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Abstract

Game engines are at the heart of the design of modern video games.
One of their functions is to keep a high frame rate by scheduling the tasks
required to generate each frame (image). These tasks are organized in
a soft real-time, parallel task graph, which is a scenario very few works
have focused on, or adapted scheduling algorithms to. In this paper,
we study the scheduling problem of game engines. We model the tasks
and the scheduling problem by pro�ling a commercial game engine, adapt
and compare di�erent scheduling algorithms, and propose two additional
scheduling optimizations.

Keywords: Scheduling; Video Game Engine; Soft Real-Time.

1 Introduction

The video game market is valued at over 100 billion USD [14], making it larger
than the HPC market, or even the movie and music industries combined. This
industry impacts computing both at the hardware and software levels. It pro-
duces and sells tens of millions of video game consoles yearly. Its games are
run on personal computers, consoles, smartphones, and even on Cloud gam-
ing servers. These games are more easily developed and ported to di�erent
platforms thanks to a key software component called the game engine.

The game engine serves as a framework for game development. Video game
companies can license game engines, such as Unity, Unreal Engine 4, or Game
Maker: Studio, or produce their own. A game engine contains core software
components (such as the 3D rendering system or the collision detection system)
that can be extended and combined with di�erent art assets and game logic
to produce di�erent games [11]. Moreover, game engines are responsible for
managing resources such as the memory, and for scheduling tasks. This makes
the optimization of game engines essential for the gaming experience of players.
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The problem of scheduling in game engines has not been previously studied
in detail, and we have noticed that this problem includes uncommon charac-
teristics. For instance, although video games are soft real-time systems (with a
video frame being displayed every few milliseconds), their recurring tasks do not
match exactly with the models of periodic or sporadic task systems [15, Chap-
ter 28]. Additionally, although their tasks are parallel, they are neither malleable
nor moldable [15, Chapter 25]. With a better understanding of this problem,
we could optimize the schedule in game engines for the bene�t of players and
developers alike: with fewer dropped frames, players can have a better gaming
experience; with some extra free time before having to display a frame, devel-
opers can include more detailed graphics, physics, or AI, while mobile devices
can operate at lower frequencies and save battery, and Cloud gaming servers
can dedicate less computing resources to a game.

In this paper, our goal is to understand and �nd solutions to the scheduling
problem of game engines. Working with a modern game engine as a case study,
we are able to model this problem and to adapt several scheduling algorithms
to it. Our experimental evaluation reveals performance improvements in the
game engine when answering the following three research questions: (I) �Can
scheduling strategies from the state of the art improve the performance of game
engines? �; (II) �Can changes in the scheduling mechanism of a game engine
reduce the performance gap between schedulers and the critical path? �; and (III)
�Can small changes to the task graph lead to performance improvements? �. Our
contributions include the model and evaluation metrics, the list of algorithms
adapted for this problem, and their experimental evaluation, which are all pre-
sented in Sects. 3, 4, and 5, respectively. Sect. 2 covers information on game
engines and related work, and Sect. 6 provides concluding remarks.

2 Background and Related Work

2.1 Background on video games and game engines

Video games work as soft real-time interactive simulations [11]. The frequency of
interactions is given by the frame rate, which de�nes how many frames (images)
are presented per second. Nowadays, the de facto standard dictates a frame
rate of 60fps, giving 1

60s ≈ 16.667ms for producing each frame. If this time
is surpassed, a frame is dropped. Frequent frame drops degrade the gaming
experience.

As a video game is built on a game engine, engineers will add, remove, or
adapt functionalities to their needs. Given the complexity of developing a game
engine, it is very common for large companies to maintain their own engines for
over a decade to capitalize on their know-how. Still, the cost of hand-tuning
all their features is exacerbated by the variety of gaming platforms and their
evolution (e.g., increase in the number of CPU cores available).

