
HAL Id: hal-03580580
https://hal.science/hal-03580580v2

Submitted on 12 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Comparison of control methods for 2D industrial cranes
Mohammad Rasool Mojallizadeh, Bernard Brogliato, Christophe Prieur

To cite this version:
Mohammad Rasool Mojallizadeh, Bernard Brogliato, Christophe Prieur. Comparison of control meth-
ods for 2D industrial cranes. CCTA 2022 - Conference on Control Technology and Applications, CCTA
2022, Aug 2022, Trieste, Italy. pp.43-48, �10.1109/CCTA49430.2022.9966133�. �hal-03580580v2�

https://hal.science/hal-03580580v2
https://hal.archives-ouvertes.fr


Comparison of control methods for 2D industrial cranes*

Mohammad Rasool Mojallizadeh1, Bernard Brogliato1 and Christophe Prieur2

Abstract— This paper aims to review and compare some
methods used to control overhead cranes in 2D space. The
properties of the controllers are categorized based on their
structure, feedback type (no feedback, collocated, and noncollo-
cated feedback), and their stability (local, global, regulation and
tracking). Subsequently, a new pendulum-like model has been
proposed to describe the system’s behavior more accurately.
The model consists of a large number of links attached to a
cart, allowing to study global nonlinearities as well as cables’
flexibility and vibration, simultaneously. The controllers are
then studied by extensive numerical simulations under the
regulation and tracking scenarios.

I. INTRODUCTION

Overhead cranes (OC) are widely employed in construc-
tion sites and warehouses to manipulate heavy objects. These
machines are mainly composed of a moving cart with a
hook or tool attached to the cart via some cables. For a
satisfactory operation, an appropriate control method should
be implemented on cranes to ensure fast and accurate posi-
tioning with as small as possible payload sway. Satisfying
these objectives may not be straightforward since OCs are
known as underactuated systems with complex nonlinear
dynamics. Moreover, there is always a trade-off between
operation time and payload sway [1]. Several types of
control methods have been proposed in the literature to
address the mentioned control objectives. The first and the
simplest category belongs to the open-loop (OL) schemes
where no feedback or sensor is required by the control
algorithm. While OL approaches can provide simplicity and
economic solutions, they suffer from severe sensitivity to
the uncertainties. Zero-vibration (ZV) and zero-vibration-
derivative (ZVD) are two known examples of such open-loop
paradigms [2]. To solve the drawbacks of the OL schemes,
closed-loop (CL) controllers have been introduced. The first
group of the CL controllers only requires the collocated
feedback, i.e., cart coordinates. Other CL controllers need
underactuated feedback information, including the sway an-
gles or payload coordinates [3]. OCs are mostly designed
and analyzed based on simplified models such as single- [4]
or double-pendulum [5] systems. These models can describe
the global nonlinearities corresponding to the sway angles.
However, high-frequency vibrations caused by the hoisting
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Fig. 1. (a) single-pendulum, (b ) double-pendulum, (c) flexible-cable

cables cannot be modeled with such models. Hence, infinite-
dimensional models leading to partial differential equations
are proposed which are in turn difficult to be used when
dealing with global nonlinearities [6], [7], [8].
The main contribution of this paper is to take into account
a large number of links with damping and flexibility on
the joints to form a new model for capturing both global
nonlinearities and cables’ dynamics, simultaneously. Since
several sway angles can be considered for such a model, the
appropriate sway angle measurement has also been addressed
in this study to implement the controllers designed for
the single- and double-pendulum systems. Furthermore, a
unified gain tuning approach has been developed to tune the
parameters of the controllers in a unified manner leading
to fair comparisons. Subsequently, a complete analysis of
the control methods has been provided and their responses
are compared on the considered model using numerical
simulations. In the remainder of this paper, the case study
and the control strategies are presented in Sections II and III,
respectively. Subsequently, the numerical simulations are
provided in Section IV, and, finally, Section V concludes
the paper.

