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Let n ě 2 and r P t1, ¨¨¨, n ´1u be integers, M be a compact smooth Kähler manifold of complex dimension n, E be a holomorphic vector bundle with complex rank r and equipped with an hermitian metric h E , and L be an ample holomorphic line bundle over M equipped with a metric h with positive curvature form. For any d P N large enough, we equip the space of holomorphic sections H 0 pM, E b L d q with the natural Gaussian measure associated to h E , h and its curvature form. Let U Ă M be an open subset with smooth boundary. We prove that the average of the pn ´rq-th Betti number of the vanishing locus in U of a random section s of H 0 pM, E b L d q is asymptotic to `n´1 r´1 ˘dn ş U c 1 pLq n for large d. On the other hand, the average of the other Betti numbers are opd n q. The first asymptotic recovers the classical deterministic global algebraic computation. Moreover, such a discrepancy in the order of growth of these averages is new and constrasts with all known other smooth Gaussian models, in particular the real algebraic one. We prove a similar result for the affine complex Bargmann-Fock model.

Introduction

The goal of this article is to understand the statistics of the local topology of random complex submanifolds, for projective manifolds and the affine complex space.

Projective manifolds. Let n be a positive integer, M be a compact smooth complex manifold of complex dimension n, and L be an ample holomorphic line bundle over M . Let h be a Hermitian metric on L with positive curvature form c 1 pLq " ω, that is locally

ω " 1 2iπ B B log }s} 2 h , (1.1) 
where s is any local non-vanishing section of L. Then, pM, ωq becomes a Kähler manifold, and by the Kodaira theorem, it can be embedded in a projective space. For any large enough degree d ě 1, and any generic holomorphic section s P H 0 pM, L d q, denote by Z s Ă M the smooth vanishing locus of s. The famous hyperplane Lefschetz theorem asserts, in particular, that [START_REF] Griffiths | Principles of algebraic geometry[END_REF] @0 ď i ď n ´2, b i pZ s q " b i pM q.

For instance, if M " CP n , then for i ď n ´2, b i pZ s q " 0 if i is odd and b i pZ s q " 1 if i is even. On the other hand,

1 d n b n´1 pZ s q Ñ dÑ8 ż M ω n . (1.2) 
Of course, there is no local (deterministic) version of the Lefschetz theorem. Indeed, if

U is an open subset of M , the intersection of U with Z s can be empty or can have a topologicial complexity bigger than the one of Z s . In particular for n ě 2, Z s is connected but its intersection with U can be disconnected. There is even no bound for the number of components of it, since we can twist U for that. However, for a fixed U defined by algebraic inequalities, the following bound exists:

Theorem 1.1 ([20, Theorem 3]) Let U Ă CP n ztZ 0 " 0u be an open subset defined by real algebraic inequalities. Then, there exists a constant C U depending only on the number and the degree of the defining polynomials of U , such that for any generic r-uple of homogeneous complex polynomials s " ps 1 , ¨¨¨, s r q P pC hom d q r of degree d,

2n´2r ÿ i"0 b i pZ s X U q ď C U d 2n . (1.3)
Now, if the section s is taken at random, one could hope that for fixed U , not necessarily defined by polynomials, the average topology of Z s X U reflects in some way the Lefschetz theorem and with further hope, the asymptotic (1.2) as well. In this paper, we prove that these two intuitions are true, in the following more general classical setting. In addition to pL, hq, let pE, h E q be a holomorphic vector bundle of rank r and equipped with a Hermitian metric h E . Since L is ample, for d large enough, the space of holomorhic sections H 0 pM, E b L d q is non-trivial. Then, a natural scalar product associated to this setting is the following: @ps, tq P pH 0 pM, E b L d qq 2 , xs, ty "

ż M h E b h L d ps, tq ω n n! , (1.4) 
where h L d is the metric over L d induced by h d . A natural probability measure µ d over this space is the Gaussian one associated to this Hermitian product. In other terms, for any Borelian A Ă H 0 pM, E b L d q,

µ d pAq " ż A e ´1 2 }s} 2 ds p2πq N d , (1.5) 
where } ¨} denotes the norm associated to the Hermitian product (1.4), N d the (complex) dimension of H 0 pM, E b L d q and ds the Lebesgue measure. Notice that if pS i q iPt1,¨¨¨,N d u is an orthonormal basis for this scalar product, then s " ř N d i"1 a i S i is random for µ d when the coefficients a i P C are i.i.d standard complex Gaussians, that is ℜa i and ℑa i are independent standard Gaussians.

Example 1.2 For M " CP n , E " C r equipped with its standard Hermitian metric, L " Op1q equipped with the Fubini-Studi metric, then s consists in r independent copies of random polynomials @1 ď i ď r, s i prZsq "

ÿ i 0 `¨¨¨`in"d a i 0 ¨¨¨in d pn `dq! n!i 0 ! ¨¨¨i n ! Z i 0 0 ¨¨¨Z in n ,
where the pa i q i are independent standard complex Gaussian variables.

Our main result is the following:

Theorem 1.3 Let n ě 2 and 1 ď r ď n ´1 be integers, M be a compact smooth Kähler manifold and pL, hq be an ample complex line bundle over M , with positive curvature form ω, pE, h E q be a holomorphic rank r vector bundle and let U Ă M be a open subset with smooth boundary. Then @i P t0, ¨¨¨, 2n ´2ruztn ´ru,

1 d n Eb i pZ s X U q Ñ dÑ8 0 1 d n Eb n´r pZ s X U q Ñ dÑ8 ˆn ´1 r ´1˙ż U ω n .
Here the probability measure is the Gaussian one given by (1.5). These asymptotics hold when U " M as well.

Of course, when U " M , the topological type of Z s does not depend on the random section s. Markov's inequality implies the following corollary. 

µ d " s P H 0 pM, E b L d q | b n´r pZ s X U q ě d n ε ˆn ´1 r ´1˙ż U ω n * ď ε,
where µ d is defined by (1.5).

Note that the Gaussian measure can be replaced by the round metric on the sphere SH 0 pM, E b L d q, where the metric is defined by (1.4). Hence, this corollary can be seen as a deterministic result about the volume of certain subsets of topological interest in this sphere.

Example 1.5 Under the standard setting of Example 1.2,

ş CP n ω n F S " 1, so that 1 d n Eb n´r pZ s X U q Ñ dÑ8 ˆn ´1 r ´1˙v
olpU q volpCP n q .

Remark 1.6

1. Theorem 1.3 provides the first explicit asymptotic for one mean Betti numbers of the nodal set of a smooth Gaussian field. Former explicit asymptotics were proven [START_REF]Asymptotic topology of excursion and nodal sets of Gaussian random fields[END_REF] in a real context for high level random sets (in particular, not the zero one). For r " 1, it is striking that the asymptotic average local behaviour reflects exactly the global asymptotic estimate given by (1.2).

2. For U " M , Theorem 1.3 has a deterministic corollary. Indeed, any divisor of given degree is diffeomorphic to the another of the same degree. Hence, for r " 1 the second assertion of Theorem 1.3 is equivalent to the asymptotic (1.2). For higher codimensions r, [START_REF]Expected topology of random real algebraic submanifolds[END_REF]Corollary 3.5.2] shows that

1 d n χpZ s q Ñ dÑ8 ˆn ´1 r ´1˙ż M ω n .
(1.6)

Again, (1.6) is implied by Theorem 1.3.

3. We emphasize that these qualitatively different asymptotics are new. In particular constrasts with the real situation [11, Corollary 1.2.2] and all known others smooth Gaussian models like [START_REF]Betti numbers of random nodal sets of elliptic pseudo-differential operators[END_REF] (see also [START_REF] Wigman | On the expected Betti numbers of the nodal set of random fields[END_REF]). In these latter cases, all Betti numbers grow like L n , where 1{L is the natural scale of the model, 1{ ? d in this one. This is especially true for the number of connected components, see [START_REF] Nazarov | Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions[END_REF]. Here, the scale is d ´1 2 , however only the pn ´rq-th Betti number grows like d n . [START_REF] Beliaev | Russo-seymour-welsh estimates for the kostlan ensemble of random polynomials[END_REF]. In [START_REF] Gayet | Systoles and lagrangians of random complex algebraic hypersurfaces[END_REF], it was proved that for any compact smooth real hypersurface Σ of R n , for any open subset U Ă M , with uniform probability, a uniform proportion of the pn ´1qhomology in Z s X U can be represented by Lagrangians submanifolds diffeomorphic to L.

5.

