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Dragon sequence on light�eld display VPT - 64 spp - 75 min MVPT - 16 spp natives - 75 min
VPT

SMAPE 0.021
relMSE 0.003
RMSE 0.029

MVPT
SMAPE 0.011
relMSE 0.001
RMSE 0.016

Figure 1: We render a sequence of 45 frames of the Dragon cloud scene including heterogeneous medium to be displayed on a lightfield
screen. Instead of rendering the sequence frame by frame using volumetric path tracing (VPT), our method (MVPT) jointly renders the
sequence at once reusing some computation during the simulation. We observe a significant variance reduction at equal time when rendering
the whole sequence – or reach a desired quality at lower time. In addition the correlation of reused paths between nearby frames almost
makes the flickering caused by dissimilar random sampling dissapear. This makes the sequences pleasier to the eye even at low sample count.

Abstract

Rendering photo-realistic images using Monte Carlo path tracing often requires sampling a large number of paths to reach
acceptable levels of noise. This is particularly the case when rendering participating media, that complexify light paths with
multiple scattering events. Our goal is to accelerate the rendering of heterogeneous participating media by exploiting redun-
dancy across views, for instance when rendering animated camera paths, motion blur in consecutive frames or multi-view
images such as lenticular or light-field images. This poses a challenge as existing methods for sharing light paths across views
cannot handle heterogeneous participating media and classical estimators are not optimal in this context. We address these
issues by proposing three key ideas. First, we propose new volume shift mappings to transform light paths from one view to
another within the recently introduced null-scattering framework, taking into account changes in density along the transformed
path. Second, we generate a shared path suffix that best contributes to a subset of views, thus effectively reducing variance.
Third, we introduce the multiple weighted importance sampling estimator that benefits from multiple importance sampling for
combining sampling strategies, and from weighted importance sampling for reducing the variance due to non contributing
strategies. We observed significant reuse when views largely overlap, with no visible bias and reduced variance compared to
regular path tracing at equal time. Our method further readily integrates into existing volumetric path tracing pipelines.

CCS Concepts
• Computing methodologies → Computer graphics; Ray tracing; Visibility;

Keywords: Path tracing, Path reusing, Path sharing, MIS

1. Introduction

Taking advantage of spatial or temporal coherence by reusing the
same samples in similar rendering configurations (stereo, tempo-
ral sequences, camera arrays, etc.) has proved to drastically re-

duce rendering times in the context of offline Monte Carlo inte-
gration [Sch19, FINB19, HBGM11, MFSSK06, HDMS03, AH95,
AH93]. Indeed such techniques share parts of paths that are difficult
to obtain among several views to amortize the cost of sampling and
evaluating the entire paths. To the best of our knowledge reusing
paths has never been proposed for heterogeneous volumetric light
transport. Building upon recent work for rendering heterogeneous
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participating media [MGJ19], we introduce a novel way of trans-
forming and reusing null scattering chains to leverage volumetric
path reusing in the context of rendering multiple views.

Multi-view rendering consists in finding some point within the
scene visible from one camera, which we refer to as pivot point, and
reconnecting it towards other cameras for which the pivot is also
visible. The chain of events connecting the camera to the pivot point
forms the path prefix. The key idea of the technique is to mutualize
the construction and the evaluation of the subpath following the
pivot – the path suffix. As the number of cameras increases, the
construction cost of the path suffix is amortized as it is massively
reused among cameras.

Once a base prefix has been sampled from one camera we
express the new shifted prefixes, that connect the pivot to other
cameras, as deterministic transformations (i.e. shift mappings) of
the base prefix. Existing solutions to multi-view rendering require
knowing the exact probability density function (pdf) of the path
prefixes in order account for the associated change in density. We
make use of a closed-form pdf expressed by Miller et al. for het-
erogeneous participating media [MGJ19], and design a new way of
transforming chains of delta tracking events [NGHJ18] from one
camera to another.

