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Abstract

New estimates and global existence results are provided for a class of systems of cross diffusion equa-
tions arising from the modeling of chemotaxis with local sensing, possibly featuring a growth term of
logistic-type as well. For sublinear non-increasing motility functions, convergence to the spatially homo-
geneous steady state is shown, a dedicated Liapunov functional being constructed for that purpose.

1 Introduction

We consider a class of systems of two parabolic equations in which the first equation is a cross diffusion
equation (that is, the diffusion rate in this equation depends on the solution of the second equation), while
the second equation is a standard heat equation coupled to the first one only through its source term. Such
systems are sometimes called triangular cross diffusion systems. We focus on the systems introduced in [4]
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to treat specific situations arising in the theory of chemotaxis. The quantity u := u(t, x) ≥ 0 is then the
density of cell and v := v(t, x) ≥ 0 is the concentration of chemoattractant. We refer to [4] for a discussion
of the modeling assumptions underlying such systems. Let us just say that with respect to general systems
appearing in the modeling of chemotaxis, where the dynamics of the density of cells is driven by the evolution
equation ∂tu = div(∇F +G), where F,G both depend on u and v, the specificity of the system considered
here is that it can be written in a form where G = 0; that is,

∂tu−∆(uγ(v)) = 0 , (t, x) ∈ (0,∞) × Ω , (1.1a)

ε∂tv −∆v = u− v , (t, x) ∈ (0,∞) × Ω , (1.1b)

∇(uγ(v)) · n = ∇v · n = 0 , (t, x) ∈ (0,∞) × ∂Ω , (1.1c)

(u, v)(0, ·) = (uin, vin) , x ∈ Ω , (1.1d)

where Ω is a smooth bounded domain of RN , with N ≥ 2, and ε > 0. Here, n is the outward unit normal
vector at a point of ∂Ω. The initial data uin and vin are given and nonnegative. Typical functions γ are
assumed to be bounded and strictly positive on [0,∞), and to decay at infinity (that is, when v → ∞)
typically like a power. In other words, they generalize the prototype (which makes sense from the point of
view of modeling) given by

γ(z) = (z + 1)−k, z > 0, (1.2)

for some k > 0, but are not always assumed to be monotone decreasing.

We also consider the counterpart of this system when the cell population has a logistic-type growth, that
is,

∂tu−∆(uγ(v)) = uh(u), (t, x) ∈ (0,∞) × Ω, (1.3a)

ε∂tv = ∆v − v + u, (t, x) ∈ (0,∞) × Ω, (1.3b)

∇(uγ(v)) · n = ∇v · n = 0, (t, x) ∈ (0,∞) × ∂Ω, (1.3c)

(u, v)(0, ·) = (uin, vin) , x ∈ Ω, (1.3d)

where h is a continuous function. It can indeed be interesting to take into account cells’ division, as well as
their death due to the lack of resources.

1.1 Notation

We will sometimes denote the spaces Lp(Ω), H1(Ω), and (H1(Ω))′ by Lp, H1, and (H1)′ , respectively (with
p ∈ [1,∞]). Furthermore, for w ∈ Lp, we denote the Lp norm of w by ‖w‖p.

Given w ∈ (H1)′(Ω), we define 〈w〉 by

〈w〉 := 1

|Ω| 〈w, 1〉(H1)′,H1

and note that

〈w〉 = 1

|Ω|

∫

Ω
w(x) dx when w ∈ (H1)′(Ω) ∩ L1(Ω) .
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For w ∈ (H1)′(Ω) such that 〈w〉 = 0, we introduce Kw ∈ H1(Ω) as the unique (variational) solution to

−∆(Kw) = w in Ω , ∇(Kw) · n = 0 on ∂Ω , 〈Kw〉 = 0 . (1.4)

The operator K plays a significant role in the analysis of our system, in particular in view of the specific
form of the cross-diffusion in (1.1a). Indeed, for a solution (u, v) regular enough, one expects that the
conservation of mass holds for u, that is, 〈u〉 = 〈uin〉, and that consequently (1.1a) can be rewritten as

∂tK
(

u− 〈uin〉
)

= 〈uγ(v)〉 − uγ(v) , (t, x) ∈ (0,∞)× Ω . (1.5)

For this reason, we choose the following norm on (H1)′(Ω):

w ∈ (H1)′(Ω) 7→ ‖w‖(H1)′ := ‖∇K(w − 〈w〉)‖2 . (1.6)

Still for w ∈ (H1)′(Ω), not necessarily with zero average, we also define A−1w ∈ H1(Ω) as the unique
(variational) solution to

−∆A−1w +A−1w = w in Ω , ∇A−1w · n = 0 on ∂Ω . (1.7)

Clearly, A−1 is the extension to (H1)′(Ω) of the inverse of the unbounded linear operator A on L2(Ω) with
domain

D(A) := {z ∈ H2(Ω) : ∇z · n = 0 on ∂Ω} ,
Az := −∆z + z for z ∈ D(A) .

(1.8)

We note that the following norm:

w ∈ (H1)′(Ω) 7→ ‖∇A−1w‖2 + ‖A−1w − 〈A−1w〉‖2 = ‖∇A−1w‖2 + ‖A−1w − 〈w〉‖2 , (1.9)

is equivalent to the (H1)′(Ω)-norm defined in (1.6).

1.2 Main results

We first propose a definition of very weak solutions associated with problem (1.1):

Definition 1.1. Let Ω be a smooth bounded domain of RN , with N ≥ 2, ε > 0, and γ ∈ C([0,∞); (0,∞)).
Suppose that uin ∈ L1(Ω) and vin ∈ L1(Ω) are nonnegative, and that, for all T > 0,

u ∈ L1((0, T ) × Ω) and v ∈ L1((0, T ) × Ω), (1.10)

are such that u ≥ 0 and v > 0 a.e. in (0,∞) × Ω, and that, for all T > 0,

uγ(v) ∈ L1((0, T )× Ω). (1.11)

Then (u, v) is called a global very weak solution of (1.1) if

−
∫ ∞

0

∫

Ω
u∂tϕdxdt−

∫

Ω
uinϕ(0) dx =

∫ ∞

0

∫

Ω
uγ(v)∆ϕdxdt,
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and

−
∫ ∞

0

∫

Ω
εv∂tϕdxdt−

∫

Ω
εvinϕ(0) dx =

∫ ∞

0

∫

Ω
v (∆ϕ− ϕ) dxdt+

∫ ∞

0

∫

Ω
uϕdxdt,

hold for any ϕ ∈ C∞
0 ([0,∞) × Ω) such that ∇ϕ · n = 0 on (0,∞) × ∂Ω.

We first show that an algebraic growth on 1/γ at infinity is sufficient to obtain the existence of a global
very weak solution to the system (1.1) without imposing any smoothness assumption on γ.

Theorem 1.2. Let N ≥ 2 and Ω ⊂ R
N be a bounded domain with smooth boundary, and assume that ε > 0,

that γ is continuous and bounded on [0,∞), and that for some K1 > 0 and k ≥ 0,

1

γ(z)
≤ K1 (z + 1)k, z > 0. (1.12)

Then for any choice of (uin, vin) such that
{

uin ∈ Lp0(Ω), p0 > N/2 , is nonnegative and

vin ∈ L∞(Ω) is nonnegative,
(1.13)

there exists a global very weak solution (u, v) of (1.1) in the sense of Definition 1.1. Furthermore, for all
q ∈ (1,∞), p ∈ (1, 2), and T > 0,

u ∈ L∞((0,∞);L1(Ω)) ∩ Lp((0, T )× Ω) ∩ L∞((0, T ); (H1(Ω))′) ,

v ∈ L∞((0,∞);L2(Ω)) ∩ Lq((0, T ) × Ω) ∩ L2((0, T );H1(Ω)) ,

u
√

γ(v) ∈ L2((0, T ) × Ω) .

Furthermore, if vin ∈W 1,q(Ω) for some q ∈ (1, 2), then v ∈ L∞((0, T );W 1,q(Ω)) for all T > 0.

Observe that, since N ≥ 2, one has N/2 ≥ 2N/(N + 2), so that Lp0(Ω) is continuously embedded in
(H1)′(Ω) and it follows from (1.13) that

uin ∈ (H1)′(Ω). (1.14)

When γ ∈ C3([0,∞))∩L∞(0,∞), existence of weak solutions to (1.1) is shown in [14] when ε is sufficiently
small, namely, ε‖γ‖L∞(0,∞) < 1. Theorem 1.2 relaxes this condition at the expense of the algebraic growth
condition (1.12). Let us recall that existence of weak solutions is also obtained in [22] when min{γ} > 0
and in [4, 26] when γ(z) = 1/(c+ zk) for c ≥ 0 and k > 0 sufficiently small, these conditions being removed
in Theorem 1.2 as well. The constraint on ε required in [14] and the algebraic growth (1.12) assumed in
Theorem 1.2 are likely to be of a technical nature, as global existence of weak solutions is proved in [3] in the
particular case γ(z) = e−z. As for classical solutions, well-posedness in that setting is shown in [7–10,12,18],
provided that γ′ ≤ 0 with γ(z) → 0 as z → ∞.

Remark 1.3. If vin is bounded below by a strictly positive constant, then it is easy to see that the same
will remain true for v(t, ·), with a constant that decays exponentially fast with time. Then the behavior of
γ at zero is irrelevant and one can relax the assumption that γ is continuous on [0,∞) and replace it with
continuity on (0,∞) only. This is true also for the next theorems of existence.
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Remark 1.4. Since u lies in Lp((0, T ) × Ω) for p ∈ (1, 2), v is actually a strong solution to (1.1b): each
term lies in Lp((0, T )×Ω) for all T > 0 and the equation holds almost everywhere on (0,∞)×Ω. One can
furthermore show that the formula (1.5) holds in a strong sense: thanks to the boundedness of γ, each term
lies in L2((0, T ) × Ω) for all T > 0 and the equation holds almost everywhere on (0,∞) × Ω.

We next turn to the large time behavior of solutions to (1.1). While a complete description of the
dynamics for an arbitrary motility function γ seems to be out of reach, it is shown in [1] that, when ε = 0
and γ(z) = z−k for some k ∈ (0, 1], solutions converge to spatially homogeneous steady states. A key
ingredient in their proof is the construction of a Lyapunov functional but this property breaks down when
ε > 0. Nevertheless, we are able to prove that the system (1.1) admits a Lyapunov functional, which is
different from that constructed in [1] but applies to the same call of motilities, and requires actually extra
conditions on the monotonicity of γ, as described now.