One way of reducing the required hand-tuning comes with the game engine
scheduler, which manages the execution of tasks (functionalities) by itself. For
instance, Unity provides its Job System [18] so engineers can write their own
tasks with dependencies and let Unity schedule them. Meanwhile, Unreal En-
gine 4 includes Tick Groups [19] to set when a task should be executed (e.g.,
before or after physics simulations). Our case study contains a task graph that
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is executed for each frame. The structure of the graph is static for a single
game, and it changes very little between games, making it representative. This
organization makes it easier for multiple teams of engineers to work on their
own functionalities. Additionally, each task is composed of one or more parallel
subtasks, which is also recommended on Intel's Games Task Scheduler (GTS) [3].

2.2 Scheduling problems and algorithms

The game engine's scheduler may �nd issues to keep the frame rate due to
resources being used by others (e.g., the operating system), for other tasks
(loading assets), or due to changes in the load of the game (e.g., additional
objects to render or AI agents to simulate). A change in load may mean not only
a change in the execution time of a task, but also to its number of subtasks.
Although high load episodes may be hard to anticipate (given the dynamic
and interactive nature of video games), load changes are usually gradual. A
scheduler could bene�t from this by estimating the behavior of tasks based
on recent frames in a way similar to the use of the principle-of-persistence in
periodic load balancing [1]. Conversely, estimations are avoided by GTS through
work stealing [3].

Given the lack of studies on this scheduling problem, our e�orts have been
dedicated to �nding and adapting algorithms and heuristics proposed in other
contexts [2,7,9,12,13] (cf. Sect. 4). We �nd that there is value in bringing to light
new applications and knowledge on existing algorithms, as have done Benoit et
al. [5] for the asymptotic performance of the longest processing time (LPT)
heuristic for the case of tasks originating from uniform integer compositions.

Our scheduling problem has distinct characteristics that block the use of
techniques and heuristics used for scheduling traditional real-time or parallel
tasks [15]. Real-time scheduling most often considers independent, recurring
tasks. Such is the case on the work of Nascimento and Lima [16], where ear-
liest deadline �rst (EDF) heuristics are employed for scheduling soft and hard
real-time tasks in parallel resources. Nonetheless, the game engine contains
dependent tasks with an entire task graph to be computed for each frame.
Additionally, all tasks share the same due date, obstructing the use of EDF
heuristics. Meanwhile, parallel task scheduling usually models tasks that use
multiple resources simultaneously, but the game engine's tasks follow a fork-
join model internally. These levels of tasks and subtasks are also re�ected on
GTS [3] with its macro- and micro-schedulers. An algorithm called DynFed
was proposed to schedule parallel tasks with dependencies in real-time systems
by Dai, Mohaqeqi, and Yi [8]. Nonetheless, it focuses on periodic, independent
tasks whose parallel subtasks have dependencies, while our scheduling problem
contains tasks with dependencies whose parallel subtasks are independent.

3 Scheduling in Game Engines

Our discussion of the scheduling problem in game engines is organized in three
parts: the task model; the scheduling problem at the scale of a single frame;
and the problem for multiple frames.
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3.1 Task model

A game engine performs multiple tasks to produce each frame (e.g., graphics
rendering and physics simulations [11]). These tasks have precedence constraints
that must be respected for their correct execution, which leads to their organi-
zation as a directed acyclic graph (DAG). Fig. 1 represents the task graph of
our case study. It was extracted from a modern video game from Ubisoft and its
structure is re�ected in other game engines and video games. The leftmost task
is the start of the frame and the rightmost its end. The path on the bottom of
Fig. 1 is composed of graphic tasks (all run in the same CPU core to dispatch
work to the GPU), while the other paths represent simulation and control tasks.

Each task represents a functionality written by a given team in a given
moment in the lifetime of the game engine, so task interactions have to be
kept simple. Internally, each task contains one or more independent, sequential
subtasks following a fork-join model. For our ≈ 100 tasks, over 1000 subtasks
can be computed at each frame. Both their number and execution time may
change during the game execution. We refer to this e�ect as the load of the
frame.

