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Introduction

We consider a class of systems of two parabolic equations in which the first equation is a cross diffusion equation (that is, the diffusion rate in this equation depends on the solution of the second equation), while the second equation is a standard heat equation coupled to the first one only through its source term. Such systems are sometimes called triangular cross diffusion systems. We focus on the systems introduced in [START_REF] Desvillettes | A logarithmic chemotaxis model featuring global existence and aggregation[END_REF] to treat specific situations arising in the theory of chemotaxis. The quantity u := u(t, x) ≥ 0 is then the density of cell and v := v(t, x) ≥ 0 is the concentration of chemoattractant. We refer to [START_REF] Desvillettes | A logarithmic chemotaxis model featuring global existence and aggregation[END_REF] for a discussion of the modeling assumptions underlying such systems. Let us just say that with respect to general systems appearing in the modeling of chemotaxis, where the dynamics of the density of cells is driven by the evolution equation ∂ t u = div(∇F + G), where F, G both depend on u and v, the specificity of the system considered here is that it can be written in a form where G = 0; that is,

∂ t u -∆(uγ(v)) = 0 , (t, x) ∈ (0, ∞) × Ω , (1.1a 
)

ε∂ t v -∆v = u -v , (t, x) ∈ (0, ∞) × Ω , (1.1b) 
∇(uγ(v)) • n = ∇v • n = 0 , (t, x) ∈ (0, ∞) × ∂Ω , (1.1c) (u, v)(0, •) = (u in , v in ) , x ∈ Ω , (1.1d) 
where Ω is a smooth bounded domain of R N , with N ≥ 2, and ε > 0. Here, n is the outward unit normal vector at a point of ∂Ω. The initial data u in and v in are given and nonnegative. Typical functions γ are assumed to be bounded and strictly positive on [0, ∞), and to decay at infinity (that is, when v → ∞) typically like a power. In other words, they generalize the prototype (which makes sense from the point of view of modeling) given by γ(z) = (z + 1) -k , z > 0, (

for some k > 0, but are not always assumed to be monotone decreasing.

We also consider the counterpart of this system when the cell population has a logistic-type growth, that is,

∂ t u -∆(uγ(v)) = u h(u),
(t, x) ∈ (0, ∞) × Ω, (1.3a)

ε∂ t v = ∆v -v + u, (t, x) ∈ (0, ∞) × Ω, (1.3b) 
∇(uγ(v)) • n = ∇v • n = 0, (t, x) ∈ (0, ∞) × ∂Ω, (1.3c)

(u, v)(0, •) = (u in , v in ) , x ∈ Ω, (1.3d) 
where h is a continuous function. It can indeed be interesting to take into account cells' division, as well as their death due to the lack of resources.

Notation

We will sometimes denote the spaces L p (Ω), H 1 (Ω), and (H 1 (Ω)) ′ by L p , H 1 , and (H 1 ) ′ , respectively (with p ∈ [1, ∞]). Furthermore, for w ∈ L p , we denote the L p norm of w by w p .

Given w ∈ (H 1 ) ′ (Ω), we define w by

w := 1 |Ω| w, 1 (H 1 ) ′ ,H 1
and note that w = 1 |Ω| Ω w(x) dx when w ∈ (H 1 ) ′ (Ω) ∩ L 1 (Ω) .

For w ∈ (H 1 ) ′ (Ω) such that w = 0, we introduce Kw ∈ H 1 (Ω) as the unique (variational) solution to -∆(Kw) = w in Ω , ∇(Kw) • n = 0 on ∂Ω , Kw = 0 .

(1.4)

The operator K plays a significant role in the analysis of our system, in particular in view of the specific form of the cross-diffusion in (1.1a). Indeed, for a solution (u, v) regular enough, one expects that the conservation of mass holds for u, that is, u = u in , and that consequently (1.1a) can be rewritten as

∂ t K u -u in = uγ(v) -uγ(v) , (t, x) ∈ (0, ∞) × Ω . (1.5) 
For this reason, we choose the following norm on (H 1 ) ′ (Ω):

w ∈ (H 1 ) ′ (Ω) → w (H 1 ) ′ := ∇K(w -w ) 2 .

(1.6)

Still for w ∈ (H 1 ) ′ (Ω), not necessarily with zero average, we also define A -1 w ∈ H 1 (Ω) as the unique (variational) solution to -∆A -1 w + A -1 w = w in Ω , ∇A -1 w • n = 0 on ∂Ω .

(1.7)

Clearly, A -1 is the extension to (H 1 ) ′ (Ω) of the inverse of the unbounded linear operator A on L 2 (Ω) with domain

D(A) := {z ∈ H 2 (Ω) : ∇z • n = 0 on ∂Ω} , Az := -∆z + z for z ∈ D(A) . (1.8) 
We note that the following norm:

w ∈ (H 1 ) ′ (Ω) → ∇A -1 w 2 + A -1 w -A -1 w 2 = ∇A -1 w 2 + A -1 w -w 2 , (1.9) is equivalent to the (H 1 ) ′ (Ω)-norm defined in (1.6).

Main results

We first propose a definition of very weak solutions associated with problem (1.1):

Definition 1.1. Let Ω be a smooth bounded domain of R N , with N ≥ 2, ε > 0, and γ ∈ C([0, ∞); (0, ∞)). Suppose that u in ∈ L 1 (Ω) and v in ∈ L 1 (Ω) are nonnegative, and that, for all T > 0, u ∈ L 1 ((0, T ) × Ω) and v ∈ L 1 ((0, T ) × Ω), (1.10) are such that u ≥ 0 and v > 0 a.e. in (0, ∞) × Ω, and that, for all T > 0,

uγ(v) ∈ L 1 ((0, T ) × Ω). (1.11) Then (u, v) is called a global very weak solution of (1.1) if - ∞ 0 Ω u∂ t ϕ dx dt - Ω u in ϕ(0) dx = ∞ 0 Ω uγ(v)∆ϕ dx dt, and 
- ∞ 0 Ω εv∂ t ϕ dx dt - Ω εv in ϕ(0) dx = ∞ 0 Ω v (∆ϕ -ϕ) dx dt + ∞ 0 Ω uϕ dx dt, hold for any ϕ ∈ C ∞ 0 ([0, ∞) × Ω) such that ∇ϕ • n = 0 on (0, ∞) × ∂Ω.
We first show that an algebraic growth on 1/γ at infinity is sufficient to obtain the existence of a global very weak solution to the system (1.1) without imposing any smoothness assumption on γ.

Theorem 1.2. Let N ≥ 2 and Ω ⊂ R N be a bounded domain with smooth boundary, and assume that ε > 0, that γ is continuous and bounded on [0, ∞), and that for some

K 1 > 0 and k ≥ 0, 1 γ(z) ≤ K 1 (z + 1) k , z > 0.
(1.12)

Then for any choice of (u in , v in ) such that

u in ∈ L p 0 (Ω), p 0 > N/2 , is nonnegative and v in ∈ L ∞ (Ω) is nonnegative, (1.13) 
there exists a global very weak solution (u, v) of (1.1) in the sense of Definition 1.1. Furthermore, for all q ∈ (1, ∞), p ∈ (1, 2), and T > 0,

u ∈ L ∞ ((0, ∞); L 1 (Ω)) ∩ L p ((0, T ) × Ω) ∩ L ∞ ((0, T ); (H 1 (Ω)) ′ ) , v ∈ L ∞ ((0, ∞); L 2 (Ω)) ∩ L q ((0, T ) × Ω) ∩ L 2 ((0, T ); H 1 (Ω)) , u γ(v) ∈ L 2 ((0, T ) × Ω) .
Furthermore, if v in ∈ W 1,q (Ω) for some q ∈ (1, 2), then v ∈ L ∞ ((0, T ); W 1,q (Ω)) for all T > 0.

Observe that, since N ≥ 2, one has N/2 ≥ 2N/(N + 2), so that L p 0 (Ω) is continuously embedded in (H 1 ) ′ (Ω) and it follows from (1.13) that

u in ∈ (H 1 ) ′ (Ω). (1.14) When γ ∈ C 3 ([0, ∞))∩L ∞ (0, ∞)
, existence of weak solutions to (1.1) is shown in [START_REF] Li | Global existence of weak solutions to a signal-dependent Keller-Segel model for local sensing chemotaxis, Nonlinear Anal[END_REF] when ε is sufficiently small, namely, ε γ L ∞ (0,∞) < 1. Theorem 1.2 relaxes this condition at the expense of the algebraic growth condition (1.12). Let us recall that existence of weak solutions is also obtained in [START_REF] Tao | Effects of signal-dependent motilities in a Keller-Segel-type reactiondiffusion system[END_REF] when min{γ} > 0 and in [START_REF] Desvillettes | A logarithmic chemotaxis model featuring global existence and aggregation[END_REF][START_REF] Yoon | Global existence and aggregation in a Keller-Segel model with Fokker-Planck diffusion[END_REF] when γ(z) = 1/(c + z k ) for c ≥ 0 and k > 0 sufficiently small, these conditions being removed in Theorem 1.2 as well. The constraint on ε required in [START_REF] Li | Global existence of weak solutions to a signal-dependent Keller-Segel model for local sensing chemotaxis, Nonlinear Anal[END_REF] and the algebraic growth (1.12) assumed in Theorem 1.2 are likely to be of a technical nature, as global existence of weak solutions is proved in [START_REF] Burger | Delayed blow-up for chemotaxis models with local sensing[END_REF] in the particular case γ(z) = e -z . As for classical solutions, well-posedness in that setting is shown in [START_REF] Fujie | Boundedness of classical solutions to a degenerate Keller-Segel type model with signal-dependent motilities[END_REF][START_REF] Fujie | Comparison methods for a Keller-Segel-type model of pattern formations with density-suppressed motilities[END_REF][START_REF] Fujie | Global existence and infinite time blow-up of classical solutions to chemotaxis systems of local sensing in higher dimensions[END_REF][START_REF] Jiang | Global existence, uniform boundedness, and stabilization in a chemotaxis system with density-suppressed motility and nutrient consumption[END_REF][START_REF] Jin | Critical mass on the Keller-Segel system with signal-dependent motility[END_REF][START_REF] Lyu | Global classical solutions for a class of reaction-diffusion system with density-suppressed motility[END_REF], provided that γ ′ ≤ 0 with γ(z) → 0 as z → ∞.