II. CASE STUDY: AN OVERHEAD CRANE IN 2D SPACE

OCs are usually described by pendulum-like systems
where payload is connected to the cart through one or two
links. Depending on the number/type of the links, three
modeling schemes can be found in the literature as shown in
Fig. 1. The simplest one is the rigid-link single-pendulum
approach. However, in the presence of heavy hooks, the
double-pendulum model provides better accuracy. Another
approach is to take into account the flexibility of the cable to
model the vibrations corresponding to the cables’ flexibility.

Single- and double-pendulum models provide straightfor-
ward solutions to model the global nonlinearities correspond-
ing to the primary and secondary sway angles. However, it
is not possible to study the oscillations of the cable using
these models. On the other hand, the infinite-dimensional
models developed for the cables’ flexibility are inherently



local and linear (e.g., string or wave equations) and hard to
use to control the global nonlinearities [7], [8]. In this paper
a model is built which tentatively combines some features
of both methods. We use it to compare several types of
controllers. This model consists of a pendulum/cable system
with several links (20 in our case). Both global nonlinear
dynamics, as well as some vibrations corresponding to the
cable’s flexibility, can be taken into account. The mentioned
model has been implemented based on the following assump-
tions:

• The model is composed of a 20-link pendulum such that
19 links model the flexibility of the cable, and the last
one represents the secondary sway corresponding to the
hook. While more links may improve the accuracy of
the model, it makes the simulations too slow to be used.

• The masses connected to the last and next to the last
link are equal to the masses of the payload and the hook,
respectively. The weight of the cable is distributed on
other links uniformly.

• The model is developed for 2D operational space.

III. SUMMARY OF THE STUDIED CONTROLLERS

According to the literature, the controllers used to control
OCs follow the following structure:

F = {FF}+ {P}+ {D}+ {I} (1)

where F is the force applied to the cart, {FF}, {P}, {D},
and {I} denote the feedforward, proportional, derivative and
integrative terms. These terms are summarized in Table I.
In this table, mt is total mass of the crane, ad is the
payload reference acceleration. conv(A,B) is the convolu-
tion of the vectors A and B, P1 and P2 are two vectors
containing two and three impulses, respectively. Moreover,
ex = x − xd, ev = v − vd, χ = ex + λ sin(θ), x(t)
and v(t) are cart position and velocity, respectively, xd

and vd are the references for the payload position and
velocity, respectively. Note that the controllers have some
parameters kp, kd, kiξ, ϕ, ka, kq, kϕ1, kϕ2, α1, α2, α3, λ, ζ ∈
R+ that need to be tuned, also one has α1α4 = α2α3 −
α3

(
α2

2 +

√
α2

2+4α1

2

)
. The controllers in this topic are de-

signed for one of the systems shown in Fig. 1, and depending
on the model, the sway angles θ, θ1, and θ2 can be measured
as shown according to this figure. It should be noted that
among the controllers, the sliding-mode controllers (SMC)
do not follow the structure shown in (1) and are composed
of nonlinear combinations of several terms. One may refer
to the references cited in Table I for more details. The SMC
designed for the single-pendulum system has six parameters
c1, c2, c3, c4, k, η ∈ R+ while the one designed for the
double-pendulum one has five parameters λ, α, β,K, c ∈
R+. The SMC designed for the double-pendulum system
uses a linear filter with the parameter c to calculate the
angular accelerations [9].

From Table I one can see that among the closed-loop
methods, the tracking controllers use the feed-forward terms
which is not the case for the regulation ones. Moreover, the

type of stability proof for each method is listed in the last
column. It can be seen that each stability proof is provided
for a specific model. Hence, implementing controllers on
different models (like the 20-link pendulum model used in
the simulations) may not necessarily lead to a stable imple-
mentation. Also, note that the global stability of the PD-PD
method has not been guaranteed since it is designed based
on the assumption that transversal and angular displacements
are small. Note that the robust stability of the SMCs has been
ensured in the presence of matched disturbances which is not
the case for other controllers.

General specifications of the controllers are given in
Table II. The controllers can be divided into three classes
based on the type of feedback. The first category belongs
to the open-loop schemes. The other one is the collocated
control methods where the position of the cart and its time
derivative are the only feedback information. Finally, the
noncollocated strategies where the sway angles are also re-
quired to synthesize the control law. The number of required
sensors and tuning parameters corresponding to each method
has also been listed in this table.

