An assessment of structure-activity relationship performance in predicting the gas-phase rate coefficients of organic compounds with hydroxyl, ozone, nitrate and chlorine

Max McGillen, Bernard Aumont, Wahid Mellouki, John Orlando, Bénédicte Picquet-Varrault, Tim Wallington, Bill Carter An assessment of structure-activity relationship performance in predicting the gas-phase rate coefficients of organic compounds with hydroxyl, ozone, nitrate and chlorine

Max McGillen, Bernard Aumont, Wahid Mellouki, John Orlando, Bénédicte Picquet-Varrault, Tim Wallington, Bill Carter

Outline

- What do we want from SARs?
- The dataset
- Performance of SARs for several OH systems:
 - Jenkin et al. (2018a,b)
 - Carter SAPRC mechanism (2018?)
- A critical interpretation of current OH SARs
- Future outlook

SARs, what are they good for?

- The oxidation of VOCs in the atmosphere produces a huge number of compounds
 - For example, the Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) produces ~400,000 species for α -pinene oxidation alone*
- The next generation of detailed atmospheric chemical mechanisms will employ automated schemes such as GECKO-A and SAPRC
 - But the experimental dataset contains only ~1100 species
- So we have a potentially very large number of rate coefficients that require estimation

*This is the number of species in the mechanism, and does not reflect the importance of individual species within the model that would come from a full simulation of this system

Number of OH radical rate coefficients within datasets

- >1100 species
- Present dataset is more comprehensive than the JPL, IUPAC and Calvert et al. reviews
- Cannot quantify overlap with the NIST database presently

The SARs

- Jenkin et al. (2018a,b)
 - Alkanes: Similar to Kwok and Atkinson (1995)
 - Alkenes: isolated and conjugated (Peeters et al. 2007)
 - Aromatics: specific to this work
- SAPRC-16, Carter et al. (2018?)
 - Alkanes: Similar to Kwok and Atkinson (1995)
 - Alkenes: Similar to Kwok and Atkinson (1995)
 - Aromatics: specific to this work

Results

- Despite differences in estimation methods, results are very similar, with the vast majority of estimates within a factor of 2
- Unsaturated oxygenates appear to be better estimated by SAPRC

Different reaction sites

McGillen *et al*. (2016) experimental observations of competing, and complex T-dependent reaction channels in *i*-butanol

Reaction channels within sites

Estimated $\kappa_{Eckart}(T)$, Paraskevas *et al.* (2015)

Temperature dependence

$$k_{\text{total}}(T) = \sum_{i} \kappa_{i} A_{i} e^{-E_{i}/RT}$$

- For functionalized molecules, i probably larger than number of reaction sites
- $\kappa(T)$ is best described by a 4th-order polynomial
- For abstraction reactions, channels that involve hydrogenbonded complexes show negative T dependence, whereas other channels are positive → curvature
- Is Atkinson's group-additivity approach insufficiently parameterized to handle this kind of complexity?

$$k(\text{CH}_3\text{-X}) = k_{\text{prim}}F(X),$$

 $k(\text{X-CH}_2\text{-Y}) = k_{\text{sec}}F(X)F(Y),$
 $k(\text{X-CH}(\text{-Y})\text{-Z}) = k_{\text{tert}}F(X)F(Y)F(Z)$

Current SARs are restricted to mainly Arrhenius behavior (<400 K), or room temperature in the case of SAPRC (cf. earlier SARs such as Kwok and Atkinson (1995) which make quite accurate estimates at >1000 K)

Current problems

- SARs are essentially untested for the vast majority of oxidation products expected in the atmosphere (mode f = 4-5, compared with only one f = 4 compound in our dataset so far)
- T-dependence is generally much more complex than the algorithms of many current SARs afford
- As SARs learn to describe more data at and around room temperature, can we expect them to become less physical and possibly less general and predictive?

Possible solutions

- Given that the dataset for the foreseeable future is not sufficiently functionalized, a range of estimation techniques may be best
- Targeted laboratory studies on more functionalized species
- Could we derive more physical SAR parameters from datasets outside of the atmospheric T range? i.e. away from tunneling, H-bonding, etc.
- Could we restructure SARs to make them more physical? e.g. describe tunneling, H-bonding and Arrhenius parameters separately

Acknowledgements

- We acknowledge the Coordinating Research Council's Atmospheric Impacts Committee who gave the authors their support
- My co-authors
- Thank you to the organizers of GK2018
- Thank you for listening