Classical unbiased multiple importance sampling (MIS) can be
used to accumulate and weight all contributions of these base and
shifted paths. However, these estimators are not optimal for vari-
ance reduction when the pdfs of transformed prefixes are very dif-
ferent from the base ones (see Sec. 4). To further reduce the vari-
ance, we hence combine MIS with weighted importance sampling
(WIS) estimators [BSW00] to obtain a new multiple weighted im-
portance sampling (MWIS) estimator. This estimator allows our
technique to remain consistent, with a rapidly vanishing bias that is
imperceptible in practice, even at low sample count.

Our pipeline consists of three main contributions. First, we in-
troduce a path transformation between multiple views – along with
its Jacobian – that benefits from Miller et al. null scattering frame-
work for heterogeneous participating media [MGJ19]. Second, we
importance sample path suffixes in a way that they best contribute
to multiple views. Third, we develop the MWIS estimator to com-
bine contributions from each view in a consistent way with lower
variance than MIS. Our overall pipeline achieves significant reuse,
in that the number of samples reused in one frame linearly in-
creases with the number of views. We showcase our technique
on videos of dynamic scenes with motion blur, lenticular images,
lightfield images and printed holographic stereograms (see Fig. 7).
Our pipeline also achieves significant speedups for wider baselines,
which we demonstrate with animated camera paths on static scenes
(see Fig. 8). Finally, the noise within our renderings is consistent
across views which improves temporal consistency.

2. Related work

Light transport in participating media. The light transport inte-
gral [Kaj86, VG97], its extension to participating media [PKK00]
and null scattering [MGJ19] formulate the estimate of a pixel j as

the integral of all light contributions reaching the pixel:

I j =
∫

Ω

f j(x̄)dµ(x̄) (1)

where Ω is the union of all light paths x̄ of finite lengths, dµ is
the product of the measures of the differential area/volume ele-
ments at each path vertex, f j is the measurement contribution func-
tion (MCF) of the path. The MCF is the product of the filter re-
sponse W j, the transmittance T , the generalized scattering function
fs (bidirectional scattering distribution function or phase function),
the geometric terms G and the emitted radiance Le between a cam-
era vertex x0 and a light vertex xk:

f j(x̄) =W j(x0,x1)G(x0,x1)T (x0,x1)Le(xk,xk−1)·[
k−1

∏
i=1

fs(xi−1,xi,xi+1)G(xi,xi+1)T (xi,xi+1)

]
.

(2)

Notations can be found in the work of Novak et al. [NGHJ18], and
are reproduced in Appendix A for completeness.

Monte Carlo estimation. Monte Carlo integration consists in nu-
merically evaluating the integral of a function f by sampling it at
random locations {x̄i}i where the x̄i follow some probability den-
sity function (pdf) p. The resulting estimator is În = 1

n ∑
n
i

f (x̄i)
p(x̄i)

,
where n is the total number of samples. This tool has been made
popular within computer graphics for its ability to evaluate the light
transport integral, via methods such as path tracing.

Such a stochastic approach results in noisy estimates, unless a
large number of samples is used. A challenge is thus to reduce the
variance of this estimator, effectively reducing noise, notably for
rendering purposes.

Reusing paths. Several authors proposed solutions to reuse parts
of paths across several pixels integrals, by transforming them, to
amortize the cost of construction and evaluation of the reused sub-
paths. Given a base path x̄ with joint pdf p(x̄) and a bijective trans-
formation S – the shift mapping – the base path is transformed such
that x̄′ = S(x̄). The pdf of a transformed sample x̄′ takes into ac-
count the change of density through the Jacobian determinant of the

transformation, p(x̄′) = p(x̄)
∣∣∣det

(
dS(x̄)

dx̄

)∣∣∣−1
= p(x̄)

∣∣S′ (x̄)∣∣−1.