Note that the noncollocated controllers are designed either
for the single- or double-pendulum models. However, in this
study, a 20-link pendulum is used as the case study which
raises the question that which angles should be measured
for θ1 and θ2, corresponding to the double-pendulum sys-
tem’s angles shown in Fig. 1. To the best of the authors’
knowledge, this problem has not been tackled elsewhere. In
this work, it is assumed that the first and the last angles
(if the coordinates are considered as Fig. 1) correspond
to θ1 and θ2, respectively. For the noncollocated methods
where only a single angle feeds the controller, two different
implementations have been considered with the first and the
last angles as feedback. This issue can also be observed
in real practical applications since several angles can be
measured in a crane because of the cable’s flexibility and
the sensor position. This topic needs to be further studied.

IV. NUMERICAL SIMULATIONS

Numerical simulations have been conducted to investigate
the general behavior of the controllers on an OC with the
parameters shown in Table V1. It is assumed that the 8
considered parallel cables can be modeled as a single cable
with the modified parameters multiplied by 8 as shown in
Table V. Some objective functions are defined for the ease
of comparison as shown in Table VI. Note that, in this table,
xp is the payload position and n is the number of links.
Since variable step size numerical solvers are used for the
simulations, L̄2 and L̃2 are scaled.

A. Optimization algorithms

As can be seen from Table II, the controllers’ gains have
to be tuned to ensure a fair comparison. This problem has not
been addressed in the literature, and it is not clear how to for-
mulate and solve that analytically because of its complexity.

1A toolbox is available upon the request of the first author (mohammad-
rasool.mojallizadeh@inria.fr) to reproduce all results.



TABLE I
STRUCTURE OF THE CONTROLLERS

Controller feed-forward terms proportional terms derivative terms integration terms stability
Unshaped input [2] +mtad — — — no proof
ZV [2] +conv(mtad, P1) — — — no proof
ZVD [2] +conv(mtad, P2) — — — no proof
Collocated PD [10], [4] — +kpex(t) +kdev(t) — GA1 & GA2
Noncollocated — −kd tanh(ev) −ki tanh

(
λ2ex

Quasi-PID [5] −kp tanh(ex) −kϕ1 tanh
2(θ̇1) tanh(ev) + λ

∫ t
0 tanh(ex)dt

)
GA2

−kϕ2 tanh
2(θ̇2) tanh(ev)

Noncollocated — −kp
(
ex(t) −kd

(
ev(t) — GA1

PD regulation [10] −ka sin(θ(t))
)

−kaθ̇(t) cos(θ)
)

Collocated +mtad −kpex(t) −kdev(t) —

PD tracking [11] −
2λξ2

ξ2 − e2x(t)
ex(t) −ϕ sgn(ev(t)) GA1

PD-PD [12] — −α1ex(t) −α2ev(t) — LI
−α3θ(t) −α4θ̇(t)

SMC (see [13]) — GA1 & RM
single-pendulum discontinuous combination of
SMC (see [14]) — proportional and derivative terms
double-pendulum GA2 & RM
PD energy [15] — −kp tanh(χ)− kqχ× −kdχ̇ —

(xd + ζ)2 − ε2 + χε

((xd + ζ)2 − ε2)2
GA1

Coupling tracking [16] +mtad −kp
∫ t
0 ζdt −kdζ + λmt cos(θ)θ̇ — GA1

GA1 and GA2 denote global asymptotic stability for the single- and double-pendulum systems, respectively.
LI indicates local stability based on the infinite dimensional model, and RM denotes robustness to matched uncertainties.

TABLE II
OVERVIEW OF THE CONTROLLERS.