Remark 1.3. If v in is bounded below by a strictly positive constant, then it is easy to see that the same will remain true for v(t, •), with a constant that decays exponentially fast with time. Then the behavior of γ at zero is irrelevant and one can relax the assumption that γ is continuous on [0, ∞) and replace it with continuity on (0, ∞) only. This is true also for the next theorems of existence.

Remark 1.4. Since u lies in L p ((0, T ) × Ω) for p ∈ (1, 2), v is actually a strong solution to (1.1b): each term lies in L p ((0, T ) × Ω) for all T > 0 and the equation holds almost everywhere on (0, ∞) × Ω. One can furthermore show that the formula (1.5) holds in a strong sense: thanks to the boundedness of γ, each term lies in L 2 ((0, T ) × Ω) for all T > 0 and the equation holds almost everywhere on (0, ∞) × Ω.

We next turn to the large time behavior of solutions to (1.1). While a complete description of the dynamics for an arbitrary motility function γ seems to be out of reach, it is shown in [START_REF] Ahn | Global well-posedness and stability of constant equilibria in parabolic-elliptic chemotaxis systems without gradient sensing[END_REF] that, when ε = 0 and γ(z) = z -k for some k ∈ (0, 1], solutions converge to spatially homogeneous steady states. A key ingredient in their proof is the construction of a Lyapunov functional but this property breaks down when ε > 0. Nevertheless, we are able to prove that the system (1.1) admits a Lyapunov functional, which is different from that constructed in [START_REF] Ahn | Global well-posedness and stability of constant equilibria in parabolic-elliptic chemotaxis systems without gradient sensing[END_REF] but applies to the same call of motilities, and requires actually extra conditions on the monotonicity of γ, as described now.

Theorem 1.5. Let Ω be a smooth bounded domain of R N , with N ≥ 2. Assume that ε > 0, that γ ∈ C([0, ∞)) ∩ C 3 ((0, ∞)) is positive, and that γ ′ ≤ 0, (z → z γ(z)) ′ ≥ 0 . (1.15)
Consider nonnegative initial conditions (u in , v in ) ∈ W 1,r (Ω; R 2 ) for some r > N and denote the corresponding global classical solution to (1.1) by (u, v) [START_REF] Fujie | Global existence and infinite time blow-up of classical solutions to chemotaxis systems of local sensing in higher dimensions[END_REF][START_REF] Jiang | Global existence, uniform boundedness, and stabilization in a chemotaxis system with density-suppressed motility and nutrient consumption[END_REF]. Setting m := u in , we define

G 0 ∈ C 1 ([0, ∞)) ∩ C 4 ((0, ∞)) by G ′ 0 (z) := 2zγ(z) -mγ(z) -mγ(m) , z ≥ 0 , G 0 (m) = 0 . (1.16) 
Then G 0 is nonnegative and convex on (0, ∞), and

d dt L 0 (u(t), v(t)) + D 0 (u(t), v(t)) = 0 , t > 0 , (1.17) 
where

L 0 (u, v) := 1 2 ∇K(u -m) 2 2 + ε Ω G 0 (v) dx ≥ 0, (1.18) 
and

D 0 (u, v) := Ω G ′′ 0 (v)|∇v| 2 dx + Ω (u -v) 2 γ(v) dx + Ω (v -m)(vγ(v) -mγ(m)) dx ≥ 0 . (1.19) Moreover, sup t≥0 L 0 (u(t), v(t)) + v(t) 2 H 1 + ∞ 0 D 0 (u(s), v(s)) + ε ∂ t v(s) 2 2 ds < ∞ , (1.20) 
and

lim t→∞ { K(u(t) -m) 2 + v(t) -m 2 } = 0 .
The construction of the Lyapunov functional L 0 and its consequence with respect to the long-term behavior are actually the main contribution of Theorem 1.5, the existence and uniqueness of a global classical solution to (1.1) being granted by [9, Theorem 1.1] and [START_REF] Jiang | Global existence, uniform boundedness, and stabilization in a chemotaxis system with density-suppressed motility and nutrient consumption[END_REF]Remark 1.5]. As in [START_REF] Ahn | Global well-posedness and stability of constant equilibria in parabolic-elliptic chemotaxis systems without gradient sensing[END_REF] which is devoted to the parabolic-elliptic version of (1.1) corresponding to ε = 0, Theorem 1.5 applies to γ(z) = z -k , k ∈ (0, 1], and we have thus constructed a Lyapunov functional in that case. A side remark is that pattern formation is excluded by Theorem 1.5, which is consistent with the outcome of [START_REF] Fu | Stripe formation in bacterial systems with density-suppressed motility[END_REF], where the formation of stripes is observed for a motility γ with a very fast decay at infinity.

The following observation on the existence of nonconstant steady states indicates that the choice k = 1 in fact even corresponds to a critical nonlinearity in the family of such algebraic motility rates:

Proposition 1.6. Let N ≥ 2, k ∈ (1, N +2
(N -2) + ) and γ(z) := z -k for z > 0. Then given any smooth bounded domain

Ω 0 ⊂ R N , one can find R 0 > 0 such that whenever R > R 0 , defining Ω := RΩ 0 = {Rx : x ∈ Ω 0 }, there are positive nonconstant functions u ∈ C 2 (Ω) and v ∈ C 2 (Ω) satisfying      0 = ∆ uγ(v) in Ω, 0 = ∆v -v + u in Ω, 0 = ∇u • n = ∇v • n on ∂Ω.
Proposition 1.6 holds also in space dimension one N = 1. We refer to [START_REF] Wang | Steady states and pattern formation of the density-suppressed motility model[END_REF] for a more complete description of steady states in that case.

In the final part of this manuscript, we aim at making sure that in the presence of additional zero-order dissipative mechanisms in the flavor of logistic-type source and degradation terms, global solutions can be constructed actually without any substantial restriction on the strength of degeneracies in cell diffusion at large values of the signal. We work in a framework somewhat less relaxed than that considered above. Typically, only one integration by parts is performed, so that the solutions considered here are sometimes called "weak solutions" instead of "very weak solutions". Definition 1.7. Let Ω be a smooth bounded domain of R N , with N ≥ 2, and ε > 0, γ ∈ C((0, ∞)) and h ∈ C([0, ∞)), and suppose that u in ∈ L 1 (Ω) and v in ∈ L 1 (Ω) are nonnegative. We then call a pair (u, v) of functions such that, for all T > 0,

u ∈ L 1 ((0, T ) × Ω) and v ∈ L 1 ((0, T ); W 1,1 (Ω)), (1.21) 
a global weak solution of (1.3) if u ≥ 0 and v > 0 a.e. in (0, ∞) × Ω, if, for all T > 0,

u h(u) ∈ L 1 ((0, T ) × Ω) and uγ(v) ∈ L 1 ((0, T ); W 1,1 (Ω)), (1.22) 
and if

- ∞ 0 Ω u∂ t ϕ dx dt - Ω u in ϕ(0) dx = ∞ 0 Ω ∇ uγ(v) • ∇ϕ dx dt + ∞ 0 Ω u h(u) dx dt (1.23)
as well as

- ∞ 0 Ω εv∂ t ϕ dx dt - Ω εv in ϕ(0) dx = - ∞ 0 Ω ∇v • ∇ϕ dx dt + ∞ 0 Ω (-v + u)ϕ dx dt (1.24) hold for any ϕ ∈ C ∞ 0 ([0, ∞) × Ω).
Our analysis in this direction will be based on a strategy quite independent from that pursued in the previous parts, focusing on the detection of entropy-like features enjoyed by functionals of the form Ω u ln(u + e) + ε|∇v| 2 dx.

Accordingly, in its most straightforward version detailed in Lemma 4.1, this approach will presuppose regularity properties of u in and especially of v in which go somewhat beyond those from (1.13). In view of our principal intention described above, we will refrain from scrutinizing minimal requirements on initial regularity, and rather formulate our main result in this respect in the following form conveniently accessible to a fairly compact analysis: Theorem 1.8. Let N ≥ 2 and Ω ⊂ R N be a bounded domain with smooth boundary, and suppose that ε > 0, that

γ ∈ C 3 ((0, ∞)) is such that γ > 0 in [0, ∞) and sup s>s 0 γ(s) + sγ ′2 (s) γ(s)
< ∞ for all s 0 > 0, (1.25)

and that h ∈ C([0, ∞)) satisfies lim s→∞ h(s) ln s s = -∞ . (1.26) 
Then for any choice of

u in ∈ C(Ω) and v in ∈ W 1,∞ (Ω) such that u in ≥ 0 and v in > 0 in Ω, the problem (1.
3) possesses at least one global weak solution in the sense of Definition 1.7. This solution has the additional properties that, for all T > 0,

u ∈ L ∞ ((0, T ); L log L(Ω)) ∩ L 2 ((0, T ); L 2 (Ω)) and v ∈ L ∞ ((0, T ); H 1 (Ω)) ∩ L 2 ((0, T ); H 2 (Ω)) (1.27)
as well as u γ(v) ∈ L 4/3 ((0, T ); W 1,4/3 (Ω)).