Theorem 1.5. Let Ω be a smooth bounded domain of R
N , with N ≥ 2. Assume that ε > 0, that γ ∈

C([0,∞)) ∩C3((0,∞)) is positive, and that

γ′ ≤ 0, (z 7→ z γ(z))′ ≥ 0 . (1.15)

Consider nonnegative initial conditions (uin, vin) ∈W 1,r(Ω;R2) for some r > N and denote the correspond-
ing global classical solution to (1.1) by (u, v) [9, 10]. Setting m := 〈uin〉, we define G0 ∈ C1([0,∞)) ∩
C4((0,∞)) by

G′
0(z) := 2zγ(z) −mγ(z)−mγ(m) , z ≥ 0 , G0(m) = 0 . (1.16)

Then G0 is nonnegative and convex on (0,∞), and

d

dt
L0(u(t), v(t)) +D0(u(t), v(t)) = 0 , t > 0 , (1.17)

where

L0(u, v) :=
1

2
‖∇K(u −m)‖22 + ε

∫

Ω
G0(v) dx ≥ 0, (1.18)

and

D0(u, v) :=

∫

Ω
G′′

0(v)|∇v|2 dx+

∫

Ω
(u− v)2γ(v) dx

+

∫

Ω
(v −m)(vγ(v) −mγ(m)) dx ≥ 0 .

(1.19)

Moreover,

sup
t≥0

{

L0(u(t), v(t)) + ‖v(t)‖2H1

}

+

∫ ∞

0

[

D0(u(s), v(s)) + ε‖∂tv(s)‖22
]

ds <∞ , (1.20)

and

lim
t→∞

{‖K(u(t) −m)‖2 + ‖v(t)−m‖2} = 0 .
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The construction of the Lyapunov functional L0 and its consequence with respect to the long-term
behavior are actually the main contribution of Theorem 1.5, the existence and uniqueness of a global classical
solution to (1.1) being granted by [9, Theorem 1.1] and [10, Remark 1.5]. As in [1] which is devoted to the
parabolic-elliptic version of (1.1) corresponding to ε = 0, Theorem 1.5 applies to γ(z) = z−k, k ∈ (0, 1],
and we have thus constructed a Lyapunov functional in that case. A side remark is that pattern formation
is excluded by Theorem 1.5, which is consistent with the outcome of [5], where the formation of stripes is
observed for a motility γ with a very fast decay at infinity.

The following observation on the existence of nonconstant steady states indicates that the choice k = 1
in fact even corresponds to a critical nonlinearity in the family of such algebraic motility rates:

Proposition 1.6. Let N ≥ 2, k ∈ (1, N+2
(N−2)+

) and γ(z) := z−k for z > 0. Then given any smooth bounded

domain Ω0 ⊂ R
N , one can find R0 > 0 such that whenever R > R0, defining Ω := RΩ0 = {Rx : x ∈ Ω0},

there are positive nonconstant functions u ∈ C2(Ω) and v ∈ C2(Ω) satisfying










0 = ∆
(

uγ(v)
)

in Ω,

0 = ∆v − v + u in Ω,

0 = ∇u · n = ∇v · n on ∂Ω.

Proposition 1.6 holds also in space dimension one N = 1. We refer to [24] for a more complete description
of steady states in that case.

In the final part of this manuscript, we aim at making sure that in the presence of additional zero-order
dissipative mechanisms in the flavor of logistic-type source and degradation terms, global solutions can be
constructed actually without any substantial restriction on the strength of degeneracies in cell diffusion at
large values of the signal. We work in a framework somewhat less relaxed than that considered above.
Typically, only one integration by parts is performed, so that the solutions considered here are sometimes
called “weak solutions” instead of “very weak solutions”.

Definition 1.7. Let Ω be a smooth bounded domain of RN , with N ≥ 2, and ε > 0, γ ∈ C((0,∞)) and
h ∈ C([0,∞)), and suppose that uin ∈ L1(Ω) and vin ∈ L1(Ω) are nonnegative. We then call a pair (u, v)
of functions such that, for all T > 0,

u ∈ L1((0, T ) × Ω) and v ∈ L1((0, T );W 1,1(Ω)), (1.21)

a global weak solution of (1.3) if u ≥ 0 and v > 0 a.e. in (0,∞) × Ω, if, for all T > 0,

uh(u) ∈ L1((0, T ) × Ω) and uγ(v) ∈ L1((0, T );W 1,1(Ω)), (1.22)

and if

−
∫ ∞

0

∫

Ω
u∂tϕdxdt−

∫

Ω
uinϕ(0) dx =

∫ ∞

0

∫

Ω
∇
{

uγ(v)
}

· ∇ϕdxdt+

∫ ∞

0

∫

Ω
uh(u) dxdt (1.23)

as well as

−
∫ ∞

0

∫

Ω
εv∂tϕdxdt−

∫

Ω
εvinϕ(0) dx = −

∫ ∞

0

∫

Ω
∇v · ∇ϕdxdt+

∫ ∞

0

∫

Ω
(−v + u)ϕdxdt (1.24)

hold for any ϕ ∈ C∞
0 ([0,∞) × Ω).
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Our analysis in this direction will be based on a strategy quite independent from that pursued in the
previous parts, focusing on the detection of entropy-like features enjoyed by functionals of the form

∫

Ω

[

u ln(u+ e) + ε|∇v|2
]

dx.

Accordingly, in its most straightforward version detailed in Lemma 4.1, this approach will presuppose
regularity properties of uin and especially of vin which go somewhat beyond those from (1.13). In view of
our principal intention described above, we will refrain from scrutinizing minimal requirements on initial
regularity, and rather formulate our main result in this respect in the following form conveniently accessible
to a fairly compact analysis:

Theorem 1.8. Let N ≥ 2 and Ω ⊂ R
N be a bounded domain with smooth boundary, and suppose that ε > 0,

that

γ ∈ C3((0,∞)) is such that γ > 0 in [0,∞) and sup
s>s0

{

γ(s) +
sγ′2(s)

γ(s)

}

<∞ for all s0 > 0, (1.25)

and that h ∈ C([0,∞)) satisfies

lim
s→∞

h(s) ln s

s
= −∞ . (1.26)

Then for any choice of uin ∈ C(Ω) and vin ∈W 1,∞(Ω) such that uin ≥ 0 and vin > 0 in Ω, the problem (1.3)
possesses at least one global weak solution in the sense of Definition 1.7. This solution has the additional
properties that, for all T > 0,

{

u ∈ L∞((0, T );L log L(Ω)) ∩ L2((0, T );L2(Ω)) and

v ∈ L∞((0, T );H1(Ω)) ∩ L2((0, T );H2(Ω))
(1.27)

as well as
u
√

γ(v) ∈ L4/3((0, T );W 1,4/3(Ω)). (1.28)

The existence of classical bounded solutions to (1.3) is proven for growth functions h(z) = h0 (1 − zl)
when l = 1 and h0 is large enough in [16, 23], and when h0 > 0 and l > max(2, (N + 2)/2) in [17] (under
additional assumptions on γ). The case where l = 1 and h0 > 0 is treated in two-dimensional domains
in [11]. Here, we obtain weak solutions for a growth function of this form with l ≥ 1 and h0 > 0.

The structure of the paper is the following: Section 2 is devoted to the proof of Theorem 1.2. Then
Theorem 1.5 and Proposition 1.6 are proven in Section 3. Finally, the results on system (1.3) are discussed
in Section 4.

2 Existence in the absence of logistic-type growth

Let ψ ∈ C∞
0 (R) such that ψ ≥ 0, suppψ ⊂ (−1, 1), ‖ψ‖L1(R) = 1, and let, for η > 0,

ψη(z) :=
1

η
ψ

(

z

η

)

, z ∈ [0,∞) .
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For η ∈ (0, 1), we define
γη(z) := η + (ψη ∗ γ) (z + η) , z ∈ [0,∞) ,

where the symbol ∗ indicates the convolution product on R (γ being extended on R by symmetry). We first
obtain some properties of γη.

Lemma 2.1. For all η ∈ (0, 1), the function γη satisfies

0 < η ≤ γη(z) ≤ K0 + 1 , z ∈ [0,∞) , (2.1)

1

γη(z)
≤ 3kK1(z + 1)k , z ∈ [0,∞) , (2.2)

where K0 = ||γ||L∞(0,∞) and K1 and k are defined in (1.12).

Proof. We first see that thanks to the nonnegativity of γ and ψ, we have γη ≥ η and

‖γη‖L∞(0,∞) ≤ ‖γ‖L∞(0,∞)‖ψη‖L1(R) + η = K0 + η ≤ K0 + 1 .

Then, for z > 0, we compute, using (1.12),

γη(z) = η +

∫ η

−η
ψη(z̃)γ(z + η − z̃) dz̃ ≥ η +

∫ η

−η

ψη(z̃)

K1(1 + z + η − z̃)k
dz̃

≥ η +

∫ η

−η

ψη(z̃)

K1(1 + z + 2η)k
dz̃ ≥ η +

1

K1(1 + 2η)k(1 + z)k

≥ 1

3kK1(1 + z)k
,

and the proof is complete.

Next, let (uinη , v
in
η )η be nonnegative functions in C(Ω̄)×W 1,∞(Ω) such that

〈uinη 〉 = 〈uin〉 =: m, 〈vinη 〉 = 〈vin〉 , (2.3)

and

lim
η→0

{

‖uinη − uin‖(H1)′ + ‖uinη − uin‖p0 + ‖vinη − vin‖2
}

= 0 ,

sup
η

‖uinη ‖p0 ≤ 1 + ‖uin‖p0 , sup
η

‖vinη ‖∞ ≤ 1 + ‖vin‖∞ .
(2.4)

Moreover, if vin ∈W 1,q(Ω) for some q ∈ (1, 2), then (vinη )η can be constructed so as to satisfy

sup
η

‖vinη ‖W 1,q ≤ 1 + ‖vin‖W 1,q . (2.5)

Thanks to the regularity of γη, u
in
η , and vinη , we are in a position to apply [22, Theorem 1.2] to obtain the

existence of a nonnegative global weak solution (uη, vη) to the initial value problem

∂tuη −∆(uηγη(vη)) = 0 , (t, x) ∈ (0,∞) × Ω , (2.6a)
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ε∂tvη −∆vη + vη = uη , (t, x) ∈ (0,∞) × Ω , (2.6b)

∇(uηγη(vη)) · n = ∇vη · n = 0 , (t, x) ∈ (0,∞) × ∂Ω , (2.6c)

(uη , vη)(0, ·) = (uinη , v
in
η ) , x ∈ Ω , (2.6d)

satisfying

uη ∈ L2((0, T ) × Ω) ∩ L(N+2)/(N+1)((0, T );W 1,(N+2)/(N+1)(Ω)) , (2.7)

vη ∈ L∞((0, T );H1(Ω)) ∩ L2((0, T );H2(Ω)) , (2.8)

for any T > 0.

