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Abstract

Let n ě 2 and r P t1, ¨ ¨ ¨ , n ´ 1u be integers, M be a compact smooth Kähler
manifold of complex dimension n, E be a holomorphic vector bundle with complex
rank r and equipped with an hermitian metric hE , and L be an ample holomorphic
line bundle over M equipped with a metric h with positive curvature form. For any
d P N large enough, we equip the space of holomorphic sections H0pM,E b Ldq with
the natural Gaussian measure associated to hE , h and its curvature form. Let U Ă M

be an open subset with smooth boundary. We prove that the average of the pn´ rq-th
Betti number of the vanishing locus in U of a random section s of H0pM,E b Ldq is
asymptotic to

`

n´1

r´1

˘

dn
ş

U
c1pLqn for large d. On the other hand, the average of the

other Betti numbers are opdnq. The first asymptotic recovers the classical deterministic
global algebraic computation. Moreover, such a discrepancy in the order of growth of
these averages is new and constrasts with all known other smooth Gaussian models,
in particular the real algebraic one. We prove a similar result for the affine complex
Bargmann-Fock model.

Mathematics subject classification 2010: 32L05 (Holomorphic bundles and gen-
eralizations) ; 60G15 (Gaussian processes)
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1 Introduction

The goal of this article is to understand the statistics of the local topology of random
complex submanifolds, for projective manifolds and the affine complex space.

Projective manifolds. Let n be a positive integer, M be a compact smooth complex
manifold of complex dimension n, and L be an ample holomorphic line bundle over M .
Let h be a Hermitian metric on L with positive curvature form c1pLq “ ω, that is locally

ω “ 1

2iπ
BB̄ log }s}2h, (1.1)

where s is any local non-vanishing section of L. Then, pM,ωq becomes a Kähler manifold,
and by the Kodaira theorem, it can be embedded in a projective space. For any large
enough degree d ě 1, and any generic holomorphic section s P H0pM,Ldq, denote by
Zs Ă M the smooth vanishing locus of s. The famous hyperplane Lefschetz theorem
asserts, in particular, that [14]

@0 ď i ď n ´ 2, bipZsq “ bipMq.

For instance, if M “ CPn, then for i ď n ´ 2, bipZsq “ 0 if i is odd and bipZsq “ 1 if i is
even. On the other hand,

1

dn
bn´1pZsq Ñ

dÑ8

ż

M

ωn. (1.2)

Of course, there is no local (deterministic) version of the Lefschetz theorem. Indeed, if
U is an open subset of M , the intersection of U with Zs can be empty or can have a
topologicial complexity bigger than the one of Zs. In particular for n ě 2, Zs is connected
but its intersection with U can be disconnected. There is even no bound for the number
of components of it, since we can twist U for that. However, for a fixed U defined by
algebraic inequalities, the following bound exists:

Theorem 1.1 ([20, Theorem 3]) Let U Ă CPnztZ0 “ 0u be an open subset defined by real
algebraic inequalities. Then, there exists a constant CU depending only on the number and
the degree of the defining polynomials of U , such that for any generic r-uple of homogeneous
complex polynomials s “ ps1, ¨ ¨ ¨ , srq P pChom

d qr of degree d,

2n´2r
ÿ

i“0

bipZs X Uq ď CUd
2n. (1.3)

Now, if the section s is taken at random, one could hope that for fixed U , not necessarily
defined by polynomials, the average topology of Zs XU reflects in some way the Lefschetz
theorem and with further hope, the asymptotic (1.2) as well. In this paper, we prove
that these two intuitions are true, in the following more general classical setting. In
addition to pL, hq, let pE, hEq be a holomorphic vector bundle of rank r and equipped
with a Hermitian metric hE . Since L is ample, for d large enough, the space of holomorhic
sections H0pM,E b Ldq is non-trivial. Then, a natural scalar product associated to this
setting is the following:

@ps, tq P pH0pM,E b Ldqq2, xs, ty “
ż

M

hE b hLdps, tqω
n

n!
, (1.4)
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where hLd is the metric over Ld induced by hd. A natural probability measure µd over
this space is the Gaussian one associated to this Hermitian product. In other terms, for
any Borelian A Ă H0pM,E b Ldq,

µdpAq “
ż

A

e´ 1

2
}s}2 ds

p2πqNd
, (1.5)

where } ¨ } denotes the norm associated to the Hermitian product (1.4), Nd the (complex)
dimension of H0pM,E b Ldq and ds the Lebesgue measure. Notice that if pSiqiPt1,¨¨¨ ,Ndu
is an orthonormal basis for this scalar product, then s “ řNd

i“1
aiSi is random for µd when

the coefficients ai P C are i.i.d standard complex Gaussians, that is ℜai and ℑai are
independent standard Gaussians.

Example 1.2 For M “ CPn, E “ C
r equipped with its standard Hermitian metric,

L “ Op1q equipped with the Fubini-Studi metric, then s consists in r independent copies
of random polynomials

@1 ď i ď r, siprZsq “
ÿ

i0`¨¨¨`in“d

ai0¨¨¨in

d

pn ` dq!
n!i0! ¨ ¨ ¨ in!

Zi0
0

¨ ¨ ¨Zin
n ,

where the paiqi are independent standard complex Gaussian variables.

Our main result is the following:

Theorem 1.3 Let n ě 2 and 1 ď r ď n ´ 1 be integers, M be a compact smooth Kähler
manifold and pL, hq be an ample complex line bundle over M , with positive curvature form
ω, pE, hEq be a holomorphic rank r vector bundle and let U Ă M be a open subset with
smooth boundary. Then

@i P t0, ¨ ¨ ¨ , 2n ´ 2ruztn ´ ru, 1

dn
EbipZs X Uq Ñ

dÑ8
0

1

dn
Ebn´rpZs X Uq Ñ

dÑ8

ˆ

n ´ 1

r ´ 1

˙
ż

U

ωn.

Here the probability measure is the Gaussian one given by (1.5). These asymptotics hold
when U “ M as well.

Of course, when U “ M , the topological type of Zs does not depend on the random section
s. Markov’s inequality implies the following corollary.

Corollary 1.4 Under the hypotheses of Theorem 1.3, for any ε ą 0,

lim sup
dÑ`8

µd

"

s P H0pM,E b Ldq | bn´rpZs X Uq ě dn

ε

ˆ

n ´ 1

r ´ 1

˙
ż

U

ωn

*

ď ε,

where µd is defined by (1.5).

Note that the Gaussian measure can be replaced by the round metric on the sphere
SH0pM,E b Ldq, where the metric is defined by (1.4). Hence, this corollary can be seen
as a deterministic result about the volume of certain subsets of topological interest in this
sphere.

Example 1.5 Under the standard setting of Example 1.2,
ş

CPn ω
n
FS “ 1, so that

1

dn
Ebn´rpZs X Uq Ñ

dÑ8

ˆ

n ´ 1

r ´ 1

˙

volpUq
volpCPnq .
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Remark 1.6 1. Theorem 1.3 provides the first explicit asymptotic for one mean Betti
numbers of the nodal set of a smooth Gaussian field. Former explicit asymptotics
were proven [9] in a real context for high level random sets (in particular, not the
zero one). For r “ 1, it is striking that the asymptotic average local behaviour reflects
exactly the global asymptotic estimate given by (1.2).

2. For U “ M , Theorem 1.3 has a deterministic corollary. Indeed, any divisor of given
degree is diffeomorphic to the another of the same degree. Hence, for r “ 1 the
second assertion of Theorem 1.3 is equivalent to the asymptotic (1.2). For higher
codimensions r, [11, Corollary 3.5.2] shows that

1

dn
χpZsq Ñ

dÑ8

ˆ

n ´ 1

r ´ 1

˙
ż

M

ωn. (1.6)

Again, (1.6) is implied by Theorem 1.3.

3. We emphasize that these qualitatively different asymptotics are new. In particular
constrasts with the real situation [11, Corollary 1.2.2] and all known others smooth
Gaussian models like [13] (see also [25]). In these latter cases, all Betti numbers
grow like Ln, where 1{L is the natural scale of the model, 1{

?
d in this one. This is

especially true for the number of connected components, see [21]. Here, the scale is

d´ 1

2 , however only the pn ´ rq-th Betti number grows like dn.

4. In [8], it was proved that for any compact smooth real hypersurface Σ of Rn, for any
open subset U Ă M , with uniform probability, a uniform proportion of the pn ´ 1q-
homology in Zs X U can be represented by Lagrangians submanifolds diffeomorphic
to L.

5. In [1, Theorem 5 (2)] (see also [5, Theorem A]), it is shown that as far as (local)
topology of Zs XRPn is only concerned, a random real polynomial s of degree d can
be replaced, with high probability, by a polynomial of degree slightly greater than

?
d.