(1.28)

The existence of classical bounded solutions to (1.3) is proven for growth functions h(z) = h 0 (1 -z l ) when l = 1 and h 0 is large enough in [START_REF] Liu | Large time behavior of solutions for density-suppressed motility system in higher dimensions[END_REF][START_REF] Wang | Boundedness in the higher-dimensional Keller-Segel model with signaldependent motility and logistic growth[END_REF], and when h 0 > 0 and l > max(2, (N + 2)/2) in [START_REF] Lv | An n-dimensional chemotaxis system with signal-dependent motility and generalized logistic source: global existence and asymptotic stabilization[END_REF] (under additional assumptions on γ). The case where l = 1 and h 0 > 0 is treated in two-dimensional domains in [START_REF] Jin | Boundedness, stabilization, and pattern formation driven by density-suppressed motility[END_REF]. Here, we obtain weak solutions for a growth function of this form with l ≥ 1 and h 0 > 0.

The structure of the paper is the following: Section 2 is devoted to the proof of Theorem 1.2. Then Theorem 1.5 and Proposition 1.6 are proven in Section 3. Finally, the results on system (1.3) are discussed in Section 4.

Existence in the absence of logistic-type growth

Let ψ ∈ C ∞ 0 (R) such that ψ ≥ 0, supp ψ ⊂ (-1, 1), ψ L 1 (R) = 1
, and let, for η > 0,

ψ η (z) := 1 η ψ z η , z ∈ [0, ∞) .
For η ∈ (0, 1), we define

γ η (z) := η + (ψ η * γ) (z + η) , z ∈ [0, ∞) ,
where the symbol * indicates the convolution product on R (γ being extended on R by symmetry). We first obtain some properties of γ η .

Lemma 2.1. For all η ∈ (0, 1), the function γ η satisfies

0 < η ≤ γ η (z) ≤ K 0 + 1 , z ∈ [0, ∞) , (2.1) 1 γ η (z) ≤ 3 k K 1 (z + 1) k , z ∈ [0, ∞) , (2.2) 
where K 0 = ||γ|| L ∞ (0,∞) and K 1 and k are defined in (1.12).

Proof. We first see that thanks to the nonnegativity of γ and ψ, we have γ η ≥ η and

γ η L ∞ (0,∞) ≤ γ L ∞ (0,∞) ψ η L 1 (R) + η = K 0 + η ≤ K 0 + 1 .
Then, for z > 0, we compute, using (1.12),

γ η (z) = η + η -η ψ η (z)γ(z + η -z) dz ≥ η + η -η ψ η (z) K 1 (1 + z + η -z) k dz ≥ η + η -η ψ η (z) K 1 (1 + z + 2η) k dz ≥ η + 1 K 1 (1 + 2η) k (1 + z) k ≥ 1 3 k K 1 (1 + z) k ,
and the proof is complete.

Next, let (u in η , v in η ) η be nonnegative functions in C( Ω) × W 1,∞ (Ω) such that u in η = u in =: m , v in η = v in , (2.3) 
and

lim η→0 u in η -u in (H 1 ) ′ + u in η -u in p 0 + v in η -v in 2 = 0 , sup η u in η p 0 ≤ 1 + u in p 0 , sup η v in η ∞ ≤ 1 + v in ∞ .
(2.4)

Moreover, if v in ∈ W 1,q (Ω) for some q ∈ (1, 2), then (v in η ) η can be constructed so as to satisfy sup η v in η W 1,q ≤ 1 + v in W 1,q . (2.5)
Thanks to the regularity of γ η , u in η , and v in η , we are in a position to apply [START_REF] Tao | Effects of signal-dependent motilities in a Keller-Segel-type reactiondiffusion system[END_REF]Theorem 1.2] to obtain the existence of a nonnegative global weak solution (u η , v η ) to the initial value problem

∂ t u η -∆(u η γ η (v η )) = 0 , (t, x) ∈ (0, ∞) × Ω , (2.6a 
)

ε∂ t v η -∆v η + v η = u η , (t, x) ∈ (0, ∞) × Ω , (2.6b) ∇(u η γ η (v η )) • n = ∇v η • n = 0 , (t, x) ∈ (0, ∞) × ∂Ω , (2.6c) (u η , v η )(0, •) = (u in η , v in η ) , x ∈ Ω , (2.6d) 
satisfying

u η ∈ L 2 ((0, T ) × Ω) ∩ L (N +2)/(N +1) ((0, T ); W 1,(N +2)/(N +1) (Ω)) , (2.7 
)

v η ∈ L ∞ ((0, T ); H 1 (Ω)) ∩ L 2 ((0, T ); H 2 (Ω)) , (2.8) 
for any T > 0.

As a first consequence of (2.3) and (2.6), we identify the time evolution of the space averages of u η and v η .

Lemma 2.2. For t ≥ 0, u η (t) = m , v η (t) = v in e -t/ε + m(1 -e -t/ε ) ≤ max{ v in , m} . (2.9) 
Proof. The first identity in (2.9) readily follows from (2.3), (2.6a), and (2.6c), after integration over Ω. We next integrate (2.6b) over Ω and use (2.3) and (2.6c) to obtain

ε d dt v η 1 + v η 1 = u η 1 = m|Ω| , t ≥ 0 . (2.10) 
Integrating (2.10) completes the proof of Lemma 2.2.

We define then w η = w η (t, x) as the unique nonnegative solution of the elliptic equation (in the x variable, for a given t)

-∆w η + w η = u η , (t, x) ∈ (0, ∞) × Ω , (2.11a 
)

∇w η • n = 0 , (t, x) ∈ (0, ∞) × ∂Ω . (2.11b) 
Thanks to this auxiliary problem, we have the following lemma.

Lemma 2.3. For t ∈ [0, T ], there exists some constant C(T ) ≥ 0 such that u η (t) 2 (H 1 ) ′ + ||v η (t)|| 2 2 + t 0 ||v η (s)|| 2 H 1 ds + t 0 Ω u η (s, •) 2 γ η (v η (s, •)) dx ds ≤ C(T ).
(2.12)

Proof. We observe that, by (2.1), (2.6a), and (2.11),

1 2 d dt ||w η || 2 H 1 = Ω w η ∆(u η γ η (v η )) dx = Ω u η γ η (v η ) (w η -u η ) dx ≤ (K 0 + 1) ||w η || 2 H 1 - Ω u 2 η γ η (v η ) dx . (2.13) Also, it follows from (2.6b) that ε 2 d dt ||v η || 2 2 + ||v η || 2 H 1 = Ω u η v η dx = Ω v η w η + ∇v η • ∇w η dx ≤ 1 2 ||v η || 2 H 1 + 1 2 ||w η || 2 H 1 , (2.14) 
so that d dt

1 2 ||w η || 2 H 1 + ε ||v η || 2 2 + ||v η || 2 H 1 + Ω u 2 η γ η (v η ) dx ≤ (2 + K 0 ) ||w η || 2 H 1 . (2.15)
After integration with respect to time, for all T > 0, there exists some constant C(T ) ≥ 0 (we emphasize the dependence with respect to T , but it also depends on the parameters of the problem but not on η ∈ (0, 1)) such that

||w η (t)|| 2 H 1 + ||v η (t)|| 2 2 + t 0 ||v η (s)|| 2 H 1 ds + t 0 Ω u η (s, •) 2 γ η (v η (s, •)) dx ds ≤ C(T ) , t ∈ [0, T ] .
Recalling the definition of A -1 in (1.7), we note that w η = A -1 u η , and conclude the proof of the lemma by equivalence of the norms (1.6) and (1.9).

Building upon (2.12), we derive additional estimates on (v η ) η with the help of a comparison argument introduced in [START_REF] Fujie | Global existence for a kinetic model of pattern formation with densitysuppressed motilities[END_REF] (and subsequently developed further in [START_REF] Fujie | Boundedness of classical solutions to a degenerate Keller-Segel type model with signal-dependent motilities[END_REF][START_REF] Fujie | Comparison methods for a Keller-Segel-type model of pattern formations with density-suppressed motilities[END_REF][START_REF] Fujie | Global existence and infinite time blow-up of classical solutions to chemotaxis systems of local sensing in higher dimensions[END_REF][START_REF] Jiang | Global existence, uniform boundedness, and stabilization in a chemotaxis system with density-suppressed motility and nutrient consumption[END_REF][START_REF] Li | Global existence of weak solutions to a signal-dependent Keller-Segel model for local sensing chemotaxis, Nonlinear Anal[END_REF][START_REF] Lyu | Global classical solutions for a class of reaction-diffusion system with density-suppressed motility[END_REF][START_REF]Logistic damping effect in chemotaxis models with density-suppressed motility[END_REF]) and parabolic maximal regularity. Lemma 2.4. For all q ∈ (1, ∞) and T > 0, there exists some constant C(T, q) ≥ 0 such that T 0 ||v η (t)|| q q dt ≤ C(T, q). (2.16)

Proof. We start with the comparison argument introduced in [START_REF] Fujie | Global existence for a kinetic model of pattern formation with densitysuppressed motilities[END_REF] and deduce from (2.1), (2.6), (2.11), and the definition (1.7) of A that, for t ≥ 0,

A ∂ t w η (t) + u η (t)γ η (v η (t)) = u η (t)γ η (v η (t)) ≤ (1 + K 0 )u η (t) = A (1 + K 0 )w η (t) in Ω , with ∇ ∂ t w η (t) + u η (t)γ η (v η (t)) -(1 + K 0 )w η (t) • n = 0 on ∂Ω.
We then infer from the (elliptic) comparison principle that

∂ t w η + u η γ η (v η ) ≤ (1 + K 0 )w η in [0, ∞) × Ω .
Hence, since u η and γ η are nonnegative,

0 ≤ w η (t, x) ≤ e (1+K 0 )t w η (0, x) , (t, x) ∈ [0, ∞) × Ω .
In addition, recalling that p 0 > N/2, the continuous embedding of W 2,p 0 in L ∞ (Ω), elliptic regularity, and (2.4) imply that

w η (0) ∞ ≤ C A -1 (u in η ) W 2,p 0 ≤ C u in η p 0 ≤ C .
Combining the above two estimates leads us to sup

t∈[0,T ] w η (t) ∞ ≤ C(T ) (2.17)
for each T > 0.