In [START_REF] Ancona | Exponential rarefaction of maximal real algebraic hypersurfaces[END_REF]Theorem 5 (2)] (see also [5, Theorem A]), it is shown that as far as (local) topology of Z s X RP n is only concerned, a random real polynomial s of degree d can be replaced, with high probability, by a polynomial of degree slightly greater than ? d. In fact, this statement holds for complex polynomials on a ball in the complementary of a complex hypersurface as well. Using Milnor's bound (1.3), this replacement allows to get a similar estimate as Corollary 1.4 when U is be defined algebraically. The decay is almost exponential in this case. [START_REF] Simon | Symplectic submanifolds and almost-complex geometry[END_REF]. In [START_REF] Auroux | Théorèmes de structure des variétés symplectiques compactes via des techniques presque complexes[END_REF]Proposition 6], the author proved that (deterministic) Donaldson hypersurfaces, which are zeros of sections with vanish transversally with a controlled derivative, satisfy such local topology estimate for the pn´rq-th Betti number. Theorem 1.3 shows a further evidence that Donaldson hypersurfaces have common features with random ones. For instance, the current of integration over Z s fills out uniformly M for large degrees d in both contexts, see [START_REF] Simon | Symplectic submanifolds and almost-complex geometry[END_REF] and [START_REF] Shiffman | Distribution of zeros of random and quantum chaotic sections of positive line bundles[END_REF].

The complex Bargmann-Fock field. Finally, we prove an affine version in the universal limit for holomorphic sections, namely the complex Bargmann-Fock field. The Bargmann-Fock field is defined by

@z P C n , f pzq " ÿ pi 1 ,¨¨¨,inqPN n a i 0 ,¨¨¨,in d π i 1 `¨¨¨`in i 1 ! ¨¨¨i n ! z i 1 1 ¨¨¨z in n e ´1 2 π}z} 2 , (1.7)
where the a I 's are independent normal complex Gaussian random variables. The strange presence of π will be explained below.

Theorem 1.7 Let n ě 2 and 1 ď r ď n ´1 be integers, f : C n Ñ C r be r independent copies of the Bargmann-Fock field, and U Ă C n be an open subset with compact smooth boundary. Then,

@i P t0, ¨¨¨, 2n ´2ruztn ´ru, 1 R 2n Eb i pZ f X RU q Ñ RÑ`8 0 1 R 2n Eb n´r pZ f X RU q Ñ RÑ`8 n! ˆn ´1 r ´1˙v olpU q.
The volume is the standard one.

Remark 1.8 1. Again, compared to the other known results, the order of magnitude of the mean number of connected components is not the natural one, that is R 2n , see [START_REF] Nazarov | Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions[END_REF] for instance.

2. Theorem 1.7 (and Theorem 1.3) was guessed by the author for the following geometric reasons, which we present for n " 2 and r " 1: because of the maximum principle, if a complex curve in C 2 locally touches a real hyperplane H, being (locally) on one side of H, then C is affine and C Ă H. Now, if p : U Ă C 2 Ñ R is Morse, for any R ą 0, let p R " pp¨{Rq. Then for large R ą 0, the level sets of p R are locally closer and closer to be planar, so that there should be less and less random cuves touching them from the interior, that is there are less and less critical points of p |Z f of index 0, compared to critical points of index 1. Morse theory should then imply the result.

Related results. The study of the statistics of the Betti numbers, or even the diffeomorphism type, of a random smooth submanifold (of positive dimension) is now a well-developped subdomain of random geometry, with current links to percolation. We refer to [START_REF]Asymptotic topology of excursion and nodal sets of Gaussian random fields[END_REF] for a historical account of this topic. The results were proven mainly in the real algebraic and Riemannian semiclassical settings. Both models share a common feature: the Betti numbers grow (with the parameter, degree or eigenvalue) like the inverse of the scale to a power equal to the dimension of the ambient manifold. In both cases, the covariance of the model is the spectral kernel, for which estimates exist. The local study of the geometry of random complex submanifolds of positive dimension began with [START_REF] Shiffman | Distribution of zeros of random and quantum chaotic sections of positive line bundles[END_REF], under the hypotheses of Theorem 1.3, with r " 1. It was proven that the average current of integration over Z s tends to the curvature form of the line bundle, when d grows to infinity. Since the topology of the complex hypersurfaces depend only on the degree, a crucial difference with the real setting, the topology of random complex hypersurfaces seemed less promising. Our paper [START_REF] Gayet | Systoles and lagrangians of random complex algebraic hypersurfaces[END_REF] showed that local random (symplectic) topology is interesting as well, and even can provide new deterministic results.

A lot of results about critical points of random sections has been done. In this complex algebraic context, it seems to begin with [START_REF] Michael | Critical points and supersymmetric vacua I[END_REF]. In [START_REF] Gayet | What is the total Betti number of a random real hypersurface?[END_REF], the restriction of a Lefschetz pencil to the complex random hypersurface was used in order to get topological estimates through Morse theory, which is the spirit of the present paper. We refer to [11, §1.3] for further references. The following result is close to the present work: Theorem 1.9 ([12, Theorem 1.3] for r " 1, [11, Theorem 3.5.1]) for any r) Under the hypotheses of Theorem 1.3, let p : M CP 1 be a Lefschetz pencil. Then,

1 d n E# `U X Critpp |Zs q ˘Ñ dÑ8 ˆn ´1 r ´1˙ż U ω n .
This result holds in particular for any local holomorphic map. A similar real version of Theorem 1.9 was proven as well. In the real setting, the authors used the weak Morse inequalities in order to get an upper bound for the average Betti numbers of Z s . Lower bounds of the same order of magnitude (in the degree) where estimated by the barrier method.

As in [START_REF]Asymptotic topology of excursion and nodal sets of Gaussian random fields[END_REF], in the present paper we use the strong Morse inequalities, and moreover we use this theory on manifolds with boundary, which implies to take in account the critical points of the restriction of the function to the boundary. Joint with the weak ones, strong Morse inequalities allow us to get the proper estimate of the mean middle Betti number given by Theorem 1.3. On the contrary to the real setting, in our complex setting strong Morse inequalities help, because the complex Hessian of a holomorphic function has a symmetric signature, which implies that all mean critical points of p |Zs have the wrong order of magnitude, except when the index is the middle one, that is n´r, see Theorem 4.4.

The method to prove Theorem 4.4 is different than the one used for Theorem 1.9, but both provide, on the one hand, a Kac-Rice formula (both based, at the end, on the coarea formula), and on the other hand, an estimate of it when the degree goes to infinity. In [START_REF]Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF] and [START_REF]Expected topology of random real algebraic submanifolds[END_REF], the authors used explicit peak sections to compute the average, and the aforementionned parts were mixed. In this paper we wanted to clearly separate the two parts of the proof : one part which is based on a general Kac-Rice formula as Corollary 3.4, and one part which depends on the particular model, real, holomorphic or mixed (on the boundary of the open set U ). This can be done because the second part only needs informations about the covariance function. For projective manifolds, this is the Bergman kernel, see section 4.2. The peak sections is a way to recover the needed informations, see [START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF]. In [START_REF] Shiffman | Distribution of zeros of random and quantum chaotic sections of positive line bundles[END_REF], the Szegö kernel was used, based on Zelditch's semiclassical way [START_REF] Zelditch | Szegö kernels and a theorem of Tian[END_REF] of proving Tian's theorem. For the Riemannian setting like in [START_REF]Betti numbers of random nodal sets of elliptic pseudo-differential operators[END_REF], the covariance is the spectral kernel and Hörmander estimates can be used.

Holomorphic percolation. Theorem 1.7 raises a natural question related to percolation theory: is there a Russo-Seymour-Welsh phenomenon for the complex Bargmann-Fock field ? In its simplest non-trivial form, this question is the following:

Let B, B 1 Ă S 3 Ă C 2 two
disjoint closed smooth 3´balls lying in the unit sphere, and let f be the complex Bargmann-Fock field over C 2 see (1.7). Is it true that lim inf

RÑ`8 P `D a connected component of tf " 0u X RB 4 joining RB to RB 1 ˘ą 0 ?
The analog for the real Bargmann-Fock over R 2 is true, see [START_REF] Beffara | Percolation of random nodal lines[END_REF]. We emphasize that the holomorphic situations constrasts in many ways with the real setting. Firstly, there is no bounded component of tf " 0u in the complex case and with probability one, there is a unique component of Z f . Secondly, none of the classical tools in percolation theory does hold in this holomorphic context, in particular duality and FKG property. Besides, the isotropy of the field and the absence of bounded components imply that with uniform positive probability there exists a component of tf " 0u X RB from B to RB. In the real setting, this probability tends to 0. Finally, note that a similar question can be asked for complex algebraic submanifolds:

Let U Ă CP 2 be a smooth ball in the projective plane, B, B 1 Ă BU two disjoint closed smooth 3´balls lying in the boundary of U , and let s P H 0 pCP 2 , Opdqq be a random polynomial of degree d. Is it true that lim inf dÑ`8 P `D a connected component of ts " 0u X U joining B to B 1 ˘ą 0 ?