In fact, this statement holds for complex polynomials on a ball in the complementary
of a complex hypersurface as well. Using Milnor’s bound (1.3), this replacement
allows to get a similar estimate as Corollary 1.4 when U is be defined algebraically.
The decay is almost exponential in this case.

6. In [2, Proposition 6], the author proved that (deterministic) Donaldson hypersur-
faces, which are zeros of sections with vanish transversally with a controlled deriva-
tive, satisfy such local topology estimate for the pn´rq-th Betti number. Theorem 1.3
shows a further evidence that Donaldson hypersurfaces have common features with
random ones. For instance, the current of integration over Zs fills out uniformly M

for large degrees d in both contexts, see [6] and [22].

The complex Bargmann-Fock field. Finally, we prove an affine version in the uni-
versal limit for holomorphic sections, namely the complex Bargmann-Fock field. The
Bargmann-Fock field is defined by

@z P C
n, fpzq “

ÿ

pi1,¨¨¨ ,inqPNn

ai0,¨¨¨ ,in

d

πi1`¨¨¨`in

i1! ¨ ¨ ¨ in!
zi1
1

¨ ¨ ¨ zinn e´ 1

2
π}z}2 , (1.7)

where the aI ’s are independent normal complex Gaussian random variables. The strange
presence of π will be explained below.
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Theorem 1.7 Let n ě 2 and 1 ď r ď n ´ 1 be integers, f : Cn Ñ C
r be r independent

copies of the Bargmann-Fock field, and U Ă C
n be an open subset with compact smooth

boundary. Then,

@i P t0, ¨ ¨ ¨ , 2n ´ 2ruztn ´ ru, 1

R2n
EbipZf X RUq Ñ

RÑ`8
0

1

R2n
Ebn´rpZf X RUq Ñ

RÑ`8
n!

ˆ

n ´ 1

r ´ 1

˙

volpUq.

The volume is the standard one.

Remark 1.8 1. Again, compared to the other known results, the order of magnitude
of the mean number of connected components is not the natural one, that is R2n,
see [21] for instance.

2. Theorem 1.7 (and Theorem 1.3) was guessed by the author for the following geometric
reasons, which we present for n “ 2 and r “ 1: because of the maximum principle,
if a complex curve in C

2 locally touches a real hyperplane H, being (locally) on one
side of H, then C is affine and C Ă H. Now, if p : U Ă C

2 Ñ R is Morse, for any
R ą 0, let pR “ pp¨{Rq. Then for large R ą 0, the level sets of pR are locally closer
and closer to be planar, so that there should be less and less random cuves touching
them from the interior, that is there are less and less critical points of p|Zf

of index
0, compared to critical points of index 1. Morse theory should then imply the result.

Related results. The study of the statistics of the Betti numbers, or even the dif-
feomorphism type, of a random smooth submanifold (of positive dimension) is now a
well-developped subdomain of random geometry, with current links to percolation. We
refer to [9] for a historical account of this topic. The results were proven mainly in the
real algebraic and Riemannian semiclassical settings. Both models share a common fea-
ture: the Betti numbers grow (with the parameter, degree or eigenvalue) like the inverse
of the scale to a power equal to the dimension of the ambient manifold. In both cases, the
covariance of the model is the spectral kernel, for which estimates exist.

The local study of the geometry of random complex submanifolds of positive dimension
began with [22], under the hypotheses of Theorem 1.3, with r “ 1. It was proven that
the average current of integration over Zs tends to the curvature form of the line bundle,
when d grows to infinity. Since the topology of the complex hypersurfaces depend only
on the degree, a crucial difference with the real setting, the topology of random complex
hypersurfaces seemed less promising. Our paper [8] showed that local random (symplectic)
topology is interesting as well, and even can provide new deterministic results.

A lot of results about critical points of random sections has been done. In this complex
algebraic context, it seems to begin with [7]. In [10], the restriction of a Lefschetz pencil to
the complex random hypersurface was used in order to get topological estimates through
Morse theory, which is the spirit of the present paper. We refer to [11, §1.3] for further
references. The following result is close to the present work:

Theorem 1.9 ([12, Theorem 1.3] for r “ 1, [11, Theorem 3.5.1]) for any r) Under the
hypotheses of Theorem 1.3, let p : M 99K CP 1 be a Lefschetz pencil. Then,

1

dn
E#

`

U X Critpp|Zs
q
˘

Ñ
dÑ8

ˆ

n ´ 1

r ´ 1

˙
ż

U

ωn.
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This result holds in particular for any local holomorphic map. A similar real version of
Theorem 1.9 was proven as well. In the real setting, the authors used the weak Morse
inequalities in order to get an upper bound for the average Betti numbers of Zs. Lower
bounds of the same order of magnitude (in the degree) where estimated by the barrier
method.

As in [9], in the present paper we use the strong Morse inequalities, and moreover we
use this theory on manifolds with boundary, which implies to take in account the critical
points of the restriction of the function to the boundary. Joint with the weak ones, strong
Morse inequalities allow us to get the proper estimate of the mean middle Betti number
given by Theorem 1.3. On the contrary to the real setting, in our complex setting strong
Morse inequalities help, because the complex Hessian of a holomorphic function has a
symmetric signature, which implies that all mean critical points of p|Zs

have the wrong
order of magnitude, except when the index is the middle one, that is n´r, see Theorem 4.4.

The method to prove Theorem 4.4 is different than the one used for Theorem 1.9,
but both provide, on the one hand, a Kac-Rice formula (both based, at the end, on the
coarea formula), and on the other hand, an estimate of it when the degree goes to infinity.
In [12] and [11], the authors used explicit peak sections to compute the average, and the
aforementionned parts were mixed. In this paper we wanted to clearly separate the two
parts of the proof : one part which is based on a general Kac-Rice formula as Corollary 3.4,
and one part which depends on the particular model, real, holomorphic or mixed (on the
boundary of the open set U). This can be done because the second part only needs
informations about the covariance function. For projective manifolds, this is the Bergman
kernel, see section 4.2. The peak sections is a way to recover the needed informations,
see [24]. In [22], the Szegö kernel was used, based on Zelditch’s semiclassical way [26]
of proving Tian’s theorem. For the Riemannian setting like in [13], the covariance is the
spectral kernel and Hörmander estimates can be used.

Holomorphic percolation. Theorem 1.7 raises a natural question related to percola-
tion theory: is there a Russo-Seymour-Welsh phenomenon for the complex Bargmann-Fock
field ? In its simplest non-trivial form, this question is the following:

Let B,B1 Ă S
3 Ă C

2 two disjoint closed smooth 3´balls lying in the unit sphere, and let f
be the complex Bargmann-Fock field over C

2 see (1.7). Is it true that

lim inf
RÑ`8

P
`

D a connected component of tf “ 0u X RB
4 joining RB to RB1˘ ą 0 ?

The analog for the real Bargmann-Fock over R
2 is true, see [3]. We emphasize that the

holomorphic situations constrasts in many ways with the real setting. Firstly, there is
no bounded component of tf “ 0u in the complex case and with probability one, there
is a unique component of Zf . Secondly, none of the classical tools in percolation theory
does hold in this holomorphic context, in particular duality and FKG property. Besides,
the isotropy of the field and the absence of bounded components imply that with uniform
positive probability there exists a component of tf “ 0u X RB from B to RB. In the real
setting, this probability tends to 0. Finally, note that a similar question can be asked for
complex algebraic submanifolds:

Let U Ă CP 2 be a smooth ball in the projective plane, B,B1 Ă BU two disjoint closed
smooth 3´balls lying in the boundary of U , and let s P H0pCP 2,Opdqq be a random
polynomial of degree d. Is it true that

lim inf
dÑ`8

P
`

D a connected component of ts “ 0u X U joining B to B1˘ ą 0 ?
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The real analog has been proven in [4].

Ideas of the proof of Theorem 1.3. Let U Ă M be an open set with compact smooth
boundary and p : Ū Ñ R be a smooth Morse function in the sense of Definition 4.8, that
is p Morse on U , its restriction to BU is Morse and p has no critical point on BU . Let Z be
a complex smooth submanifold of U with boundary in BU , such that p|Z is Morse in the
latter sense. Then, by Morse theory for manifolds with boundary, for any 0 ď i ď dimR Z,
the i-th Betti number of Z is less or equal to the number of critical points of p|Z and p|BZ
of index i, see Theorem 4.12. Besides, from the strong Morse inequalities, we can estimate
the i´th Betti number of Z if the critical points of index different than i are far smaller.

We apply this to Zs the zero set of a random holomorphic section s of degree d. Note
that the natural scale for the natural measure is 1{

?
d. Hence, in every ball of this radius,

the geometry of Zs should be independent of d. This implies in particular that on a
manifold of real dimension m, the average of geometric or analytic observables like the
number of critical points of p|Zz

should grow like d
m
2 .