In order to model and simulate the behavior of the game engine under dif-
ferent loads, we pro�led its tasks and subtasks on varied executions (> 10 on
di�erent maps of the game) and di�erent phases (over 3000 frames). We ob-
tained their minimum, maximum, mean, and standard deviation values, and
used them to model timings as log-normal distributions [17] depending on the
load. Eq. 1 de�nes the processing time psubj of a subtask of task j with load

l ∈ [0, 1] depending on pmin
j (l), pmax

j (l), µj(l), and σj(l) that are resp. the
minimal, maximal, mean, and standard deviation of the execution time under
load l. Each value was obtained for low (l = 0) and high (l = 1) loads, and
intermediary values are computed by a linear interpolation in l. We compute
the processing time pj(l) of task j by adding together the times of its subtasks
in Eq. 2. In it, sj(l) represents the number of subtasks of task j with load l,
which is computed in a similar fashion to other load-dependent parameters �
i.e, sj(l) = d(1− l) · sj,low + l · sj,highe.

Figure 1: A DAG representing game engine tasks (vertices) and their precedence
constraints (edges, from left to right).
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psubj (l) = pmin
j (l) + (pmax

j (l)− pmin
j (l)) logN (µj(l), σj(l)) (1)

pj(l) =

sj(l)∑
k=1

psubj (l) (2)

3.2 Scheduling problem for a single frame

A simpli�ed description of the scheduling problem for a frame can be shown
using Graham's notation [10]. The machine environment is composed of parallel
and identical resources (CPU cores). The task characteristics and scheduling
constraints follow the model of Sect.3.1. In short, our tasks have precedence
constraints, di�erent processing times, and the same due date. For the objective
function, we use the tardiness Tj to evaluate if the due date was respected.

Given the aforementioned characteristics, this scheduling problem can be
represented as P |prec, dj = d|Tmax, which is NP-Hard. Still, this does not cap-
ture all the details of our problem in practice, mainly due to imprecision on the
processing times of tasks. Our tasks are modeled using stochastic processing
times, and time-ware scheduling algorithms are mostly dependent on measure-
ments from previous frames to estimate the current frame's behavior (i.e., its
load). This is not an issue thanks to the stability of the game engine and to
the minor e�ects of slight prediction disturbances in similar contexts [4]. In this
sense, using the notation Pj to represent stochastic processing times [6, Chapter
1], our scheduling problem would be closer to P |Pj , prec, dj = d|Tmax.

3.3 Scheduling problem for multiple frames

The quality of a scheduling solution for multiple frames is based on its results for
each frame. Consider the total number of frames F and a given frame f ∈ [1, F ].
We denote the maximum tardiness of frame f as T f

max. Using this information,
we de�ne three possible optimization metrics to minimize, namely the Slowest
Frame (SF ), the number of Delayed Frames (DF ), and the Cumulative

Slowdown (CS), represented in Eqs. 3, 4, and 5. The Slowest Frame represents
the moment with the worst frame rate to be noticed by a player. The number
of Delayed Frames quanti�es the periods of reduced frame rate that can be
noticed. Lastly, the Cumulative Slowdown quali�es these periods. Using these
three metrics, we can compare di�erent scheduling algorithms for game engines.

SF = max
f∈[1,F ]

T f
max (3)

DF =
∑

f∈[1,F ]∧T f
max>0

1 (4)

CS =
∑

f∈[1,F ]∧T f
max>0

T f
max − d (5)

4 Exploring List Scheduling Algorithms

Given the absence of known solutions for our scheduling problem, we have se-
lected � and, sometimes, adapted � several scheduling algorithms used in
other contexts to our experiments. All of them follow a list scheduling strategy:
Whenever a resource becomes available, the macro-scheduler takes the task with
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the highest priority and the micro-scheduler executes one of its subtasks. Be-
sides its known bene�ts, list scheduling is also attractive for its ability to adapt
to changes in the number of resources available.