These transformations have been used in several applications,
such as discrete path reusing [BSH02,XS07,BPE17,BWP∗20] and
path space filtering [KDB14,BFK19,WGGH20], that share several
paths suffixes for a set of prefixes using path reconnection. Gradi-
ent domain rendering approaches sample and estimate gradients as
well as an estimate of the image and perform a Poisson reconstruc-
tion [GHV∗18, BPE17, MKD∗16, KMA∗15, LKL∗13, HGP∗19].
The construction of correlated gradients paths uses pixel shifts –
i.e. that transforms film positions in the image, specular chains
shifts such as manifold exploration [JM12] or half vector copy
[KMA∗15] as well as path reconnections. Another class of methods
additionally uses lens shifts – i.e. that transforms the lens interac-
tion of a prefix – to either supersample depth of field on a single
camera [Sch19], or to connect the prefix to another camera lens in
the context of multiple view rendering of surfaces [HBGM11, MF-
SSK06, HDMS03, AH95, AH93, FINB19, Sch19]. For camera and
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scene animation, paths can be reused along the time dimen-
sion [Sch19, MKD∗16] using time shifts. Schwarzhaupt reevalu-
ates occlusions due to object or camera motion, but not the shading
to remain tractable [Sch19]. More recently, a method for real-time
sub-path re-use has been proposed for volume rendering [LWY21],
but the proposed estimator is not consistent or precludes combining
direct illumination techniques which is possible with the frame-
work from Miller et al. [MGJ19]. Another approach makes use
of primary space control variates that approximate the integrand
with polynomials for path tracing [CJMn21], but this is limited to
low-dimensional integrals. Leimkühler et al. propose a warping ap-
proach to efficiently generate multiple views but this technique is
limited to surfaces, do not re-evaluate view dependent shading and
work best with very close views [LSR17].

Null-scattering framework. Until recently, no path formula-
tion provided the closed-form pdf associated with the free-flight-
distance sampling – the probability density of light interacting with
the medium after a certain distance along the line of flight – and
transmittance evaluation of ordinary heterogeneous participating
media (see the survey of Novak et al. [NGHJ18]). Miller et al. ad-
dressed this issue within a null scattering framework that takes into
account fictitious (null) particles in the medium [MGJ19]. They
render heterogeneous media with the help of an upper bound µ̄ of
the extinction coefficient µt , and the transmittance T̄ of the com-
bined homogenous medium which has a trivial closed-form expres-
sion, T̄ (x,y) = exp(−µ̄ · ‖y− x‖).

We propose new shift mappings that transforms these null par-
ticles in path space from one base path traversing media towards
other shifted paths. We demonstrate their benefit by extendind
multi-view rendering to support dense heterogeneous media, by
combining base and transformed paths within a single pixel esti-
mator.

Combining sampling techniques. Several sampling strategies,
with pdfs {pk}k, can be used and combined to form a single estima-
tor – using the multiple importance sampling framework [VG95].
Weighting these strategies to obtain a single value of lowest pos-
sible variance is a difficult task [KVG∗19] – in fact, poor weights
can actually increase variance. A simple choice, the balance heuris-
tic, weights each sample by the relative contribution of its own pdf,
wk(xi) =

nk pk(xi)
∑l nl pl(xi)

, with nk the number of samples for the strategy k
of pdf pk, which is optimal among positive weights for one-sample
estimators [VG95]. Kondapaneni et al. proposed optimal weights
that are not constrained to be positive and that provably minimize
the variance of the multi-sample estimators [KVG∗19] of the form
∑k ∑i wk(xi)

f (xi)
nk pk(x j)

. However, evaluating these optimal weights re-
quires m×m integrations for m strategies.

In the context of multiple view rendering, early approaches de-
signed for surfaces and diffuse materials made assumptions po-
tentially introducing bias and/or variance [HBGM11, MFSSK06,
HDMS03, AH95, AH93]. Recently, both Fraboni et al. [FINB19]
and Schwarzhaupt [Sch19] propose to reduce these artifacts by re-
jecting degenerated transformations, thus limiting Jacobian varia-
tions and the variance introduced in the MIS combination. Still,
these approaches do not produce the best possible variance reduc-
tion, due to the use of a multi-sample estimator. In our context,

each pixel is considered as a potential sampling strategy, mak-
ing the optimal MIS approach [KVG∗19] intractable with mil-
lions of such strategies. The stochastic variant of continuous MIS
(SMIS) [WGGH20] is also not applicable for multi-view rendering
due to the random selection of strategies, which will fail at selecting
pixels that are likely to share paths.