The general Kac-Rice formula given by Corollary 3.4 applied to our projective situation
allows us to estimate the number of critical points in the interior of U , see Theorem 4.1,
and a factor dn emerges, as guessed by the previous heuristic arguments. Here we use
the fact that the covariance function of s is the Bergman kernel and that this kernel has
a universal rescaled limit, see Theorem 4.5. Now, the integral in the Kac-Rice formula
involves the determinant of a random matrix provided by a perturbation of the Hessian
of s (restricted to the tangent space of Zs), where the perturbation decreases with d. At
the limit, the matrix is non zero only for middle index, since the Hessian has complex
symmetries. On the contrary, the mean number of critical points of middle index has a
precise non-trivial asymptotic, see Theorem 4.4.

We need also to control the number of critical points of the restriction of p to the
boundary of U and of Zs. We use the Kac-Rice formula in this mixed case as well, see
Proposition 4.10. As guessed, a factor dn´ 1

2 emerges. Both estimates and Morse theory
finish up the proof of Theorem 1.3.

Structure of the article. In section 2, we prove various deterministic lemmas in
order to prepare the main Kac-Rice formula computing the mean of critical points. This
formula is established in section 3. In section 4, we apply this formula in order to prove
Theorem 1.3 and Theorem 1.7.

Aknowledgements. The author thanks Thomas Letendre for his expertise of the book [18]
and Michele Ancona for discussions about the subject of the article and his paper [1].

2 Deterministic geometric preliminaries

The general setting of this paper is a real manifold M of dimension n and a real vector
bundle E over M . Let also p : M Ñ R be a Morse function. For any generic smooth
section of E, we will look at the critical points of p|ts“0u, which are the points x P M

where the tangent space of the vanishing locus Zs of s lies in ker dppxq. For this reason,
we must understand the geometry of ker∇s as an element of the Grassmannian bundle
Grasspn´ r, TMq or Grasspn´ r, ker dpq, where ∇ denotes any covariant connection on E.
In this section, we provide various simple lemmas which will be used in the main results.
To make the computations easier, M and E will be endowed with metrics.
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2.1 Kernel and Grassmannians

The following Lemma is classical:

Lemma 2.1 Let n be an integer and pV, gq be a finite dimensional real vector space of
dimension n equipped with a scalar product g. For any integer 0 ď m ď n, the Grassman-
nian Grasspm,V q of m´planes of V is a smooth manifold and for any K P Grasspm,V q,
TKGrasspm,V q is canonically (with respect to g and K) identified with LpK,KKq. In
particular, TKGrasspm,V q inherits the natural metric on LpK,KKq induced by g. If V is
complex and g is Hermitian, then the same holds, replacing the real Grassmaniann by the
complex Grassmanian GrassC, and LpK,KKq by the complex linear maps LCpK,KKq.

Remark 2.2 Note that for f P LpK,KKq, if A denotes the matrix of f in any g-
orthonormal basis of K and KK, then the squared norm of f induced by g equals TrpAA˚q.

Lemma 2.3 Let 1 ď r ď n, pV, gq be an Euclidean vector space, and E be a real vector
space, of respective dimensions n and r. Let α0 P LontopV,Eq and K “ kerα0 P Grasspn´
r, V q. Then, there exists a neighborhood U Ă LontopV,Eq of α0 and a smooth map :
ϕ : U Ñ LpK,KKq such that ϕpα0q “ 0 and

@α P U, kerα “
`

Id|K ` ϕpαq
˘

pKq.

Moreover, for any β P LpE,V q, dϕpα0qpβq “ ´pα0|KKqp´1qβ|K . The same holds in the
complex-Hermitian setting.

Proof. Let

F : LpV,Eq ˆ LpK,KKq Ñ LpK,Eq
pα, fq ÞÑ α ˝ p Id|K ` fq.

Then, F is smooth and F pα0, 0q “ 0. The partial differential in f at pα0, 0q writes

@g P LpK,KKq, dfF pα0, 0qpgq “ α0 ˝ g “ α0|KK ˝ g P LpK,Eq.

This partial differential is an isomorphism because α0 is onto, so that α0|KK P LpKK, Eq
is an isomorphism. Note that the partial differential in α satisfies

β P LpV,Eq, dαF pα0, 0qpβq “ β|K .

Hence, by the implicit function theorem, there are two open neighborhoods U Ă LpV,Eq
and W Ă LpK,KKq of α0 and 0 respectively, and a smooth function ϕ : U Ñ W such that

@pα, fq P U ˆ W, F pα, fq “ 0 ô f “ ϕpαq.

Besides, dϕpα0q “ ´ pdfF pα0, 0qqp´1q ˝ dαF pα0, 0q, hence the result. l

Let pV, gq and pE, hq as in Lemma 2.3. Define

κ : LontopV,Eq Ñ Grasspn ´ r, V q (2.1)

α ÞÑ kerα.

The following lemma computes the derivative of κ.
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Lemma 2.4 Let pV, gq and pE, hq be two real vector spaces as in Lemma 2.3. Then, κ
defined by (2.1) is smooth and for any α0 P LontopV,Eq, in the chart given by Lemma 2.1,

dκpα0q : LpV,Eq Ñ Tkerα0
Grasspn ´ r, V q » Lpkerα0, ker

K α0q
β ÞÑ ´pα0|KKq´1β|K .

Proof. Let α0 P LontopV,Eq. By Lemma 2.3, Locally, for any α close enough to α0,

κpαq “ pId| kerα0
` ϕpαqqpker α0q.

The second assertion of Lemma 2.3 concludes. l

2.2 The field and its geometry

Let n ě 2 and 1 ď r ď n ´ 1 be integers, pM,gq be a smooth Riemannian manifold of
dimension n ě 1, and E Ñ M be a smooth real vector bundle of rank r. Define

F “ E ‘ T ˚M b E.

Let p : M Ñ R be a Morse function, and W Ă F be the subset of F defined by

W “ tpx, 0, αq P F, dppxq ‰ 0, α is onto and kerα Ă ker dppxqu .
Note that W projects onto MzCritppq. Since p is Morse, Critppq is a discrete set in M

without any accumulation point. If M is compact, Critppq is finite. We will use later that
for any C1 section s of E, then x P M is critical for the restriction of p on ts “ 0u at x is
equivalent to px, spxq,∇spxqq P W , see (3.1) below. For any x P MzCritppq, let

Wx “ tp0, αq P Fx, px, 0, αq P W u . (2.2)

Lemma 2.5 Let M , E, p, F and W be defined as above. Then,

1. W is a smooth submanifold of F of codimension n;

2. W intersects transversally the fibres of F ;

3. for any x P MzCritppq, Wx is a smooth submanifold of Fx of codimension n, and

@p0, αq P Wx, Tp0,αqWx “ tp0, βq P Fx, dppxqpα| kerK αq´1β| kerα “ 0u. (2.3)

Proof. Let px0, 0, α0q P W and K “ kerα0 Ă Tx0
M . Let O be a neighborhood of x0 such

that M can be locally identified with Tx0
M by a chart over O, and E|O can be identified

with OˆEx0
via a trivalization. Then, F|O can be identified with OˆpEx0

‘T ˚
x0
M bEx0

q.
By Lemma 2.3, there exists U Ă LpTx0

M,Ex0
q a neighborhood of α0 and a smooth map

ϕ : U Ñ LpK,KKq, such that for any α P U, kerα “ pId ` ϕpαqq|K . Now, define the
smooth map

Φ : F|O Ñ Ex0
ˆ K˚ (2.4)

px, s, αq ÞÑ
”

s, dppxq pId ` ϕpαqq|K

ı

.

Then, W X O “ Φ´1p0q. Moreover, by Lemma 2.3 again, for all pv, t, βq P Tx0
M ˆ Ex0

ˆ
LpTx0

M,Ex0
q,

dΦpx0, 0, α0qpv, t, βq “
”

t, d2ppx0qpvq|K ´ dppxqpα|KK q´1β|K
ı

. (2.5)

Since dppxq ‰ 0, dΦ is onto, so that W is a smooth submanifold of F of codimension n.
The third assertion of the lemma is an immediate consequence of (2.5). For the second
assertion of the lemma, let px, 0, αq P F X W . Then, by (2.5), pv, t, βq P Fx X Tpx,0,αqW iff
pv, tq “ 0 and dppxqpα| kerK αq´1β| kerα “ 0, that is p0, βq P Tp0,αqWx. Hence, F&W . l
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2.3 Two Jacobians

In this paragraph, the setting is the same as in the latter one, with the novelty that the
vector bundle E is endowed with a Euclidean metric hE on its fibres. We compute two
Jacobians which will be needed for the coarea formula used in the main Kac-Rice formula
Corollary 3.4. For any px, αq P TM˚ b E, such that α is onto and dppxqpα| kerK αq´1 ‰ 0 P
E˚

x , define

µpx, αq “ ker dppxqpα| kerK αq´1 Ă Ex. (2.6)

Let εpx, αq be one of the two unit vector in µpx, αqK Ă Ex, and K “ kerα. The following
decomposition will help:

pα|KKq´1 “

Rε µ
ˆ ˙pα|KKq´1

|Rε 0 kerK dppxq
˚ pα|KKq´1

|µ ker dppxq X KK . (2.7)

Note that for any x P MzCritppq, by (2.3),

Tp0,αqWx “ Lpkerα, µpx, αqq ‘ LpkerK α,Exq

Definition 2.6 (see [23, C.1]) Let M,N be two Riemannian manifolds and κ : M Ñ N be
a C1 map. Then, Jxκ denotes the normal Jacobian, that is the determinant in orthonormal
basis of dκpxq| kerK dκpxq.