Controller Feedback NoP Case Sensor
Unshaped input open-loop - - -
ZV open-loop - - -
ZVD open-loop - - -
Collocated PD collocated 2 R 2
Noncollocated Quasi-PID noncollocated 4 R 4
noncollocated PD noncollocated 3 R 4
Collocated PD Tracking collocated 5 T 2
PD-PD noncollocated 3 R 4
SMC single-pendulum noncollocated 6 R 4
SMC double-pendulum noncollocated 5 R 6
PD energy noncollocated 6 R 5
Coupling tracking noncollocated 3 T 3
R: regulation, T: tracking, NoP: number of parameters

In this study, some classical algorithms are used in a unified
manner for all controllers to tune their parameters. The
parameters are optimized for a double-pendulum system2 in
the presence of an initial sway θ1(0) = −θ2(0) = 15, a cart
disturbance (a pulse force with period 20s and amplitude
±19600N), damping on the cart (1000v(t)N to simulate a
kind of friction between the cart and the surface), and the
measurement noise (all measurements are affected by white
noise with SNR=90dB) with the reference trajectory defined

2The 20-link pendulum system cannot be directly used by the optimiza-
tion algorithms to tune the parameter since it requires too much calculation
time. The double-pendulum system has been used, instead, since it can
model the double-pendulum effect corresponding to the presence of hook,
and at the same time, it does not require too much calculation resources.
The optimization on the double-pendulum model takes around 12 hours for
all methods when using a computer whith Intel Core i7-1080H CPU
and 32 GB RAM. It is estimated that this may take around a year when
using the 20-link pendulum on the same PC.

in Section IV-B. Three optimization algorithms, i.e., PSO,
fminunc and patternsearch have been employed from
MATLAB R2021b software package to minimize the follow-
ing objective function:

J = ||ep(t)||t∈[0,100]s + 60||ep(t)||t∈[16,100]s

+300||ep(t)||t∈[33,100]s + 600||ep(t)||∞
+0.05

∑tf/h
k=0 |u(kh)− u((k − 1)h)|

(2)

where t = kh, tf is the final time, h is the sampling
time, and the last term is to take the control chattering into
account. The optimized parameters are listed in Table III.
One may see that the optimization algorithms may lead
to suboptimal solutions. For instance, noncollocated PD
regulation for the first and the last angles always lead to
a larger cost compared to the collocated PD regulation.
However, all these three controllers have the same structure
since ka is always zero for the noncollocated ones. Therefore,
kp and kd corresponding to the collocated PD should also
be selected for the other two controllers which is not the
case here. As the result, a larger cost has been obtained
for these two noncollocated controllers. This indicates that
the designers have to be careful when using the above three
optimization algorithms, and that some work to improve the
gains calculations remains to be done.

Note that throughout this paper, colors blue, black and red
in tables, indicate the best, average and the worst groups. Ac-
cording to Table III, the double-pendulum SMC has achieved
the worst results. Apart from the implicit double pendulum
SMC and the tracking controllers, that have average results,
other methods show good responses at almost the same level.
It also should be noted that the SMCs are implemented based
on both explicit and implicit discrete-time Euler schemes



TABLE III
OPTIMIZED PARAMETERS

Method Parameters Cost (2)
Collocated PD regulation kp=8e+02, kd=3e+04 19161
Quasi-PID kp=1e+04, kd=6e+04, ki=1e+00, kϕ1=0, kϕ2=4e-04, λ = 5e+ 04 18601
Noncollocated PD regulation (first angle) kp=1e+04, kd=4e+04, ka=0 26400
Noncollocated PD regulation (last angle) kp=1e+03, kd=3e+04, ka=0 20078
Collocated PD tracking kp=2e+02, kd=2e+04, L0=3e+03, Z=3e+03, ϕ=0 31548
PD-PD α1=1e+04, α2=4e+04, α3 =3e+04 , α4 =-9e-01, 26022
Explicit single-pendulum SMC (first angle) c1=4e-02, c2=0, c3 =4e-02 , c4 =0 , k=3e-01 , η =2e-05 25723
Implicit single-pendulum SMC (first angle) c1=4e-02, c2=0, c3 =4e-02 , c4 =0 , k=3e-01 , η =2e-05 25720
Explicit single-pendulum SMC (last angle) c1=4e-02, c2=0, c3 =0 , c4 =0 , k=3e-01 , η =1e-05 26382
Implicit single-pendulum SMC (last angle) c1=4e-02, c2=0, c3 =0 , c4 =0 , k=3e-01 , η =2e-05 26384
Explicit double-pendulum SMC λ=2e+01, α=3e+00, β=1e+02 , K =6e+03 , c=9e+03 3072729
Implicit double-pendulum SMC λ=2e+00, α=4e+00, β=3e-08 , K =3e+00 , c=4e-01 46587
PD energy (first angle) kp=1e+03, kd=3e+04, kq=1e+05 , λ =1e+00 , ζ=4e+00 18806
PD energy (last angle) kp=4e+03, kd=3e+04, kq=3e+04 , λ =1e-02 , ζ=2e+07 19420
Coupling tracking (first angle) kp=5e+03, kd=7e+03, λ=6e-01 122748
Coupling tracking (last angle) kp=6e+03, kd=1e+04, λ=0 123504