An additional source of variance in the MIS combination comes
from the fact that shifted paths do not follow the base pdf – i.e. the
pdf of sampling the path from the pixel directly – which is in fact
the ideal pdf regarding the terms of the integrand. Fortunately, a bi-
ased but consistent technique called weighted importance sampling
(WIS) has been proposed to simulate the use of a known pdf p, the
target pdf, that is good regarding the integrand, with a set of sam-
ples drawn from an arbitrary pdf q, the source pdf. This technique
has been used in rendering applications [HHM18, BSW00, Kel96].
Bitterli et al. showed that the resampled importance sampling (RIS)
estimator [TCE05] is a bias corrected version of WIS [BWP∗20].
However resampling prefix candidates would be intractable in our
context as paths are unbounded.

We combine MIS and WIS weights to build a self normalizing
multi-strategy estimator that benefits from both techniques. There-
fore, a sample considered poor with a low source pdf value could in
fact be good for the integrand with a high target pdf value. This es-
capes Veach’s theoretical bounds for optimal weights as poor sam-
ples do not increase the variance of the estimator anymore if p is
well chosen.

3. Multiple View Path Construction

We first generate a ray by importance sampling a camera shutter,
lens and film. If a medium boundary is found, delta tracking is
used to sample interactions distances across the medium and event
sampling to determine the interactions types [NGHJ18, MGJ19].
This method samples a homogenized version of the participating
medium. The majorant extinction coefficient of the homogenized
medium is an upper-bound of the real one expressed as the sum of
the real extinction and a fictious complementary one. The sampled
interaction is then considered null with probability equal to the ratio
between fictious and homogenized extinctions. If a null interaction
is sampled, we continue the sampling routine until either we leave
the medium or a real interaction is found.

Finally, the complete path prefix is a chain of random events:
film interaction, lens interaction, {0, . . . ,m} null interactions in the
medium, and a last interaction either on a surface or a real medium
interaction. This last interaction, which we will refer to as the pivot,
is the key to our work since it can be visible from other points of
view. Before constructing the path suffix, we connect every camera
to the pivot by shifting (i.e. transforming) all the events composing
this base prefix to form shifted prefixes, as we describe next.

3.1. Prefix shift

Once a base prefix is generated and the pivot is found, we try to
build shifted prefixes that connect the pivot to other cameras, the
targets as depicted in Fig. 2. The shifted chain must have the same
number of random events as the base one, in order to be defined
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on the same probability space. We start by shifting the base lens
interaction to the lens of a target camera. We then check that the
pivot is not occluded and falls within the target camera view frus-
tum and exposure time. Next, the remaining sampled events along
the base prefix are shifted to build another prefix connecting a new
lens event to the pivot interaction. A ray is traced from the target
lens to the pivot to collect the target medium sections. If only one of
either the base or shifted prefix crosses medium sections, we cannot
construct a valid shift because the number of random events differs
between the two chains. This can happen on the volume silhouettes
and may lead to undersampling in these areas.

If neither of the prefixes cross any medium section, the shift is
complete as there is no medium interaction, but only a surface in-
teraction at the pivot that remains unchanged.

Our goal is then to define a bijective transformation of the base
medium interactions, such that the shifted medium interactions
fall within the target medium sections of the target segment. The
medium interaction depths can thus be mapped back and forth to
unique and valid interactions on base and target prefixes.

We also need the Jacobian of the transformation in closed form
to correctly account for the change in density. All required trans-
formations are described next. In the following, index i denotes the
pixel used to generate the base prefix and index j denotes another
pixel and its shifted prefix.

Time,
Lens,

Film
shifts

Pivot

Null interactions shifts

base prefix

Figure 2: Prefix chains shift configuration

Shutter time shift. We construct paths at fixed time since deal-
ing with object motion would require re-evaluating occlusions and
shading on the complete path due to moving geometry – the cost
of the time shift would be equivalent to constructing a full path.
Hence the base shutter time sampled within the camera shutter
interval is reused x′time = xtime, and the Jacobian of the shift is∣∣S′i→ j(xtime)

∣∣= 1.