In the following, for any x P M , let κ : LontopTxM,Exq Ñ Grasspn ´ r, TxMq defined
by (2.1) for V “ TxM and E “ Ex. By an abuse of notation, we denote also κ the map
Ex ˆ LontopTxM,Exq Q p0, αq ÞÑ κpαq.

Lemma 2.7 For any x P MzCritppq, let κ|Wx
: Wx Q p0, αq ÞÑ kerα Ă ker dppxq. Then,

for all p0, αq P Wx, Jp0,αqpκ|Wx
q “

ˇ

ˇ

ˇ
detα| kerK αXker dppxq

ˇ

ˇ

ˇ

n´r

.

Proof. Firstly, by Lemma 2.5,

Tp0,αqWx kerpβ ÞÑ xεpx, αq, β|K yq,

where ε has been defined above. Since

dpκ|Wx
qp0, αq “ pdκp0, αqq|Tp0,αqWx

,

from Lemma 2.4 we infer that Jp0,αqpκ|Wx
q “

ˇ

ˇ

ˇ
detpα|KKq´1

|µpx,αq

ˇ

ˇ

ˇ

n´r

, where µ has been

defined by (2.6). Since α|KK induces an isomorphism between KK Xker dppxq and µpx, αq,
we obtain the result. l

Lemma 2.8 Fix x P MzCritppq and K P Grasspn ´ r, ker dppxqq. Let

g : κ´1pKq Ñ Grasspr ´ 1, Exq
α ÞÑ µpx, αq “ ker

´

dppxq ˝ pα|KKq´1

¯

.

Then, for all α, Jp0,αqg “ |detα| kerK αXker dppxq|.
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Proof. Firstly, the map

ν : α P κ´1pKq ÞÑ pα|KKq´1 P LpEx,K
Kq

is smooth, and for any α P κ´1pKq,

@β P Tακ
´1pKq, dνpαqpβq “ ´pα|KKq´1β|KKpα|KKq´1 P LpEx,K

Kq.

Moreover, by Lemma 2.1, the differential of

κE : E˚
xzt0u Ñ Grasspr ´ 1, Exq

f ÞÑ ker f

satisfies that, for any f P E˚
xzt0u and h P E˚

x , dκEpfqh “ ´pf| kerK f q´1h| ker f , so that for

any α P κ´1pKq and any β P Tακ
´1K,

dgpαqβ “
´

dppxqpα|KK q´1

|Rεpx,αq

¯´1

dppxqpα|KKq´1β|KKpα|KKq´1

|µpx,αq P Lpµpx, αq,Rεpx, αqq,

hence Jαg “ |detpα|KKq´1

|µpx,αq|. Since α|KK induces an isomorphism betweenKKXker dppxq
and µpx, αq, we obtain the result. l

3 The mean number of induced critical points

In the first part of this section, we provide two results. The first one, Proposition 3.3, is
a Kac-Rice formula for the mean number of critical points of the restriction of a Morse
function to the vanishing locus of a random section of some vector field. It is an application
of the general Kac-Rice formula given by Theorem 3.2. The second result, Corollary 3.4,
is a more explicit and computable Kac-Rice formula which will be used in the applications
of section 4. In the second part of the section, we adapt the formula in a holomorphic
context, see Corollary 3.6.

3.1 The general formula

Let M , E, F and W be as in section 2, and let ∇ be a smooth connection on E. For any
section s P C1pM,Eq, let Zs :“ tx P M,spxq “ 0u and X P C0pM,F q defined by

X : M Ñ F “ E ‘ T ˚M b E

x ÞÑ rx, spxq,∇spxqs . (3.1)

Note that for any x P M , Xpxq P W if and only if x P Zs and x is a critical point of p|Zs
.

For any random section s P C2pM,Eq, we are interested in the subset of M :

Critpi psq “ tx P M, Xpxq P W and Ind∇2pp|Zs
qpxq “ iu, (3.2)

where ∇ is any connection over Zs. Note that Ind∇2pp|Zpsqqpxq is well defined for any
x P X´1pW q because in this case dpp|Zs

qpxq “ 0. Hence, x P X´1pW q if and only if p
lies in Zs and the restriction of f to Zs at p is critical and its index equals i. For any
s P C2pM,Eq and x P X´1pW q, define also

πpx, αq :“ ∇
2ppxq| kerα ´ dppxq

´

α| kerK α

¯´1

∇
2spxq| kerα P Sym2pker∇spxq, Eq, (3.3)

where α “ ∇spxq. Here, ∇2p denotes the covariant derivative of dp for the Levi-Civita
connexion associated to g. However, the formulas will not depend on the choice of this
particular connexion.
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Lemma 3.1 Assume that p : M Ñ R is a Morse function. Let s P C2pM,Eq be a section
of E, x P X´1pW q. Then,

Ind pp|Zs
pxqq “ Ind pπpx,∇spxqqq .

Proof. Let s P C2pM,Eq, x0 P Zs and K “ ker∇spx0q. Assume that dimK “ n´ r. We
choose coordinates near x0 so that M is identified with Tx0

M . By the implicit function
theorem, locally near x0 “ p0, 0q P K ‘ KK, and Zs is the graph over K of a C2 map
f : K Ñ KK with fp0q “ 0 and dfp0q “ 0. Since locally @z P K, spz, fpzqq “ 0, we obtain

∇zs ` ∇ys ˝ df “ 0,

where ∇z and ∇y denote the partial covariant derivatives along K and KK respectively.
so that∇2

z2
sp0, 0q ` ∇ysp0, 0q ˝ d2fp0q “ 0, Now let p0 : K Ñ R define locally by

@z P K, p0pzq “ ppz, fpzqq.

Note that if K Ă ker dppzq, then Ind d2ppzq “ Ind∇2p|Zs
. Now

dp0 “ dzp ` dyp ˝ df,

so that d2p0p0q “ d2zpp0, 0q ` dyp ˝ d2fp0q. Replacing d2fp0q by its value above, we obtain
the result. l

We will use the following general Kac-Rice formula.

Theorem 3.2 ([23, Theorem 3.3]) Let n be a positive integer, M be a smooth manifold
of dimension n, F Ñ M be a smooth vector bundle and X P ΓpM,F q be a non-degenerate
smooth Gaussian random section. Let W Ă F be a smooth submanifold of codimension
n such that for every x P M , Wx :“ W&Fx. Let the total space of F be endowed with a
Riemannian metric that is Euclidean on fibers. Then for any Borel subset A Ă M

E#tx P A X X´1pW qu “
ż

xPA

ż

qPWx

E

´

JxX
σqpX,W q
σqpFx,W q |Xpxq “ q

¯

ρXpxqpqqdvolpqqdvolpxq,

where ρXpxqpqq is the density of Xpxq at q and besides, σqpX,W q, σqpFx,W q denote the
“angles” made by TqW with, respectively, dxXpTxMq and TqFx, see [23, Definition B.2].

The random section X P ΓpM,F q is said to be non-degenerate [23, Definition 3.1] if for
any x P M , supp Xpxq “ Fx. We will not explain here the terms σq, because by the proof
of [23, Lemma 7.2], locally

JxX
σqpX,W q
σqpFx,W q “ δxpΦ ˝ Xq

JxpΦ|Fx
q , (3.4)

where Φ : F Ñ R
n is a local defining function for W , that is W “ Φ´1p0q, where δp denotes

the Jacobian density [23, (A.1)] and where Jx is the normal Jacobian, see Definition 2.6.
The following Proposition 3.3 is an application of the general Kac-Rice formula above,

namely a Kac-Rice formula for the number of induced critical points of the restric-
tion of a Morse function on random nodal sets. We need some notations. Let s P
C2pM,F q, x P X´1pW q and α “ ∇spxq. Recall that εpx, αq P Ex denotes a unit vec-
tor of kerK dppxqpα|KKq´1 Ă Ex, that πpx, αq is defined by (3.3) and Critpi by (3.2). Also,

let hpxq be one of the two unit vector in kerK dppxq Ă TxM .
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Proposition 3.3 Let n ě 2 and 1 ď r ď n ´ 1 be integers, pM,gq be a Riemannian
manifold, pE, hq Ñ M be a rank r smooth Euclidean vector bundle and s P ΓpM,Eq be a
non-degenerate Gaussian smooth field. Let p : M Ñ R be a smooth Morse function. Then,
for any i P t0, ¨ ¨ ¨ , n ´ ru and any Borel subset A Ă M ,

E r# pA X Critpi qs “
ż

xPA

ż

αPLontopTxM,Exq
kerαĂker dppxq

ˇ

ˇ

ˇ
detα| kerK α

ˇ

ˇ

ˇ

E

”

1tInd pπpx,αqq“iu
ˇ

ˇ

ˇ
det

´

x∇2spxq| kerα, εpx, αqy

´xαphpxqq, εpx, αqy
∇2ppxq| kerα

}dppxq}
¯ˇ

ˇ

ˇ
| spxq “ 0,∇spxq “ α

ı

ρXpxqp0, αqdvolpαqdvolpxq,

where ρXpxq is the Gaussian density of Xpxq and the determinants are computed in or-
thonormal basis. Moreover, this integral is finite if volpAq is finite.