We next define z η := A -1 v η and deduce from (2.6) that z η solves

ε∂ t z η -∆z η + z η = w η , (t, x) ∈ (0, ∞) × Ω , ∇z η • n = 0 , (t, x) ∈ (0, ∞) × ∂Ω , z η (0, •) = z in η := A -1 v in η , x ∈ Ω , (2.18) 
Now, let q ∈ (1, ∞). We recall that the operator A ε defined by

D(A ε ) := φ ∈ W 2,q (Ω) : ∇φ • n = 0 on ∂Ω , A ε φ := 1 ε -∆φ + φ , φ ∈ D(A ε ) , (2.19) 
generates an analytic semigroup e -tAε t≥0 of contractions on L q (Ω) [20, Theorem 7.3.5] (note that A 1 = A, see (1.8)). With this notation, a representation formula for z η can be derived from (2.18) which reads

εz η (t) = εe -tAε z in η + t 0 e -(t-s)Aε w η (s) ds , t ≥ 0 . (2.20) 
On the one hand, we infer from (2.17 L q ((0,T );W 2,q (Ω))

≤ C(q) w η L q ((0,T )×Ω) ≤ C(T, q) .

On the other hand, classical properties of semigroups, elliptic regularity, and (2.4) entail that e -tAε z in η L q ((0,T );W 2,q (Ω)) ≤ C(T, q) z in η W 2,q ≤ C(T, q) v in η q ≤ C(T, q) .

Consequently, ε z η L q ((0,T );W 2,q (Ω)) ≤ C(T, q) ,
an estimate which completes the proof since v η = Az η .

We next turn to (u η ) η and draw the following consequence of Lemma 2.3 and Lemma 2.4.

Lemma 2.5. For all p ∈ (1, 2) and T > 0, there exists some constant C(T, p) ≥ 0 such that

T 0 u η (t) p p dt ≤ C(T, p) . (2.21)
Proof. By (2.2) and Hölder's inequality,

u η p p = Ω u η γ η (v η ) p γ η (v η ) -p/2 dx ≤ Ω u 2 η γ η (v η ) dx p/2 Ω γ η (v η ) -p/(2-p) dx (2-p)/2 ≤ 3 k K 1 u η γ η (v η ) p 2 Ω (1 + v η ) pk/(2-p) dx (2-p)/2 ≤ C(p) u η γ η (v η ) p 2 1 + v η pk/2 pk/(2-p) .
Integrating the above inequality with respect to time over (0, T ) and using Hölder's inequality gives

T 0 u η p p dt ≤ C(p) T 0 u η γ η (v η ) p 2 1 + v η pk/2 pk/(2-p) dt ≤ C(p) T 0 u η γ η (v η ) 2 2 dt p/2 T 0 1 + v η pk/2 pk/(2-p) 2 (2-p) dt (2-p)/2 ≤ C(p) T 0 u η γ η (v η ) 2 2 dt p/2 T 0 1 + v η pk/(2-p) pk/(2-p) dt (2-p)/2
. Lemma 2.5 then readily follows from the above estimate due to (2.12) and Lemma 2.4 (with q = pk/(2p)).

Exploiting the outcome of Lemma 2.5 provides additional estimates on (v η ) η .

Lemma 2.6. Let q ∈ (1, 2) and T > 0 and assume that v in ∈ W 1,q (Ω). Then there exists some constant C(T, q) ≥ 0 such that sup

t∈[0,T ] v η (t) W 1,q ≤ C(T, q) .
Proof. Recalling the notation introduced in (2.19), it follows from (2.6) that

εv η (t) = εe -tAε v in η + t 0 e -(t-s)Aε u η (s) ds , t ≥ 0 .
Using classical properties of the semigroup (e -tAε) ) t≥0 , see [2, V.Theorem 2.1.3] for instance, along with (2.5), we obtain

ε v η (t) W 1,q ≤ C(q) + C(q) t 0 (t -s) -1/2 u η (s) q ds , t ≥ 0 . (2.22)
We next fix p ∈ (q, 2) and set

ω := 1 + q(p -1) p(q -1) ∈ 2, 2q(p -1)
p(q -1) .

We infer from (2.3) and Hölder's inequality that

u η q ≤ u η p(q-1) q(p-1) p u η p-q q(p-1) 1 ≤ C(p, q) u η 1 ω-1 p .
Together with Hölder's inequality, the above inequality ensures that, for t > 0,

t 0 (t -s) -1/2 u η (s) q ds ≤ t 0 (t -s) -ω 2(ω-1) ds (ω-1)/ω t 0 u η (s) ω q ds 1/ω ≤ C(p, q)t ω-2 2(ω-1) t 0 u η (s) ω ω-1 p ds 1/ω .
Since both ω/(ω -1) and p lie in (1, 2), we deduce from Lemma 2.5 that, for T > 0 and t ∈ [0, T ],

t 0 (t -s) -1/2 u η (s) q ds ≤ C(T, p, q) .
Inserting the above estimate in (2.22) completes the proof.

Compactness and convergence

We now collect the estimates that are uniform with respect to η ∈ (0, 1), which will prove useful when passing to the limit η → 0. Proposition 2.7. Let T > 0 , q ∈ (1, ∞), and p ∈ (2N/(N + 2), 2). There are C 0 (T ) > 0, C 1 (T, q) > 0, and C 2 (T, p) > 0 such that

u η (t) = m , 0 ≤ v η (t) ≤ max{ v in , m} , t ∈ [0, T ] , (2.23a 
)

∇K(u η (t) -m) 2 2 ≤ 2C 0 (T ) , t ∈ [0, T ] , (2.23b 
) 

v η (t) 2 2 ≤ C 0 (T ) , t ∈ [0, T ] , (2.23c) 
T 0 v η (s) 2 H 1 ds ≤ C 0 (T ) , (2.23d) 
T 0 (u η (s) -v η (s)) γ η (v η (s)) 2 2 ds ≤ C 0 (T ) , (2.23e) 
T 0 u η (s) γ η (v η (s)) 2 2 ds ≤ C 0 (T ) , (2.23f) 
T 0 ∂ t K(u η (s) -m) 2 2 ds ≤ C 0 (T ) , (2.23g) 
T 0 v η (s) q q ds ≤ C 1 (T, q) , (2.23h) 
T 0 u η (s) p p ds ≤ C 2 (T, p) , (2.23i) T 0 ∂ t v η (s) p (H 1 ) ′ ds ≤ C 2 (T, p) . ( 2 
∂ t K(u η -m) + u η γ η (v η ) = u η γ η (v η ) , (t, x) ∈ (0, ∞) × Ω , (2.24) 
so that estimate (2.23g) is a consequence of (2.23f) and the (uniform) upper bound (2.1) on γ η . It next follows from (2.6b), Hölder's inequality, and the continuous embedding of

H 1 (Ω) in L p/(p-1) (Ω) that, for ψ ∈ H 1 (Ω), ε ∂ t v η , ψ (H 1 ) ′ ,H 1 = Ω ∇v η • ∇ψ dx + Ω v η ψ dx - Ω u η ψ dx ≤ v η H 1 ψ H 1 + u η p ψ p/(p-1) ≤ C(p) ( v η H 1 + u η p ) ψ H 1 .
Estimate (2.23j) is then a consequence of (2.23d), (2.23i), and the above inequality by a duality argument. Finally, estimate (2.23e) is obtained thanks to (2.23c), (2.23f), and the upper bound (2.1) on γ η .

We are now ready to pass to the limit η → 0 and therefore prove the existence of a global weak solution to the system (1.1).

End of the proof of Theorem 1.2. Thanks to the uniform estimates collected in Proposition 2.7, we can extract a sequence (u ηn , v ηn ) n≥1 such that, for all T > 0, q ∈ (1, ∞), and p ∈ (2N/(N + 2), 2),

u ηn ⇀ u in L p ((0, T ) × Ω), (2.25a 
)

K(u ηn -m) * ⇀ K(u -u ) in L ∞ ((0, T ); H 1 (Ω)), (2.25b) 
∂ t K(u ηn -m) ⇀ ∂ t K(u -u ) in L 2 ((0, T ) × Ω)), (2.25c 
) 

v ηn ⇀ v in L 2 ((0, T ); H 1 (Ω)) ∩ L q ((0, T ) × Ω), (2.25d) 
v ηn * ⇀ v in L ∞ ((0, T ); L 2 (Ω)), (2.25e) 
∂ t v ηn ⇀ ∂ t v in L p ((0, T ); (H 1 ) ′ (Ω). ( 2 
K(u ηn -m) → K(u -u ) in C([0, T ]; L 2 (Ω)), (2.26) 
v ηn → v in C([0, T ]; (H 1 ) ′ (Ω)) ∩ L 2 ((0, T ) × Ω) and a.e. in (0, T ) × Ω . (2.27)
Next, since ∂ t u ηn = ∆(u ηn γ ηn (v ηn )) by (2.6a), we infer from Lemma 2.1 and (2.23f) that ∂ t u ηn n≥1 is bounded in L 2 ((0, T ); (H 2 ) ′ (Ω)), while (2.23b) guarantees that (u ηn ) n≥1 is bounded in L ∞ ((0, T ); (H 1 ) ′ (Ω)). Another application of [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF]Corollary 4] implies that, after possibly extracting another subsequence,

u ηn → u in C([0, T ]; (H 2 ) ′ (Ω)).
(2.28) Since x → 1 belongs to H 2 (Ω), an immediate consequence of (2.23a) and (2.28) is

u(t), 1 (H 2 ) ′ ,H 2 = lim n→∞ u ηn (t), 1 (H 2 ) ′ ,H 2 = |Ω| lim n→∞ u ηn (t) = m|Ω| , t ∈ [0, T ] . (2.29)
Introducing the space C([0, T ]; w -(H 1 ) ′ (Ω)) of functions from [0, T ] to (H 1 ) ′ (Ω) which are continuous with respect to time for the weak topology of (H 1 ) ′ (Ω), we recall that

