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Outline

e What do we want from SARs?

e The dataset

* Performance of SARs for several OH systemes:

* Jenkin et al. (2018a,b)
e Carter SAPRC mechanism (2018?)

* A critical interpretation of current OH SARs

 Future outlook



SARs, what are they good for?

* The oxidation of VOCs in the atmosphere produces a
huge number of compounds

* For example, the Generator for Explicit Chemistry and Kinetics
of Organics in the Atmosphere (GECKO-A) produces ~400,000
species for a-pinene oxidation alone*

* The next generation of detailed atmospheric chemical
mechanisms will employ automated schemes such as
GECKO-A and SAPRC

e But the experimental dataset contains only ~1100 species

* So we have a potentially very large number of rate
coefficients that require estimation
*This is the number of species in the mechanism, and does not reflect

the importance of individual species within the model that would
come from a full simulation of this system



Calvert

Number of OH radical
rate coefficients within
datasets

* >1100 species

* Present dataset is
more comprehensive
than the JPL, IUPAC
and Calvert et al.
reviews

 Cannot quantify
overlap with the NIST
database presently
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The SARs

* Jenkin et al. (20183,b)
e Alkanes: Similar to Kwok and Atkinson (1995)
» Alkenes: isolated and conjugated (Peeters et al. 2007)
* Aromatics: specific to this work

e SAPRC-16, Carter et al. (20187?)
e Alkanes: Similar to Kwok and Atkinson (1995)
e Alkenes: Similar to Kwok and Atkinson (1995)
* Aromatics: specific to this work
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Results

Jenkin et al. (2018)

SAPRC-16 (preliminary)
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Despite differences in estimation methods, results are
very similar, with the vast majority of estimates within a

factor of 2

* Unsaturated oxygenates appear to be better estimated

by SAPRC
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Coverage of dataset

Dataset,
this work
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Different reaction sites
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McGillen et al. (2016) experimental observations of competing, and

complex T-dependent reaction channels in i-butanol



Reaction channels within sites
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Estimated k¢ ,(T), Paraskevas et al. (2015)
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Estimated k¢ ,(T), Paraskevas et al. (2015)
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Estimated k¢ .+(T), Paraskevas et al. (2015)
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Temperature dependence
Kiorat(T) = )

KiAie EL/RT
i

For functionalized molecules, i probably larger than number of

reaction sites

k(T) is best described by a 4t-order polynomial

For abstraction reactions, channels that involve hydrogen-

bonded complexes show negative T dependence, whereas

other channels are positive — curvature

Is Atkinson’s group-additivity approach insufficiently

parameterized to handle this kind of complexity?

k(CH3-X) = kprim F (X)),

k(X-CHz-Y) = kgee F(X)F(Y),

k(X-CH(-Y)-Z) = ken F(X)F (Y)F(Z)

Current SARs are restricted to mainly Arrhenius behavior (<400

K), or room temperature in the case of SAPRC (cf. earlier SARs

such as Kwok and Atkinson (1995) which make quite accurate

estimates at >1000 K)




Current problems

* SARs are essentially untested for the vast majority
of oxidation products expected in the atmosphere
(mode f = 4-5, compared with only one f=4
compound in our dataset so far)

* T-dependence is generally much more complex
than the algorithms of many current SARs afford

* As SARs learn to describe more data at and
around room temperature, can we expect them
to become less physical and possibly less general
and predictive?



Possible solutions

* Given that the dataset for the foreseeable future is
not sufficiently functionalized, a range of estimation
techniqgues may be best

* Targeted laboratory studies on more functionalized
species

* Could we derive more physical SAR parameters
from datasets outside of the atmospheric T range?
i.e. away from tunneling, H-bonding, etc.

* Could we restructure SARs to make them more
physical? e.g. describe tunneling, H-bonding and
Arrhenius parameters separately
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