Lens shift. The lens event is shifted by reusing the random num-
bers that sampled the base lens interaction [KSKAC02, HGP∗19],
used similarly in the work of Schwarzhaupt [Sch19] and Fraboni
et al. [FINB19]. It consists in transforming the point on the camera
lens aperture (a 2D shape) towards another camera lens aperture.
Assuming that both apertures are disk-shaped, and given a base
lens interaction xlens, this results in the simple transformation:

x′lens =
r′

r
· xlens with Jacobian

∣∣S′i→ j(xlens)
∣∣= r2

r′2
(3)

where r and r′ are base and target aperture radii.

Film shift. After shifting the lens event, the film position is then
constrained by the refraction of the ray connecting the lens to the
pivot. Hence, we have to evaluate the position of the shifted film
interaction x′film using x′lens and x′pivot, as in light tracing or bidirec-
tional methods. Finally, the change of measure between the base
film interaction and the shifted one is accounted with the following
Jacobian [CTE05, LKL∗13]:∣∣S′i→ j(xfilm)

∣∣= g(xlens,xpivot)

g(xlens,xfilm)
·

g(x′lens,x
′
pivot)

g(x′lens,x
′
film)

(4)

where g(a,b) = D(a,b)
‖b−a‖2 and D(a,b) = | ~ωab · ~nb| if b is on a surface

else D(a,b) = 1.

Null interactions shift. Shifting medium interactions consists in
transforming the depth t of an interaction sampled using delta
tracking [NGHJ18, MGJ19] on the base prefix segment, to another
valid depth location t′ on the shifted segment. A valid shift location
should ensure that the pdf of the shifted interaction is well defined
– i.e. inside a medium.

Our null interactions shift accounts for the majorant optical
depth τ̄ along the ray segment between camera and pivot. The ma-
jorant optical depth is normalized along the base ray segment and
reused on the target ray segment. Thus, by construction, the shifted
interactions are ensured to fall within the target medium sections.
On the contrary, simpler shifts such as random numbers replay gen-
erate interactions that may fall outside the medium. Note that we
use the majorant optical depth because the true optical depth does
not in general have a closed form expression, or has one that is too
complex to inverse. On the contrary, the majorant optical depth is
piecewise linear on the medium sections and is thus always invert-
ible in closed form.

The majorant optical depth τ̄ is obtained by integrating the ma-
jorant extinction coefficient µ̄ from the medium entry to the inter-
action position:

τ̄(t) =
∫ t

0
µ̄(x)dx. (5)

As the majorant coefficient is constant over medium sections and
zero outside, the majorant optical depth is piecewise linear. It thus
can be obtained by summing over the medium sections crossed
along the prefix until reaching the interaction at depth t:

τ̄(t) =
nt

∑
k

µ̄k
(
min

(
t, tmax,k

)
− tmin,k

)
= µ̄nt

(
t− tmin,nt

)
+

nt−1

∑
k

µ̄i
(
tmax,k− tmin,k

) (6)

where tmin,k and tmax,k are the entry and exit depths of the k-th vol-
ume section and nt is the index of the volume section containing
depth t. In case of overlapping media, we replace the unique ma-
jorant by the sum of majorants in overlapping sections.

The mapping is then defined as the copy of the normalized ma-
jorant optical depths along the base and target rays segments:

τ̄
′(t′)

τ̄′max
=

τ̄(t)
τ̄max

⇔ τ̄
′(t′) =

τ̄
′
max

τ̄max
τ̄(t) (7)
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where τ̄max and τ̄
′
max are the total majorant optical depths along the

base and shifted prefixes. From Eq. 7 we can express the distance
t′ on the target segment as a function of t the distance on the base
segment:

t′ =
τ
′
max

τmax
· µ̄nt

µ̄′nt′
· t +R (8)

where R is a residual that does not depend on t nor t′, and nt is the
volume section index containing depth t on the base segment (resp.
nt′ for depth t′ on the target segment), see Appendix B for the com-
plete derivation. The Jacobian determinant of the transformation is:

∣∣S′i→ j(t)
∣∣= τ

′
max

τmax
· µ̄nt

µ̄′nt′
. (9)

We apply this transformation for each base null interaction. In the
presence of a single medium section on the base and target seg-
ments, this mapping corresponds to a linear scale of the majorant
optical depth. We discuss two other volume shift mappings in sup-
plementary materials.