As a first consequence of (2.3) and (2.6), we identify the time evolution of the space averages of uη and
vη.

Lemma 2.2. For t ≥ 0,

〈uη(t)〉 = m, 〈vη(t)〉 = 〈vin〉e−t/ε +m(1− e−t/ε) ≤ max{〈vin〉,m} . (2.9)

Proof. The first identity in (2.9) readily follows from (2.3), (2.6a), and (2.6c), after integration over Ω. We
next integrate (2.6b) over Ω and use (2.3) and (2.6c) to obtain

ε
d

dt
‖vη‖1 + ‖vη‖1 = ‖uη‖1 = m|Ω| , t ≥ 0 . (2.10)

Integrating (2.10) completes the proof of Lemma 2.2.

We define then wη = wη(t, x) as the unique nonnegative solution of the elliptic equation (in the x
variable, for a given t)

−∆wη + wη = uη , (t, x) ∈ (0,∞)× Ω , (2.11a)

∇wη · n = 0 , (t, x) ∈ (0,∞) × ∂Ω . (2.11b)

Thanks to this auxiliary problem, we have the following lemma.

Lemma 2.3. For t ∈ [0, T ], there exists some constant C(T ) ≥ 0 such that

‖uη(t)‖2(H1)′ + ||vη(t)||22 +
∫ t

0
||vη(s)||2H1 ds+

∫ t

0

∫

Ω
uη(s, ·)2 γη(vη(s, ·)) dxds ≤ C(T ). (2.12)

Proof. We observe that, by (2.1), (2.6a), and (2.11),

1

2

d

dt
||wη ||2H1 =

∫

Ω
wη ∆(uη γη(vη)) dx =

∫

Ω
uη γη(vη) (wη − uη) dx

≤ (K0 + 1) ||wη ||2H1 −
∫

Ω
u2η γη(vη) dx . (2.13)
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Also, it follows from (2.6b) that

ε

2

d

dt
||vη ||22 + ||vη||2H1 =

∫

Ω
uη vη dx =

∫

Ω

(

vηwη +∇vη · ∇wη

)

dx

≤ 1

2
||vη||2H1 +

1

2
||wη ||2H1 , (2.14)

so that
d

dt

[

1

2
||wη ||2H1 + ε ||vη ||22

]

+ ||vη ||2H1 +

∫

Ω
u2η γη(vη) dx ≤ (2 +K0) ||wη ||2H1 . (2.15)

After integration with respect to time, for all T > 0, there exists some constant C(T ) ≥ 0 (we emphasize the
dependence with respect to T , but it also depends on the parameters of the problem but not on η ∈ (0, 1))
such that

||wη(t)||2H1 + ||vη(t)||22 +
∫ t

0
||vη(s)||2H1 ds+

∫ t

0

∫

Ω
uη(s, ·)2 γη(vη(s, ·)) dxds ≤ C(T ) , t ∈ [0, T ] .

Recalling the definition of A−1 in (1.7), we note that wη = A−1uη, and conclude the proof of the lemma by
equivalence of the norms (1.6) and (1.9).

Building upon (2.12), we derive additional estimates on (vη)η with the help of a comparison argument
introduced in [6] (and subsequently developed further in [7–10,14,18,19]) and parabolic maximal regularity.

Lemma 2.4. For all q ∈ (1,∞) and T > 0, there exists some constant C(T, q) ≥ 0 such that

∫ T

0
||vη(t)||qq dt ≤ C(T, q). (2.16)

Proof. We start with the comparison argument introduced in [6] and deduce from (2.1), (2.6), (2.11), and
the definition (1.7) of A that, for t ≥ 0,

A
(

∂twη(t) + uη(t)γη(vη(t))
)

= uη(t)γη(vη(t)) ≤ (1 +K0)uη(t) = A
[

(1 +K0)wη(t)
]

in Ω ,

with ∇
(

∂twη(t)+uη(t)γη(vη(t))− (1+K0)wη(t)
)

·n = 0 on ∂Ω. We then infer from the (elliptic) comparison
principle that

∂twη + uηγη(vη) ≤ (1 +K0)wη in [0,∞) × Ω .

Hence, since uη and γη are nonnegative,

0 ≤ wη(t, x) ≤ e(1+K0)twη(0, x) , (t, x) ∈ [0,∞) × Ω .

In addition, recalling that p0 > N/2, the continuous embedding of W 2,p0 in L∞(Ω), elliptic regularity, and
(2.4) imply that

‖wη(0)‖∞ ≤ C‖A−1(uinη )‖W 2,p0 ≤ C‖uinη ‖p0 ≤ C .
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Combining the above two estimates leads us to

sup
t∈[0,T ]

‖wη(t)‖∞ ≤ C(T ) (2.17)

for each T > 0.

We next define zη := A−1vη and deduce from (2.6) that zη solves

ε∂tzη −∆zη + zη = wη , (t, x) ∈ (0,∞)× Ω ,

∇zη · n = 0 , (t, x) ∈ (0,∞)× ∂Ω ,

zη(0, ·) = zinη := A−1vinη , x ∈ Ω ,

(2.18)

Now, let q ∈ (1,∞). We recall that the operator Aε defined by

D(Aε) :=
{

φ ∈W 2,q(Ω) : ∇φ · n = 0 on ∂Ω
}

,

Aεφ :=
1

ε

(

−∆φ+ φ
)

, φ ∈ D(Aε) ,
(2.19)

generates an analytic semigroup
(

e−tAε
)

t≥0
of contractions on Lq(Ω) [20, Theorem 7.3.5] (note that A1 = A,

see (1.8)). With this notation, a representation formula for zη can be derived from (2.18) which reads

εzη(t) = εe−tAεzinη +

∫ t

0
e−(t−s)Aεwη(s) ds , t ≥ 0 . (2.20)

On the one hand, we infer from (2.17) and [13, Théorème 1] that

∥

∥

∥

∥

t 7→
∫ t

0
e−(t−s)Aεwη(s) ds

∥

∥

∥

∥

Lq((0,T );W 2,q(Ω))

≤ C(q)‖wη‖Lq((0,T )×Ω) ≤ C(T, q) .

On the other hand, classical properties of semigroups, elliptic regularity, and (2.4) entail that

∥

∥e−tAεzinη
∥

∥

Lq((0,T );W 2,q(Ω))
≤ C(T, q)‖zinη ‖W 2,q ≤ C(T, q)‖vinη ‖q ≤ C(T, q) .

Consequently,

ε ‖zη‖Lq((0,T );W 2,q(Ω)) ≤ C(T, q) ,

an estimate which completes the proof since vη = Azη.

We next turn to (uη)η and draw the following consequence of Lemma 2.3 and Lemma 2.4.

Lemma 2.5. For all p ∈ (1, 2) and T > 0, there exists some constant C(T, p) ≥ 0 such that

∫ T

0
‖uη(t)‖pp dt ≤ C(T, p) . (2.21)
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Proof. By (2.2) and Hölder’s inequality,

‖uη‖pp =
∫

Ω

(

uη

√

γη(vη)

)p

γη(vη)
−p/2 dx

≤
(
∫

Ω
u2η γη(vη) dx

)p/2(∫

Ω
γη(vη)

−p/(2−p) dx

)(2−p)/2

≤ 3kK1

∥

∥

∥

∥

uη

√

γη(vη)

∥

∥

∥

∥

p

2

[
∫

Ω
(1 + vη)

pk/(2−p) dx

](2−p)/2

≤ C(p)

∥

∥

∥

∥

uη

√

γη(vη)

∥

∥

∥

∥

p

2

(

1 + ‖vη‖pk/2pk/(2−p)

)

.

Integrating the above inequality with respect to time over (0, T ) and using Hölder’s inequality gives

∫ T

0
‖uη‖pp dt ≤ C(p)

∫ T

0

∥

∥

∥

∥

uη

√

γη(vη)

∥

∥

∥

∥

p

2

(

1 + ‖vη‖pk/2pk/(2−p)

)

dt

≤ C(p)

(

∫ T

0

∥

∥

∥

∥

uη

√

γη(vη)

∥

∥

∥

∥

2

2

dt

)p/2
(
∫ T

0

(

1 + ‖vη‖pk/2pk/(2−p)

)
2

(2−p)
dt

)(2−p)/2

≤ C(p)

(

∫ T

0

∥

∥

∥

∥

uη

√

γη(vη)

∥

∥

∥

∥

2

2

dt

)p/2
(
∫ T

0

(

1 + ‖vη‖pk/(2−p)
pk/(2−p)

)

dt

)(2−p)/2

.

Lemma 2.5 then readily follows from the above estimate due to (2.12) and Lemma 2.4 (with q = pk/(2 −
p)).

Exploiting the outcome of Lemma 2.5 provides additional estimates on (vη)η.

Lemma 2.6. Let q ∈ (1, 2) and T > 0 and assume that vin ∈ W 1,q(Ω). Then there exists some constant
C(T, q) ≥ 0 such that

sup
t∈[0,T ]

‖vη(t)‖W 1,q ≤ C(T, q) .

Proof. Recalling the notation introduced in (2.19), it follows from (2.6) that

εvη(t) = εe−tAεvinη +

∫ t

0
e−(t−s)Aεuη(s) ds , t ≥ 0 .

Using classical properties of the semigroup (e−tAε))t≥0, see [2, V.Theorem 2.1.3] for instance, along with
(2.5), we obtain

ε‖vη(t)‖W 1,q ≤ C(q) + C(q)

∫ t

0
(t− s)−1/2‖uη(s)‖q ds , t ≥ 0 . (2.22)

We next fix p ∈ (q, 2) and set

ω := 1 +
q(p − 1)

p(q − 1)
∈
(

2,
2q(p − 1)

p(q − 1)

)

.
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We infer from (2.3) and Hölder’s inequality that

‖uη‖q ≤ ‖uη‖
p(q−1)
q(p−1)
p ‖uη‖

p−q

q(p−1)

1 ≤ C(p, q)‖uη‖
1

ω−1
p .