since the discretization of discontinuous (set-valued) terms
may affect the results [17]. Moreover, the single-pendulum
controllers are implemented with the first- and the last- sway
angles as feedbacks in two different implementations which
are indicated by “first” and “last” in the tables. Another
observation from Table III is that the implicit discretization
of the double-pendulum SMC has achieved a smaller cost
than the explicit one.

The simulations have been conducted in Simulink using
Simscape Multibody toolbox. The ode15s solver has been
employed to solve the equations from t = 0s to t = 100s on
the 20-link pendulum system with nominal condition shown
in Table V without any disturbance, initial sway, or measure-
ment noise under two different scenarios, i.e., regulation and
tracking, in Sections IV-B and IV-C, respectively. Moreover,
a worst case scenario has been considered in Section IV-D
to evaluate the robustness of the methods.

B. Regulation performances

A trajectory has been selected as follows to evaluate the
controllers under the regulation scenario, which is com-
posed of three constant values of acceleration. The reference
position for 0 ≤ t ≤ 4 is xd(t) = 3.5t2/8 + 1, for
4 < t < 8 is xd(t) = 3.5t − 6, for 8 ≤ t ≤ 12 is
xd = −3.5t2/8 + 10.5t − 34, for t > 12 is xd(t) = 29,
and xd(t) = 0,∀t > 12s. Moreover, the cart starts from the
origin, i.e., x(0) = 0.

The results of this simulation are summarized in Table IV.
Since the system is not disturbed, even the performances of
the open-loop methods are comparable with the closed-loop
ones. Considering Table IV, one can see that the unshaped
control shows the smallest amount of L̃2(ep) after the
collocated PD tracking controller. However, this method is
not the best in minimizing the cart position error and L̄2(ea).
According to this simulation, the collocated PD tracking
controller looks to be the best in minimizing the payload
position under this unperturbed condition. Another obser-
vation is that the SMC designed for the double-pendulum
system shows the worst responses. It can also be seen from
Table IV that the open-loop control methods use the smallest

TABLE IV
RESULTS FOR THE REGULATION

Method L̃2(ep) L̃2(ec) L̄2(ea) L̃2(F )
Unshaped input 1.08 1.20 7.08 15795
ZV 2.14 2.18 5.59 12611
ZVD 3.13 3.12 4.71 11020
Collocated PD 2.12 2.07 2.22 12924
quasi-PID 1.38 1.27 2.84 15360
Non.CO.PD.Reg. (first) 2.14 2.09 2.21 12857
Non.CO.PD.Reg. (last) 1.37 1.09 3.77 20516
Collocated PD Tracking 0.55 0.35 4.28 18035
PD-PD 1.40 1.11 3.74 20745
SMC-single-first (explicit) 1.39 1.10 3.77 20787
SMC-single-first (implicit) 1.39 1.10 3.77 20787
SMC-single-last (explicit) 1.37 1.09 3.78 20499
SMC-single-last (implicit) 1.37 1.09 3.79 20523
SMC-double (explicit) 21.65 21.64 15.25 99533
SMC-double (implicit) 1.86 1.84 14.10 94108
PD energy (first) 2.00 1.96 2.23 12398
PD energy (last) 2.14 2.10 2.14 12303
Coupling tracking (first) 1.17 1.14 3.96 16161
Coupling tracking (last) 1.11 1.07 4.04 16755