Pivot shift / copy. The last interaction where the base and the
shifted prefix join can either be on a surface or in a medium
but its location stays fixed in space, hence x′pivot = xpivot and∣∣S′i→ j(xpivot)

∣∣= 1.

Jacobian and pdf evaluation. The complete shift of base prefix
x̄i from pixel i to pixel j generates a new chain x̄ j of m interactions
that connects the camera to the pivot. The Jacobian of the chain
transformation is the product of each independent shift Jacobian:∣∣S′i→ j (x̄i)

∣∣= m

∏
k=1

∣∣S′i→ j
(
xi,k
)∣∣ . (10)

Finally the pdf of the path x̄i from pixel i transformed to path x̄ j for
pixel j is given by:

pi→ j
(
x̄ j
)
= ci pi (x̄i)

∣∣S′i→ j (x̄i)
∣∣−1

. (11)

where ci denotes the relative number of samples for strategy i. We
additionnally compute the ideal pdf – i.e. as if the path x̄ j was sam-
pled directly from pixel j, which reads:

p j→ j
(
x̄ j
)
= c j p j

(
x̄ j
)∣∣S′j→ j

(
x̄ j
)∣∣−1︸ ︷︷ ︸

=1

= c j

m

∏
k=1

p j
(
x j,k
)

. (12)

Both pdfs are further used to compute combination weights ac-
counting for multiple strategies (see Sec. 4).

3.2. Computing path suffix

After finding a base pivot point and constructing the possible pre-
fixes by shifting all events along the base prefix, we can evaluate
direct and indirect illumination at once for all cameras with suc-
cessful shifts.

Direct illumination. The direct part is simple in the sense that
sampling light sources does not generally depends on prefix di-
rections, using for example next event estimation. We hence apply
regular light source sampling: we generate a light sample, compute

the common part of the contribution for all prefixes, and finally
multiply it by the scattering function and the path throughput asso-
ciated to each prefix j independently. We can further improve the
results by combining multiple direct illumination sampling tech-
niques [MGJ19].

Indirect illumination sampling. Indirect illumination is more
complex. We need to sample a single scattering direction to start
building the shared path suffix, but the scattering distribution func-
tion at the pivot interaction is generally view-dependent. This is
notably the case for mostly glossy and perfect specular materials,
and highly anisotropic medium phase functions.

We could sample the indirect direction w.r.t the base prefix scat-
tering function or w.r.t to a uniform mixture of the available pre-
fixes scattering functions. Sampling from the base prefix only, with-
out accounting for other cameras for which the pivot point is vis-
ible [HDMS03, MFSSK06, Sch19] tends to produce high variance
spikes in the images in our experiments. Instead, we choose the sec-
ond approach that considers all the cameras that could have gener-
ated the suffix path, which proved to be more robust in practice.

The next section discusses two ways to combine the base and
shifted prefixes contributing to a pixel.

4. Combining base and shifted samples

All base and shifted paths can be combined with a standard unbi-
ased MIS multi-sample estimator as summarized in Alg. 1. This is a
multi-sample estimator which incrementally accumulates weighted
base and shifted contributions for each pixel.

Algorithm 1 Multi-view path tracing with classical MIS. Note that
line 16 accumulates multi-sample MIS weighted contributions in
the pixel, but the estimator is not progressive. A full pass over all
pixels of all cameras is required to get a complete pixel value.

1: for each pixel i do
2: sample base prefix x̄i (Sec. 3)
3: Sr← 0
4: for each camera k do
5: // shift the base path x̄i to camera k through pixel j
6: x̄ j← shift(x̄i,k) . eval the shifted prefix x̄ j (Sec. 3.1)

7: pi→ j(x̄ j)← ci·pi(x̄i)
|S′i→ j|

. eval the shifted pdf (Eq. 11)

8: p j→ j(x̄ j)← c j · p j(x̄ j) . eval the ideal pdf (Eq. 12)

9: Sr← Sr +
p j→ j(x̄ j)
pi→ j(x̄ j)

10: end for
11: sample light sources and compute direct (Sec. 3.2)
12: sample a path suffix and compute indirect (Sec. 3.2)
13: for each prefix x̄ j associated with pixel j do
14: // eval MIS weights and accumulate contributions
15: wi(x̄ j)← 1

Sr
. eval the weight

16: I j← I j +wi(x̄ j) ·
f j(x̄ j)

pi→ j(x̄ j)

17: end for
18: end for

However, it suffers from two main sources of variance.