Proof. We use Theorem 3.2, using locally (3.4). So let px0, 0, α0q P W . Locally and in
coordinates, using the local defining function Φ for W given by (2.4),

@x P O, ΦpXpxqq “ rspxq, dppxqpId ` ϕp∇spxqqs P Ex0
ˆ pkerα0q˚,

where ∇ still denotes the connection ∇ through the trivialization. Hence,

@v P TxM, dpΦ ˝ Xqpxqpvq “
”

dspxqpvq, d2ppxqpvqpId ` ϕp∇spxqqq| kerα0

´dppxqp∇spxq| ker∇fpxqKq´1d∇spxqpvq| kerα0

ı

.

In particular, for any x P X´1pW q and any v P TxM , if K “ ker∇spxq,

dpΦ ˝ Xqpxqpvq “
”

∇vspxq,∇vdppxq|K ´ dppxqp∇spxq|KKq´1
∇v∇spxq|K

ı

.

Now, decomposing TxM as TxM “ KK ‘ K, since ∇spxq|K “ 0, computing the determi-
nant of this differential gives

δxpΦ ˝ Xq “
ˇ

ˇ

ˇ
det∇spxq|KK

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
det

´

∇dppxq|K ´ dppxqp∇spxq|KKq´1
∇

2spxq|K
¯ˇ

ˇ

ˇ
.

Now, let us compute JxΦ|Fx
. For this, recall that

@ps, αq P Fx, Φps, αq “ rs, dppxqpId ` ϕpαqqs,

so that

@p0, αq P Wx, @pt, βq P TpFx, dpΦ|Fx
qp0, αqpt, βq “ rt,´dppxqpα|KKq´1β|Ks.

Since Jp0,αqpβ ÞÑ xβ|K , εpx, αqyq “ 1, we get that

Jp0,αqpΦ|Fx
q “ |dppxqpα|KK q´1εpx, αq|n´r.

Moreover,

dppxqpα|KKq´1
∇

2spxq|K “
´

dppxqpα|KKq´1εpx, αq
¯

x∇2spxq|K , εpx, αqy.
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By Lemma 2.5, W intersects the fibres of F transversally, so that Theorem 3.2 applies.
Replacing the integrant in the theorem by (3.4), we obtain the formula. Finally, by the
decomposition (2.7),

dppxqpα| kerK αq´1εpx, αq “ }dppxq}pxαphpxqq, εpx, αqyq´1 .

Since p is Morse, for any critical point x P Critppq, there exists a constant Cx such that
}dppyq} ě Cx}y ´ x}. Hence, the pole in the integration over U created by x has order
n ´ r, which is integrable, see also [11, Remark 3.3.3]. l

In order to provide an effective formula in concrete settings, we add further parameters.
For any x P M , recall that hpxq P TxM be one of the two unit vectors in kerK dppxq.
Moreover, for any real hyperplane µ Ă Ex, let εpµq be a unit vector in µK. Recall that
Critpi is defined by (3.2).

Corollary 3.4 Assume the hypotheses of Proposition 3.3 are satisfied. Let A Ă M be a
Borel subset. Then, for any i P t0, ¨ ¨ ¨ , n ´ ru,

E r# pA X Critpi qs “
ż

xPA

ż

KPGrasspn´r,ker dppxqq
µPGrasspr´1,Exq

ż

αPTM˚
x bEx

kerα“K
ker dppxqpα|KK q´1“µ

ˇ

ˇ

ˇ
detpα|KKXker dppxqq

ˇ

ˇ

ˇ

n´r`2

|xαphpxqq, εpµqy|

E

”

1tInd pπpx,αqq“iu
ˇ

ˇ

ˇ
det

´

x∇2spxq|K , εpµqy

´xαphpxqq, εpµqy
∇2ppxq|K
}dppxq}

¯ˇ

ˇ

ˇ
| spxq “ 0,∇spxq “ α

ı

ρXpxqp0, αqdvolpαqdvolpµqdvolpKqdvolpxq,

where πpx, αq is given by (3.3) and ρX denotes the density of X.

Proof. In the formula given by Proposition 3.3, we handle first the determinant of α|KK .

Since pα|KKq´1pµq “ ker dppxq X KK, if hpxq is a unit vector in kerK dppxq, then

|detα|KK| “ |detα|KKXker dppxq||xαphpxqq, εpµqy|. (3.5)

We then apply two times the coarea formula (see for instance [23, Theorem C.3] from
which we borrow the notations) for the integral in α. The first formula is applied with
the map κ|Wx

: Wx Ñ Grasspn´ r, ker dppxqq, where κ is defined by (2.7). By Lemma 2.7,

its Jacobian satisfies, for any p0, αq P Wx, Jp0,αqpκ|Wx
q “

ˇ

ˇ

ˇ
detα| kerK αXker dppxq

ˇ

ˇ

ˇ

n´r

. The

second coarea formula is applied with K P Grasspn ´ r, ker dppxqq fixed, with the function
g : κ´1pKq Ñ Grasspr ´ 1, Exq defined in Lemma 2.8. Then, By the latter, for all α,
Jp0,αqg “ |detα| kerK αXker dppxq|. We obtain the result. Together with (3.5), we obtain the
desired formula. l

3.2 The holomorphic setting

In this paragraph, let n ě 2 and 1 ď r ď n ´ 1 be integers, M be a complex smooth
manifold of complex dimension n, endowed with a Hermitian metric g. Let pE, hEq Ñ M

be a holomorphic Hermitian vector bundle of rank r, and s P ΓpM,Eq be a holomorphic
Gaussian field. In section 4, M will be either a compact projective manifold and E the
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tensor product of a fixed vector bundle tensored by the high powers of an ample line
bundle, or M will be the affine complex space and E the trivial complex vector bundle of
rank r. Let ∇ be the Chern connection for E, that is the unique holomorphic and metric
connection on E, see [14]. In this complex case, the real setting of paragraph 3.1 adapts
formally, changing the field R into C. In particular, we define

F “ E ‘ L
CpTM,Eq.

However specific changes must be also done. Let p : M Ñ R be a smooth Morse function.
Then, for any holomorphic section s of E and any x P Zs,

ker∇spxq Ă ker dppxq ô ker∇spxq Ă kerπCpxq,
where πCpxq denotes the complexification of dppxq, that is πCpxq P LCpTxM,Cq and
dppxq “ ℜπCpxq. Then, we use that for any complex subspace K Ă TxM and any
α P LCpK,Exq, the real determinant (computed in orthonormal basis) of the associated
real map αR equals

|detαR| “ |detα|2. (3.6)

As in the real case, the Gaussian holomorphic field s is said to be non-degenerate if for
any x P M ,

s ÞÑ pspxq,∇spxqq P E ˆ L
CpTxM,Exq

is onto. As before, we define

W “ tpx, 0, αq P F, dppxq ‰ 0, α onto and kerα Ă kerπCpxqu,
andWx as the fibre ofW over x. For anyK P GrassCpn´r, TxMq and µ P GrassCpr´1, Exq,
let

W px,K, µq :“ tα P L
C
ontopTMx,bExq | kerα “ K, ker πCpα|KKq´1 “ µu.

Lemma 3.5 Under the hypotheses above, W px,K, µq is a submanifold of Wx of complex
dimension r2 ´ pr ´ 1q.
For any s P H0pM,Eq and x P X´1pW q, define also

πpx, αq :“ ∇
2πCpxq| kerα ´ πCpxq

´

α| kerK α

¯´1

∇
2spxq| kerα P Sym2pker∇spxq, Exq, (3.7)

where α “ ∇spxq. Lastly, for any x P M , denote by hpxq P TxM any unit vector in
pker πCpxqqK Ă TxM , and for any complex hyperplane µ Ă Ex, let εpµq be a unit vector
in µK Ă Ex. Recall that Crit

p
i is defined by (3.2).