Table 1 lists the chosen algorithms, which we believe cover a wide range of
the behaviors seen in the literature. The algorithms are ordered according to
the way they compute task priorities. Local algorithms use only information
from the task to compute its priority, which leads to a lower complexity or
overhead. The opposite are global algorithms that tend to consider the paths
in the task graph. Online algorithms require information obtained at run time,
while o�ine algorithms can pre-compute task priorities. Finally, time-aware
algorithms use timing information to compute priorities.

The First In, First Out scheduler represents the original implementation
in the game engine and serves as the baseline. Regarding online algorithms,
SLPT (and SSPT) follows the same logic of LPT [9] (SPT [12]), but at a subtask
level (i.e., using psubj,k ). Instead of using processing times to compute priorities,
HRRN andWT use information related to the moments a task becomes available
in the priority queue in the current frame (rj), its �rst subtask starts executing
(bj), and its last subtask �nishes executing (Cj). HRRN uses these values to

compute a response ratio for the priorities as
Cj−bj
Cj−rj . WT computes the di�erence

between the moment a task becomes ready and the moment it starts executing
(bj − rj). In both cases, tasks with smaller values are given a higher priority.

O�ine algorithms try to prioritize tasks that may delay the completion of
the last task (exit node). HLF [13] prioritizes tasks in the longest paths to the
exit node, while HLFET [2] extends it with processing time estimations (the
mean times used in our model). CG [7] uses a labeling algorithm that has been
shown to be optimal for the problem P2|pj = p, prec|Cmax.

Our last algorithm, named DCP, combines global information online. It
computes the priority of a task in two ways. If task j is identi�ed as part of
the critical path in the previous frame, it is added to the head of the priority
queue. Else, task j is added to the queue with priority prio(j) after all tasks
in the critical path. prio(j) is computed in Eq. 6 using information from the
previous frame and the set of successors of task j in the graph as succ(j).

prio(j) = max
i∈succ(j)

prio(i) + max

(∑sj
k=1 p

sub
j,k

min(m, sj)
, max
k∈[1,sj ]

psubj,k

)
(6)

Table 1: Characterization of tested scheduling algorithms.

Acronym Ref. Meaning Info. scale Priority comp. Time-awareness

FIFO First In, First Out � � �
LPT [9] Longest Processing Time �rst Local Online Previous frame
SPT [12] Shortest Processing Time �rst Local Online Previous frame
SLPT LPT at a subtask level Local Online Previous frame
SSPT SPT at a subtask level Local Online Previous frame
HRRN Highest Response Ratio Next Local Online Prev. & curr. frame
WT Longest Waiting Time �rst Local Online Prev. & curr. frame
HLF [13] Highest Level First Global O�ine �
HLFET [2] HLF with Estimated Times Global O�ine Mean
CG [7] Co�man-Graham's algorithm Global O�ine �
DCP Dynamic Critical Path Global Online Previous frame
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5 Experimental Evaluation

We conducted a series of experiments using an in-house simulator covering three
di�erent scenarios based on the research questions brought up in Sect. 1. Follow-
ing the methods described in Sect.5.1, the results of the experimental scenarios
are presented in Sects. 5.2, 5.3, and 5.4.

5.1 Details regarding the simulation and statistical evalu-

ation

The experiments use an in-house scheduling simulator written in C++. Given a
complete description of the task graph (Sect. 3.1), the number of frames to sim-
ulate, the number of resources, a scheduling algorithm, and a random number
generator (RNG) seed, it deterministically simulates the scheduling and execu-
tion of all tasks. This enables direct comparisons between scheduling algorithms
and experimental scenarios. The simulation represents an ideal environment
with no overhead from the scheduling algorithm, data locality, or other sources
of interference, trading realism for understandability. All parameters required to
model the tasks (Eq. 1) were obtained in a development machine from Ubisoft.