The real analog has been proven in [START_REF] Beliaev | Russo-seymour-welsh estimates for the kostlan ensemble of random polynomials[END_REF].

Ideas of the proof of Theorem 1.3. Let U Ă M be an open set with compact smooth boundary and p : Ū Ñ R be a smooth Morse function in the sense of Definition 4.8, that is p Morse on U , its restriction to BU is Morse and p has no critical point on BU . Let Z be a complex smooth submanifold of U with boundary in BU , such that p |Z is Morse in the latter sense. Then, by Morse theory for manifolds with boundary, for any 0 ď i ď dim R Z, the i-th Betti number of Z is less or equal to the number of critical points of p |Z and p |BZ of index i, see Theorem 4.12. Besides, from the strong Morse inequalities, we can estimate the i´th Betti number of Z if the critical points of index different than i are far smaller.

We apply this to Z s the zero set of a random holomorphic section s of degree d. Note that the natural scale for the natural measure is 1{ ? d. Hence, in every ball of this radius, the geometry of Z s should be independent of d. This implies in particular that on a manifold of real dimension m, the average of geometric or analytic observables like the number of critical points of p |Zz should grow like d m 2 . The general Kac-Rice formula given by Corollary 3.4 applied to our projective situation allows us to estimate the number of critical points in the interior of U , see Theorem 4.1, and a factor d n emerges, as guessed by the previous heuristic arguments. Here we use the fact that the covariance function of s is the Bergman kernel and that this kernel has a universal rescaled limit, see Theorem 4.5. Now, the integral in the Kac-Rice formula involves the determinant of a random matrix provided by a perturbation of the Hessian of s (restricted to the tangent space of Z s ), where the perturbation decreases with d. At the limit, the matrix is non zero only for middle index, since the Hessian has complex symmetries. On the contrary, the mean number of critical points of middle index has a precise non-trivial asymptotic, see Theorem 4.4.

We need also to control the number of critical points of the restriction of p to the boundary of U and of Z s . We use the Kac-Rice formula in this mixed case as well, see Proposition 4.10. As guessed, a factor d n´1 2 emerges. Both estimates and Morse theory finish up the proof of Theorem 1.3.

Structure of the article.

In section 2, we prove various deterministic lemmas in order to prepare the main Kac-Rice formula computing the mean of critical points. This formula is established in section 3. In section 4, we apply this formula in order to prove Theorem 1.3 and Theorem 1.7.

Aknowledgements. The author thanks Thomas Letendre for his expertise of the book [START_REF] Ma | Holomorphic Morse inequalities and Bergman kernels[END_REF] and Michele Ancona for discussions about the subject of the article and his paper [START_REF] Ancona | Exponential rarefaction of maximal real algebraic hypersurfaces[END_REF].

Deterministic geometric preliminaries

The general setting of this paper is a real manifold M of dimension n and a real vector bundle E over M . Let also p : M Ñ R be a Morse function. For any generic smooth section of E, we will look at the critical points of p |ts"0u , which are the points x P M where the tangent space of the vanishing locus Z s of s lies in ker dppxq. For this reason, we must understand the geometry of ker ∇s as an element of the Grassmannian bundle Grasspn ´r, T M q or Grasspn ´r, ker dpq, where ∇ denotes any covariant connection on E. In this section, we provide various simple lemmas which will be used in the main results. To make the computations easier, M and E will be endowed with metrics.

Kernel and Grassmannians

The following Lemma is classical: Lemma 2.1 Let n be an integer and pV, gq be a finite dimensional real vector space of dimension n equipped with a scalar product g. For any integer 0 ď m ď n, the Grassmannian Grasspm, V q of m´planes of V is a smooth manifold and for any K P Grasspm, V q, T K Grasspm, V q is canonically (with respect to g and K) identified with LpK, K K q. In particular, T K Grasspm, V q inherits the natural metric on LpK, K K q induced by g. If V is complex and g is Hermitian, then the same holds, replacing the real Grassmaniann by the complex Grassmanian Grass C , and LpK, K K q by the complex linear maps L C pK, K K q.

Remark 2.2 Note that for f P LpK, K K q, if A denotes the matrix of f in any gorthonormal basis of K and K K , then the squared norm of f induced by g equals TrpAA ˚q.

Lemma 2.3 Let 1 ď r ď n, pV, gq be an Euclidean vector space, and E be a real vector space, of respective dimensions n and r. Let α 0 P L onto pV, Eq and K " ker α 0 P Grasspn ŕ, V q. Then, there exists a neighborhood U Ă L onto pV, Eq of α 0 and a smooth map : ϕ : U Ñ LpK, K K q such that ϕpα 0 q " 0 and @α P U, ker α " `Id |K `ϕpαq ˘pKq.

Moreover, for any β P LpE, V q, dϕpα 0 qpβq " ´pα 0|K K q p´1q β |K . The same holds in the complex-Hermitian setting.

Proof. Let

F : LpV, Eq ˆLpK, K K q Ñ LpK, Eq pα, f q Þ Ñ α ˝p Id |K `f q.
Then, F is smooth and F pα 0 , 0q " 0. The partial differential in f at pα 0 , 0q writes

@g P LpK, K K q, d f F pα 0 , 0qpgq " α 0 ˝g " α 0|K K ˝g P LpK, Eq.
This partial differential is an isomorphism because α 0 is onto, so that α 0|K K P LpK K , Eq is an isomorphism. Note that the partial differential in α satisfies

β P LpV, Eq, d α F pα 0 , 0qpβq " β |K .
Hence, by the implicit function theorem, there are two open neighborhoods U Ă LpV, Eq and W Ă LpK, K K q of α 0 and 0 respectively, and a smooth function ϕ : U Ñ W such that @pα, f q P U ˆW, F pα, f q " 0 ô f " ϕpαq.

Besides, dϕpα 0 q " ´pd f F pα 0 , 0qq p´1q ˝dα F pα 0 , 0q, hence the result. l

Let pV, gq and pE, hq as in Lemma 2.3. Define

κ : L onto pV, Eq Ñ Grasspn ´r, V q (2.1) α Þ Ñ ker α.
The following lemma computes the derivative of κ.

Lemma 2.4 Let pV, gq and pE, hq be two real vector spaces as in Lemma 2.3. Then, κ defined by (2.1) is smooth and for any α 0 P L onto pV, Eq, in the chart given by Lemma 2.1,

dκpα 0 q : LpV, Eq Ñ T ker α 0 Grasspn ´r, V q » Lpker α 0 , ker K α 0 q β Þ Ñ ´pα 0|K K q ´1β |K .
Proof. Let α 0 P L onto pV, Eq. By Lemma 2.3, Locally, for any α close enough to α 0 , κpαq " pId | ker α 0 `ϕpαqqpker α 0 q.

The second assertion of Lemma 2.3 concludes. l

The field and its geometry

Let n ě 2 and 1 ď r ď n ´1 be integers, pM, gq be a smooth Riemannian manifold of dimension n ě 1, and E Ñ M be a smooth real vector bundle of rank r. Define

F " E ' T ˚M b E.
Let p : M Ñ R be a Morse function, and W Ă F be the subset of F defined by W " tpx, 0, αq P F, dppxq ‰ 0, α is onto and ker α Ă ker dppxqu .

Note that W projects onto M zCritppq. Since p is Morse, Critppq is a discrete set in M without any accumulation point. If M is compact, Critppq is finite. We will use later that for any C 1 section s of E, then x P M is critical for the restriction of p on ts " 0u at x is equivalent to px, spxq, ∇spxqq P W , see (3.1) below. For any x P M zCritppq, let

W x " tp0, αq P F x , px, 0, αq P W u . (2.2) 
Lemma 2.5 Let M , E, p, F and W be defined as above. Then, 1. W is a smooth submanifold of F of codimension n;

2. W intersects transversally the fibres of F ; 3. for any x P M zCritppq, W x is a smooth submanifold of F x of codimension n, and @p0, αq P W x , T p0,αq W x " tp0, βq P F x , dppxqpα | ker K α q ´1β | ker α " 0u.