TABLE V
PARAMETERS OF THE CRANE USED IN THE SIMULATIONS

number of cables 8
cart mass 10tons
hook mass 13.6tons
payload mass 40tons
hook to load distance 1m
damping coefficient for the joints 0.2 × 8 (NM/(deg/s))
joint flexibility coefficient 0.1 × 8 NM/deg
cart to payload distance 10m
controller sampling time 50ms
simulation time 100s
delay in the feedback’s path 100ms
force saturation bound ±105N

amount of control energy L̃2(F ) since they do not inject
virtual damping to the system.

C. Tracking performance

Another reference trajectory, i.e., xd(t) = 5 sin(ωt),
has been selected in this section to study the tracking
performances of the methods with the same parameters as
Section IV-B, and the results are shown in Table VII for



TABLE VI
OBJECTIVE FUNCTIONS

variables definition
ep = xp − xd Payload position error
ec = xc − xd Cart position error

L̃2(X) = 103L2(X)/length(X) L̃2 norm

L̄2(X) = 105L2(X)/length(X) L̄2 norm

ea(t) =
∑n

i=1 |θi(t)| Total sway

TABLE VII
RESULTS FOR THE TRAJECTORY TRACKING

Method L̃2(ep) L̃2(ec) L̄2(ea) L̃2(F )
Unshaped input 57.51 57.51 1.46 8932
ZV 56.48 56.47 1.39 8495
ZVD 55.35 55.34 1.33 8106
Collocated PD 1.64 1.60 1.98 9418
quasi-PID 0.84 0.71 2.54 11523
Non.CO.PD.Reg. (first) 1.66 1.61 1.97 9392
Non.CO.PD.Reg. (last) 0.91 0.73 2.71 12063
Collocated PD Tracking 0.49 0.42 2.00 10024
PD-PD 0.92 0.74 2.59 12064
SMC-single-first (explicit) 0.91 0.73 2.61 12053
SMC-single-first (implicit) 0.91 0.73 2.61 12053
SMC-single-last (explicit) 0.91 0.73 2.72 12062
SMC-single-last (implicit) 0.91 0.73 2.72 12063
SMC-double (explicit) 3.34 3.35 14.05 99541
SMC-double (implicit) 2.62 2.60 21.65 92152
PD energy (first) 2.70 2.48 6.12 24375
PD energy (last) 1.81 1.74 2.07 10165
Coupling tracking (first) 0.96 0.86 1.81 10612
Coupling tracking (last) 0.67 0.59 1.84 10197

ω = 0.2 rad/s. The first observation is that the tracking
controllers, i.e., collocated PD tracking and coupling tracking
achieve the best results. It can be seen also that for the
noncollocated tracking one, i.e., coupling tracking it is better
to sense the last sway angle rather than the first one.

According to Table VII it can be seen that the open-loop
methods are the worst in the case of tracking for both cart
and the payload. On the other hand, as before, the open-loop
methods are the best in the case of the control energy and
the sway reduction. Similar to the previous case, the SMC
designed for the double-pendulum as well as the PD energy
with the first angle sensing have achieved the worst results
in terms of tracking for both cart and the payload as well
as the control energy and sway angles. However, as can be
seen, the PD energy can achieve better responses with a sway
sensor on the last angle.

The tracking performances of the controllers for the posi-
tion trajectory xd = 5 sin(ωt) with different ω are illustrated
in Fig. 2. From this figure, one can see that the open-loop
methods are too sensitive to the frequency of the trajectory.
Moreover, the tracking controllers show the smallest L̃2(ep)
and their responses are nearly insensitive to ω.