Together with Hölder’s inequality, the above inequality ensures that, for t > 0,

∫ t

0
(t− s)−1/2‖uη(s)‖q ds ≤

(
∫ t

0
(t− s)

− ω
2(ω−1) ds

)(ω−1)/ω (∫ t

0
‖uη(s)‖ωq ds

)1/ω

≤ C(p, q)t
ω−2

2(ω−1)

(
∫ t

0
‖uη(s)‖

ω
ω−1
p ds

)1/ω

.

Since both ω/(ω − 1) and p lie in (1, 2), we deduce from Lemma 2.5 that, for T > 0 and t ∈ [0, T ],
∫ t

0
(t− s)−1/2‖uη(s)‖q ds ≤ C(T, p, q) .

Inserting the above estimate in (2.22) completes the proof.

2.1 Compactness and convergence

We now collect the estimates that are uniform with respect to η ∈ (0, 1), which will prove useful when
passing to the limit η → 0.

Proposition 2.7. Let T > 0 , q ∈ (1,∞), and p ∈ (2N/(N + 2), 2). There are C0(T ) > 0, C1(T, q) > 0,
and C2(T, p) > 0 such that

〈uη(t)〉 = m, 0 ≤ 〈vη(t)〉 ≤ max{〈vin〉,m} , t ∈ [0, T ] , (2.23a)

‖∇K(uη(t)−m)‖22 ≤ 2C0(T ) , t ∈ [0, T ] , (2.23b)

‖vη(t)‖22 ≤ C0(T ) , t ∈ [0, T ] , (2.23c)
∫ T

0
‖vη(s)‖2H1 ds ≤ C0(T ) , (2.23d)

∫ T

0

∥

∥

∥

∥

(uη(s)− vη(s))
√

γη(vη(s))

∥

∥

∥

∥

2

2

ds ≤ C0(T ) , (2.23e)

∫ T

0

∥

∥

∥

∥

uη(s)
√

γη(vη(s))

∥

∥

∥

∥

2

2

ds ≤ C0(T ) , (2.23f)

∫ T

0
‖∂tK(uη(s)−m)‖22 ds ≤ C0(T ) , (2.23g)

∫ T

0
‖vη(s)‖qq ds ≤ C1(T, q) , (2.23h)

∫ T

0
‖uη(s)‖pp ds ≤ C2(T, p) , (2.23i)

∫ T

0
‖∂tvη(s)‖p(H1)′

ds ≤ C2(T, p) . (2.23j)
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Proof. The estimate (2.23a) is given by Lemma 2.2, the estimates (2.23c), (2.23d) and (2.23f) are given by
Lemma 2.3 and the estimates (2.23h) and (2.23i) are given by Lemma 2.4 and Lemma 2.5, respectively.
Estimate (2.23b) is a consequence of Lemma 2.3, the mass estimate (2.23a) and the definition of the (H1)′

norm in (1.6). Using again (1.6) and (2.3), one can deduce from (2.6a) and (2.6c) that

∂tK(uη −m) + uηγη(vη) = 〈uηγη(vη)〉 , (t, x) ∈ (0,∞) × Ω , (2.24)

so that estimate (2.23g) is a consequence of (2.23f) and the (uniform) upper bound (2.1) on γη. It next
follows from (2.6b), Hölder’s inequality, and the continuous embedding of H1(Ω) in Lp/(p−1)(Ω) that, for
ψ ∈ H1(Ω),

ε
∣

∣

∣
〈∂tvη, ψ〉(H1)′,H1

∣

∣

∣
=

∣

∣

∣

∣

∫

Ω
∇vη · ∇ψ dx+

∫

Ω
vηψ dx−

∫

Ω
uηψ dx

∣

∣

∣

∣

≤ ‖vη‖H1‖ψ‖H1 + ‖uη‖p‖ψ‖p/(p−1)

≤ C(p) (‖vη‖H1 + ‖uη‖p) ‖ψ‖H1 .

Estimate (2.23j) is then a consequence of (2.23d), (2.23i), and the above inequality by a duality argument.
Finally, estimate (2.23e) is obtained thanks to (2.23c), (2.23f), and the upper bound (2.1) on γη.

We are now ready to pass to the limit η → 0 and therefore prove the existence of a global weak solution
to the system (1.1).

End of the proof of Theorem 1.2. Thanks to the uniform estimates collected in Proposition 2.7, we can
extract a sequence (uηn , vηn)n≥1 such that, for all T > 0, q ∈ (1,∞), and p ∈ (2N/(N + 2), 2),

uηn ⇀ u in Lp((0, T ) × Ω), (2.25a)

K(uηn −m)
∗
⇀K(u − 〈u〉) in L∞((0, T );H1(Ω)), (2.25b)

∂tK(uηn −m)⇀ ∂tK(u− 〈u〉) in L2((0, T )× Ω)), (2.25c)

vηn ⇀ v in L2((0, T );H1(Ω)) ∩ Lq((0, T ) ×Ω), (2.25d)

vηn
∗
⇀v in L∞((0, T );L2(Ω)), (2.25e)

∂tvηn ⇀ ∂tv in Lp((0, T ); (H1)′(Ω). (2.25f)

Thanks to (2.23b), (2.23c), (2.23d), (2.23g), and (2.23j), we can furthermore apply Aubin-Lions-Simon
Theorem (see [21, Corollary 4]), and extract further subsequences (K(uηn − m))n≥1 and (vηn)n≥1 that
converges in a strong sense,

K(uηn −m) → K(u− 〈u〉) in C([0, T ];L2(Ω)), (2.26)

vηn → v in C([0, T ]; (H1)′(Ω)) ∩ L2((0, T ) × Ω) and a.e. in (0, T ) × Ω . (2.27)

Next, since ∂tuηn = ∆(uηnγηn(vηn)) by (2.6a), we infer from Lemma 2.1 and (2.23f) that
(

∂tuηn
)

n≥1
is

bounded in L2((0, T ); (H2)′(Ω)), while (2.23b) guarantees that (uηn)n≥1 is bounded in L∞((0, T ); (H1)′(Ω)).
Another application of [21, Corollary 4] implies that, after possibly extracting another subsequence,

uηn → u in C([0, T ]; (H2)′(Ω)). (2.28)
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Since x 7→ 1 belongs to H2(Ω), an immediate consequence of (2.23a) and (2.28) is

〈u(t), 1〉(H2)′,H2 = lim
n→∞

〈uηn(t), 1〉(H2)′,H2 = |Ω| lim
n→∞

〈uηn(t)〉 = m|Ω| , t ∈ [0, T ] . (2.29)

Introducing the space C([0, T ];w− (H1)′(Ω)) of functions from [0, T ] to (H1)′(Ω) which are continuous with
respect to time for the weak topology of (H1)′(Ω), we recall that

L∞((0, T ); (H1)′(Ω)) ∩ C([0, T ]; (H2)′(Ω)) ⊂ C([0, T ];w − (H1)′(Ω)) ,

and deduce from (2.25b) and (2.29) that

〈u(t)〉 = m, t ∈ [0, T ] . (2.30)

Furthermore, u ∈ L1((0, T ) × Ω) by (2.25a). Consequently, u(t) belongs to L1(Ω) for a.e. t ∈ [0, T ] which
ensures, together with (2.30) and the nonnegativity of u, that

u ∈ L∞((0, T );L1(Ω)) . (2.31)

Recalling (2.25a)–(2.25f) and (2.31), we have thus shown that (u, v) satisfies the regularity properties re-
quired in Theorem 1.2.

We next identify the weak limits of
(

uηn
√

γηn(vηn)
)

n≥1
and

(

uηnγηn(vηn)
)

n≥1
. To this end, we note that

the uniform convergence of (γηn)n≥1 to γ on compact subsets of [0,∞), the bound from Lemma 2.1, the a.e.
convergence (2.27) of (vηn)n≥1, and Lebesgue’s convergence theorem imply that, for all q ∈ [1,∞),

γηn(vηn) → γ(v) in Lq((0, T ) × Ω) and a.e. in (0, T ) × Ω . (2.32)

It then follows from (2.25a) and (2.32) that

uηn

√

γηn(vηn)⇀ u
√

γ(v) in L1((0, T ) × Ω) ,

uηnγηn(vηn)⇀ uγ(v) in L1((0, T ) × Ω) .

Since these two sequences are bounded in L2((0, T ) ×Ω) by Lemma 2.1 and (2.23f), we conclude that

uηn

√

γηn(vηn)⇀ u
√

γ(v) in L2((0, T ) × Ω) ,

uηnγηn(vηn)⇀ uγ(v) in L2((0, T ) × Ω) .
(2.33)

Writing now a very weak formulation of system (2.6) like in Definition 1.1, we can pass to the limit when
η → 0 and get that (u, v) indeed are very weak solutions of system (1.1) in the sense of Definition 1.1.

Finally, assuming additionally that vin ∈ W 1,q(Ω) for some q ∈ (1, 2), so that the family (vinη ) satisfies
(2.5), we infer from (2.27) and Lemma 2.6 that v ∈ L∞((0, T );W 1,q(Ω)), which completes the proof.
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3 Long-term behavior and a Lyapunov functional

This section is devoted to the existence of a Lyapunov functional and the proof of Theorem 1.5. Let Ω be
a smooth bounded domain of RN , with N ≥ 2 and ε > 0. Assume that γ ∈ C([0,∞)) ∩C3((0,∞)) satisfies
(1.15) and consider nonnegative initial conditions (uin, vin) ∈ W 1,r(Ω;R2) for some r > N . It then follows
from [9, 10] that there is a unique global classical solution (u, v) to (1.1). Setting m := 〈uin〉, it readily
follows from (1.1) and the nonnegativity of (u, v) that

‖u(t)‖1 = |Ω|〈u(t)〉 = m|Ω| , t ≥ 0 , (3.1a)

and

ε
d

dt
‖v(t)‖1 + ‖v‖1 = m|Ω| , t ≥ 0 , (3.1b)

from which we deduce that

‖v(t)‖1 = ‖uin‖1
(

1− e−t/ε
)

+ ‖vin‖1e−t/ε ≤ max
{

‖uin‖1, ‖vin‖1
}

, t ≥ 0 . (3.1c)

3.1 A Lyapunov functional

Lemma 3.1. The function G0 defined in (1.16) is nonnegative and convex on (0,∞), and

d

dt
L0(u(t), v(t)) +D0(u(t), v(t)) = 0 , t > 0 , (3.2)

recalling that L0 and D0 are both nonnegative and defined in (1.18) and (1.19), respectively. In particular,

L0(u(t), v(t)) +

∫ t

0
D0(u(s), v(s)) ds ≤ L0(u

in, vin) , t ≥ 0 . (3.3)

Proof of Lemma 3.1. Since G′′
0(z) = 2zγ′(z) + 2γ(z) − mγ′(z) ≥ 0 for z > 0 by (1.15) and (1.16), the

function G0 is convex on (0,∞). We then deduce from the convexity of G0 and (1.16) that G0(z) ≥
G0(m) +G′

0(m)(z −m) = 0; that is, G0 is nonnegative on (0,∞).