(2.3)

Proof. Let px 0 , 0, α 0 q P W and K " ker α 0 Ă T x 0 M . Let O be a neighborhood of x 0 such that M can be locally identified with T x 0 M by a chart over O, and E |O can be identified with O ˆEx 0 via a trivalization. Then, F |O can be identified with O ˆpE x 0 ' T x0 M b E x 0 q. By Lemma 2.3, there exists U Ă LpT x 0 M, E x 0 q a neighborhood of α 0 and a smooth map ϕ : U Ñ LpK, K K q, such that for any α P U, ker α " pId `ϕpαqq |K . Now, define the smooth map Φ :

F |O Ñ E x 0 ˆK˚( 2.4) px, s, αq Þ Ñ " s, dppxq pId `ϕpαqq |K ı .
Then, W X O " Φ ´1p0q. Moreover, by Lemma 2.3 again, for all pv, t, βq P T x 0 M ˆEx 0 LpT

x 0 M, E x 0 q, dΦpx 0 , 0, α 0 qpv, t, βq " " t, d 2 ppx 0 qpvq |K ´dppxqpα |K K q ´1β |K ı . (2.5) 
Since dppxq ‰ 0, dΦ is onto, so that W is a smooth submanifold of F of codimension n.

The third assertion of the lemma is an immediate consequence of (2.5). For the second assertion of the lemma, let px, 0, αq P F X W . Then, by (2.5), pv, t, βq P F x X T px,0,αq W iff pv, tq " 0 and dppxqpα | ker K α q ´1β | ker α " 0, that is p0, βq P T p0,αq W x . Hence, F &W . l

Two Jacobians

In this paragraph, the setting is the same as in the latter one, with the novelty that the vector bundle E is endowed with a Euclidean metric h E on its fibres. We compute two Jacobians which will be needed for the coarea formula used in the main Kac-Rice formula Corollary 3.4. For any px, αq P T M ˚b E, such that α is onto and

dppxqpα | ker K α q ´1 ‰ 0 P E x , define µpx, αq " ker dppxqpα | ker K α q ´1 Ă E x . (2.6) 
Let εpx, αq be one of the two unit vector in µpx, αq K Ă E x , and K " ker α. The following decomposition will help:

pα |K K q ´1 " Rε µ ˆṗα |K K q ´1 |Rε 0 ker K dppxq ˚pα |K K q ´1 |µ ker dppxq X K K .
(2.7)

Note that for any x P M zCritppq, by (2.3),

T p0,αq W x " Lpker α, µpx, αqq ' Lpker K α, E x q Definition 2.6 (see [23, C.1]
) Let M, N be two Riemannian manifolds and κ : M Ñ N be a C 1 map. Then, J x κ denotes the normal Jacobian, that is the determinant in orthonormal basis of dκpxq | ker K dκpxq .

In the following, for any x P M , let κ : L onto pT x M, E x q Ñ Grasspn ´r, T x M q defined by (2.1) for V " T x M and E " E x . By an abuse of notation, we denote also κ the map

E x ˆLonto pT x M, E x q Q p0, αq Þ Ñ κpαq.
Lemma 2.7 For any x P M zCritppq, let κ |Wx : W x Q p0, αq Þ Ñ ker α Ă ker dppxq. Then, for all p0, αq P W x , J p0,αq pκ |Wx q " ˇˇdet α | ker K αXker dppxq ˇˇn ´r.

Proof. Firstly, by Lemma 2.5,

T p0,αq W x kerpβ Þ Ñ xεpx, αq, β |K yq,
where ε has been defined above. Since

dpκ |Wx qp0, αq " pdκp0, αqq |T p0,αq Wx ,
from Lemma 2.4 we infer that J p0,αq pκ |Wx q " ˇˇdetpα |K K q ´1 |µpx,αq ˇˇn ´r , where µ has been defined by (2.6). Since α |K K induces an isomorphism between K K X ker dppxq and µpx, αq, we obtain the result. l Lemma 2.8 Fix x P M zCritppq and K P Grasspn ´r, ker dppxqq. Let

g : κ ´1pK q Ñ Grasspr ´1, E x q α Þ Ñ µpx, αq " ker ´dppxq ˝pα |K K q ´1¯.
Then, for all α, J p0,αq g " | det α | ker K αXker dppxq |.

Proof. Firstly, the map

ν : α P κ ´1pK q Þ Ñ pα |K K q ´1 P LpE x , K K q
is smooth, and for any α P κ ´1pK q, @β P T α κ ´1pK q, dνpαqpβq " ´pα

|K K q ´1β |K K pα |K K q ´1 P LpE x , K K q.
Moreover, by Lemma 2.1, the differential of

κ E : E x zt0u Ñ Grasspr ´1, E x q f Þ Ñ ker f
satisfies that, for any f P E x zt0u and h P E x , dκ E pf qh " ´pf | ker K f q ´1h | ker f , so that for any α P κ ´1pK q and any β P T α κ ´1K,

dgpαqβ " ´dppxqpα |K K q ´1 |Rεpx,αq ¯´1 dppxqpα |K K q ´1β |K K pα |K K q ´1 |µpx,αq P Lpµpx, αq, Rεpx, αqq, hence J α g " | detpα |K K q ´1 |µpx,αq |.
Since α |K K induces an isomorphism between K K Xker dppxq and µpx, αq, we obtain the result. l

3 The mean number of induced critical points

In the first part of this section, we provide two results. The first one, Proposition 3.3, is a Kac-Rice formula for the mean number of critical points of the restriction of a Morse function to the vanishing locus of a random section of some vector field. It is an application of the general Kac-Rice formula given by Theorem 3.2. The second result, Corollary 3.4, is a more explicit and computable Kac-Rice formula which will be used in the applications of section 4. In the second part of the section, we adapt the formula in a holomorphic context, see Corollary 3.6.

The general formula

Let M , E, F and W be as in section 2, and let ∇ be a smooth connection on E. For any section s P C 1 pM, Eq, let Z s :" tx P M, spxq " 0u and X P C 0 pM, F q defined by

X : M Ñ F " E ' T ˚M b E x Þ Ñ rx, spxq, ∇spxqs . (3.1) 
Note that for any x P M , Xpxq P W if and only if x P Z s and x is a critical point of p |Zs .

For any random section s P C 2 pM, Eq, we are interested in the subset of M :

Crit p i psq " tx P M, Xpxq P W and Ind ∇ 2 pp |Zs qpxq " iu,

where ∇ is any connection over Z s . Note that Ind ∇ 2 pp |Zpsq qpxq is well defined for any x P X ´1pW q because in this case dpp |Zs qpxq " 0. Hence, x P X ´1pW q if and only if p lies in Z s and the restriction of f to Z s at p is critical and its index equals i. For any s P C 2 pM, Eq and x P X ´1pW q, define also πpx, αq :" ∇ 2 ppxq | ker α ´dppxq ´α| ker K α ¯´1 ∇ 2 spxq | ker α P Sym 2 pker ∇spxq, Eq, (

where α " ∇spxq. Here, ∇ 2 p denotes the covariant derivative of dp for the Levi-Civita connexion associated to g. However, the formulas will not depend on the choice of this particular connexion.

Lemma 3.1 Assume that p : M Ñ R is a Morse function. Let s P C 2 pM, Eq be a section of E, x P X ´1pW q. Then, Ind pp |Zs pxqq " Ind pπpx, ∇spxqqq .

Proof. Let s P C 2 pM, Eq, x 0 P Z s and K " ker ∇spx 0 q. Assume that dim K " n ´r. We choose coordinates near x 0 so that M is identified with T x 0 M . By the implicit function theorem, locally near x 0 " p0, 0q P K ' K K , and Z s is the graph over K of a C 2 map f : K Ñ K K with f p0q " 0 and df p0q " 0. Since locally @z P K, spz, f pzqq " 0, we obtain

∇ z s `∇y s ˝df " 0,
where ∇ z and ∇ y denote the partial covariant derivatives along K and K K respectively. so that∇ 2 z 2 sp0, 0q `∇y sp0, 0q ˝d2 f p0q " 0, Now let p 0 : K Ñ R define locally by @z P K, p 0 pzq " ppz, f pzqq.

Note that if K Ă ker dppzq, then Ind d 2 ppzq " Ind ∇ 2 p |Zs . Now dp 0 " d z p `dy p ˝df, so that d 2 p 0 p0q " d 2 z pp0, 0q `dy p ˝d2 f p0q. Replacing d 2 f p0q by its value above, we obtain the result. l

We will use the following general Kac-Rice formula. Theorem 3.2 ([23, Theorem 3.3]) Let n be a positive integer, M be a smooth manifold of dimension n, F Ñ M be a smooth vector bundle and X P ΓpM, F q be a non-degenerate smooth Gaussian random section. Let W Ă F be a smooth submanifold of codimension n such that for every x P M , W x :" W &F x . Let the total space of F be endowed with a Riemannian metric that is Euclidean on fibers. Then for any Borel subset A Ă M E#tx P A X X ´1pW qu "

ż xPA ż qPWx E ´Jx X σqpX,W q σqpFx,W q |Xpxq " q ¯ρXpxq pqqdvolpqqdvolpxq,
where ρ Xpxq pqq is the density of Xpxq at q and besides, σ q pX, W q, σ q pF x , W q denote the "angles" made by T q W with, respectively, d x XpT x M q and T q F x , see [START_REF] Stecconi | Kac-Rice formula for transverse intersections[END_REF]Definition B.2].