D. Worst case regulation scenario

To study the robustness of the controllers, a simulation is
conducted under a perturbed condition. The trajectory and
the conditions are the same as Section IV-B except for the
following perturbations:

TABLE VIII
RESULTS FOR THE WORST-CASE REGULATION SCENARIO

Method L̃2(ep) L̃2(ec) L̄2(ea) L̃2(F )
Unshaped input 124.37 124.33 62.51 15797
ZV 126.53 126.51 66.94 12612
ZVD 126.53 126.53 65.63 11020
Collocated PD 3.22 2.98 37.25 24980
quasi-PID 2.14 1.88 35.42 32055
Non.CO.PD.Reg.1 3.25 3.02 37.46 24849
Non.CO.PD.Reg.n 2.40 1.96 36.59 39332
Col.PD.Track 4.14 3.65 40.38 39716
PD-PD 2.52 2.06 36.41 39817
SMC-single-first (explicit) 2.54 2.08 34.75 41155
SMC-single-first (implicit) 2.54 2.08 34.73 41144
SMC-single-last (explicit) 2.40 1.96 36.49 39302
SMC-single-last (implicit) 2.40 1.96 36.66 39358
SMC-double (explicit) 15.38 15.29 31.84 99698
SMC-double (implicit) 6.00 5.85 36.95 95467
PD energy (first) 3.22 2.95 35.85 33915
PD energy (last) 3.37 3.13 37.38 24849
Coupling tracking (first) 9.43 8.54 53.41 66621
Coupling tracking (last) 7.08 6.33 42.89 49187

• The initial sway angle is θi = αi15
o with αi = 1 for

i = 2k and αi = −1 for i = 2k+1, and k = 1, 2, . . . , 9.
• All measurements are contaminated with 90dB signal-

to-noise ratio (SNR) white noise.
• Damping on the cart is equal to 1000v(t)N to simulate

a kind of friction between the cart and the surface.
• cart and payload disturbances (pulse forces with period

20s and amplitude ±19600N are applied directly to the
cart and the payload)

The results of this simulation are shown in Table VIII.
While, as before, the open-loop methods, e.g., unshaped
input, ZV, and ZVD, show the smallest control effort, they
were completely sensitive to the perturbations, and show
the worst tracking performances for the cart and payload
as well as the worst sway control. Another observation from
Table VIII is that while the tracking controllers show almost
the best responses for both regulation and tracking under the
unperturbed cases in Sections IV-B and IV-C, they show the
worst responses after the open-loop method and the SMC
designed for the double pendulum system. The reason is
that, according to Table I, and similar to the open-loop
methods, the tracking controllers depend on the feedfor-
ward term which decreases their robustness. Moreover, the
SMCs designed for the single-pendulum system show the
best responses which indicate their robustness. Furthermore,
as before, it seems that the controllers designed for the
single-pendulum system behave better when the last angle
is measured instead of the first one.

V. CONCLUSIONS

Some known controllers are reviewed in case of their
structure, feedback, parameters, and stability type. The con-
trollers have been implemented on a model composed of
a 20-link pendulum attached to a cart, which can capture
both global nonlinearities and the cables’ flexibility. The
behavior of the controllers for the regulation and the tracking
scenarios has been studied under both nominal and perturbed



Fig. 2. L̃2 norms of the payload position tracking error for the trajectory xd(t) = 5 sin(ωt)

conditions. The implementation of the open-loop schemes is
simple and they need the smallest amounts of control energy.
However, their other performances like payload positioning
are worse than the general behavior of the closed-loop
methods especially for the tracking and perturbed conditions.
In an unperturbed case, the noncollocated feedback may not
provide any advantages over the collocated one. However,
under the perturbed case, the noncollocated feedback can im-
prove the performances. While the tracking controllers show
the best results for the unperturbed case, they behave a kind
of less than average in the presence of perturbation since they
depend on the feedforward term. Measuring the sway angle
for the single-pendulum-based controllers is another issue
since according to the results, measuring different angles
can change the results. In general, measuring the last angle
leads to better results compared to measuring the first one.
Moreover, the discretization affects the results corresponding
to the double-pendulum SMC, where the implicit method
gives better results than the explicit one. Future study will
address the 3D operational space case, and the multi-cable
case. Testing other cable’s models (like FEM ones [18]) and
improving the gains tuning optimisation code, are also future
goals.
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