considered, as well as strong competitor models.
According to several goodness-of-fit statistics, the proposed model provides
consistently better fits than the others. We hope that the proposed fam-
ily and its generated models will attract wider applications in several areas
such as reliability engineering, insurance, hydrology, economics and survival
analysis.
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Tab. 1: Some members of the N-sine-G family of distributions described by

their cdfs.
cdf G(z) Support cdf F(z) Parameters
Uniform (0,0) sin (52(% +1)) (0)
Arcsin (0,1) sin (1 arcsin(y/z)(2 arcsin(y/z) + 1)) -
Exponential (0,400) sin (Z(1—e)(2— *“)) N
Weibull (0,400) sin (F(1— e B07)(2 — e~ (B0)7)) (o, B)
Inverse Weibull (0, +00) sin (Fe=(#/)%(1 + e~ (3/2)%)) (o, B)
Burr XII (0,400) sin ({1 —[1+ (z/s)] " H2 =1+ (x/s)7]7*}) (c,k, s)
Logistic R sin (2[1 + e @=m/3] =1 ([1 4 e~=m/5]71 1)) (u, 8)
Gumbel R sin (£ exp(—e~@#/7) {exp(—e~(==1/7) 4+ 1}) (1, 0)
Normal R sin (20((z — p) /o) {®((x — p) /o) + 1}) (1, 0)

24 — a=03B=04 — a=08B=01
a=09 p=05 S -~ @=09p=05
a=24 $=095 [ a=18 p=0.7
a=10.1p=2 Y -+ a=101p=2

Fig. 1: (a) Curves for the pdf f(x) (b) Curves for the hrf h(z) for selected
values of the parameters.
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Tab. 2: First quartile, median, third quartile, Bowley skewness and Moors
kurtosis of the N-sine-IW(a, 8) distribution for the following selected
parameters values in order (a, 8): (i): (2.5,0.3), (ii): (2.5,1), (iii):
(2.5,2), (iv): (3,5) and (v): (6,1).

| | Qr(1/4) | Medr | Qr(3/49)| B | M |
(i) 0.265 0.331 0.422 0.161 | 1.332
(ii) 0.884 1.103 1.407 0.161 | 1.332
(iii) 1.767 2.207 2.814 0.161 | 1.332
(
(

iv) 4.511 0.427 6.645 0.142 | 1.314
\ 0.950 1.042 1.153 0.094 | 1.279

Tab. 3: Some moments of the N-sine-IW(«, ) distribution for the following
selected parameters values in order («, 8): (i): (2.5,0.3), (ii): (2.5, 1),
(iii): (2.5,2), (iv): (3,5) and (v): (6,1).

| EX) [EX?Y) | EX?) | EXY) [VIX)|o(X)] CV | CS | CK |

i) | 0.364 | 0.156 0.084 0.069 0.023 | 0.153 | 0.420 | 2.861 | 32.967

i) | 1.213 | 1.731 3.105 8.496 0.259 | 0.509 | 0.420 | 2.861 | 32.967

i) | 2426 | 6.923 | 24.842 | 135.939 | 1.036 | 1.018 | 0.420 | 2.861 | 32.967

)
iv) | 5.814 | 37.634 | 279.681 | 2543.236 | 3.828 | 1.957 | 0.337 | 2.183 | 16.624
v 1.065 | 1.163 | 1.303 1.505 0.028 | 0.167 | 0.156 | 1.164 | 6.219

Histogram of x

0.8

Density
0000 0002 0004 0006 0008 0.010
T(im)

0.4 06
L L

0.0
L
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Fig. 2: (a) Histogram (b) TTT plot for data set 1.
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Tab. 4: The Bias, MSE, CP, L.bound and U.bound obtained from simulation

of the NSIW model

n Initial | Bias | MSE | CP | L.bound | U.bound || Initial | Bias | MSE | CP | L.bound | U.bound
50 |[a| 0.5 0.015 | 0.003 | 0.95 | 0.410 0.619 1 0.028 | 0.013 | 0.94 | 0.819 1.236
B 1.25 | 0.045 | 0.095 | 0.95 | 0.696 1.894 1.5 [0.017 | 0.033 | 0.94 | 1.167 1.867
100 | a| 0.5 0.008 | 0.002 | 0.94 | 0.435 0.580 1 0.015 | 0.006 | 0.95 | 0.869 1.161
61 1.25 | 0.039 | 0.050 | 0.95 | 0.865 1.712 1.5 |0.009 | 0.016 | 0.94 | 1.261 1.757
200 ||| 0.5 0.003 | 0.001 | 0.95 | 0.452 0.554 1 0.009 | 0.003 | 0.96 | 0.907 1.111
A 1.25 | 0.016 | 0.023 | 0.95 | 0.970 1.562 1.5 10.000 | 0.008 | 0.95 | 1.325 1.674
300 [[a| 05 0.004 | 0.000 | 0.95 | 0.463 0.546 1 0.003 | 0.002 | 0.95 | 0.920 1.086
A1 1.25 | 0.000 | 0.014 | 0.95 1.013 1.488 1.5 [0.002 | 0.006 | 0.94 | 1.359 1.646
500 ||| 0.5 0.001 | 0.000 | 0.96 | 0.469 0.534 1 0.004 | 0.001 | 0.97 0.94 1.068
61 1.25 | 0.009 | 0.009 | 0.95 1.073 1.445 1.5 |0.001 | 0.003 | 0.95 1.39 1.612
1000 || « | 0.5 0.001 | 0.000 | 0.95 | 0.478 0.524 1 0.001 | 0.001 | 0.95 | 0.956 1.046
£ 1.25 | 0.000 | 0.004 | 0.96 | 1.119 1.381 1.5 [0.001 | 0.002 | 0.95 | 1.422 1.579