We next infer from (1.1a), (1.4), and (3.1b) that

1

2

d

dt
‖∇K(u−m)‖22 = −

∫

Ω
K(u−m)∂t∆K(u−m) dx =

∫

Ω
K(u−m)∂tu dx

=

∫

Ω
K(u −m)∆(uγ(v)) dx =

∫

Ω
uγ(v)∆K(u −m) dx

=

∫

Ω
(mu− u2)γ(v) dx

=

∫

Ω
(mu+ v2 − 2uv)γ(v) dx−

∫

Ω
(u− v)2γ(v) dx . (3.4)

By (1.1b) and (1.1c),
∫

Ω
(m− 2v)uγ(v) dx =

∫

Ω
(m− 2v)(ε∂tv −∆v + v)γ(v) dx
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= −ε
∫

Ω
(mγ(m) +G′

0(v))∂tv dx−
∫

Ω
G′′

0(v)|∇v|2 dx

+

∫

Ω
(mv − 2v2)γ(v) dx .

Combining the above identity with (3.4) gives

1

2

d

dt
‖∇K(u−m)‖22 = −ε d

dt

∫

Ω
(mγ(m)v +G0(v)) dx−

∫

Ω
(u− v)2γ(v) dx

−
∫

Ω
G′′

0(v)|∇v|2 dx+

∫

Ω
(mv − v2)γ(v) dx ,

while we deduce from (3.1b) that

−εmγ(m)
d

dt
‖v‖1 −mγ(m)‖v‖1 = −m2γ(m)|Ω| .

Adding the previous two formulas leads us to

1

2

d

dt
‖∇K(u −m)‖22 + ε

d

dt

∫

Ω
G0(v) dx

= −
∫

Ω
(u− v)2γ(v) dx−

∫

Ω
G′′

0(v)|∇v|2 dx−
∫

Ω
(v −m)(vγ(v) −mγ(m)) dx ,

and we have proved (3.2). Now, the nonnegativity of L0 and D0 is a consequence of the already established
nonnegativity and convexity of G0 and the monotonicity of z 7→ zγ(z) which is due to (1.15). Finally, the
bound (3.3) readily follows from (3.2) after integration with respect to time.

We next supplement the bound (3.3) with additional estimates on v.

Lemma 3.2.

sup
t≥0

{

‖v(t)‖2H1

}

+ ε

∫ ∞

0
‖∂tv(s)‖22 ds <∞ , (3.5)

Proof. We multiply (1.1b) by ∂tv and integrate over Ω to obtain

ε‖∂tv‖22 +
1

2

d

dt
‖v‖2H1 =

∫

Ω
u∂tv dx =

d

dt

∫

Ω
uv dx−

∫

Ω
v∂tu dx .

Then, using again (1.1),

ε‖∂tv‖22 +
d

dt

(‖v‖2H1

2
− ‖uv‖1

)

= −
∫

Ω
uγ(v)∆v dx

= −
∫

Ω
(u− v)γ(v)∆v dx−

∫

Ω
vγ(v)∆v dx . (3.6)
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On the one hand, by (1.1c), (1.15), and the nonnegativity of m,

−
∫

Ω
vγ(v)∆v dx =

∫

Ω

(

vγ′(v) + γ(v)
)

|∇v|2 dx =
1

2

∫

Ω

[

G′′
0(v) +mγ′(v)

]

|∇v|2 dx

≤ 1

2

∫

Ω
G′′

0(v)|∇v|2 dx . (3.7)

On the other hand, we infer from (1.1b), (1.15), and Young’s inequality that

−
∫

Ω
(u− v)γ(v)∆v dx =

∫

Ω
(u− v)γ(v) (u− v − ε∂tv) dx

≤
∫

Ω
(u− v)2γ(v) dx+

ε

2
‖∂tv‖22 +

ε

2
γ(0)

∫

Ω
(u− v)2γ(v) dx

≤ 2 + εγ(0)

2

∫

Ω
(u− v)2γ(v) dx+

ε

2
‖∂tv‖22 . (3.8)

Recalling the definition (1.19) of D0 which is the sum of three nonnegative terms, it follows from (3.6), (3.7),
and (3.8) that

ε

2
‖∂tv‖22 +

d

dt

(‖v‖2H1

2
− ‖uv‖1

)

≤ 2 + εγ(0)

2
D0(u, v) .

Now, let t > 0. Integrating the above differential inequality with respect to time over (0, t) and using (3.3)
give

ε

∫ t

0
‖∂tv(s)‖22 ds+ ‖v(t)‖2H1 ≤ ‖vin‖2H1 + 2‖u(t)v(t)‖1 + (2 + εγ(0))

∫ t

0
D0(u(s), v(s)) ds

≤ ‖vin‖2H1 + (2 + εγ(0))L0(u
in, vin) + 2‖u(t)v(t)‖1 . (3.9)

Owing to (1.4), (1.18), (3.1c), (3.3), and Young’s inequality,

‖u(t)v(t)‖1 =

∫

Ω
(u(t)−m)v(t) dx+m‖v(t)‖1 = −

∫

Ω
v(t)∆K(u(t) −m) dx+m‖v(t)‖1

≤
∫

Ω
∇v(t) · ∇K(u(t)−m) dx+mmax{‖vin‖1, ‖uin‖1}

≤ 1

4
‖∇v(t)‖22 + ‖∇K(u(t) −m)‖22 +mmax{‖uin‖1, ‖vin‖1}

≤ 1

4
‖v(t)‖2H1 + 2L0(u(t), v(t)) +mmax{‖uin‖1, ‖vin‖1}

≤ 1

4
‖v(t)‖2H1 + 2L0(u

in, vin) +mmax{‖uin‖1, ‖vin‖1} . (3.10)

Combining (3.9) and (3.10) leads us to

ε

∫ t

0
‖∂tv(s)‖22 ds+

‖v(t)‖2H1

2
≤ ‖vin‖2H1 + (6 + εγ(0))L0(u

in, vin) + 2mmax{‖uin‖1, ‖vin‖1} ,

and completes the proof.
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3.2 Convergence to spatially homogeneous steady states

Collecting the outcome of Lemma 3.1 and Lemma 3.2, we have established the identity (1.17) and the
estimates (1.20). We are left with the long-term convergence and begin with some properties of G0 which
we gather in the next lemma.

Lemma 3.3. There is K1 > 0 depending only on γ such that γ satisfies (1.12) with k = 1. Moreover,

|zγ(z)−mγ(m)| ≤ γ(0) |z −m| , z ∈ [0,∞) . (3.11)

In addition, recalling that G0 is defined in (1.16) and is convex on (0,∞), the function
√

G′′
0 ∈ L1(0, z) for

any z > 0 and its indefinite integral

g0(z) :=

∫ z

0

√

G′′
0(z∗) dz∗ , z ∈ [0,∞) ,

is well-defined and belongs to C0, 1
2 ([0, z]) for all z > 0.

Proof. Since γ satisfies (1.15), the function γ satisfies zγ(z) ≥ γ(1) > 0 for z ≥ 1, while the positivity and
monotonicity of γ on [0, 1] implies that min[0,1] γ = γ(1) > 0. Combining these two facts ensures that γ
satisfies (1.12) with k = 1 and K1 = 1/γ(1). It next follows from the monotonicity of γ that

0 ≤ d

dz
(zγ(z)) = zγ′(z) + γ(z) ≤ γ(0) , z ≥ 0 . (3.12)

Integrating the above differential inequality gives (3.11).
Next, the convexity of G0 provided by Lemma 3.1 guarantees that

√

G′′
0 is well-defined. Using Cauchy-

Schwarz inequality, we obtain that, for z2 > z1 > 0,

∫ z2

z1

√

G′′
0(z) dz ≤

√
z2 − z1

(
∫ z2

z1

G′′
0(z) dz

)1/2

=
√
z2 − z1

√

G′
0(z2)−G′

0(z1)

≤
√
z2 − z1

√

2γ(0)z2 +mγ(0) .

The stated properties of g0 then readily follow from the above inequality, which concludes Lemma 3.3.

Proof of Theorem 1.5. As already mentioned, the identity (1.17) and the estimates (1.20) are shown in
Lemma 3.1 and Lemma 3.2, respectively, and we now turn to the large time behavior. Since the monotonicity
properties of γ guarantee that all the terms in L0(u, v) and D0(u, v) are nonnegative, we infer from (1.20)
and the Poincaré-Wirtinger inequality that

‖K(u(t) −m)‖H1 + ‖v(t)‖H1 ≤ C , t ≥ 0 , (3.13)

∫ ∞

0
‖∂tv(s)‖22 ds+

∫ ∞

0

∫

Ω
γ(v)(u − v)2 dxds <∞ , (3.14)
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∫ ∞

0

∫

Ω
G′′

0(v)|∇v|2 dxds+

∫ ∞

0

∫

Ω
(v −m)

(

vγ(v) −mγ(m)
)

dxds <∞ . (3.15)

We readily infer from (3.13) and the compactness of the embedding of H1(Ω) in L2(Ω) that

{K(u(t) −m) : t ≥ 0} and {v(t) : t ≥ 0} are compact in L2(Ω) (3.16)

and there are a sequence (tj)j≥1 of positive times, tj → ∞, and (U∞, v∞) ∈ H1(Ω,R2) such that

lim
j→∞

(

‖K(u(tj)−m)− U∞‖2 + ‖v(tj)− v∞‖2
)

= 0 . (3.17)

Since
lim
t→∞

‖v(t)‖1 = m|Ω|

by (3.1c), a straightforward consequence of (3.17) and the definition of K is that

〈U∞〉 = 0 and 〈v∞〉 = m|Ω| . (3.18)

For j ≥ 1 and s ∈ [−1, 1], we set (uj , vj)(s) := (u, v)(s + tj) and first observe that

‖vj(s)− v∞‖2 ≤ ‖vj(s)− vj(0)‖2 + ‖vj(0)− v∞‖2
= ‖v(s + tj)− v(tj)‖2 + ‖v(tj)− v∞‖2

≤
∣

∣

∣

∣

∣

∫ s+tj

tj

‖∂tv(s̄)‖2 ds̄

∣

∣

∣

∣

∣

+ ‖v(tj)− v∞‖2

≤
(

∫ tj+1

tj−1
‖∂tv(s̄)‖22 ds̄

)1/2

+ ‖v(tj)− v∞‖2 .