To test load variations, each simulation runs 200 frames with the load pa-
rameter starting at 0 and increasing linearly up to 1 in the 101st frame and
then decreasing linearly until it reaches 0.01 for the last frame. This provides
a gradual change of load while also generating a load peak. For each scenario
and scheduling strategy, we ran simulations using from 4 up to 20 resources.
By regarding results with fewer resources, we can also anticipate the e�ects of
external interference (Sect. 2.2). Our standard case is set to 12 resources, as
this is a common number of cores in current gaming processors. In each situ-
ation, we varied the RNG seed in the interval [1, 50]. Excluding Critical Path
simulations, this represents a total of 200×50×17×11×3 = 5, 610, 000 frames.

For the statistical evaluation of our experiments, we �rst employed descrip-
tive methods to understand our results and to verify that no errors were present.
We then followed with inferential methods. Setting our tests to a 5% signi�cance
level, we used Kolmogorov-Smirnov tests to check if samples came from normal
distributions for all metrics whenever relevant. In all tested cases, we could
not reject the null hypothesis that the results came from a normal distribution
(all p-values > 0.05). We then ran F-tests to compare the variances of relevant
pairs of samples. Again, in all cases, we could not reject the null hypothesis
that the samples had the same variance. Given these statistical results, we used
Student's T-test for all relevant comparisons discussed in the next sections.

All results were obtained on an Intel Core i7-1185G7 processor, with 32GB of
LPDDR4 RAM (3200MHz). The machine ran on Ubuntu 20.04.3 LTS (5.13.0-
1022-oem), and g++ 9.3.0 was used for the simulator's compilation (-O3 �ag).

5.2 Scenario I - employing scheduling algorithms

We summarize the main performance results when scheduling tasks on 12 re-
sources in Table 2 and Fig. 2 (small values the better). Table 2 shows the values
of Slowest Frame, Delayed Frames, and Cumulative Slowdown (rows) computed
for each scheduling algorithm (columns). These values represent the averages
over 50 executions. The �rst column presents FIFO (our baseline) and the last
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column shows the values for the Critical Path. The general distribution of values
for the di�erent metrics is illustrated as boxplots in Fig. 2.

The smallest improvements are achieved for the SF metric. This indicates
that, under the worst load conditions, no algorithm is able to avoid the large
increase in frame duration. Still, even the minor improvements achieved by WT
and CG are still statistically signi�cant (p-values = 5.12×10−33 and 9.64×10−30,
resp.). This is not the case for LPT (p-value = 0.69). In any case, the average
SF for the Critical Path is only better than FIFO's by a factor of 1.159, and
still 1.70 times larger than the desired frame duration (16.667 ms).

Table 2: Average metrics for all scheduling strategies on 12 resources.

FIFO LPT SPT SLPT SSPT HRRN WT HLF HLFET CG DCP Crit. Path

SF (ms) 32.88 32.87 32.40 32.37 32.78 32.37 32.39 32.48 32.54 32.38 32.38 28.37
DF (frames) 72.48 72.86 68.82 68.7 72.02 68.50 68.74 69.52 69.98 68.74 68.70 45.50
CS (ms) 375.30 376.83 344.37 343.12 370.86 342.99 342.52 349.52 353.69 343.17 342.87 171.40
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Figure 2: Boxplots for the 3 metrics on 12 resources. Vertical axes start at
di�erent points to emphasize di�erences.

The scheduling algorithms provide more noticeable improvements for the
DF and CS metrics. This happens for strategies both local and global, online
and o�ine (Table 1). For instance, WT (local, online) reduced DF by a factor
of 1.054 over the baseline (p-value = 4.15 × 10−21), as did CG (global, o�ine)
(p-value = 5.65×10−21). DCP (global, online) did the same by a factor of 1.055
(p-value = 4.21× 10−21). Interestingly enough, we cannot say that these three
strategies perform di�erently for the DF metric (all p-values > 0.05), but we
can do so for CS (all p-values < 0.05).