Theorem 3.6 Let pM,gq be a complex manifold, pE, hEq Ñ M be a holomorphic Hermi-
tian vector bundle, and s P ΓpM,Eq be a non-degenerate holomorphic Gaussian field. Let
A Ă M any Borel subset. Then,

E r# pA X Critpi qs “
ż

xPA

ż

KPGrassCpn´r,ker πCpxqq
µPGrassCpr´1,Exq

ż

αPLCpTxM,Exq
kerα“K

ker πCpxqpα|KK q´1“µ

ˇ

ˇ

ˇ
detpα|KKXker πCpxqq

ˇ

ˇ

ˇ

2pn´r`2q
|xαphq, εpµqy|2

E

”

1tInd pπpx,αqq“iu
ˇ

ˇ

ˇ
det R

´

x∇2spxq|K , εpµqy

´xαphpxqq, εpµqy
∇πCpxq|K

}πCpxq}
¯ˇ

ˇ

ˇ
| spxq “ 0,∇spxq “ α

ı

ρXpxqp0, αqdvolpαqdvolpµqdvolpKqdvolpxq,
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where πpx, αq is given by (3.7) and ρX is the density of X. Moreover, the integral is finite
if volpAq is finite.

Proof. The proof is formally the same as the one of Corollary 3.4, using the rules
mentionned above, so we omit it. l

4 Applications

In this section we apply Theorem 3.6 to the complex Bargmann-Fock field on C
n and then

to the projective setting. Finally, we apply Proposition 3.3 to the boundary case, which
is a mixed between complex and the real setting and is needed for the main Theorems 1.3
and 1.7.

4.1 The Bargmann-Fock field

Recall that the Bargmann-Fock field is defined by

@z P C
n, fpzq “

ÿ

pi1,¨¨¨ ,inqPNn

ai0,¨¨¨ ,in

d

πi1`¨¨¨`in

i1! ¨ ¨ ¨ in!
zi1
1

¨ ¨ ¨ zinn e´ 1

2
π}z}2 , (4.1)

where the aI ’s are independent normal complex Gaussian random variables. The associ-
ated covariant function equals

@z, w P C
n, Ppz, wq :“ Epfpzqfpwqq “ exp

´

´π

2
p}z}2 ` }w}2 ´ 2xz, wyCnq

¯

. (4.2)

Even if the kernel P is not invariant under translation or rotations, the law of Zf is, see [15,
Proposition 2.3.4]. The a priori superfluous presence of π is in fact consistent with the
projective situation. Indeed, the affine Bargmann-Fock is the universal local limit of the
projective model, see Theorem 4.5. In order to unify the setting, we consider here that
M “ C

n and L “ C
n ˆ C with its standard Hermitian metric. Then

Ppz, wq P Lz b L˚
w.

Note that the trivial connection on L has vanishing curvature. Hence, let ∇0 be the metric
connection for this setting:

∇01 “ 1

2
πpB̄ ´ Bq}z}2, (4.3)

whereas the dual connection ∇˚ on L˚ satisfies

∇
˚
01

˚ “ ´1

2
πpB̄ ´ Bq}z}2, (4.4)

where 1˚ is the dual of 1. Notice that 1 is no longer a holomorphic section for this
connection, but the (peak) section (see [24], [6])

σ0 :“ expp´1

2
π}z}2q

is, since ∇
p0,1q
0

σ0 “ p´1

2
πB̄}z}2 ` 1

2
πB̄}z}2qσ0 “ 0. The connection ∇0 is then the Chern

connection for the trivial metric and this holomorphic structure. This implies that the

16



section P is holomorphic in z, and antiholomorphic in w. Moreover, the curvature of ∇0

equals
R0 “ B̄B log }σ0}2 “ πBB̄}z}2,

and the curvature form equals

i

2π
R0 “ i

2

n
ÿ

i“1

dzi ^ dzi

which is the standard symplectic form ω0 over R
2n. Now, almost surely an instance f

of the Bargmann Fock Gaussian field is a holomorphic section for the standard complex
structure and the connection with standard curvature form given by (4.3).

Let E “ C
n ˆ C

r endowed with its trivial metric and let f “ pfiqi“1,¨¨¨ ,r be r inde-
pendent copies of the Bargmann-Fock field. Then, f is a random section of E b L, and
its covariance function equals PIdCr . In the following theorem, recall that Critpi is defined
by (3.2), where we use the connexion ∇r

0 acting on sections of E b L. By an abuse of
notation, we continue to use ∇0 for ∇r

0
.

Theorem 4.1 Let 1 ď r ď n be integers, f : Cn Ñ C
r be r independent copies of the

Bargmann-Fock field (4.1), and U Ă C
n be an open subset of finite volume. Let p : U Ñ R

be a smooth Morse function. Then,

@0 ď i ď 2n ´ 2rztn ´ ru, 1

R2n
E#pRU X Critpi q Ñ

RÑ`8
0

1

R2n
E#pRU X Critpn´rq Ñ

RÑ`8
n!

ˆ

n ´ 1

r ´ 1

˙

volpUq,

where vol denotes the volume for the standard metric on C
n.

We postpone the proof of this theorem after the projective case, since the latter is similar
but more complicated. In both cases, we will need the following lemma:

Lemma 4.2 Let P the Bargmann-Fock covariance (4.2), and ∇0 the connection defined
by (4.3) and (4.4). Then, for any z P C

n,

∇
p1,0q,p0,1q
0 z,w̄ Ppz, zq “ π

n
ÿ

i“1

dzi b dwi

and ∇
p1,0q2,p0,1q2
0 z2,w̄2 Ppz, zq “ π2

n
ÿ

i,j,k,ℓ“1

pδikδjℓ ` δiℓδjkqdzi b dzj b dwk b dwℓ.

Proof. This is a straightforward consequence of the definition of ∇0 and P.l

We will need the following covariance matrix for Hessians:

ΣGOE “
`

δpijqpklq ` δpjiqpklq
˘

1ďiďjďn
1ďkďlďn

P Mnpn`1q
2

pCq. (4.5)

Corollary 4.3 Let f : Cn Ñ C
r be r independent copies of the Bargmann-Fock field.

Then, for any x P C
n,

Covpfpxq,∇0fpxq,∇2
0fpxqq “

¨

˝

1 0 0
0 π IdCn 0
0 0 π2ΣGOE

˛

‚b IdCr .

Proof. This is an immediate consequence of Lemma 4.2.l
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4.2 The complex projective case

Let n ě 2, 1 ď r ď n ´ 1 be integers, M be a compact smooth complex manifold of
dimension n equipped with a holomorphic Hermitian vector bundle pE, hEq of rank r and
an ample holomorphic line bundle pL, hq. Assume that h has a positive curvature form ω,
see (1.1). Let ∇ be the Chern connection of E b Ld. Recall that Critpi is defined by (3.2).

Theorem 4.4 Let M , pE, hEq, pL, hq, ω as above and let U Ă M be a 0-codimension
submanifold with finite volume. Then

@i P t0, ¨ ¨ ¨ , 2n ´ 2ruztn ´ ru, 1

dn
E#pU X Critpi q Ñ

dÑ8
0

1

dn
E#pU X Critpn´rq Ñ

dÑ8

ˆ

n ´ 1

r ´ 1

˙
ż

U

ωn.

The probability measure µd used for the average is defined by (1.5).

Theorem 1.9 ([11, Theorem 3.5.1]) implies this result for the squared modulus of a Lefschetz
pencil p : M 99K CP 1. Indeed, since p is holomorphic (outside its singular locus), p|Zs

is
critical if and only if |p|2|Zs

is, and in the latter case the index equals n ´ r.

Bergman and Bargmann-Fock. The covariance function for the Gaussian field
generated by the holomorphic sections s P H0pM,E b Ldq is

@z, w P M, Edpz, wq “ E rspzq b pspwqq˚s P pE b Ldqz b pE b Ldq˚
w,

where E˚ is the (complex) dual of E and

@w P M, @s, t P pE b Ldqw, s˚ptq “ hE b hLdps, tq.

The covariance Ed is the Bergman kernel, that is the kernel of the orthogonal projector
from L2pM,E b Ldq onto H0pM,E b Ldq. This fact can be seen through the equations

@z, w P M, Edpz, wq “
Nd
ÿ

i“1

Sipzq b S˚
i pwq,

where pSiqi is an orthonormal basis of H0pM,E b Ldq for the Hermitian product (1.4).
Recall that the metric g is induced by the curvature form ω and the complex structure. It
is now classical that the Bergman kernel has a universal rescaled (at scale 1{

?
d) limit, the

Bargmann-Fock kernel P defined by (4.2). Theorem 4.5 below quantifies this phenomenon.
For this, we need to introduce local trivializations and charts. Let x P M and R ą 0 such
that 2R is less than the radius of injectivity of M at x. Then the exponential map based
at x induces a chart near x with values in BTxM p0, 2Rq. The parallel transport provides
a trivialization

ϕx : BTxM p0, 2Rq ˆ pE b Ldqx Ñ pE b Ldq|BTxM p0,2Rq

which induces a trivialization of pEbLdqb pEbLdq˚
|BTxM p0,2Rq2 . Under this trivialization,

the Bergman kernel Ed becomes a map from TxM
2 with values into End

`

pE b Ldqx
˘

.