Since the right-hand side of the above inequality does not depend on s ∈ [−1, 1] and converges to zero as
j → ∞ according to (3.14) and (3.17), we conclude that

lim
j→∞

sup
s∈[−1,1]

‖vj(s)− v∞‖2 = 0 . (3.19)

An immediate consequence of (3.19) is that, up to the extraction of a subsequence, we may assume that

lim
j→∞

vj(s, x) = v∞(x) for a.e. (s, x) ∈ (−1, 1) × Ω . (3.20)

It next follows from (3.15) and the monotonicity (1.15) of z 7→ zγ(z) that

lim
j→∞

∫ 1

−1

∫

Ω
(vj −m)

(

vjγ(vj)−mγ(m)
)

dxds

= lim
j→∞

∫ tj+1

tj−1

∫

Ω
(v −m)

(

vγ(v)−mγ(m)
)

dxds = 0 ,
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which gives, together with (3.20) and Fatou’s lemma ,

∫ 1

−1

∫

Ω
(v∞ −m)

(

v∞γ(v∞)−mγ(m)
)

dxds = 0 . (3.21)

Introducing

mi := inf{z ∈ (0,∞) : zγ(z) = mγ(m)} ,
ms := sup{z ∈ (0,∞) : zγ(z) = mγ(m)} ∈ [m,∞] ,

I := {z ∈ (0,∞) : zγ(z) = mγ(m)} ,

we infer from the boundedness of γ and the monotonicity (1.15) of z 7→ zγ(z) that

mi ∈ (0,m] and I =







[mi,ms] , ms <∞ ,

[mi,∞) , ms = ∞ .

Combining this property with (3.21) implies in particular that

v∞(x) ∈ I for a.e. x ∈ Ω . (3.22)

At this point, either mi = ms = m and it readily follows from (3.22) that v∞ ≡ m.

Or mi 6= ms, and the property zγ(z) = mγ(m) for z ∈ I entails that G′′
0(z) = −mγ′(z) = m2γ(m)/z2

for z ∈ I. Introducing

g(z) :=







































0 , z ∈ [0,mi)

∫ z

mi

√

G′′
0(z∗) dz∗ = m

√

γ(m) ln (z/mi) , z ∈ I ,

∫ ms

mi

√

G′′
0(z∗) dz∗ = m

√

γ(m) ln (ms/mi) , z ∈ (ms,∞) ( when ms <∞) ,

we infer from (3.15), (3.19), and the Lipschitz continuity of g that

lim
j→∞

∫ 1

−1
‖∇g(vj(s))‖22 ds ≤ lim

j→∞

∫ tj+1

tj−1

∫

Ω
G′′

0(v)|∇v|22 dxds = 0, (3.23)

and

lim
j→∞

sup
s∈[−1,1]

‖g(vj(s))− g(v∞)‖2 = 0 . (3.24)

Combining (3.23) and (3.24) implies that∇g(v∞) = 0 a.e. in Ω and we deduce from (3.22), the connectedness
of Ω, and the strict monotonicity of g on I that there is a unique µ ∈ I such that v∞ = µ a.e. in Ω. Recalling
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that 〈v∞〉 = m|Ω| by (3.18), we conclude that necessarily µ = m. Consequently, v∞ ≡ m in this case as
well, so that, recalling (3.19), we have shown that

lim
j→∞

sup
s∈[−1,1]

‖vj(s)−m‖2 = 0 . (3.25)

We next turn to the behaviour of u and the identification of U∞ in (3.17). On the one hand, for
p ∈ [1, 4N/(3N − 2)] ∩ [1, 2), Hölder’s inequality gives

∫ 1

−1

∫

Ω
|uj − vj|p dxds =

∫ tj+1

tj−1

∫

Ω
|u− v|pγ(v)p/2γ(v)−p/2 dxds

≤
(

∫ tj+1

tj−1

∫

Ω
|u− v|2γ(v) dxds

)p/2(
∫ tj+1

tj−1

∫

Ω
γ(v)−p/(2−p) dxds

)(2−p)/2

,

and we infer from (3.13), Lemma 3.3, and the continuous embedding of H1(Ω) in Lp/(2−p)(Ω) that

∫ tj+1

tj−1

∫

Ω
γ(v)−p/(2−p) dxds ≤ C

∫ tj+1

tj−1

∫

Ω
(1 + v)p/(2−p) dxds

≤ C(p)

(

1 +

∫ tj+1

tj−1
‖v(s)‖p/(2−p)

p/(2−p) ds

)

≤ C(p)

(

1 + sup
s≥0

‖v(s)‖p/(2−p)
H1

)

≤ C(p) .

Combining the above inequalities leads us to

∫ 1

−1

∫

Ω
|uj − vj |p dxds ≤ C(p)

(

∫ tj+1

tj−1

∫

Ω
|u− v|2γ(v) dxds

)p/2

,

which gives, along with (3.14),

lim
j→∞

∫ 1

−1

∫

Ω
|uj − vj |p dxds = 0 .

Recalling (3.25), we end up with

lim
j→∞

∫ 1

−1

∫

Ω
|uj −m|p dxds = 0 . (3.26)

On the other hand, it follows from Hölder’s inequality that

‖K∂tu‖2 =
∥

∥〈(u− v)γ(v)〉 + 〈vγ(v) −mγ(m)〉+mγ(m)− vγ(v) + (v − u)γ(v)
∥

∥

2

≤
√

|Ω|
(∣

∣〈(u− v)γ(v)〉
∣

∣ +
∣

∣〈vγ(v) −mγ(m)〉
∣

∣

)

+
∥

∥mγ(m)− vγ(v)
∥

∥

2
+
∥

∥(v − u)γ(v)
∥

∥

2
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≤ (1 + |Ω|)
(∥

∥vγ(v)−mγ(m)
∥

∥

2
+
∥

∥(v − u)γ(v)
∥

∥

2

)

.

Since (with K0 = ||γ||∞)
∥

∥(v − u)γ(v)
∥

∥

2

2
≤ K0

∫

Ω
(v − u)2γ(v) dx,

and

∥

∥vγ(v)−mγ(m)
∥

∥

2

2
≤ K0

∫

Ω

∣

∣vγ(v)−mγ(m)
∣

∣|v −m| dx

= K0

∫

Ω

(

vγ(v) −mγ(m)
)

(v −m) dx

by (1.15) and Lemma 3.3, we conclude that

‖K∂tu‖22 ≤ 2K0(1 + |Ω|)2
∫

Ω

[

(u− v)2γ(v) + (v −m)
(

vγ(v) −mγ(m)
)]

dx .

Hence, thanks to (3.14) and (3.15),
∫ ∞

0
‖K∂tu(s)‖22 ds <∞ ,

and, since K∂tu = ∂tK(u − m), we argue as in the proof of (3.19) to deduce from (3.17) and the above
integrability property that

lim
j→∞

sup
s∈[−1,1]

‖K(uj(s)−m)− U∞‖2 = 0 . (3.27)

According to (3.13) and (3.27), we may also assume that, up to the extraction of a subsequence,

K(uj −m)
∗
⇀ U∞ in L∞([−1, 1];H1(Ω)) . (3.28)

We then infer from (3.26) and (3.28) that, for any ϕ ∈ H1(Ω),

0 = lim
j→∞

∫ 1

−1

∫

Ω
(uj(s)−m)ϕ dxds = lim

j→∞

∫ 1

−1

∫

Ω
∇K(uj(s)−m) · ∇ϕ dxds

=

∫ 1

−1

∫

Ω
∇U∞ · ∇ϕ dxds = 2

∫

Ω
∇U∞ · ∇ϕ dx ,

which entails, together with (3.18), that U∞ ≡ 0.
We have thus proved that (0,m) is the only cluster point as t → ∞ of {

(

K(u(t) −m), v(t)
)

t ≥ 0} in
L2(Ω;R2). Together with the already established compactness (3.16) of this set in L2(Ω;R2), this property
implies that

(

K(u(t) − m), v(t)
)

converges to (0,m) in L2(Ω;R2) as t → ∞ and completes the proof of
Theorem 1.5.

Proof of Proposition 1.6. According to [15, Proposition 1.2], there is d0 > 0 such that if d ∈ (0, d0), then
there exists a nonconstant positive solution w = w(d) ∈ C2(Ω0) of

{

0 = d∆w − w + wk in Ω0,

0 = ∇w · n on ∂Ω0.
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Setting R0 :=
1√
d0
, and picking R > R0, we then obtain that d := 1

R2 satisfies d ∈ (0, d0), and that for

v(x) := w(d)(
√
dx) and u(x) := vk(x), x ∈ RΩ0,

we have ∇u · n = ∇v · n = 0 on ∂(RΩ0) as well as

∆v(x)− v(x) + u(x) = d∆w(
√
dx)− w(

√
dx) + wk(

√
dx) = 0 for all x ∈ RΩ0

and

∆
(

uγ(v)
)

= ∆(vk · v−k) = 0 in RΩ0,

as claimed.