The random section X P ΓpM, F q is said to be non-degenerate [23, Definition 3.1] if for any x P M , supp Xpxq " F x . We will not explain here the terms σ q , because by the proof of [23, Lemma 7.2], locally

J x X σ q pX, W q σ q pF x , W q " δ x pΦ ˝Xq J x pΦ |Fx q , ( 3.4) 
where Φ : F Ñ R n is a local defining function for W , that is W " Φ ´1p0q, where δ p denotes the Jacobian density [23, (A.1)] and where J x is the normal Jacobian, see Definition 2.6.

The following Proposition 3.3 is an application of the general Kac-Rice formula above, namely a Kac-Rice formula for the number of induced critical points of the restriction of a Morse function on random nodal sets. We need some notations. Let s P C 2 pM, F q, x P X ´1pW q and α " ∇spxq. Recall that εpx, αq P E x denotes a unit vector of ker K dppxqpα |K K q ´1 Ă E x , that πpx, αq is defined by (3.3) and Crit p i by (3.2). Also, let hpxq be one of the two unit vector in ker K dppxq Ă T x M . Proposition 3.3 Let n ě 2 and 1 ď r ď n ´1 be integers, pM, gq be a Riemannian manifold, pE, hq Ñ M be a rank r smooth Euclidean vector bundle and s P ΓpM, Eq be a non-degenerate Gaussian smooth field. Let p : M Ñ R be a smooth Morse function. Then, for any i P t0, ¨¨¨, n ´ru and any Borel subset A Ă M , E r# pA X Crit p i qs " Proof. We use Theorem 3.2, using locally (3.4). So let px 0 , 0, α 0 q P W . Locally and in coordinates, using the local defining function Φ for W given by (2.4),

ż
@x P O, ΦpXpxqq " rspxq, dppxqpId `ϕp∇spxqqs P E x 0 ˆpker α 0 q ˚,
where ∇ still denotes the connection ∇ through the trivialization. Hence,

@v P T x M, dpΦ ˝Xqpxqpvq " " dspxqpvq, d 2 ppxqpvqpId `ϕp∇spxqqq | ker α 0 ´dppxqp∇spxq | ker ∇f pxq K q ´1d∇spxqpvq | ker α 0 ı .
In particular, for any x P X ´1pW q and any v P T x M , if K " ker ∇spxq, dpΦ ˝Xqpxqpvq "

" ∇ v spxq, ∇ v dppxq |K ´dppxqp∇spxq |K K q ´1∇ v ∇spxq |K ı .
Now, decomposing T x M as T x M " K K ' K, since ∇spxq |K " 0, computing the determinant of this differential gives

δ x pΦ ˝Xq " ˇˇdet ∇spxq |K K ˇˇˇˇdet ´∇dppxq |K ´dppxqp∇spxq |K K q ´1∇ 2 spxq |K ¯ˇˇ.
Now, let us compute J x Φ |Fx . For this, recall that @ps, αq P F x , Φps, αq " rs, dppxqpId `ϕpαqqs, so that @p0, αq P W x , @pt, βq P T p F x , dpΦ |Fx qp0, αqpt, βq " rt, ´dppxqpα |K K q ´1β |K s.

Since J p0,αq pβ Þ Ñ xβ |K , εpx, αqyq " 1, we get that J p0,αq pΦ |Fx q " |dppxqpα |K K q ´1εpx, αq| n´r .

Moreover,

dppxqpα |K K q ´1∇ 2 spxq |K " ´dppxqpα |K K q ´1εpx, αq ¯x∇ 2 spxq |K , εpx, αqy.
By Lemma 2.5, W intersects the fibres of F transversally, so that Theorem 3.2 applies. Replacing the integrant in the theorem by (3.4), we obtain the formula. Finally, by the decomposition (2.7), dppxqpα | ker K α q ´1εpx, αq " }dppxq}pxαphpxqq, εpx, αqyq ´1 .

Since p is Morse, for any critical point x P Critppq, there exists a constant C x such that }dppyq} ě C x }y ´x}. Hence, the pole in the integration over U created by x has order n ´r, which is integrable, see also [START_REF]Expected topology of random real algebraic submanifolds[END_REF]Remark 3.3.3]. l

In order to provide an effective formula in concrete settings, we add further parameters. For any x P M , recall that hpxq P T x M be one of the two unit vectors in ker K dppxq. Moreover, for any real hyperplane µ Ă E x , let εpµq be a unit vector in µ K . Recall that Crit p i is defined by (3.2).

Corollary 

ż αPT M x bEx ker α"K ker dppxqpα |K K q ´1"µ ˇˇdetpα |K K Xker dppxq q ˇˇn ´r`2 |xαphpxqq, εpµqy| E " 1 tInd pπpx,αqq"iu ˇˇdet ´x∇ 2 spxq |K , εpµqy ´xαphpxqq, εpµqy ∇ 2 ppxq |K }dppxq} ¯ˇˇ| spxq " 0, ∇spxq " α ı ρ Xpxq p0, αqdvolpαqdvolpµqdvolpKqdvolpxq,
where πpx, αq is given by (3.3) and ρ X denotes the density of X.

Proof. In the formula given by Proposition 3.3, we handle first the determinant of α |K K . Since pα |K K q ´1pµq " ker dppxq X K K , if hpxq is a unit vector in ker K dppxq, then

| det α |K K | " | det α |K K Xker dppxq ||xαphpxqq, εpµqy|. (3.5) 
We then apply two times the coarea formula (see for instance [START_REF] Stecconi | Kac-Rice formula for transverse intersections[END_REF]Theorem C.3] from which we borrow the notations) for the integral in α. The first formula is applied with the map κ |Wx : W x Ñ Grasspn ´r, ker dppxqq, where κ is defined by (2.7). By Lemma 2.7, its Jacobian satisfies, for any p0, αq P W x , J p0,αq pκ |Wx q " ˇˇdet α | ker K αXker dppxq ˇˇn ´r. The second coarea formula is applied with K P Grasspn ´r, ker dppxqq fixed, with the function g : κ ´1pK q Ñ Grasspr ´1, E x q defined in Lemma 2.8. Then, By the latter, for all α, J p0,αq g " | det α | ker K αXker dppxq |. We obtain the result. Together with (3.5), we obtain the desired formula. l

The holomorphic setting

In this paragraph, let n ě 2 and 1 ď r ď n ´1 be integers, M be a complex smooth manifold of complex dimension n, endowed with a Hermitian metric g. Let pE, h E q Ñ M be a holomorphic Hermitian vector bundle of rank r, and s P ΓpM, Eq be a holomorphic Gaussian field. In section 4, M will be either a compact projective manifold and E the tensor product of a fixed vector bundle tensored by the high powers of an ample line bundle, or M will be the affine complex space and E the trivial complex vector bundle of rank r. Let ∇ be the Chern connection for E, that is the unique holomorphic and metric connection on E, see [START_REF] Griffiths | Principles of algebraic geometry[END_REF]. In this complex case, the real setting of paragraph 3.1 adapts formally, changing the field R into C. In particular, we define

F " E ' L C pT M, Eq.
However specific changes must be also done. Let p : M Ñ R be a smooth Morse function.

Then, for any holomorphic section s of E and any x P Z s , ker ∇spxq Ă ker dppxq ô ker ∇spxq Ă ker π C pxq, where π C pxq denotes the complexification of dppxq, that is π C pxq P L C pT x M, Cq and dppxq " ℜπ C pxq. Then, we use that for any complex subspace K Ă T x M and any α P L C pK, E x q, the real determinant (computed in orthonormal basis) of the associated real map α R equals

| det α R | " | det α| 2 . (3.6) 
As in the real case, the Gaussian holomorphic field s is said to be non-degenerate if for any x P M , s Þ Ñ pspxq, ∇spxqq P E ˆLC pT x M, E x q is onto. As before, we define W " tpx, 0, αq P F, dppxq ‰ 0, α onto and ker α Ă ker π C pxqu, and W x as the fibre of W over x. For any K P Grass C pn´r, T x M q and µ P Grass C pr´1, E x q, let W px, K, µq :" tα P L C onto pT M x , bE x q | ker α " K, ker π C pα |K K q ´1 " µu.