In order to better understand the e�ects of the scheduling algorithms on the
duration of the frames, Fig. 3 shows the frame duration reductions achieved by
LPT, WT, CG, and DCP as histograms. These values are obtained by sub-
tracting the duration of each frame scheduled by FIFO by the respective value
for each algorithm. These subtractions are done for each pair of frame number
and RNG seed. The horizontal axis is organized in bins of 20µs truncated in a
range of −1000µs to 1000µs 1. A positive reduction means that the algorithm
reduces the duration of a speci�c frame, thus improving performance.

Three relevant aspects can be noticed here. First, LPT (Fig. 3a) has most of
its frame duration reductions centered around 0µs, indicating that its decisions

1Some frame duration changes fall outside the illustrated range.
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lead to schedules very similar to FIFO. Second, the other illustrated strategies
have results mostly centered around 500µs with slightly di�erent curves. Al-
though they make di�erent decisions with varied e�ects on the duration of each
frame, they are still able to improve the performance of the game engine in
their own ways. Third, all scheduling strategies show values that are below 0µs,
demonstrating that no single algorithm is able to always improve performance.
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Figure 3: Histograms presenting frame duration reductions (in µs) compared to
FIFO (positive values mean shorter frame durations by the algorithms). Lines
represent kernel density estimations.
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Figure 5: Average duration of each
frame for CG on 12 and 20 resources,
and for the Critical Path.

Performance improvements can also be seen across di�erent numbers of re-
sources. This is illustrated in Fig. 4, where the average DF of selected algorithms
(vertical axis) is shown from 4 up to 20 resources (horizontal axis). In general,
we can see that FIFO and LPT perform similarly, as do WT, CG, and DCP
among themselves with 6 or more resources. The absolute di�erence between
FIFO and other strategies tends to decrease when more resources are avail-
able, going from about 7 frames on 4 resources down to under 2 frames on
20 resources. This shows that it becomes harder to saturate resources as their
numbers increase, which in turn reduces the delay seen on important tasks from
the critical path.

Even when scheduling tasks on 20 resources, a noticeable gap remains be-
tween some of the best schedulers and the Critical Path. To better illustrate
this di�erence, Fig. 5 contrasts the frame duration of the Critical Path and CG.
The horizontal axis represents the simulated frames in order, while the vertical
axis represents their average durations for CG with 12 and 20 resources, and
for the Critical Path. Fig. 5 exposes the change in frame duration following the
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change in load (which peaks around frame 100). While the Critical Path starts
surpassing the due date with a load around 0.75, CG has the same issue for even
smaller loads depending on the number of resources. Although the increase from
12 to 20 resources reduces the gap between its timing and the optimal one from
4ms down to 2ms for the slowest frames, we were surprised that such a gap still
remained. This motivated the changes presented in the next scenario.

5.3 Scenario II - subtask scheduling

In search of a way to overcome the previous limitations, we have moved our
attention from the macro-scheduler to the micro-scheduler (cf. Sect. 4). Origi-
nally, the micro-scheduler takes the �rst non-executed subtask from the highest
priority task available. We have instead chosen to sort the subtasks in a task by
non-increasing order of execution time. We consider this is a feasible change to
the game engine because it does not a�ect the actual execution of the subtasks
nor the dependencies in the task graph. Additionally, developers can provide
clues of the most important subtasks statically or using simple internal param-
eters.

The performance results achieved in this scenario are summarized in Table 3.
Its additional rows show how much the metrics have been reduced in compar-
ison to Scenario I (Table 2). The improvements are noticeable for all schedul-
ing algorithms and metrics. For instance, the average SF for FIFO changed
from 32.88ms to 29.29ms, representing a 10.93% decrease in time (an improve-
ment factor of 1.123). This is greater than the bene�ts previously achieved by
changing the scheduling algorithms only. Still, in many cases, the algorithms
show even better gains, leading to greater cumulative improvements over FIFO.