4 System with logistic-type growth

In this final part we address the problem (1.3) involving logistic-type zero order degradation. As our approach
in the present section will no longer make use of a comparison argument, we may here employ a somewhat
simpler regularization which enforces global solvability at the respective approximate level by involving a
suitably strong damping in the signal production mechanism. More precisely, assuming throughout this
section that γ, h, uin and vin comply with the requirements from Theorem 1.8, for η ∈ (0, 1) we shall
consider

∂tuη −∆(uηγ(vη)) = uη h(uη), (t, x) ∈ (0,∞) × Ω, (4.1a)

ε∂tvη = ∆vη − vη +
uη

1 + ηuη
, (t, x) ∈ (0,∞) × Ω, (4.1b)

∇(uηγ(vη)) · n = ∇vη · n = 0, (t, x) ∈ (0,∞) × ∂Ω, (4.1c)

(uη , vη)(0, ·) = (uin, vin) . x ∈ Ω, (4.1d)

Indeed, by straightforward adaptation from standard arguments from the theory of Keller-Segel type cross-
diffusion systems (see, e.g., [22]) it can be seen that each of these problems admits a global classical solution
(uη, vη) with 0 ≤ uη ∈ C([0,∞)×Ω)∩C1,2((0,∞)×Ω) and 0 ≤ vη ∈

⋂

q>1C([0,∞);W 1,q(Ω))∩C1,2((0,∞)×
Ω), and that

vη(t, x) ≥
{

inf
Ω
vin
}

e−t/ε for all (t, x) ∈ [0,∞)× Ω. (4.2)

Now the core of this section is contained in the following.

Lemma 4.1. Assume (1.25) and (1.26). Then for all T > 0 there exists C(T ) > 0 such that for all
η ∈ (0, 1),

∫ T

0

∫

Ω

{

uη ln(uη + e)|h(uη)|+ u2η + γ(vη)
|∇uη|2
uη + e

+ |∆vη|2 +
|∇vη|4
v2η

}

dxdt ≤ C(T ), (4.3)

as well as
∫

Ω
uη(t) ln

(

uη(t) + e
)

dx+

∫

Ω
|∇vη(t)|2 dx ≤ C(T ) for all t ∈ (0, T ). (4.4)
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Proof. From Assumption (1.25) and (4.2), we know that there exists c1(T ) > 1 such that

vη ≥ 1

c1(T )
, γ(vη) ≤ c1(T ) and

γ′2(vη)

γ(vη)
≤ c1(T )

vη
in (0, T )× Ω for all η ∈ (0, 1). (4.5)

We furthermore combine [25, Lemma 3.3] (with h(s) = e−s and with e−ϕ replaced by ϕ) with elliptic
regularity theory to find c2 > 0 fulfilling

c2

∫

Ω

|∇ϕ|4
ϕ2

dx ≤
∫

Ω
|∆ϕ|2 dx for all ϕ ∈ C2(Ω) such that ϕ > 0 in Ω and ∇ϕ · n = 0 on ∂Ω. (4.6)

We then define

µ(s) :=
h−(s) ln(s+ e)

s+ 1
, s ≥ 0, (4.7a)

where

h−(s) := max (−h(s), 0) , h+(s) := h(s) + h−(s), s ≥ 0, (4.7b)

and use (4.1) along with Young’s inequality and (4.5) to see that whenever η ∈ (0, 1),

d

dt

∫

Ω
(uη + e)

{

ln(uη + e)− 1
}

dx+
1

2

∫

Ω
uη ln(uη + e)|h(uη)|dx+

∫

Ω
u2η dx

=

∫

Ω

{

∆(uηγ(vη)) + uηh(uη)
}

ln(uη + e) dx

+
1

2

∫

Ω
uη ln(uη + e)|h(uη)|dx+

∫

Ω
u2η dx

= −
∫

Ω
γ(vη)

|∇uη|2
uη + e

dx−
∫

Ω

uη
uη + e

γ′(vη)∇uη · ∇vη dx

+
3

2

∫

Ω
uη ln(uη + e)h+(uη) dx− 1

2

∫

Ω
uη(uη + 1)µ(uη) dx+

∫

Ω
u2η dx

≤ −1

2

∫

Ω
γ(vη)

|∇uη|2
uη + e

dx+
1

2

∫

Ω

u2η
uη + e

γ′2(vη)

γ(vη)
|∇vη|2 dx

+
3

2

∫

Ω
uη ln(uη + e)h+(uη) dx− 1

2

∫

Ω
uη(uη + 1)µ(uη) dx+

∫

Ω
u2η dx

≤ −1

2

∫

Ω
γ(vη)

|∇uη|2
uη + e

dx+
c1(T )

2

∫

Ω
uη

|∇vη|2
vη

dx

+
3

2

∫

Ω
uη ln(uη + e)h+(uη) dx− 1

2

∫

Ω
uη(uη + 1)µ(uη) dx+

∫

Ω
u2η dx

≤ −1

2

∫

Ω
γ(vη)

|∇uη|2
uη + e

dx+
c2
2

∫

Ω

|∇vη|4
v2η

dx

+
3

2

∫

Ω
uη ln(uη + e)h+(uη) dx− 1

2

∫

Ω
uη(uη + 1)µ(uη) dx
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+
(

1 +
c21(T )

8c2

)

∫

Ω
u2η dx for all t ∈ (0, T ), (4.8)

as well as

ε
d

dt

∫

Ω
|∇vη|2 dx+

∫

Ω
|∆vη|2 dx+ 2

∫

Ω
|∇vη|2 dx = −

∫

Ω
|∆vη|2 dx− 2

∫

Ω

uη
1 + ηuη

∆vη dx

≤
∫

Ω
u2η dx for all t > 0. (4.9)

Since (4.7), together with (1.26), ensures that

3

2
s ln(s+ e)h+(s)−

1

2
s(s+ 1)µ(s) +

(

2 +
c21(T )

8c2

)

s2 → −∞ as s→ ∞,

and thus there exists c3(T ) > 0 such that

3

2
s ln(s+ e)h+(s)−

1

2
s(s+ 1)µ(s) +

(

2 +
c21(T )

8c2

)

s2 ≤ c3(T ) for all s ≥ 0.

Combining (4.8) with (4.9) and (4.6), we conclude that for

yη(t) :=

∫

Ω
(uη + e)

(

ln(uη + e)− 1
)

dx+ ε

∫

Ω
|∇vη|2 dx, t ∈ (0, T ), η ∈ (0, 1),

we have

y′η(t) +
1

2

∫

Ω
γ(vη)

|∇uη |2
uη + e

dx+
1

4

∫

Ω
|∆vη|2 dx+

c2
4

∫

Ω

|∇vη|4
v2η

dx

+
1

2

∫

Ω
uη ln(uη + e)|h(uη)|dx+

∫

Ω
u2η dx

≤ c3(T )|Ω| for all t > 0 and η ∈ (0, 1), (4.10)

which after a time integration shows that

yη(t) ≤
∫

Ω
(uin + e)

{

ln(uin + e)− 1
}

dx+ ε‖∇vin‖22 + c3(T )T |Ω| for all t ∈ (0, T ) and η ∈ (0, 1),

and thereby implies (4.4), while (4.3) can be derived by direct integration in (4.10).

An immediate consequence of (4.3) reveals some integrability feature of expressions related to the fluxes
appearing in the first equation from (4.1), here slightly generalized by involving an exponent θ which can
actually be an arbitrary element of [12 ,∞).

Lemma 4.2. If (1.25) and (1.26) hold, then for all θ ≥ 1
2 and each T > 0, there exists C(θ, T ) > 0 such

that
∫ T

0

∫

Ω

∣

∣

∣
∇
{

uηγ
θ(vη)

}

∣

∣

∣

4/3
dxdt ≤ C(θ, T ), (4.11)

for all η ∈ (0, 1).
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Proof. Let η ∈ (0, 1) and T > 0. Then in

∫ T

0

∫

Ω

∣

∣

∣
∇
{

uηγ
θ(vη)

}

∣

∣

∣

4/3
dxdt ≤ 21/3

∫ T

0

∫

Ω
γ4θ/3(vη)|∇uη |4/3 dxdt

+ 21/3θ4/3
∫ T

0

∫

Ω
u4/3η γ4(θ−1)/3(vη)|γ′(vη)|4/3|∇vη|4/3 dxdt,

we twice use Young’s inequality to estimate

∫ T

0

∫

Ω
γ4θ/3(vη)|∇uη |4/3 dxdt =

∫ T

0

∫

Ω

(

γ(vη)
|∇uη |2
uη + e

)2/3

(uη + e)2/3γ(4θ−2)/3(vη) dxdt

≤
∫ T

0

∫

Ω
γ(vη)

|∇uη |2
uη + e

+

∫ T

0

∫

Ω
(uη + e)2γ4θ−2(vη) dxdt,

and
∫ T

0

∫

Ω
u4/3η γ4(θ−1)/3(vη)|γ′(vη)|4/3|∇vη|4/3 dxdt

=

∫ T

0

∫

Ω

( |∇vη|4
v2η

)1/3

u4/3η γ4(θ−1)/3(vη)|γ′(vη)|4/3v2/3η dxdt

≤
∫ T

0

∫

Ω

|∇vη|4
v2η

dxdt+

∫ T

0

∫

Ω
u2η
vηγ

′2(vη)

γ(vη)
γ2θ−1(vη) dxdt.

Collecting the above inequalities and using (4.3), (4.5) and θ ≥ 1/2 gives (4.11).

For later reference, let us briefly note some basic information on mass control in the two components.

Lemma 4.3. Assume (1.25) and (1.26). Then there exists C > 0 such that
∫

Ω
uη(t) dx ≤ C and

∫

Ω
vη(t) dx ≤ C for all t > 0 and η ∈ (0, 1). (4.12)

Proof. Since (1.26) particularly entails the existence of s1 > 0 such that h(s) ≤ −1 for all s > s1, it follows
from (4.1) that

d

dt

∫

Ω
uη dx+

∫

Ω
uη dx =

∫

Ω
uη (1 + h(uη)) dx ≤

∫

Ω
1(0,s1)(uη)uη (1 + h(uη)) dx

≤ s1|Ω|
(

1 + sup
(0,s1)

|h|
)

for all t > 0 and η ∈ (0, 1),

and that thus, by a simple comparison argument,

∫

Ω
uη(t) dx ≤ c4 := max

{

∫

Ω
uin dx , s1|Ω|

(

1 + sup
(0,s1)

|h|
)}

for all t > 0 and η ∈ (0, 1).
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From the second equation in (4.1) we therefore obtain that

ε
d

dt

∫

Ω
vη dx = −

∫

Ω
vη dx+

∫

Ω

uη
1 + ηuη

dx ≤ −
∫

Ω
vη dx+ c4 for all t > 0 and η ∈ (0, 1),

and a simple time integration completes the proof.