L ∞ ((0, T ); (H 1 ) ′ (Ω)) ∩ C([0, T ]; (H 2 ) ′ (Ω)) ⊂ C([0, T ]; w -(H 1 ) ′ (Ω)) ,
and deduce from (2.25b) and (2.29) that We next identify the weak limits of u ηn γ ηn (v ηn ) n≥1 and u ηn γ ηn (v ηn ) n≥1 . To this end, we note that the uniform convergence of (γ ηn ) n≥1 to γ on compact subsets of [0, ∞), the bound from Lemma 2.1, the a.e. convergence (2.27) of (v ηn ) n≥1 , and Lebesgue's convergence theorem imply that, for all q ∈ [1, ∞), γ ηn (v ηn ) → γ(v) in L q ((0, T ) × Ω) and a.e. in (0, T ) × Ω .

u(t) = m , t ∈ [0, T ] . ( 2 
(2.32)

It then follows from (2.25a) and (2.32) that

u ηn γ ηn (v ηn ) ⇀ u γ(v) in L 1 ((0, T ) × Ω) , u ηn γ ηn (v ηn ) ⇀ uγ(v) in L 1 ((0, T ) × Ω) .
Since these two sequences are bounded in L 2 ((0, T ) × Ω) by Lemma 2.1 and (2.23f), we conclude that

u ηn γ ηn (v ηn ) ⇀ u γ(v) in L 2 ((0, T ) × Ω) , u ηn γ ηn (v ηn ) ⇀ uγ(v) in L 2 ((0, T ) × Ω) .
(2.33)

Writing now a very weak formulation of system (2.6) like in Definition 1.1, we can pass to the limit when η → 0 and get that (u, v) indeed are very weak solutions of system (1.1) in the sense of Definition 1.1.

Finally, assuming additionally that v in ∈ W 1,q (Ω) for some q ∈ (1, 2), so that the family (v in η ) satisfies (2.5), we infer from (2.27) and Lemma 2.6 that v ∈ L ∞ ((0, T ); W 1,q (Ω)), which completes the proof.

Long-term behavior and a Lyapunov functional

This section is devoted to the existence of a Lyapunov functional and the proof of Theorem 1.5. Let Ω be a smooth bounded domain of R N , with N ≥ 2 and ε > 0. Assume that γ ∈ C([0, ∞)) ∩ C 3 ((0, ∞)) satisfies (1.15) and consider nonnegative initial conditions (u in , v in ) ∈ W 1,r (Ω; R 2 ) for some r > N . It then follows from [START_REF] Fujie | Global existence and infinite time blow-up of classical solutions to chemotaxis systems of local sensing in higher dimensions[END_REF][START_REF] Jiang | Global existence, uniform boundedness, and stabilization in a chemotaxis system with density-suppressed motility and nutrient consumption[END_REF] that there is a unique global classical solution (u, v) to (1.1). Setting m := u in , it readily follows from (1.1) and the nonnegativity of (u, v) that

u(t) 1 = |Ω| u(t) = m|Ω| , t ≥ 0 , (3.1a) 
and

ε d dt v(t) 1 + v 1 = m|Ω| , t ≥ 0 , (3.1b) 
from which we deduce that

v(t) 1 = u in 1 1 -e -t/ε + v in 1 e -t/ε ≤ max u in 1 , v in 1 , t ≥ 0 . (3.1c)

A Lyapunov functional

Lemma 3.1. The function G 0 defined in (1. [START_REF] Liu | Large time behavior of solutions for density-suppressed motility system in higher dimensions[END_REF]) is nonnegative and convex on (0, ∞), and

d dt L 0 (u(t), v(t)) + D 0 (u(t), v(t)) = 0 , t > 0 , (3.2) 
recalling that L 0 and D 0 are both nonnegative and defined in (1.18) and (1.19), respectively. In particular,

L 0 (u(t), v(t)) + t 0 D 0 (u(s), v(s)) ds ≤ L 0 (u in , v in ) , t ≥ 0 . (3.3)
Proof of Lemma 3.1. Since G ′′ 0 (z) = 2zγ ′ (z) + 2γ(z) -mγ ′ (z) ≥ 0 for z > 0 by (1.15) and (1.16), the function G 0 is convex on (0, ∞). We then deduce from the convexity of G 0 and (1.16) that G 0 (z) ≥ G 0 (m) + G ′ 0 (m)(z -m) = 0; that is, G 0 is nonnegative on (0, ∞). We next infer from (1.1a), (1.4), and (3.1b) that

1 2 d dt ∇K(u -m) 2 2 = - Ω K(u -m)∂ t ∆K(u -m) dx = Ω K(u -m)∂ t u dx = Ω K(u -m)∆(uγ(v)) dx = Ω uγ(v)∆K(u -m) dx = Ω (mu -u 2 )γ(v) dx = Ω (mu + v 2 -2uv)γ(v) dx - Ω (u -v) 2 γ(v) dx . (3.4)
By (1.1b) and (1.1c),

Ω (m -2v)uγ(v) dx = Ω (m -2v)(ε∂ t v -∆v + v)γ(v) dx = -ε Ω (mγ(m) + G ′ 0 (v))∂ t v dx - Ω G ′′ 0 (v)|∇v| 2 dx + Ω (mv -2v 2 )γ(v) dx .
Combining the above identity with (3.4) gives

1 2 d dt ∇K(u -m) 2 2 = -ε d dt Ω (mγ(m)v + G 0 (v)) dx - Ω (u -v) 2 γ(v) dx - Ω G ′′ 0 (v)|∇v| 2 dx + Ω (mv -v 2 )γ(v) dx ,
while we deduce from (3.1b) that

-εmγ(m) d dt v 1 -mγ(m) v 1 = -m 2 γ(m)|Ω| .
Adding the previous two formulas leads us to

1 2 d dt ∇K(u -m) 2 2 + ε d dt Ω G 0 (v) dx = - Ω (u -v) 2 γ(v) dx - Ω G ′′ 0 (v)|∇v| 2 dx - Ω (v -m)(vγ(v) -mγ(m)) dx ,
and we have proved (3.2). Now, the nonnegativity of L 0 and D 0 is a consequence of the already established nonnegativity and convexity of G 0 and the monotonicity of z → zγ(z) which is due to (1.15). Finally, the bound (3.3) readily follows from (3.2) after integration with respect to time.

We next supplement the bound (3.3) with additional estimates on v.

Lemma 3.2. sup t≥0 v(t) 2 H 1 + ε ∞ 0 ∂ t v(s) 2 2 ds < ∞ , (3.5) 
Proof. We multiply (1.1b) by ∂ t v and integrate over Ω to obtain

ε ∂ t v 2 2 + 1 2 d dt v 2 H 1 = Ω u∂ t v dx = d dt Ω uv dx - Ω v∂ t u dx .
Then, using again (1.1),

ε ∂ t v 2 2 + d dt v 2 H 1 2 -uv 1 = - Ω uγ(v)∆v dx = - Ω (u -v)γ(v)∆v dx - Ω vγ(v)∆v dx . (3.6)
On the one hand, by (1.1c), (1.15), and the nonnegativity of m,

- Ω vγ(v)∆v dx = Ω vγ ′ (v) + γ(v) |∇v| 2 dx = 1 2 Ω G ′′ 0 (v) + mγ ′ (v) |∇v| 2 dx ≤ 1 2 Ω G ′′ 0 (v)|∇v| 2 dx . (3.7)
On the other hand, we infer from (1.1b), (1.15), and Young's inequality that 

- Ω (u -v)γ(v)∆v dx = Ω (u -v)γ(v) (u -v -ε∂ t v) dx ≤ Ω (u -v) 2 γ(v) dx + ε 2 ∂ t v 2 2 + ε 2 γ(0) Ω (u -v) 2 γ(v) dx ≤ 2 + εγ(0) 2 Ω (u -v) 2 γ(v) dx + ε 2 ∂ t v 2 2 . ( 3 
∂ t v 2 2 + d dt v 2 H 1 2 -uv 1 ≤ 2 + εγ(0) 2 D 0 (u, v) .
Now, let t > 0. Integrating the above differential inequality with respect to time over (0, t) and using (3.3) give

ε t 0 ∂ t v(s) 2 2 ds + v(t) 2 H 1 ≤ v in 2 H 1 + 2 u(t)v(t) 1 + (2 + εγ(0)) t 0 D 0 (u(s), v(s)) ds ≤ v in 2 H 1 + (2 + εγ(0))L 0 (u in , v in ) + 2 u(t)v(t) 1 .
(3.9)

Owing to (1.4), (1.18), (3.1c), (3.3), and Young's inequality,

u(t)v(t) 1 = Ω (u(t) -m)v(t) dx + m v(t) 1 = - Ω v(t)∆K(u(t) -m) dx + m v(t) 1 ≤ Ω ∇v(t) • ∇K(u(t) -m) dx + m max{ v in 1 , u in 1 } ≤ 1 4 ∇v(t) 2 2 + ∇K(u(t) -m) 2 2 + m max{ u in 1 , v in 1 } ≤ 1 4 v(t) 2 H 1 + 2L 0 (u(t), v(t)) + m max{ u in 1 , v in 1 } ≤ 1 4 v(t) 2 H 1 + 2L 0 (u in , v in ) + m max{ u in 1 , v in 1 } . (3.10)
Combining (3.9) and (3.10) leads us to

ε t 0 ∂ t v(s) 2 2 ds + v(t) 2 H 1 2 ≤ v in 2 H 1 + (6 + εγ(0))L 0 (u in , v in ) + 2m max{ u in 1 , v in 1 } ,
and completes the proof.