Table 3: Average metrics for all schedulers over 12 resources with sorted sub-
tasks. Percentage reductions are calculated in comparison to Table 2.

FIFO LPT SPT SLPT SSPT HRRN WT HLF HLFET CG DCP Crit. Path

SF (ms) 29.29 29.25 28.67 28.96 29.15 28.65 28.63 28.74 28.80 28.63 28.64 28.37
(% change) -10.93 -11.01 -11.52 -10.53 -11.08 -11.49 -11.60 -11.51 -11.49 -11.57 -11.57 -
DF (frames) 54.32 54.28 49.52 51.88 53.62 49.10 48.98 50.12 51.08 49.38 49.34 45.50
(% change) -25.06 -25.50 -28.04 -24.48 -25.55 -28.32 -28.75 -27.91 -27.00 -28.16 -28.18 -
CS (ms) 217.91 217.32 189.36 203.24 212.60 187.68 186.62 192.86 197.13 187.81 187.84 171.40

(% change) -41.94 -42.33 -45.01 -40.77 -42.67 -45.28 -45.52 -44.82 -44.27 -45.27 -45.22 -
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Figure 6: Average values for all metrics for schedulers using sorted subtasks on
di�erent numbers of resources.

If we focus our attention on strategies LPT, WT, CG, and DCP, we can
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verify that their improvements over FIFO are all statistically signi�cant (p-
values < 0.05), with the exception of the DF metric for LPT (p-value = 0.73).
WT leads to the same average SF as CG and DCP (p-values = 0.52 and 0.23,
resp.) while di�ering in the other metrics. Also, CG and DCP results cannot be
di�erentiated (p-values > 0.05), which contrasts with the results in Scenario I.

Table 3 also shows that the performance gap to the Critical Path is much
smaller than before, even though these results use 12 resources only. A better
visualization for di�erent numbers of resources can be seen in Fig. 6. The best
schedulers here (WT, CG, and DCP) show trends similar to before, as they
create a gap between their performance and the baseline that decreases when
many resources are available. Yet, in this situation, the absolute di�erences in
values are not strictly decreasing anymore, as FIFO seems to bene�t more from
the sorted subtasks for small numbers of resources. For instance, comparing
Figs. 6b and 4, we can see that changing the micro-scheduler reduces DF on
4 resources by about 5 frames for FIFO (from 138.26 to 132.9) but only 3 for
CG (from 131 to 127.9). This e�ect later disappears when more resources are
available. Another di�erence from Scenario I comes from the fading gap between
the best schedulers and the Critical Path. If we consider CG running over 16
resources, the average di�erences are 0.09, 0.82, and 3.97 for the SF, DF, and
CS metrics, respectively. The proximity of these results to the optimal solution
highlights the bene�ts of using scheduling algorithms and internal scheduling
mechanisms that are well-adapted to the problem being faced. It does not,
however, lead by itself to a situation where 60fps can be achieved under the
worst load situations. We investigate additional means to improve performance
in our �nal scenario.

5.4 Scenario III - subtask splitting

Given the near-optimal performance of the modi�ed game engine scheduler, the
only way to achieve further improvements requires a new optimal. That, in
turn, demands changing the task graph. We have identi�ed the two tasks with
the longest processing times and changed them to increase their parallelism.
For each of their subtasks, we run two subtasks, each with half of the original
processing time. This local transformation has no impact on the global task
graph nor to the total processing time of the tasks, and it does not a�ect the
majority of the tasks. Nevertheless, we are aware that these changes may not
be feasible in some game engines due to the nature of the tasks being computed.