Now the gradient bound from Lemma 4.2 can be supplemented by a time regularity feature:

Lemma 4.4. Suppose that (1.25) and (1.26) hold, and let p > max(N, 4). Then for all T > 0 there exists
C(p, T ) > 0 such that

∫ T

0

∥

∥

∥
∂t
{

uη(t)γ(vη(t))
}

∥

∥

∥

(W 1,p(Ω))′
dt ≤ C(p, T ), (4.13)

for all η ∈ (0, 1).

Proof. Since p > N and p ≥ 4, we can pick c5 > 0 such that ‖ψ‖∞ + ‖∇ψ‖4 ≤ c5 for all ψ ∈ C1(Ω) fulfilling
‖ψ‖W 1,p ≤ 1. Fixing any such ψ, from (4.1) we obtain that for all t > 0 and η ∈ (0, 1),

∫

Ω
∂t
{

uηγ(vη)
}

ψ dx = −
∫

Ω
γ′(vη)

(

∇
{

uηγ(vη)
}

· ∇vη
)

ψ dx−
∫

Ω
γ(vη)∇

{

uηγ(vη)
}

· ∇ψ dx+

∫

Ω
ρηψ dx,(4.14)

where

ρη := uηh(uη)γ(vη) +
1

ε
uηγ

′(vη)∆vη −
1

ε
uηvηγ

′(vη) +
1

ε

u2η
1 + ηuη

γ′(vη). (4.15)

Now given T > 0, once more drawing on (4.5), we have

|γ′(vη)| ≤ c6(T ) := c
3/2
1 (T ) in (0, T ) × Ω for all η ∈ (0, 1). (4.16)

According to our choice of c5 and Hölder and Young’s inequalities, in (4.14) we can therefore estimate

∣

∣

∣

∣

−
∫

Ω
γ′(vη)

(

∇
{

uηγ(vη)
}

· ∇vη
)

ψ dx

∣

∣

∣

∣

≤ c5

∫

Ω
|γ′(vη)|

∣

∣

∣
∇
{

uηγ(vη)
}

∣

∣

∣
|∇vη|dx

≤ c5

∫

Ω

∣

∣

∣
∇
{

uηγ(vη)
}

∣

∣

∣

4/3
dx+ c5

∫

Ω

∣

∣γ′(vη)
∣

∣

4 |∇vη|4 dx

≤ c5

∫

Ω

∣

∣

∣
∇
{

uηγ(vη)
}

∣

∣

∣

4/3
dx+ c5c

4
1(T )

∫

Ω

|∇vη|4
v2η

dx, (4.17)

and

∣

∣

∣

∣

−
∫

Ω
γ(vη)∇

{

uηγ(vη)
}

· ∇ψ dx

∣

∣

∣

∣

≤ c5c1(T )

{
∫

Ω

∣

∣

∣
∇
{

uηγ(vη)
}

∣

∣

∣

4/3
dx

}3/4

≤ c5c1(T )

∫

Ω

∣

∣

∣
∇
{

uηγ(vη)
}

∣

∣

∣

4/3
dx+ c5c1(T ), (4.18)



Triangular cross diffusion systems modeling chemotaxis with local sensing 29

as well as
∣

∣

∣

∣

∫

Ω
ρηψ dx

∣

∣

∣

∣

≤ c5

∫

Ω
|ρη |dx, (4.19)

for all t ∈ (0, T ) and η ∈ (0, 1), where by (4.5), (4.15), (4.16) and Young’s inequality,

∫

Ω
|ρη|dx ≤ c1(T )

∫

Ω
uη|h(uη)|dx+

c6(T )

ε

∫

Ω
uη|∆vη|dx+

c1(T )

ε

∫

Ω
uη

√
vη dx+

c6(T )

ε

∫

Ω
u2η dx

≤ c1(T )

∫

Ω
uη ln(uη + e)|h(uη)|dx+

∫

Ω
|∆vη|2 dx+

∫

Ω
vη dx+

(c26(T )

4ε2
+
c21(T )

4ε2
+
c6(T )

ε

)

∫

Ω
u2η dx

for all t ∈ (0, T ) and η ∈ (0, 1). Together with (4.17)-(4.19) inserted into (4.14), this shows that with some
c7(T ) > 0, for all t ∈ (0, T ) and η ∈ (0, 1), we have

∥

∥

∥
∂t
{

uηγ(vη)
}

∥

∥

∥

(W 1,p(Ω))′
≤ c7(T )

{
∫

Ω

∣

∣

∣
∇
{

uηγ(vη)
}

∣

∣

∣

4/3
dx+

∫

Ω

|∇vη|4
v2η

dx+

∫

Ω
|∆vη|2 dx+

∫

Ω
vη dx

+

∫

Ω
uη ln(uη + e)|h(uη)|dx+

∫

Ω
u2η dx+ 1

}

,

so that (4.13) results upon an integration in time using Lemma 4.1 and Lemma 4.3, and applying Lemma 4.2
to θ = 1.

The derivation of our main result in this section thereby reduces to an application of an Aubin-Lions
lemma:

Proof of Theorem 1.8. From Lemma 4.2 (with θ = 1), Lemma 4.1 and (4.5), it follows that

(

uηγ(vη)
)

η∈(0,1)
is bounded in L4/3((0, T );W 1,4/3(Ω)) for all T > 0,

while Lemma 4.4 asserts that if we fix p > max(N, 4), then

(

∂t
{

uηγ(vη)
}

)

η∈(0,1)
is bounded in L1((0, T ); (W 1,p(Ω))′) for all T > 0.

Apart from that, Lemma 4.1 in conjunction with Lemma 4.3 warrants that

(vη)η∈(0,1) is bounded in L2((0, T );H2(Ω)) for all T > 0,

whereas in view of (4.1) it is obvious that Lemma 4.1 (with Lemma 4.3) moreover entails that

(∂tvη)η∈(0,1) is bounded in L2((0, T );L2(Ω)) for all T > 0.

Owing to the compactness of the embeddings of W 1,4/3(Ω) and H2(Ω), respectively, in L4/3(Ω) and H1(Ω),
respectively, and the continuity of the embeddings of L4/3(Ω) and H1(Ω), respectively, in (W 1,p(Ω))′
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and L2(Ω), respectively, two applications of the Aubin-Lions-Simon lemma [21, Corollary 4] thus provide
(ηj)j∈N ⊂ (0, 1) such that ηj ց 0 as j → ∞, and also provide that for all T > 0,

uηjγ(vηj ) →
j→∞

z a.e. in (0,∞)× Ω and in L4/3((0, T ) × Ω), (4.20)

∇
{

uηjγ(vηj )
}

⇀
j→∞

∇z in L4/3((0, T ) × Ω;RN )w and (4.21)

vηj →
j→∞

v in L2((0, T );H1(Ω)) and a.e. in (0,∞) × Ω (4.22)

for some nonnegative z ∈ L4/3((0, T );W 1,4/3(Ω)), and some v ∈ L2((0, T );H2(Ω)) which satisfies v > 0
a.e. in (0,∞)× Ω, according to (4.22) and (4.2).
Now from (4.2), (4.20), (4.22) and the positivity of γ, it is evident that

uηj →
j→∞

u :=
z

γ(v)
a.e. in (0,∞)× Ω, (4.23)

so that since

(uη)η∈(0,1) is bounded in L2((0, T ) × Ω) for all T > 0,

by Lemma 4.1, we infer that
u ∈ L2((0, T ) × Ω), (4.24)

and that thanks to the Vitali convergence theorem,

uηj →
j→∞

u in L1((0, T )× Ω) for all T > 0. (4.25)

Similarly, the L1 estimate for
(

uη ln(uη + e)h(uη)
)

η∈(0,1) contained in (4.3) can readily be seen to entail that

(

uηh(uη)
)

η∈(0,1) is uniformly integrable over (0, T ) × Ω for all T > 0,

while the continuity of h and (4.23) guarantees that

uηjh(uηj ) →
j→∞

uh(u) a.e. in (0,∞) × Ω.

Another application of the Vitali convergence theorem then gives

uηjh(uηj ) →
j→∞

uh(u) in L1((0, T )× Ω). (4.26)

With the regularity requirements in Definition 1.7 hence being asserted in view of (4.20), (4.21), (4.24)
and (4.26), the derivation of the identities in (1.23) and (1.24) can be achieved by taking η = ηj ց 0 in the
corresponding weak formulation of (4.1) and using the convergence properties in (4.21), (4.22), (4.25) and
(4.26). To finally verify the claimed additional regularity features, we observe that (1.27) follows from v ∈
L2(H2) and (4.24) upon observing that the inclusions u ∈ L∞((0, T );L log L(Ω)) and v ∈ L∞((0, T );H1(Ω))
for all T > 0 are immediate consequences of (4.4). The coupled weak differentiability property in (1.28) can

be concluded from Lemma 4.2 when applied to θ = 1
2 and combined with the fact that uηj

√

γ(vηj ) → u
√

γ(v)

a.e. in (0,∞)× Ω as j → ∞, the latter resulting from (4.22), (4.23) and the continuity of γ.
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[3] M. Burger, Ph. Laurençot, and A. Trescases, Delayed blow-up for chemotaxis models with local
sensing, J. Lond. Math. Soc. (2), 103 (2021), pp. 1596–1617.

[4] L. Desvillettes, Y.-J. Kim, A. Trescases, and C. Yoon, A logarithmic chemotaxis model fea-
turing global existence and aggregation, Nonlinear Anal. Real World Appl., 50 (2019), pp. 562–582.

[5] X. Fu, L. H. Tang, C. Liu, J. D. Huang, T. Hwa, and P. Lenz, Stripe formation in bacterial
systems with density-suppressed motility, Phys. Rev. Lett., 108 (2012), pp. 1981–1988.

[6] K. Fujie and J. Jiang, Global existence for a kinetic model of pattern formation with density-
suppressed motilities, J. Differential Equations, 269 (2020), pp. 5338–5378.

[7] K. Fujie and J. Jiang, Boundedness of classical solutions to a degenerate Keller–Segel type model
with signal-dependent motilities, Acta Appl. Math., 176 (2021), p. Paper No. 3.

[8] K. Fujie and J. Jiang, Comparison methods for a Keller-Segel-type model of pattern formations with
density-suppressed motilities, Calc. Var. Partial Differential Equations, 60 (2021), pp. 1–37. Id/No 92.

[9] K. Fujie and T. Senba, Global existence and infinite time blow-up of classical solutions to chemotaxis
systems of local sensing in higher dimensions, 2021. arXiv: 2102.12080.
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