Theorem 4.5 ([19, Theorem 1]) Under the hypotheses of Theorem 1.3, let m P N. Then,
there exist C ą 0, such that for any k P t0, ¨ ¨ ¨ ,mu, for any x P M , @z, w P BTxM p0, 1?

d
q,

›

›

›

›

Dk
pz,wq

ˆ

1

dn
Edpz, wq ´ Ppz

?
d,w

?
dq IdpEbLdqx

˙›

›

›

›

ď Cd
k
2

´1.
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The original reference is a little more intricated, see [17, Proposition 3.4] for the present
simplification. We will also need the following lemma:

Lemma 4.6 Under the local trivializations given before, at x (the center of the chart) the
two equalities hold:

∇ “ ∇0 ` Op 1?
d

q and ∇
2 “ p∇0q2 ` Op 1?

d
q.

Proof. The conjonction of [18, Lemma 1.6.6] and [18, (4.1.103)] implies that

∇ “ ∇0 ` Op 1?
d

q ` Op}z ´ x}3q,

which gives the first estimate. The second one is implied by the first one and by the fact
that the Levi-Civita connection associated to g is trivial at x, because the coordinates on
M are normal at x. l

Corollary 4.7 Under the hypotheses and trivializations above near x P M , in any or-
thonormal basis of TxM ,

Cov
`

s,∇s,∇2s
˘

|x “ dn

¨

˚

˝

p1 ` Op1
d

qq Op 1?
d

q Op1q
Op 1?

d
q πdInp1 ` Op1

d
qq Op

?
dq

Op1q Op
?
dq π2d2ΣGOEp1 ` Op1

d
qq

˛

‹

‚
IdpEbLdqx ,

where In P MnpRq and ΣGOE is defined by (4.5). Moreover, for any α P T ˚
xM b Ex,

`

x∇2s, εy | s “ 0,∇s “ α
˘

„ N

ˆ

O
`}α}?

d

˘

,Σ

˙

,

where

Σ :“ π2dn`2ΣGOE IdpEbLdqx
`

1 ` Op1
d

q
˘

.

The constants involved in the error terms do not depend on α.

Proof. The first assertion is a direct consequence of Theorem 4.5, Lemma 4.6 and Corol-
lary 4.3. The second one is deduced from the classical regression formula and from

pCovps,∇sqq´1 “ 1

dn

˜

p1 ` 0p1
d

qq Op 1

d
3

2

q
Op 1

d
3

2

q 1

πd
p1 ` Op1

d
qq

¸

IdpEbLdqz . (4.6)

l

Proof of Theorem 4.4. We want to apply Theorem 3.6. First, from Corollary 4.7
we get that for any x P M and any α P LCpTxM,Exq,

ρXpxqp0, αq “ p1 ` Op1
d

qq
p2πqr`nrpdnqrpπdn`1qnr exp

ˆ

´1

2

1

πdn`1
p1 ` Op1

d
qq}α}2

˙

.

Now, if K “ kerα, µ “ ker dppxqpα|KK q´1 and εpµq P µK has a norm equal to 1, let Let

pβ, a, bq “ 1?
πdn`1

´

α|KK
C

Xker πC
, xα| kerK πC

, εy, πK
µ α| kerK πC

¯

, (4.7)
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where πK
µ denotes the orthgonal projection (for hE) onto µ. Using Lemma 3.5 for the

transformation of dvolpαq, the term

ˇ

ˇ

ˇ
detα|KK

C
XkerπC

ˇ

ˇ

ˇ

2pn´r`2q
|xαphpxqq, εy|2dvolpαq|W px,K,µqρXpxqp0, αq

in the integral of Theorem 3.6 equals

p1 ` Op1
d

qqp2πqr´1pπdn`1qpr´1qpn´r`2q`1`r2´pr´1qp2πqpr´1q2`1

p2πqr`nrdnrpπdn`1qnr
|det β|2pn´r`2q

p2πqpr´1q2
|a|2
2π

dvolpβ, a, bq
p2πqr´1

exp

ˆ

´1

2
p1 ` Op1

d
qqp}β}2 ` |a|2 ` }b}2q

˙

.

Note that
ż

aPC
|a|2e´ 1

2
|a|2|da “ 4π.

By Corollary 4.7, the field X defined by (3.1) is non-degenerate for d large enough. Hence,
we can apply Theorem 3.6. Let Y “ 1?

π2dn`2
∇2spxq. Then, the average in the formula

provided by Theorem 3.6 is now equal to pπ2dn`2qn´r times

E

”

1tInd pπpx,αqq“iu
ˇ

ˇ

ˇ
det R

´

xY|K, εy ´ a
∇πCpxq|Kp1 ` Op1

d
qq

}πCpxq}π 3

2 d
2n`3

2

¯ˇ

ˇ

ˇ
| spxq “ 0,∇spxq “ α

ı

.(4.8)

Recall that πpx, αq defined by (3.3). Besides, by Corollary 4.7,

`

xY|K , εy | spxq “ 0,∇spxq “ α
˘

„ N

ˆ

O
´}pβ, a, bq}

d
3

2

¯

,Σn´r
GOE

`

1 ` Op1
d

q
˘

˙

,

where the constants are independent of α and ε, and where Σn´r
GOE denotes the covariance

matrix ΣGOE defined by (4.5) in dimension n ´ r. When d grows to infinity, the aver-
age (4.8) is uniformly bounded above by an integrable map, since the pole generated by
}πCpxq} is integrable. Consequently, the dominated convergence theorem implies that

1

dnvolpUqE#pCritpi X Uq Ñ
dÑ8

2r
2´nr´2r`2

πpr´1qpn´r`1q volpGrassCpn ´ r, n ´ 1q

volpGrassCpr ´ 1, rqq
E

´

|det β|2pn´r`2q
¯

E
`

1tIndA“iu|detA|2
˘

,

where A P Mn´rpCq has covariance Σn´r
GOE and where we used the determinant equal-

ity (3.6). Note that we passed from the real determinant detR to the complex one for the
random complex matrix A. Since its index is always n ´ r, all the averages divided by dn

for i ‰ n ´ r converge to 0. The computations of the expectations and volume are given
in [11, Remark 3.1.1, proof of Theorem 3.5.1]:

volpGrassCpn ´ r, n ´ 1q “ πpn´rqpr´1q
śr´1

j“1
Γpjq

śn´1

j“n´r`1
Γpjq

volpGrassCpr ´ 1, rqq “ πr´1 1

Γprq

E|det β|2pn´r`2q “ 2pr´1qpn´r`2q
śn`1

j“n´r`3
Γpjq

śr´1

j“1
Γpjq

E
`

|detY |2
˘

“ 2n´rpn ´ r ` 1q!
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The powers of 2 in the latter equalities come from different choices of the measures, more
precisely our choice of the half in the exponentials. Hence,

1

dnvolpUqE#pCritpn´r X Uq Ñ
dÑ8

n!

ˆ

n ´ 1

r ´ 1

˙

.

l

We give now a sketch proof of the affine case.

Proof of Theorem 4.1. Let f “ pf1, ¨ ¨ ¨ , frq P C
r be the random Bargmann-Fock

field. For any R ą 0, let pR “ pp ¨
R

q, so that the associated complexification πR,C of dpRpxq
satisfies πR,Cpxq “ 1

R
πCp x

R
q. Note that pR is a Morse function on RU . By Corollary 4.3,

the field X defined by 3.1 is non-degenerate, so that we can apply Theorem 3.6 on the open
set RU . By the independance of the triplet pf,∇0f,∇

2
0fq, the conditional expectation in

Theorem 3.6 equals

E

”

1tInd pπpx,αqq“iu
ˇ

ˇ

ˇ
det

´

x∇2
0fpxq|K , εy ´ 1

R

dπCp x
R

q|K
}πCp x

R
q} xαphpxqq, εpµqy

¯ˇ

ˇ

ˇ

ı

.

Recall that πpx, αq defined by (3.3). We make the change of variables pβ, a, bq “ 1?
π
α|KK

(as (4.7)) and Y “ 1

π
∇2

0
f|K , and then the change of variables y “ x{R. By Corollary 4.3,

we obtain

1

R2nvolpUqE#pRU X Critpi q Ñ
RÑ`8

2r
2´nr´2r`2

πpr´1qpn´r`1q volpGrassCpn ´ r, n ´ 1q

volpGrassCpr ´ 1, rqq
E

´

|det β|2pn´r`2q
¯

E
`

1tIndA“iu|detA|2
˘

.

we conclude as in the projective case. l

4.3 The boundary case

In this paragraph, we apply Proposition 3.3 to estimate the mean number of critical points
of the restriction of p on the boundary of Zs inside BU , where U Ă M is an open set with
smooth boundary and M is complex. We begin by a description of the mixed complex
geometry on the boundary of U .