Convergence to spatially homogeneous steady states

Collecting the outcome of Lemma 3.1 and Lemma 3.2, we have established the identity (1.17) and the estimates (1.20). We are left with the long-term convergence and begin with some properties of G 0 which we gather in the next lemma.

Lemma 3.3. There is K 1 > 0 depending only on γ such that γ satisfies (1.12) with k = 1. Moreover,

|zγ(z) -mγ(m)| ≤ γ(0) |z -m| , z ∈ [0, ∞) . (3.11)
In addition, recalling that G 0 is defined in (1.16) and is convex on (0, ∞), the function G ′′ 0 ∈ L 1 (0, z) for any z > 0 and its indefinite integral

g 0 (z) := z 0 G ′′ 0 (z * ) dz * , z ∈ [0, ∞) ,
is well-defined and belongs to C 0, 1 2 ([0, z]) for all z > 0.

Proof. Since γ satisfies (1.15), the function γ satisfies zγ(z) ≥ γ(1) > 0 for z ≥ 1, while the positivity and monotonicity of γ on [0, 1] implies that min [0,1] γ = γ(1) > 0. Combining these two facts ensures that γ satisfies (1.12) with k = 1 and K 1 = 1/γ(1). It next follows from the monotonicity of γ that

0 ≤ d dz (zγ(z)) = zγ ′ (z) + γ(z) ≤ γ(0) , z ≥ 0 . (3.12)
Integrating the above differential inequality gives (3.11).

Next, the convexity of G 0 provided by Lemma 3.1 guarantees that G ′′ 0 is well-defined. Using Cauchy-Schwarz inequality, we obtain that, for z 2 > z 1 > 0,

z 2 z 1 G ′′ 0 (z) dz ≤ √ z 2 -z 1 z 2 z 1 G ′′ 0 (z) dz 1/2 = √ z 2 -z 1 G ′ 0 (z 2 ) -G ′ 0 (z 1 ) ≤ √ z 2 -z 1 2γ(0)z 2 + mγ(0) .
The stated properties of g 0 then readily follow from the above inequality, which concludes Lemma 3.3.

Proof of Theorem 1.5. As already mentioned, the identity (1.17) and the estimates (1.20) are shown in Lemma 3.1 and Lemma 3.2, respectively, and we now turn to the large time behavior. Since the monotonicity properties of γ guarantee that all the terms in L 0 (u, v) and D 0 (u, v) are nonnegative, we infer from (1.20) and the Poincaré-Wirtinger inequality that

K(u(t) -m) H 1 + v(t) H 1 ≤ C , t ≥ 0 , (3.13) 
∞ 0 ∂ t v(s) 2 2 ds + ∞ 0 Ω γ(v)(u -v) 2 dx ds < ∞ , (3.14) 
∞ 0 Ω G ′′ 0 (v)|∇v| 2 dx ds + ∞ 0 Ω (v -m) vγ(v) -mγ(m) dx ds < ∞ . (3.15) 
We readily infer from (3.13) and the compactness of the embedding of

H 1 (Ω) in L 2 (Ω) that {K(u(t) -m) : t ≥ 0} and {v(t) : t ≥ 0} are compact in L 2 (Ω) (3.16) 
and there are a sequence (t j ) j≥1 of positive times, t j → ∞, and

(U ∞ , v ∞ ) ∈ H 1 (Ω, R 2 ) such that lim j→∞ K(u(t j ) -m) -U ∞ 2 + v(t j ) -v ∞ 2 = 0 . (3.17) 
Since lim t→∞ v(t) 1 = m|Ω| by (3.1c), a straightforward consequence of (3.17) and the definition of K is that

U ∞ = 0 and v ∞ = m|Ω| . (3.18) 
For j ≥ 1 and s ∈ [-1, 1], we set (u j , v j )(s) := (u, v)(s + t j ) and first observe that

v j (s) -v ∞ 2 ≤ v j (s) -v j (0) 2 + v j (0) -v ∞ 2 = v(s + t j ) -v(t j ) 2 + v(t j ) -v ∞ 2 ≤ s+t j t j ∂ t v(s) 2 ds + v(t j ) -v ∞ 2 ≤ t j +1 t j -1 ∂ t v(s) 2 2 ds 1/2 + v(t j ) -v ∞ 2 .
Since the right-hand side of the above inequality does not depend on s ∈ [-1, 1] and converges to zero as j → ∞ according to (3.14) and (3.17), we conclude that

lim j→∞ sup s∈[-1,1] v j (s) -v ∞ 2 = 0 . (3.19) 
An immediate consequence of (3.19) is that, up to the extraction of a subsequence, we may assume that

lim j→∞ v j (s, x) = v ∞ (x) for a.e. (s, x) ∈ (-1, 1) × Ω . (3.20) 
It next follows from (3.15) and the monotonicity (1.15

) of z → zγ(z) that lim j→∞ 1 -1 Ω (v j -m) v j γ(v j ) -mγ(m) dx ds = lim j→∞ t j +1 t j -1 Ω (v -m) vγ(v) -mγ(m) dx ds = 0 ,
which gives, together with (3.20) and Fatou's lemma ,

1 -1 Ω (v ∞ -m) v ∞ γ(v ∞ ) -mγ(m) dx ds = 0 . (3.21) 
Introducing

m i := inf{z ∈ (0, ∞) : zγ(z) = mγ(m)} , m s := sup{z ∈ (0, ∞) : zγ(z) = mγ(m)} ∈ [m, ∞] , I := {z ∈ (0, ∞) : zγ(z) = mγ(m)} ,
we infer from the boundedness of γ and the monotonicity (1.15) of z → zγ(z) that

m i ∈ (0, m] and I =    [m i , m s ] , m s < ∞ , [m i , ∞) , m s = ∞ .
Combining this property with (3.21) implies in particular that v ∞ (x) ∈ I for a.e. x ∈ Ω .

At this point, either m i = m s = m and it readily follows from (3.22) that v ∞ ≡ m.

Or m i = m s , and the property zγ(z) = mγ(m) for z ∈ I entails that

G ′′ 0 (z) = -mγ ′ (z) = m 2 γ(m)/z 2 for z ∈ I. Introducing g(z) :=                    0 , z ∈ [0, m i ) z m i G ′′ 0 (z * ) dz * = m γ(m) ln (z/m i ) , z ∈ I , ms m i G ′′ 0 (z * ) dz * = m γ(m) ln (m s /m i ) , z ∈ (m s , ∞) ( when m s < ∞) ,
we infer from (3.15), (3.19), and the Lipschitz continuity of g that

lim j→∞ 1 -1 ∇g(v j (s)) 2 2 ds ≤ lim j→∞ t j +1 t j -1 Ω G ′′ 0 (v)|∇v| 2 2 dx ds = 0, (3.23) 
and lim

j→∞ sup s∈[-1,1] g(v j (s)) -g(v ∞ ) 2 = 0 . (3.24) 
Combining (3.23) and (3.24) implies that ∇g(v ∞ ) = 0 a.e. in Ω and we deduce from (3.22), the connectedness of Ω, and the strict monotonicity of g on I that there is a unique µ ∈ I such that v ∞ = µ a.e. in Ω. Recalling that v ∞ = m|Ω| by (3.18), we conclude that necessarily µ = m. Consequently, v ∞ ≡ m in this case as well, so that, recalling (3.19), we have shown that

lim j→∞ sup s∈[-1,1] v j (s) -m 2 = 0 . (3.25) 
We next turn to the behaviour of u and the identification of U ∞ in (3.17). On the one hand, for p ∈ [1, 4N/(3N -2)] ∩ [1, 2), Hölder's inequality gives

1 -1 Ω |u j -v j | p dx ds = t j +1 t j -1 Ω |u -v| p γ(v) p/2 γ(v) -p/2 dx ds ≤ t j +1 t j -1 Ω |u -v| 2 γ(v) dx ds p/2 t j +1 t j -1 Ω γ(v) -p/(2-p) dx ds (2-p)/2
, and we infer from (3.13), Lemma 3.3, and the continuous embedding of H 1 (Ω) in L p/(2-p) (Ω) that

t j +1 t j -1 Ω γ(v) -p/(2-p) dx ds ≤ C t j +1 t j -1 Ω (1 + v) p/(2-p) dx ds ≤ C(p) 1 + t j +1 t j -1 v(s) p/(2-p) p/(2-p) ds ≤ C(p) 1 + sup s≥0 v(s) p/(2-p) H 1 ≤ C(p) .
Combining the above inequalities leads us to On the other hand, it follows from Hölder's inequality that

1 -1 Ω |u j -v j | p dx ds ≤ C(p) t j +1 t j -1 Ω |u -v| 2 γ(v)
K∂ t u 2 = (u -v)γ(v) + vγ(v) -mγ(m) + mγ(m) -vγ(v) + (v -u)γ(v) 2 ≤ |Ω| (u -v)γ(v) + vγ(v) -mγ(m) + mγ(m) -vγ(v) 2 + (v -u)γ(v) 2 ≤ (1 + |Ω|) vγ(v) -mγ(m) 2 + (v -u)γ(v) 2 .
Since (with

K 0 = ||γ|| ∞ ) (v -u)γ(v) 2 2 ≤ K 0 Ω (v -u) 2 γ(v) dx,
and

vγ(v) -mγ(m) 2 2 ≤ K 0 Ω vγ(v) -mγ(m) |v -m| dx = K 0 Ω vγ(v) -mγ(m) (v -m) dx
by (1.15) and Lemma 3.3, we conclude that

K∂ t u 2 2 ≤ 2K 0 (1 + |Ω|) 2 Ω (u -v) 2 γ(v) + (v -m) vγ(v) -mγ(m) dx .
Hence, thanks to (3.14) 

K(u j (s) -m) -U ∞ 2 = 0 . (3.27) 
According to (3.13) and (3.27), we may also assume that, up to the extraction of a subsequence,

K(u j -m) * ⇀ U ∞ in L ∞ ([-1, 1]; H 1 (Ω)) . (3.28)
We then infer from (3.26) and (3.28) that, for any ϕ ∈ H 1 (Ω),

0 = lim j→∞ 1 -1 Ω (u j (s) -m)ϕ dx ds = lim j→∞ 1 -1 Ω ∇K(u j (s) -m) • ∇ϕ dx ds = 1 -1 Ω ∇U ∞ • ∇ϕ dx ds = 2 Ω ∇U ∞ • ∇ϕ dx ,
which entails, together with (3.18), that U ∞ ≡ 0.