Lemma 3.5 Under the hypotheses above, W px, K, µq is a submanifold of W x of complex dimension r 2 ´pr ´1q.

For any s P H 0 pM, Eq and x P X ´1pW q, define also πpx, αq :"

∇ 2 π C pxq | ker α ´πC pxq ´α| ker K α ¯´1 ∇ 2 spxq | ker α P Sym 2 pker ∇spxq, E x q, (3.7) 
where α " ∇spxq. Lastly, for any x P M , denote by hpxq P T x M any unit vector in pker π C pxqq K Ă T x M , and for any complex hyperplane µ Ă E x , let εpµq be a unit vector in µ K Ă E x . Recall that Crit p i is defined by (3.2). Theorem 3.6 Let pM, gq be a complex manifold, pE, h E q Ñ M be a holomorphic Hermitian vector bundle, and s P ΓpM, Eq be a non-degenerate holomorphic Gaussian field. Let A Ă M any Borel subset. Then, E r# pA X Crit p i qs "

ż xPA ż KPGrass C pn´r,ker π C pxqq µPGrass C pr´1,Exq ż αPL C pTxM,Exq ker α"K ker π C pxqpα |K K q ´1"µ ˇˇdetpα |K K Xker π C pxq q ˇˇ2 pn´r`2q |xαphq, εpµqy| 2 E " 1 tInd pπpx,αqq"iu ˇˇdet R ´x∇ 2 spxq |K , εpµqy ´xαphpxqq, εpµqy ∇π C pxq |K }π C pxq} ¯ˇˇ| spxq " 0, ∇spxq " α ı ρ Xpxq p0, αqdvolpαqdvolpµqdvolpKqdvolpxq,
where πpx, αq is given by (3.7) and ρ X is the density of X. Moreover, the integral is finite if volpAq is finite.

Proof. The proof is formally the same as the one of Corollary 3.4, using the rules mentionned above, so we omit it. l

Applications

In this section we apply Theorem 3.6 to the complex Bargmann-Fock field on C n and then to the projective setting. Finally, we apply Proposition 3.3 to the boundary case, which is a mixed between complex and the real setting and is needed for the main Theorems 1.3 and 1.7.

The Bargmann-Fock field

Recall that the Bargmann-Fock field is defined by

@z P C n , f pzq " ÿ pi 1 ,¨¨¨,inqPN n a i 0 ,¨¨¨,in d π i 1 `¨¨¨`in i 1 ! ¨¨¨i n ! z i 1 1 ¨¨¨z in n e ´1 2 π}z} 2 , (4.1) 
where the a I 's are independent normal complex Gaussian random variables. The associated covariant function equals @z, w P C n , Ppz, wq :" Epf pzqf pwqq " exp

´´π 2 p}z} 2 `}w} 2 ´2xz, wy C n q ¯. (4.2) 
Even if the kernel P is not invariant under translation or rotations, the law of Z f is, see [START_REF] Ben Hough | Zeros of Gaussian analytic functions and determinantal point processes[END_REF]Proposition 2.3.4]. The a priori superfluous presence of π is in fact consistent with the projective situation. Indeed, the affine Bargmann-Fock is the universal local limit of the projective model, see Theorem 4.5. In order to unify the setting, we consider here that M " C n and L " C n ˆC with its standard Hermitian metric. Then

Ppz, wq P L z b L ẘ.

Note that the trivial connection on L has vanishing curvature. Hence, let ∇ 0 be the metric connection for this setting:

∇ 0 1 " 1 2 πp B ´Bq}z} 2 , (4.3) 
whereas the dual connection ∇ ˚on L ˚satisfies

∇ 0 1 ˚" ´1 2 πp B ´Bq}z} 2 , (4.4) 
where 1 ˚is the dual of 1. Notice that 1 is no longer a holomorphic section for this connection, but the (peak) section (see [START_REF] Tian | On a set of polarized Kähler metrics on algebraic manifolds[END_REF], [START_REF] Simon | Symplectic submanifolds and almost-complex geometry[END_REF])

σ 0 :" expp´1 2 π}z} 2 q is, since ∇ p0,1q 0 σ 0 " p´1 2 π B}z} 2 `1 2 π B}z} 2 qσ 0 " 0.
The connection ∇ 0 is then the Chern connection for the trivial metric and this holomorphic structure. This implies that the section P is holomorphic in z, and antiholomorphic in w. Moreover, the curvature of ∇ 0 equals R 0 " BB log }σ 0 } 2 " πB B}z} 2 , and the curvature form equals

i 2π R 0 " i 2 n ÿ i"1 dz i ^dz i
which is the standard symplectic form ω 0 over R 2n . Now, almost surely an instance f of the Bargmann Fock Gaussian field is a holomorphic section for the standard complex structure and the connection with standard curvature form given by (4.3). Let E " C n ˆCr endowed with its trivial metric and let f " pf i q i"1,¨¨¨,r be r independent copies of the Bargmann-Fock field. Then, f is a random section of E b L, and its covariance function equals PId C r . In the following theorem, recall that Crit p i is defined by (3.2), where we use the connexion ∇ r 0 acting on sections of E b L. By an abuse of notation, we continue to use ∇ 0 for ∇ r 0 . Theorem 4.1 Let 1 ď r ď n be integers, f : C n Ñ C r be r independent copies of the Bargmann-Fock field (4.1), and U Ă C n be an open subset of finite volume. Let p : U Ñ R be a smooth Morse function. Then,

@0 ď i ď 2n ´2rztn ´ru, 1 R 2n E#pRU X Crit p i q Ñ RÑ`8 0 1 R 2n E#pRU X Crit p n´r q Ñ RÑ`8 n! ˆn ´1 r ´1˙v olpU q,
where vol denotes the volume for the standard metric on C n .

We postpone the proof of this theorem after the projective case, since the latter is similar but more complicated. In both cases, we will need the following lemma: Proof. This is a straightforward consequence of the definition of ∇ 0 and P.l

We will need the following covariance matrix for Hessians:

Σ GOE " `δpijqpklq `δpjiqpklq ˘1ďiďjďn 

¨1 0 0 0 π Id C n 0 0 0 π 2 Σ GOE 'b Id C r .
Proof. This is an immediate consequence of Lemma 4.2.l

The complex projective case

Let n ě 2, 1 ď r ď n ´1 be integers, M be a compact smooth complex manifold of dimension n equipped with a holomorphic Hermitian vector bundle pE, h E q of rank r and an ample holomorphic line bundle pL, hq. Assume that h has a positive curvature form ω, see (1.1). Let ∇ be the Chern connection of E b L d . Recall that Crit p i is defined by (3.2). Theorem 4.4 Let M , pE, h E q, pL, hq, ω as above and let U Ă M be a 0-codimension submanifold with finite volume. Then @i P t0, ¨¨¨, 2n ´2ruztn ´ru,

1 d n E#pU X Crit p i q Ñ dÑ8 0 1 d n E#pU X Crit p n´r q Ñ dÑ8 ˆn ´1 r ´1˙ż U ω n .
The probability measure µ d used for the average is defined by (1.5).

Theorem 1.9 ([11, Theorem 3.5.1]) implies this result for the squared modulus of a Lefschetz pencil p : M CP 1 . Indeed, since p is holomorphic (outside its singular locus), p |Zs is critical if and only if |p| 2 |Zs is, and in the latter case the index equals n ´r.

Bergman and Bargmann-Fock.

The covariance function for the Gaussian field generated by the holomorphic sections s P H 0 pM, E b L d q is @z, w P M, E d pz, wq " E rspzq b pspwqq ˚s P pE b L d q z b pE b L d q ẘ, where E ˚is the (complex) dual of E and @w P M, @s, t P pE b L d q w , s ˚ptq " h E b h L d ps, tq.

The covariance E d is the Bergman kernel, that is the kernel of the orthogonal projector from L 2 pM, E b L d q onto H 0 pM, E b L d q. This fact can be seen through the equations @z, w P M, E d pz, wq "

N d ÿ i"1 S i pzq b S i pwq,
where pS i q i is an orthonormal basis of H 0 pM, E b L d q for the Hermitian product (1.4). Recall that the metric g is induced by the curvature form ω and the complex structure. It is now classical that the Bergman kernel has a universal rescaled (at scale 1{ ? d) limit, the Bargmann-Fock kernel P defined by (4.2). Theorem 4.5 below quantifies this phenomenon. For this, we need to introduce local trivializations and charts. Let x P M and R ą 0 such that 2R is less than the radius of injectivity of M at x. Then the exponential map based at x induces a chart near x with values in B TxM p0, 2Rq. The parallel transport provides a trivialization The original reference is a little more intricated, see [START_REF] Letendre | Variance of the volume of random real algebraic submanifolds II[END_REF]Proposition 3.4] for the present simplification. We will also need the following lemma:

ϕ x : B TxM p0, 2Rq ˆpE b L d q x Ñ pE b L d q |B TxM p0,2Rq
Lemma 4.6 Under the local trivializations given before, at x (the center of the chart) the two equalities hold:

∇ " ∇ 0 `Op 1 ? d q and ∇ 2 " p∇ 0 q 2 `Op 1 ? d q.
Proof. The conjonction of [ The constants involved in the error terms do not depend on α.