Complex geometry on the boundary. In the sequel, for any x P M and any real
subspace L Ă TxM , we denote by LC the largest complex subspace in L. Let U Ă M be
a codimension 0 open set with smooth boundary BU .

Definition 4.8 Let Z be a smooth manifold of dimension m, with C2 boundary, and
p : Z Ñ R a smooth function. Then, p is said to be Morse if there is no critical point on
BZ, if p is Morse and if p|BZ is Morse a well.

Let p : M Ñ R be a Morse function, such that p|U is Morse in the sens of Definition 4.8.
Let H “ ker pB Ă TBU. For any x P BU which is not a critical point of pB, dimH “ 2n´2.
Moreover, either H “ HC and in this case dimCH “ n´ 1, or dimCHC “ n´ 2. The first
situation is non-generic, but our result holds in this case as well. We define

FB “ E|BU ‘ L
CpTM,Eq|T pBUq,
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W “ tpx, 0, αq P FB, α onto and kerα Ă ker dpBpxqu,
Wx its fiber over x P M , and

Xpxq “ px, spxq,∇Bspxqq P FB,

where ∇B “ ∇|TBU denotes the restriction of the Chern connection ∇ on E to the tangent

space of the boundary of U . For any x P BU and any α P LC
ontopTxM,Exq, let

K “ Kpx, αq “ kerα X TBU.

If K ‰ kerα, then dimRK “ 2n ´ 2r ´ 1 and dimCKC “ n ´ r ´ 1. Assume now that
K Ă H. Then, KC Ă HC. Let g P H be a (one of the two) unit vector such that

K “ KC k Rg.

Note that kerα “ K‘RJg, where J denotes the complex structure J : TM Ñ TM . Now,
dimRKK “ 2r, where K stands for the metric on TBU . Moreover,

dimRpKK X Hq “ 2r ´ 1

so that dimCpKK X HqC “ r ´ 1. Let v P H a unit vector such that

KK X H “ pKK X HqC k Rv.

Note that KK “ pKK X HqC ` Rv ` Rh, where h P HKzt0u. Now, let

µ “ ker dpBpxqpα|KKq´1 “ αpKK X Hq Ă Ex.

and µC “ αppKK X HqCq. Finally, let ε be a unit vector in µK Ă Ex.

Lemma 4.9 Under the setting above, for any x P BU , the real dimension of Wx equals
2nr ´ 2n ` 2r ` 1.

Proof. For any px, 0, αq P W ,

Tp0,αqWx “ tp0, βq P Ex ˆ L
CpTxM,Exq, ker dpBpxqpα|KKq´1β|K “ 0u.

Since β|KC
is a complex linear map, its image in Ex is a complex subspace, so that p0, βq P

Wx if and only if
βpKCq Ă µC and xβ|Rg, εy “ 0.

Since dimC αppKK X HqCq “ r ´ 1, the real dimension of Wx equals

dimRWx “ 2r2 ` 2pn ´ r ´ 1qpr ´ 1q ` p2r ´ 1q,

where the first term equals dimR LCpkerK α,Exq (here K stands for TxM), the second
equals dimR LCpKC, µCq and the third equals dimRtβ P LCpgC, Exq, xβ, εy “ 0u, where
gC “ Rg ` RJg denotes the complex line generated by g. l
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The projective case. We first specialize this setting to the projective setting of
Theorem 1.3. Recall that the natural scale for the random sections of degree d is d´ 1

2 .
Since the dimension of BU is 2n ´ 1, we can guess that the average number of critical

points of p|BUXZs
should be bounded by Opd 2n´1

2 q.

Proposition 4.10 Let n ě 2 and 1 ď r ď n ´ 1 be integers, M be a compact smooth
Kähler manifold and pL, hq be an ample complex line bundle over M , with curvature form
ω, pE, hEq be a holomorphic rank r vector bundle and let U Ă M be a 0-codimension
submanifold with smooth boundary. Then, for any Borel subset A Ă BU ,

@0 ď i ď 2n ´ 2r ´ 1,
1

dn´ 1

2

E#Crit
p|BU

i “ OdÑ8p1q.

Here the probability measure is the Gaussian one given by (1.5).

Proof. Since we only need a bound for the averages and not their exact asymptotics, we
apply Theorem 3.3 which is easier to handle with than Corollary 3.4. By Theorem 3.3,
we have that for any Borel subset A Ă BU ,

E r# pA X CritpB
i qs “

ż

xPA

ż

αPLC
ontopTxM,Exq|TxBU

kerαĂker dpBpxq

ˇ

ˇ

ˇ
detα| kerK α

ˇ

ˇ

ˇ
(4.9)

E

”

1tInd pπpx,αqq“iu
ˇ

ˇ

ˇ
det

´

x∇2

Bspxq| kerα, εpx, αqy

´
∇2pBpxq| kerα

}dpBpxq} xαphpxqq, εpx, αqy
¯ˇ

ˇ

ˇ
| spxq “ 0,∇Bspxq “ α

ı

ρXpxqp0, αqdvolpαqdvolpxq,

where ρXpxq is the Gaussian density of Xpxq and K refers to the orthogonality in TBU .
As in the proof for projective manifold case, in equation (4.9) we perform the change of

variables β “ d
n`1

2 α and Y “ d
n`2

2 ∇2s. Then, thanks to Lemma 4.9 which provides the
power of d which pops up from volpαq, the average equals dn´ 1

2 times a multiple integral
which converges to a convergent integral independent of d. l

The affine setting. For the Bargmann-Fock field, we have the similar proposition:

Proposition 4.11 Let 1 ď r ď n be integers, f : Cn Ñ C
r be r independent copies of the

Bargmann-Fock field (4.1), U Ă C
n be an open subset with smooth boundary, and p : Ū be

a smooth Morse function, in the sense of Definition 4.11. Then,

@0 ď i ď 2n ´ 2r ´ 1,
1

R2n´1
E#Crit

p|BpRUq

i “ ORÑ`8p1q. (4.10)

Proof. This is very similar to the projective setting.l

4.4 Proof of the main theorems

Theorem 1.3 is a simple consequence of Theorem 4.4 and Proposition 4.10. Indeed, Morse
inequalities for manifolds with boundary hold:

Theorem 4.12 (see [16, Theorem A]). Under the setting of Definition 4.8, assume hat
Z̄ is compact. For any i P t0, ¨ ¨ ¨ ,m´ 1u, let Ni be the number of boundary critical points
of p|BZ of index i, such that p increases in the direction of Z. Then,
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• (weak Morse inequalities) @0 ď i ď m, bipZq ď #Critpi ` Ni.

• (strong Morse inequalities) @0 ď i ď m,

i
ÿ

k“0

p´1qi´kbkpZq ě
i

ÿ

k“0

p´1qi´kp#Critpk ` Nkq.

We will apply these Morse inequalities to the random nodal sets Zs X U .

Proof of Theorem 1.3. By [12, Lemma 2.8], almost surely the restriction p|Zs
is

Morse in the latter sense. The proof of this lemma extends to p|ZsXU , so that we can apply
Theorem 4.12 to Zs X U , for almost all s. Hence,

@0 ď i ď 2n ´ 2r, EbipZs X Uq ď Ep#Critpi q ` Ep#Crit
p|BU

i q. (4.11)

By (4.11), Theorem 4.4 and Proposition 4.10, we obtain

@0 ď i ď 2n ´ 2rztn ´ ru, EbipZs X Uq “ opdnq

and Ebn´rpZs X Uq ď Ep#Critpn´rq ` opdnq. On the other hand, the two assertions of
Theorem 4.12 and Proposition 4.10 imply that

Ebn´rpZs X Uq ě Ep#Critpn´rq ´ opdnq,

so that by Theorem 4.4, Ebn´r “ dn
`

n´1

r´1

˘ ş

U
ω ` opdnq, which is the result. l

Lemma 4.13 ([25, Lemma 3.2]) Under the hypotheses of Theorem 1.7, there exists a map
p : Cn Ñ R such that for almost all instance of the Bargmann-Fock field, p|ZsXŪ is Morse
as well in the sense of Definition 4.8.

Proof. This is proven (in a more general setting) in the proof of [25, Lemma 3.2] for
a manifold without boundary. The argument extends immediatly to manifolds with C2

boundary. l

Proof of Theorem 1.7. The proof is similar to the one of Theorem 1.3, using Theo-
rem 4.1 and Proposition 4.11. l
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mathématiques de l’IHÉS 126 (2017), no. 1, 131–176.

[4] Dmitry Beliaev, Stephen Muirhead, and Igor Wigman, Russo–seymour–welsh esti-
mates for the kostlan ensemble of random polynomials, Annales de l’Institut Henri
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