We have thus proved that (0, m) is the only cluster point as t → ∞ of { K(u(t) -m), v(t) t ≥ 0} in L 2 (Ω; R 2 ). Together with the already established compactness (3.16) of this set in L 2 (Ω; R 2 ), this property implies that K(u(t) -m), v(t) converges to (0, m) in L 2 (Ω; R 2 ) as t → ∞ and completes the proof of Theorem 1.5.

Proof of Proposition 1.6. According to [START_REF] Lin | Large amplitude stationary solutions to a chemotaxis system[END_REF]Proposition 1.2], there is d 0 > 0 such that if d ∈ (0, d 0 ), then there exists a nonconstant positive solution w = w

(d) ∈ C 2 (Ω 0 ) of 0 = d∆w -w + w k in Ω 0 , 0 = ∇w • n on ∂Ω 0 . Setting R 0 := 1 √ d 0
, and picking R > R 0 , we then obtain that d := 1 R 2 satisfies d ∈ (0, d 0 ), and that for v(x) := w (d) ( √ dx) and u(x) := v k (x),

x ∈ RΩ 0 , we have ∇u • n = ∇v • n = 0 on ∂(RΩ 0 ) as well as

∆v(x) -v(x) + u(x) = d∆w( √ dx) -w( √ dx) + w k ( √ dx) = 0 for all x ∈ RΩ 0 and ∆ uγ(v) = ∆(v k • v -k ) = 0 in RΩ 0 ,
as claimed.

4 System with logistic-type growth

In this final part we address the problem (1.3) involving logistic-type zero order degradation. As our approach in the present section will no longer make use of a comparison argument, we may here employ a somewhat simpler regularization which enforces global solvability at the respective approximate level by involving a suitably strong damping in the signal production mechanism. More precisely, assuming throughout this section that γ, h, u in and v in comply with the requirements from Theorem 1.8, for η ∈ (0, 1) we shall consider

∂ t u η -∆(u η γ(v η )) = u η h(u η ), (t, x) ∈ (0, ∞) × Ω, (4.1a) 
ε∂ t v η = ∆v η -v η + u η 1 + ηu η , (t, x) ∈ (0, ∞) × Ω, (4.1b) 
∇(u η γ(v η )) • n = ∇v η • n = 0, (t, x) ∈ (0, ∞) × ∂Ω, (4.1c) 
(u η , v η )(0, •) = (u in , v in ) . x ∈ Ω, (4.1d) 
Indeed, by straightforward adaptation from standard arguments from the theory of Keller-Segel type crossdiffusion systems (see, e.g., [START_REF] Tao | Effects of signal-dependent motilities in a Keller-Segel-type reactiondiffusion system[END_REF]) it can be seen that each of these problems admits a global classical solution (u η , v η ) with 0 ≤ u η ∈ C([0, ∞)×Ω)∩C 1,2 ((0, ∞)×Ω) and 0 ≤ v η ∈ q>1 C([0, ∞); W 1,q (Ω))∩C 1,2 ((0, ∞)× Ω), and that

v η (t, x) ≥ inf Ω v in e -t/ε for all (t, x) ∈ [0, ∞) × Ω. (4.2)
Now the core of this section is contained in the following.

Lemma 4.1. Assume (1.25) and (1.26). Then for all T > 0 there exists C(T ) > 0 such that for all η ∈ (0, 1),

T 0 Ω u η ln(u η + e)|h(u η )| + u 2 η + γ(v η ) |∇u η | 2 u η + e + |∆v η | 2 + |∇v η | 4 v 2 η dx dt ≤ C(T ), (4.3) 
as well as

Ω u η (t) ln u η (t) + e dx + Ω |∇v η (t)| 2 dx ≤ C(T ) for all t ∈ (0, T ). ( 4 

.4)

Proof. From Assumption (1.25) and (4.2), we know that there exists c 1 (T ) > 1 such that We then define

v η ≥ 1 c 1 (T ) , γ(v η ) ≤ c 1 (T ) and γ ′2 (v η ) γ(v η ) ≤ c 1 (T ) v η in ( 
µ(s) := h -(s) ln(s + e) s + 1 , s ≥ 0, (4.7a) 
where

h -(s) := max (-h(s), 0) , h + (s) := h(s) + h -(s), s ≥ 0, (4.7b) 
and use (4.1) along with Young's inequality and (4.5) to see that whenever η ∈ (0, 1),

d dt Ω (u η + e) ln(u η + e) -1 dx + 1 2 Ω u η ln(u η + e)|h(u η )| dx + Ω u 2 η dx = Ω ∆(u η γ(v η )) + u η h(u η ) ln(u η + e) dx + 1 2 Ω u η ln(u η + e)|h(u η )| dx + Ω u 2 η dx = - Ω γ(v η ) |∇u η | 2 u η + e dx - Ω u η u η + e γ ′ (v η )∇u η • ∇v η dx + 3 2 Ω u η ln(u η + e)h + (u η ) dx - 1 2 Ω u η (u η + 1)µ(u η ) dx + Ω u 2 η dx ≤ - 1 2 Ω γ(v η ) |∇u η | 2 u η + e dx + 1 2 Ω u 2 η u η + e γ ′2 (v η ) γ(v η ) |∇v η | 2 dx + 3 2 Ω u η ln(u η + e)h + (u η ) dx - 1 2 Ω u η (u η + 1)µ(u η ) dx + Ω u 2 η dx ≤ - 1 2 Ω γ(v η ) |∇u η | 2 u η + e dx + c 1 (T ) 2 Ω u η |∇v η | 2 v η dx + 3 2 Ω u η ln(u η + e)h + (u η ) dx - 1 2 Ω u η (u η + 1)µ(u η ) dx + Ω u 2 η dx ≤ - 1 2 Ω γ(v η ) |∇u η | 2 u η + e dx + c 2 2 Ω |∇v η | 4 v 2 η dx + 3 2 Ω u η ln(u η + e)h + (u η ) dx - 1 2 Ω u η (u η + 1)µ(u η ) dx + 1 + c 2 1 (T ) 8c 2 Ω u 2 η dx for all t ∈ (0, T ), (4.8) 
as well as 

ε d dt Ω |∇v η | 2 dx + Ω |∆v η | 2 dx + 2 Ω |∇v η | 2 dx = - Ω |∆v η | 2 dx -2 Ω u η 1 + ηu η ∆v η dx ≤ Ω u 2 
(u η + e) ln(u η + e) -1 dx + ε Ω |∇v η | 2 dx, t ∈ (0, T ), η ∈ (0, 1),
we have

y ′ η (t) + 1 2 Ω γ(v η ) |∇u η | 2 u η + e dx + 1 4 Ω |∆v η | 2 dx + c 2 4 Ω |∇v η | 4 v 2 η dx + 1 2 Ω u η ln(u η + e)|h(u η )| dx + Ω u 2 η dx ≤ c 3 (T )
|Ω| for all t > 0 and η ∈ (0, 1), (4.10) which after a time integration shows that y η (t) ≤ Ω (u in + e) ln(u in + e) -1 dx + ε ∇v in 2 2 + c 3 (T )T |Ω| for all t ∈ (0, T ) and η ∈ (0, 1), and thereby implies (4.4), while (4.3) can be derived by direct integration in (4.10).

An immediate consequence of (4.3) reveals some integrability feature of expressions related to the fluxes appearing in the first equation from (4.1), here slightly generalized by involving an exponent θ which can actually be an arbitrary element of [ 1 2 , ∞). Lemma 4.2. If (1.25) and (1.26) hold, then for all θ ≥ 1 2 and each T > 0, there exists C(θ, T ) > 0 such that

T 0 Ω ∇ u η γ θ (v η ) 4/3 dx dt ≤ C(θ, T ), (4.11) 
for all η ∈ (0, 1).

Proof. Let η ∈ (0, 1) and T > 0. Then in

T 0 Ω ∇ u η γ θ (v η ) 4/3 dx dt ≤ 2 1/3 T 0 Ω γ 4θ/3 (v η )|∇u η | 4/3 dx dt + 2 1/3 θ 4/3 T 0 Ω u 4/3 η γ 4(θ-1)/3 (v η )|γ ′ (v η )| 4/3 |∇v η | 4/3 dx dt,
we twice use Young's inequality to estimate

T 0 Ω γ 4θ/3 (v η )|∇u η | 4/3 dx dt = T 0 Ω γ(v η ) |∇u η | 2 u η + e 2/3 (u η + e) 2/3 γ (4θ-2)/3 (v η ) dx dt ≤ T 0 Ω γ(v η ) |∇u η | 2 u η + e + T 0 Ω (u η + e) 2 γ 4θ-2 (v η ) dx dt, and 
T 0 Ω u 4/3 η γ 4(θ-1)/3 (v η )|γ ′ (v η )| 4/3 |∇v η | 4/3 dx dt = T 0 Ω |∇v η | 4 v 2 η 1/3 u 4/3 η γ 4(θ-1)/3 (v η )|γ ′ (v η )| 4/3 v 2/3 η dx dt ≤ T 0 Ω |∇v η | 4 v 2 η dx dt + T 0 Ω u 2 η v η γ ′2 (v η ) γ(v η ) γ 2θ-1 (v η ) dx dt.
Collecting the above inequalities and using (4.3), (4.5) and θ ≥ 1/2 gives (4.11).