The new performance results are summarized in Table 4. The additional par-
allelism leads to improvements for all scheduling strategies and metrics. When
compared to Scenario I, SF is decreased by about one quarter, DF is reduced
by over one half, and CS is reduced by about three quarters. When comparing
FIFO's results in Scenarios II and III, these metrics are improved by factors
of 1.174, 1.602, and 2.390, resp., which are proportionally larger than the im-
provements seen from Scenario I to II.

When comparing the algorithms to FIFO, their general behavior remains
the same. For example, WT, CG, and DCP show better results than FIFO
(p-values < 0.05). WT performed better than DCP (p-values < 0.05), but it
performed the same as CG for metrics SF and DF (p-values = 0.31 and 0.06,
resp.).

The additional parallelism increases the gap between the algorithms and the
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Table 4: Average metrics over 12 resources with sorted subtasks and additional
parallelism in two tasks. Reductions are calculated in comparison to Table 2.

FIFO LPT SPT SLPT SSPT HRRN WT HLF HLFET CG DCP Crit. Path

SF (ms) 24.94 24.92 24.32 24.60 24.81 24.31 24.29 24.40 24.45 24.30 24.32 22.99
(% change) -24.13 -24.18 -24.92 -24.02 -24.31 -24.90 -25.01 -24.86 -24.87 -24.97 -24.92 -18.97
DF (frames) 33.90 33.88 28.74 31.10 32.94 28.44 28.30 29.54 30.44 28.48 28.62 17.92
(% change) -53.23 -53.50 -58.24 -54.73 -54.26 -58.48 -58.83 -57.51 -56.50 -58.57 -58.34 -60.62
CS (ms) 91.19 90.80 73.35 81.35 87.45 72.37 71.87 75.47 77.65 72.42 72.75 41.81

(% change) -75.70 -75.90 -78.70 -76.29 -76.42 -78.90 -79.02 -78.41 -78.05 -78.90 -78.78 -75.60
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Figure 7: Average duration of each frame for CG and the Critical Path on
di�erent numbers of resources and scenarios.

new Critical Path. In general, the best performing algorithms running over 12
resources still show absolute di�erences of ≈ 1.5, 10.5, and 30.5 for the SF, DF,
and CS metrics, respectively. This is mainly caused by a lack of resources, as
12 is not enough to pro�t from the extra parallelism. Meanwhile, when using
20 resources, these di�erences are reduced to 0.2, 1.3, and 4.0, respectively.
This evolution can be visualized in Fig. 7, which shows the change in average
frame duration throughout the simulations for the three scenarios (similarly to
Fig. 5). The �rst gap between CG and the Critical Path is overcome just by
sorting subtasks, while the new gap requires using more resources. Overall, we
can clearly see that the improvements brought in each scenario makes the game
engine more robust to high loads, leading to a better gaming experience.

6 Conclusion and Future Work

In this paper, we have examined the scheduling problem of game engines. Using
as a case study a game engine extracted from a modern Ubisoft video game, we
have modeled the problem, chosen and adapted scheduling algorithms, and ran
an extensive experimental evaluation with an in-house simulator. Compared to
the original FIFO scheduler on 12 resources, the use of well-adapted algorithms
improved the proposed metrics of Slowest Frame, Delayed Frames, and Cumu-
lative Slowdown up by factors of 1.015, 1.058, and 1.096, resp. The proposed
change to the micro-scheduler increased these gains to factors of 1.148, 1.480,
and 2.011, with near-optimal results when using more resources. Finally, the
additional parallelism in two tasks led to total improvements by factors of 1.354,
2.561, and 5.222.

These results establish the potential contributions that well-adapted schedul-
ing algorithms (local and global, online and o�ine) and techniques can have on
the video game industry. Further research should be dedicated to see how these
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results extend to other game engines, video games, and even other interactive
simulations. An implementation of the algorithms and techniques in an actual
game engine would enable an evaluation of the overhead of run time pro�ling,
online algorithms, and the management of the priority queue. Finally, the e�ects
of hardware heterogeneity (both for uniform and unrelated resources) remains
to be studied.
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