© 2022 The Author(s)



B. Fraboni & A. Webanck & Nicolas Bonneel & Jean-Claude Iehl / Volumetric Multi-View Rendering

−2.5 0.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0
Problem

5 (G)
?1(G)
?2(G)

−2.5 0.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0
Weighted histogram ?1(G)

F1(G)@1(G)

−2.5 0.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0
Weighted histogram ?2(G)

F2(G)?2(G)

−2.5 0.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0
Weighted histogram∑

8 F8 (G)@8 (G)

0 50 100
0

1

2

3

Averaged mean (5000 runs)

Expectation
�̂=,mis

0 50 100
0

1

2

3

Averaged rmse (5000 runs)

RMSE
(
�̂=,mis

)

0 50 100
0

1

2

3

Averaged variance (5000 runs)

V
(
�̂=,mis

)

0 50 100
0

1

2

3

Averaged bias (5000 runs)

B
(
�̂=,mis

)

Integration problem using MIS and two source densities p1 and p2

−4 −2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0
Problem

5 (G)
?0(G)
?1(G)
?2(G)

−4 −2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0
Weighted histogram ?1(G)

F1,mwis(G)?1(G)

−4 −2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0
Weighted histogram ?2(G)

F2,mwis(G)?2(G)

−4 −2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0
Weighted histogram

∑
8 F8,mwis(G)@8 (G)

0 25 50 75 100
0

1

2

3

Averaged mean (5000 runs)

Expectation
�̃=,mwis

0 25 50 75 100
0

1

2

3

Averaged rmse (5000 runs)

RMSE
(
�̃=,mwis

)
RMSE

(
�̂=,mis

)

0 25 50 75 100
0

1

2

3

Averaged variance (5000 runs)

V
(
�̃=,mwis

)
V

(
�̂=,mis

)

0 25 50 75 100
0

1

2

3

Averaged bias (5000 runs)

B
(
�̃=,mwis

)

Integration problem using MWIS with two source densities p1 and p2 and a target density p0

Figure 3: Difference between MIS (left) and MWIS (right) to integrate f , shown in orange, using two distributions p1 and p2. Given an
a-priori distribution p0 (red) that better fits the integrand, MWIS reweights samples such that the weighted sample histogram perfectly
reproduce the target density p0. This results in a reduction of the error and variance, at the expense of a slight bias that vanishes in O(n−1).
We exploit MWIS to reweight shifted samples as if they were directly sampled from the pixel they contribute to.

First, the distribution of shifted prefixes does not follow the ideal
importance sampling for a given pixel. Hence, the mixture density
resulting from MIS estimators is not optimal in term of variance
reduction. Fig. 4 shows example scenes with high re-use between
cameras. In this case, the MIS estimator does not produce the best
possible variance reduction. Variance can be reduced with a self-
normalized estimator (see next) that reweights samples w.r.t to a
target pdf closer to the integrand, which in our case is the base pdf.

As a toy example, consider two pixels A and B and their respec-
tive integrands fA and fB. We sample pixel A with a single sample
a following pdf pA ∝ fA, and B with a sample b following pB ∝ fB.
When integrating the function fA over A:

• the MIS balance estimator reads:

IA =
fA(a)

pA(a)+ pB(a)
+

fA(b)
pA(b)+ pB(b)

• the estimator that we introduce in Sec. 4.1 reweights sampling
strategies as:

IA =

(
wA(a)

fA(a)
pA(a)

+wB(b)
fA(b)
pA(b)

)
· 1

wA(a)+wB(b)

where wA and wB are such that the integral is consistent. In this
case, we are summing up values of the form fA

pA
, which is ideal

when pA is (near) proportional to fA. This reweighting produces
less variance than MIS that sums contributions of the form fA

pA+pB
,

which is not ideal when pB is far from pA (see also Fig. 3).