Proof. The first assertion is a direct consequence of Theorem 4.5, Lemma 4.6 and Corollary 4.3. The second one is deduced from the classical regression formula and from pCovps, ∇sqq ´1 "

1 d n ˜p1 `0p 1 d qq Op 1 d 3 2 q Op 1 d 3 2 q 1 πd p1 `Op 1 d qq ¸Id pEbL d qz . (4.6) 
l Proof of Theorem 4.4. We want to apply Theorem 3.6. First, from Corollary 4.7 we get that for any x P M and any α P L C pT x M, E x q, ρ Xpxq p0, αq " p1 `Op 1 d qq p2πq r`nr pd n q r pπd n`1 q nr exp ˆ´1

1 πd n`1 p1 `Op 1 d qq}α} 2 
˙.

Now, if K " ker α, µ " ker dppxqpα |K K q ´1 and εpµq P µ K has a norm equal to 1, let Let pβ, a, bq "

1 ? πd n`1 ´α|K K C Xker π C , xα | ker K π C , εy, π K µ α | ker K π C ¯, (4.7) 
where π K µ denotes the orthgonal projection (for h E ) onto µ. Using Lemma 3.5 for the transformation of dvolpαq, the term ¯, Σ n´r GOE `1 `Op

ˇˇdet α |K K C Xker π C ˇˇ2 pn´r`2q
1 d q ˘˙,
where the constants are independent of α and ε, and where Σ n´r GOE denotes the covariance matrix Σ GOE defined by (4.5) in dimension n ´r. When d grows to infinity, the average (4.8) is uniformly bounded above by an integrable map, since the pole generated by }π C pxq} is integrable. Consequently, the dominated convergence theorem implies that

1 d n volpU q E#pCrit p i X U q Ñ dÑ8 2 r 2 ´nr´2r`2 π pr´1qpn´r`1q volpGrass C pn ´r, n ´1q volpGrass C pr ´1, rqq E ´| det β| 2pn´r`2q ¯E `1tInd A"iu | det A| 2 ˘,
where A P M n´r pCq has covariance Σ n´r GOE and where we used the determinant equality (3.6). Note that we passed from the real determinant det R to the complex one for the random complex matrix A. Since its index is always n ´r, all the averages divided by d n for i ‰ n ´r converge to 0. The computations of the expectations and volume are given in [11, The powers of 2 in the latter equalities come from different choices of the measures, more precisely our choice of the half in the exponentials. Hence,

1 d n volpU q E#pCrit p n´r X U q Ñ dÑ8 n! ˆn ´1 r ´1˙.
l

We give now a sketch proof of the affine case.

Proof of Theorem 4.1. Let f " pf 1 , ¨¨¨, f r q P C r be the random Bargmann-Fock field. For any R ą 0, let p R " pp R q, so that the associated complexification π R,C of dp R pxq satisfies π R,C pxq " we conclude as in the projective case. l

The boundary case

In this paragraph, we apply Proposition 3.3 to estimate the mean number of critical points of the restriction of p on the boundary of Z s inside BU , where U Ă M is an open set with smooth boundary and M is complex. We begin by a description of the mixed complex geometry on the boundary of U .

Complex geometry on the boundary. In the sequel, for any x P M and any real subspace L Ă T x M , we denote by L C the largest complex subspace in L. The projective case.

We first specialize this setting to the projective setting of Theorem 1.3. Recall that the natural scale for the random sections of degree d is d ´1 2 . Since the dimension of BU is 2n ´1, we can guess that the average number of critical points of p |BU XZs should be bounded by Opd 2n´1 2 q. Proposition 4.10 Let n ě 2 and 1 ď r ď n ´1 be integers, M be a compact smooth Kähler manifold and pL, hq be an ample complex line bundle over M , with curvature form ω, pE, h E q be a holomorphic rank r vector bundle and let U Ă M be a 0-codimension submanifold with smooth boundary. Then, for any Borel subset A Ă BU , @0 ď i ď 2n ´2r ´1, 1

d n´1 2 E#Crit p |BU i " O dÑ8 p1q.
Here the probability measure is the Gaussian one given by (1.5).

Proof. Since we only need a bound for the averages and not their exact asymptotics, we apply Theorem 3. 2 ∇ 2 s. Then, thanks to Lemma 4.9 which provides the power of d which pops up from volpαq, the average equals d n´1 2 times a multiple integral which converges to a convergent integral independent of d. l

The affine setting.

For the Bargmann-Fock field, we have the similar proposition: 

Corollary 1 . 4

 14 Under the hypotheses of Theorem 1.3, for any ε ą 0, lim sup dÑ`8

Lemma 4 . 2

 42 Let P the Bargmann-Fock covariance (4.2), and ∇ 0 the connection defined by (4.3) and (4.4). Then, for any z P C n , ∇ p1,0q,p0,1q 0 z, w Ppz, zq " π n ÿ i"1 dz i b dw i and ∇ p1,0q 2 ,p0,1q 2 0 z 2 , w2 Ppz, zq " π 2 n ÿ i,j,k,ℓ"1 pδ ik δjℓ `δiℓ δ jk qdz i b dz j b dw k b dw ℓ .

Corollary 4 . 3

 43 Let f : C n Ñ C r be r independent copies of the Bargmann-Fock field. Then, for any x P C n , Covpf pxq, ∇ 0 f pxq, ∇ 2 0 f pxqq "

Theorem 4 . 5 ([ 19 , 1 ?

 45191 which induces a trivialization of pE b L d q b pE b L d q |B TxM p0,2Rq 2 . Under this trivialization, the Bergman kernel E d becomes a map from T x M 2 with values into End `pE b L d q x ˘. Theorem 1]) Under the hypotheses of Theorem 1.3, let m P N. Then, there exist C ą 0, such that for any k P t0, ¨¨¨, mu, for any x P M , @z, w P B TxM p0, pz,wq ˆ1 d n E d pz, wq ´Ppz ? d, w ? dq Id pEbL d qx ˙› › › › ď Cd k 2 ´1.

Proposition 4 . 11

 411 Let 1 ď r ď n be integers, f : C n Ñ C r be r independent copies of the Bargmann-Fock field (4.1), U Ă C n be an open subset with smooth boundary, and p : Ū be a smooth Morse function, in the sense of Definition 4.11. Then,@0 ď i ď 2n ´2r ´1, 1 R 2n´1 E#Crit p |BpRU q i " O RÑ`8 p1q. (4.10)Proof. This is very similar to the projective setting.l4.4 Proof of the main theoremsTheorem 1.3 is a simple consequence of Theorem 4.4 and Proposition 4.10. Indeed, Morse inequalities for manifolds with boundary hold: Theorem 4.12 (see [16, Theorem A]). Under the setting of Definition 4.8, assume hat Z is compact. For any i P t0, ¨¨¨, m ´1u, let N i be the number of boundary critical points of p |BZ of index i, such that p increases in the direction of Z. Then,

  Xpxq is the Gaussian density of Xpxq and the determinants are computed in orthonormal basis. Moreover, this integral is finite if volpAq is finite.

	xPA	ż αPLontopTxM,Exq ker αĂker dppxq	ˇˇdet α | ker K α ˇĚ
	"	1 tInd pπpx,αqq"iu ˇˇdet ´x∇ 2 spxq | ker α , εpx, αqy
	´xαphpxqq, εpx, αqy ρ Xpxq p0, αqdvolpαqdvolpxq, ∇ 2 ppxq | ker α }dppxq}	¯ˇˇ| spxq " 0, ∇spxq " α	ı
	where ρ		

  3.4 Assume the hypotheses of Proposition 3.3 are satisfied. Let A Ă M be a Borel subset. Then, for any i P t0, ¨¨¨, n ´ru,

	ż		ż
	E r# pA X Crit p i qs "	xPA	KPGrasspn´r,ker dppxqq µPGrasspr´1,Exq

  which gives the first estimate. The second one is implied by the first one and by the fact that the Levi-Civita connection associated to g is trivial at x, because the coordinates on M are normal at x. l Corollary 4.7 Under the hypotheses and trivializations above near x P M , in any orthonormal basis of T x M ,