For later reference, let us briefly note some basic information on mass control in the two components. for all η ∈ (0, 1).

Proof. Since p > N and p ≥ 4, we can pick c 5 > 0 such that ψ ∞ + ∇ψ 4 ≤ c 5 for all ψ ∈ C 1 (Ω) fulfilling ψ W 1,p ≤ 1. Fixing any such ψ, from (4.1) we obtain that for all t > 0 and η ∈ (0, 1),

Ω ∂ t u η γ(v η ) ψ dx = - Ω γ ′ (v η ) ∇ u η γ(v η ) • ∇v η ψ dx - Ω γ(v η )∇ u η γ(v η ) • ∇ψ dx + Ω ρ η ψ dx, (4.14) 
where for all t ∈ (0, T ) and η ∈ (0, 1). Together with (4.17)-(4.19) inserted into (4.14), this shows that with some c 7 (T ) > 0, for all t ∈ (0, T ) and η ∈ (0, 1), we have The derivation of our main result in this section thereby reduces to an application of an Aubin-Lions lemma:

ρ η := u η h(u η )γ(v η ) + 1 ε u η γ ′ (v η )∆v η - 1 ε u η v η γ ′ (v η ) + 1 ε u 2 η 1 + ηu η γ ′ (v η ).
∂ t u η γ(v η ) (W 1,p ( 
Proof of Theorem 1.8. From Lemma 4.2 (with θ = 1), Lemma 4.1 and (4.5), it follows that

u η γ(v η ) η∈(0,1)
is bounded in L 4/3 ((0, T ); W 1,4/3 (Ω)) for all T > 0, while Lemma 4.4 asserts that if we fix p > max(N, 4), then

∂ t u η γ(v η ) η∈(0,1)
is bounded in L 1 ((0, T ); (W 1,p (Ω)) ′ ) for all T > 0.

Apart from that, Lemma 4.1 in conjunction with Lemma 4.3 warrants that (v η ) η∈(0,1) is bounded in L 2 ((0, T ); H 2 (Ω)) for all T > 0, whereas in view of (4.1) it is obvious that Lemma 4.1 (with Lemma 4.3) moreover entails that (∂ t v η ) η∈(0,1) is bounded in L 2 ((0, T ); L 2 (Ω)) for all T > 0.

Owing to the compactness of the embeddings of W 1,4/3 (Ω) and H 2 (Ω), respectively, in L 4/3 (Ω) and H 1 (Ω), respectively, and the continuity of the embeddings of L 4/3 (Ω) and H 1 (Ω), respectively, in (W 1,p (Ω)) ′

  ) and [13, Théorème 1] that t → t 0 e -(t-s)Aε w η (s) ds

dx ds p/ 2 , 1 - 1 Ω 1 - 1 Ω

 21111 which gives, along with (3.14), lim j→∞ |u j -v j | p dx ds = 0 . Recalling (3.25), we end up with lim j→∞ |u j -m| p dx ds = 0 . (3.26)

2 Ω |∇ϕ| 4 ϕ 2 dx ≤ Ω |∆ϕ| 2

 22 0, T ) × Ω for all η ∈ (0, 1). (4.5) We furthermore combine [25, Lemma 3.3] (with h(s) = e -s and with e -ϕ replaced by ϕ) with elliptic regularity theory to find c 2 > 0 fulfilling c dx for all ϕ ∈ C 2 (Ω) such that ϕ > 0 in Ω and ∇ϕ • n = 0 on ∂Ω. (4.6)

Lemma 4 . 3 .v η dx + c 4 Lemma 4 . 4 . 0 ∂

 434440 Assume (1.25) and(1.26). Then there exists C > 0 such that Ω u η (t) dx ≤ C and Ω v η (t) dx ≤ C for all t > 0 and η ∈ (0, 1). (4.12)Proof. Since (1.26) particularly entails the existence of s 1 > 0 such that h(s) ≤ -1 for all s > s 1 , it follows from (4.1) thatd dt Ω u η dx + Ω u η dx = Ω u η (1 + h(u η )) dx ≤ Ω 1 (0,s 1 ) (u η ) u η (1 + h(u η )) dx ≤ s 1 |Ω| 1 + sup (0,s 1 )|h| for all t > 0 and η ∈ (0, 1), and that thus, by a simple comparison argument,Ω u η (t) dx ≤ c 4 := max Ω u in dx , s 1 |Ω| 1 + sup (0,s 1 )|h| for all t > 0 and η ∈ (0, 1).From the second equation in (4.1) we therefore obtain that for all t > 0 and η ∈ (0, 1), and a simple time integration completes the proof.Now the gradient bound from Lemma 4.2 can be supplemented by a time regularity feature: Suppose that (1.25) and (1.26) hold, and let p > max(N, 4). Then for all T > 0 there exists C(p, T ) > 0 such that T t u η (t)γ(v η (t))(W 1,p (Ω)) ′ dt ≤ C(p, T ),(4.13) 

(4. 15 ) 2 1 5 Ω 5 Ω∇ u η γ(v η ) 4 / 3 dx + c 5 Ωγ ′ (v η ) 4 |∇v η | 4 dx ≤ c 5 Ω∇ u η γ(v η ) 4 / 3 dx + c 5 c 4 1 Ω∇ u η γ(v η ) 4 / 3 dx 3 / 4 ≤ c 5 c 1 ∇ u η γ(v η ) 4 / 3 dx + c 5 c 1 (ρ η ψ dx ≤ c 5 Ωu

 152554355431433414315 Now given T > 0, once more drawing on (4.5), we have|γ ′ (v η )| ≤ c 6 (T ) := c 3/(T ) in (0, T ) × Ωfor all η ∈ (0, 1). (4.16)According to our choice of c 5 and Hölder and Young's inequalities, in (4.14) we can therefore estimate-Ω γ ′ (v η ) ∇ u η γ(v η ) • ∇v η ψ dx ≤ c |γ ′ (v η )| ∇ u η γ(v η ) |∇v η | dx ≤ c η )∇ u η γ(v η ) • ∇ψ dx ≤ c 5 c 1 (T ) (T ) Ω |ρ η | dx, (4.19)for all t ∈ (0, T ) and η ∈ (0, 1), where by (4.5), (4.15), (4.16) and Young's inequality,Ω |ρ η | dx ≤ c 1 (T ) Ω u η |h(u η )| dx + c 6 (T ) ε Ω u η |∆v η | dx + c 1 η ln(u η + e)|h(u η )| dx + Ω |∆v η | 2 dx +

u

  Ω)) ′ ≤ c 7 (T ) Ω ∇ u η γ(v η ) η ln(u η + e)|h(u η )| dx + Ω u 2 η dx + 1 ,so that (4.13) results upon an integration in time using Lemma 4.1 and Lemma 4.3, and applying Lemma 4.2 to θ = 1.

  .23j) Proof. The estimate (2.23a) is given by Lemma 2.2, the estimates (2.23c), (2.23d) and (2.23f) are given by Lemma 2.3 and the estimates (2.23h) and (2.23i) are given by Lemma 2.4 and Lemma 2.5, respectively. Estimate (2.23b) is a consequence of Lemma 2.3, the mass estimate (2.23a) and the definition of the (H 1 ) ′ norm in (1.6). Using again (1.6) and (2.3), one can deduce from (2.6a) and (2.6c) that

  and (3.15), and, since K∂ t u = ∂ t K(u -m), we argue as in the proof of (3.19) to deduce from (3.17) and the above integrability property that lim

		0	∞	K∂ t u(s) 2 2 ds < ∞ ,
	j→∞	sup s∈[-1,1]
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and L 2 (Ω), respectively, two applications of the Aubin-Lions-Simon lemma [21, Corollary 4] thus provide (η j ) j∈N ⊂ (0, 1) such that η j ց 0 as j → ∞, and also provide that for all T > 0,

a.e. in (0, ∞) × Ω and in L 4/3 ((0, T ) × Ω), (4.20) 

so that since

and that thanks to the Vitali convergence theorem,

Similarly, the L 1 estimate for u η ln(u η + e)h(u η ) η∈(0,1) contained in (4.3) can readily be seen to entail that u η h(u η ) η∈(0,1) is uniformly integrable over (0, T ) × Ω for all T > 0, while the continuity of h and (4.23) guarantees that

Another application of the Vitali convergence theorem then gives

With the regularity requirements in Definition 1.7 hence being asserted in view of (4.20), (4.21), (4.24) and (4.26), the derivation of the identities in (1.23) and (1.24) can be achieved by taking η = η j ց 0 in the corresponding weak formulation of (4.1) and using the convergence properties in (4.21), (4.22), (4.25) and (4.26). To finally verify the claimed additional regularity features, we observe that (1.27) follows from v ∈ L 2 (H 2 ) and (4.24) upon observing that the inclusions u ∈ L ∞ ((0, T ); L log L(Ω)) and v ∈ L ∞ ((0, T ); H 1 (Ω)) for all T > 0 are immediate consequences of (4.4). The coupled weak differentiability property in (1.28) can be concluded from Lemma 4.2 when applied to θ = 1 2 and combined with the fact that u η j γ(v η j ) → u γ(v) a.e. in (0, ∞) × Ω as j → ∞, the latter resulting from (4.22), (4.23) and the continuity of γ.