n Initial | Bias | MSE | CP | L.bound | U.bound || Initial | Bias | MSE | CP | L.bound | U.bound
5 || « 3 0.085 | 0.109 | 0.95 | 2.458 3.712 5.5 [0.162 | 0.385 | 0.96 | 4.512 6.813
Bl 5.5 0.020 | 0.051 | 0.94 | 5.096 5.944 7.25 | 0.017 | 0.026 | 0.94 | 6.963 7.571
100 || « 3 0.036 | 0.051 | 0.94 | 2.601 3.472 55 10.074]0.181 | 0.95 | 4.775 6.374
Bl 55 |-0.0010.023 095 5.198 5.801 7.25 |0.010 | 0.012 | 0.95 | 7.043 7477
200 || « 3 0.030 | 0.027 | 0.94 | 2.723 3.337 5.5 10.046 | 0.085 | 0.95 | 4.985 6.108
Bl 55 0.004 | 0.013 [ 0.94 | 5.290 5.717 7.25 | 0.001 | 0.006 | 0.95 | 7.098 7.405
300 || a 3 0.009 | 0.017 | 0.94 | 2.760 3.258 5.5 [0.018 | 0.054 | 0.95| 5.062 5.974
B 55 0.002 | 0.008 | 0.94 | 5.327 5.678 7.25 |0.000 | 0.004 | 0.95 | 7.124 7.376
500 || « 3 0.005 | 0.010 | 0.95 | 2.813 3.197 5.5 |0.01710.033|094 | 5.164 5.871
Bl 5.5 0.005 | 0.005 | 0.95 | 5.369 5.641 7.25 |0.001 | 0.002 | 0.95 | 7.153 7.348
1000 || « 3 0.003 | 0.005 | 0.95 | 2.867 3.139 55 10.002]0.018 094 | 5.253 5.751
Bl 55 0.000 | 0.002 | 0.94 | 5.404 5.596 7.25 | 0.000 | 0.001 | 0.96 | 7.181 7.319
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Fig. 3: (a) Boxplot (b) Normal Q-Q plot for data set 1.
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Fig. 4: (a) Histogram (b) TTT plot for data set 2.

(a)

Sample Quantiles

150

100

50

Normal Q-Q Plot

Fig. 5: (a) Boxplot (b) Normal Q-Q plot for data set 2.
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Tab. 5: MLEs and their standard errors (in parentheses) for the data sets 1

and 2.
Distribution « I}
Data set 1
NSIW 1.187246 59.277943
(0.09749533)  (4.89936841)
SIW 1.087296 78.679016
(0.09010003) (7.12214888)
IwW 1.415099 54.154478
(0.1172978) (4.7819604)
INH 1.837227 25.777213
(0.6195688)  (11.9194201)
IED 60.09902 -
(7.082733) -
IRD 2124.003 -
(250.2112) -
Data set 2
NSIW 1.555214 52.354276
(0.221727) (5.828250)
SIW 1.418507 64.874725
(0.2050217) (7.9449506)
IwW 1.834041 48.612750
(0.2691721) (5.8731302)
INH 12.265650 2.913329
(46.28737) (11.59465)
IED 54.98987 -
(11.46618) -
IRD 2235.817 -

(466.2137)
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Tab. 6: The statistics KA, AIC, BIC, A*, W* K-S and P-value for the data

sets 1 and 2.
Distribution ¢ AIC BIC A* w K-S P-value
Data set 1
NSIW 391.114 786.228 790.7813 0.7421414 0.128227 0.12022  0.2491
SIW 391.8206  787.6592  792.2125  0.815797 0.1390462  0.12695 0.1962
IW 395.6491  795.4722  799.8516 1.283477 0.2148432  0.15231  0.07082
INH 400.4679  804.9357  809.4891 1.427511 0.2398301 0.14121 0.1132
IED 402.6718  807.3437  809.6203  0.9225515  0.1561167  0.18466  0.01474
IRD 406.7674  815.5347  817.8114 1.994931 0.3371843  0.26145  0.0001062
Data set 2
NSIW 113.9501 231.9001 234.1711 0.2910172 0.03847493 0.09927  0.9604
SIW 114.3037  232.6073  234.8783  0.340215  0.04477491  0.10618  0.9335
W 115.7833  235.5666  237.8376  0.5546877  0.07517144  0.13261 0.7654
INH 119.027  242.054 244.325 0.76066 0.1063972  0.22877 0.1536
IED 121.7296 2454592  246.5947  0.3238192  0.04286789  0.30567  0.02099
IRD 115.967  233.934  235.0695  0.6101612  0.0835341 0.14293 0.6831

— NSIW
- - Slw
w
c=+ INH
IED
-—- IRD

0.015
1

0.010
1

Density

0.005
1

0.000
1

Fig. 6: Plots of the estimated pdfs for data set 1.
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Fig. 7: Plots of the estimated pdfs for data set 2.
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Fig. 8: Plots of the estimated cdfs for data set 1.
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cdf

Fig. 9: Plots of the estimated cdfs for data set 2.
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. 10: P-P Plots of the estimated models for data set 1.
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. 11: P-P Plots of the estimated models for data set 2.