		18, Lemma 1.6.6] and [18, (4.1.103)] implies that
		∇ " ∇ 0 `Op	1 ? d	q `Op}z ´x} 3 q,
	Cov `s, ∇s, ∇ 2 s ˘|x " d n	¨p1 `Op 1 d qq Op 1 ? d q Op1q	Op 1 ? d q πdI n p1 `Op 1 d qq Op ? dq	π 2 d	Op1q Op ? dq

2 Σ GOE p1 `Op 1 d qq ‹ 'Id pEbL d qx ,

where I n P M n pRq and Σ GOE is defined by (4.5). Moreover, for any

α P T x M b E x , `x∇ 2 s, εy | s " 0, ∇s " α ˘" N ˆO`} α} ? d ˘, Σ ˙, where Σ :" π 2 d n`2 Σ GOE Id pEbL d qx `1 `Op 1 d q ˘.

  |xαphpxqq, εy| 2 dvolpαq |W px,K,µq ρ Xpxq p0, αq ´1 2 |a| 2 | da " 4π. By Corollary 4.7, the field X defined by (3.1) is non-degenerate for d large enough. Hence, we can apply Theorem 3.6. Let Y " 1 ? π 2 d n`2 ∇ 2 spxq. Then, the average in the formula provided by Theorem 3.6 is now equal to pπ 2 d n`2 q n´r times E " 1 tInd pπpx,αqq"iu ˇˇdet R ´xY |K , εy ´a ∇π C pxq |K p1 `Op 1

	in the integral of Theorem 3.6 equals			
	p1 `Op | det β| 2pn´r`2q p2πq pr´1q 2 |a| 2 2π	1 d dvolpβ, a, bq qq p2πq r´1 pπd n`1 q pr´1qpn´r`2q`1`r 2 ´pr´1q p2πq pr´1q 2 `1 p2πq r`nr d nr pπd n`1 q nr p2πq r´1 exp ˆ´1 2 p1 `Op d qqp}β} 2 `|a| 2 `}b} 2 q 1 ˙.
	Note that	ż			
		}π C pxq}π	3 2 d	d qq 2n`3 2	ı ¯ˇˇ| spxq " 0, ∇spxq " α	. (4.8)

aPC |a| 2 e Recall that πpx, αq defined by (3.3). Besides, by Corollary 4.7, `xY |K , εy | spxq " 0, ∇spxq " α ˘" N ˆO´} pβ, a, bq} d 3 2

  Remark 3.1.1, proof of Theorem 3.5.1]: Γpjq E `| det Y | 2 ˘" 2 n´r pn ´r `1q!

	volpGrass C pn ´r, n ´1q " π pn´rqpr´1q	ś r´1 j"1 Γpjq ś n´1 j"n´r`1 Γpjq
	volpGrass C pr ´1, rqq " π r´1 1 Γprq	
	E| det β| 2pn´r`2q " 2 pr´1qpn´r`2q	ś n`1 j"n´r`3 Γpjq ś r´1 j"1

  1 R π C p x R q.Note that p R is a Morse function on RU . By Corollary 4.3, the field X defined by 3.1 is non-degenerate, so that we can apply Theorem 3.6 on the open set RU . By the independance of the triplet pf, ∇ 0 f, ∇ 2 0 f q, the conditional expectation in Theorem 3.6 equals Recall that πpx, αq defined by(3.3). We make the change of variables pβ, a, bq " 1 ? π α |K K (as (4.7)) and Y " 1 π ∇ 2 0 f |K , and then the change of variables y " x{R. By Corollary 4.3, 2 r 2 ´nr´2r`2 π pr´1qpn´r`1q volpGrass C pn ´r, n ´1q volpGrass C pr ´1, rqq E ´| det β| 2pn´r`2q ¯E `1tInd A"iu | det A| 2 ˘.

	E	" 1 tInd pπpx,αqq"iu ˇˇdet ´x∇ 2 0 f pxq |K , εy	´1 R	dπ C p x R q |K }π C p x R q}	xαphpxqq, εpµqy	¯ˇˇı .
	we obtain					
	1 R 2n volpU q	E#pRU X Crit p i q	Ñ RÑ`8		

  Let U Ă M be a codimension 0 open set with smooth boundary BU . Definition 4.8 Let Z be a smooth manifold of dimension m, with C 2 boundary, and p : Z Ñ R a smooth function. Then, p is said to be Morse if there is no critical point on BZ, if p is Morse and if p |BZ is Morse a well. Let p : M Ñ R be a Morse function, such that p |U is Morse in the sens of Definition 4.8. Let H " ker p B Ă T BU. For any x P BU which is not a critical point of p B , dim H " 2n ´2. Moreover, either H " H C and in this case dim C H " n ´1, or dim C H C " n ´2. The first situation is non-generic, but our result holds in this case as well. We define F B " E |BU ' L C pT M, Eq |T pBU q ,

  3 which is easier to handle with than Corollary 3.4. By Theorem 3.3, we have that for any Borel subset A Ă BU , E r# pA X Crit p B i qs " Exq |Tx BU ker αĂker dp B pxqˇˇdet α | ker K α ˇˇ(4.9) Xpxq is the Gaussian density of Xpxq and K refers to the orthogonality in T BU . As in the proof for projective manifold case, in equation (4.9) we perform the change of variables β " d

	ż	ż
	xPA	αPL C onto pTxM,

E " 1 tInd pπpx,αqq"iu ˇˇdet ´x∇ 2 B spxq | ker α , εpx, αqy ´∇2 p B pxq | ker α }dp B pxq} xαphpxqq, εpx, αqy ¯ˇˇ| spxq " 0, ∇ B spxq " α ı ρ Xpxq p0, αqdvolpαqdvolpxq, where ρ n`1 2 α and Y " d n`2

W " tpx, 0, αq P F B , α onto and ker α Ă ker dp B pxqu, W x its fiber over x P M , and Xpxq " px, spxq, ∇ B spxqq P F B , where ∇ B " ∇ |T BU denotes the restriction of the Chern connection ∇ on E to the tangent space of the boundary of U . For any x P BU and any α P L C onto pT x M, E x q, let K " Kpx, αq " ker α X T BU.

Let g P H be a (one of the two) unit vector such that

Note that ker α " K ' RJg, where J denotes the complex structure J : T M Ñ T M . Now, dim R K K " 2r, where K stands for the metric on T BU . Moreover, dim R pK K X Hq " 2r ´1 so that dim C pK K X Hq C " r ´1. Let v P H a unit vector such that

and µ C " αppK K X Hq C q. Finally, let ε be a unit vector in µ K Ă E x .

Lemma 4.9 Under the setting above, for any x P BU , the real dimension of W x equals 2nr ´2n `2r `1.

Proof. For any px, 0, αq P W ,

Since β |K C is a complex linear map, its image in E x is a complex subspace, so that p0, βq P W x if and only if βpK C q Ă µ C and xβ |Rg , εy " 0.

Since dim C αppK K X Hq C q " r ´1, the real dimension of W x equals dim R W x " 2r 2 `2pn ´r ´1qpr ´1q `p2r ´1q,

where the first term equals dim R L C pker K α, E x q (here K stands for T x M ), the second equals dim R L C pK C , µ C q and the third equals dim R tβ P L C pg C , E x q, xβ, εy " 0u, where g C " Rg `RJg denotes the complex line generated by g. l

• (weak Morse inequalities) @0 ď i ď m, b i pZq ď #Crit p i `Ni .

• (strong Morse inequalities) @0 ď i ď m,

We will apply these Morse inequalities to the random nodal sets Z s X U .

Proof of Theorem 1.3. By [START_REF]Betti numbers of random real hypersurfaces and determinants of random symmetric matrices[END_REF]Lemma 2.8], almost surely the restriction p |Zs is Morse in the latter sense. The proof of this lemma extends to p |ZsXU , so that we can apply Theorem 4.12 to Z s X U , for almost all s. Hence, @0 ď i ď 2n ´2r, Eb i pZ s X U q ď Ep#Crit p i q `Ep#Crit

By (4.11), Theorem 4.4 and Proposition 4.10, we obtain @0 ď i ď 2n ´2rztn ´ru, Eb i pZ s X U q " opd n q and Eb n´r pZ s X U q ď Ep#Crit p n´r q `opd n q. On the other hand, the two assertions of Theorem 4.12 and Proposition 4.10 imply that Eb n´r pZ s X U q ě Ep#Crit p n´r q ´opd n q, so that by Theorem 4.4, Eb n´r " d n `n´1 r´1 ˘şU ω `opd n q, which is the result. l