Second, reusing all paths in all situations is another source of
variance, due to the potentially poor importance sampling of view-
dependent scattering functions. Fig. 5 shows examples of such
cases on glossy materials and anisotropic phase functions where
MIS exhibits spikes and higher noise than the baseline. Addressing
this issue implies selecting cameras that are more likely to share
suffix paths, i.e. which can jointly benefit from importance sam-
pling. However selecting a subset of similar prefixes within the MIS
framework is non trivial, as the number of samples per strategy has
to be fixed beforehand and can not be modified on the fly without
biasing the result. MIS allows nonetheless to either keep all pre-
fixes, or discard all of them (deterministically or stochastically). In

constrast WIS estimators are self normalized and allow more flex-
ibility in choosing paths to re-use and to select similar shifted pre-
fixes w.r.t to the base prefix. This selection is further discussed in
Sec. 4.3. However, WIS is not designed to handle multiple source
strategies.

4.1. Multiple weighted importance sampling

We extend standard WIS [PS66, Spa79, BSW00] to combine sev-
eral sampling strategies of source pdfs q1, . . . ,qk and reweight the
samples using a target pdf p, that is chosen to be a good strategy
w.r.t the integrand.

Weighted importance sampling. Given two sampling strategies
with pdf p and q, the Monte Carlo integral and expectation w.r.t p
can be written as:

I =
∫

Ω

f (x̄)dµ(x̄) = E
[

f (x̄)
p(x̄)

]
= E

[
f (x̄)
q(x̄)

q(x̄)
p(x̄)

]
(13)

which can be further approximated as follows:

I ≈
E
[

f (x̄)
q(x̄)

]
E
[

p(x̄)
q(x̄)

] =
E
[
w(x̄) f (x̄)

p(x̄)

]
E [w(x̄)]

with w(x̄) = p(x̄)
q(x̄)

. (14)

where samples x are drawn according to q. The latter equation cor-
responds to the WIS [PS66,Spa79,BSW00] or self-normalized im-
portance sampling (SNIS) [Owe13] integral and can be evaluated
with the following ratio estimator:

Ĩ =
∑

n
i w(x̄i)

f (x̄i)
p(x̄i)

∑
n
i w(x̄i)

. (15)

The WIS estimator is biased (as E
[X

Y
]
≥ E[X ]

E[Y ] ) but consistent

since the bias tends to zero with rate O(n−1) (i.e. it is asymptoti-
cally unbiased) [Spa79, PS66]. Note that the WIS weight w can be
known up to a constant factor.
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Figure 4: We show two toy example scenes with isotropic and diffuse scattering only. Hence only the estimator used to combine the sampling
strategies makes a difference in term of variance reduction. Even though multi-view path tracing using an MIS estimator (mismvpt) reduces
the variance w.r.t the baseline (vpt) at equal rendering time, another family of consistent WIS estimators (mvpt) allows to further reduce the
variance of combined samples (base and shifted). Even directly visible surfaces (dragon – bottom crop) see their variance reduced.
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Figure 5: The 3 Dragons scene includes a large glossy surfaces and the anisotropic dragon scene includes a very strong forward scattering
medium lit from the side, for which we expect less or no re-use. Forcing to reuse samples between cameras (mismvpt and mvpt w/o selection)
in such situations increases the variance, resulting in higher noise than the baseline (vpt) at equal time. In comparison, selecting subsets of
prefixes that are likely to share suffix paths like in our (mvpt) removes these poor contributions to match at worst the baseline (i.e. no reuse).

Our estimator. We rewrite the WIS integral and modify the
weighting functions in Eq. 14 to both take into account multiple
source strategies and the chosen target strategy.

The MWIS integral Imwis = ∑
k
i=1 Ii,wis ·Wi consists of a weighted

sum of WIS integrals associated with each strategy, Ii,wis, with re-
spective weight Wi. Denoting wi,mwis(x̄) the weighting function as-
sociated with strategy i (we postpone the discussion of the choice
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of the ideal wi,mwis), we have:

Imwis =
k

∑
i=1

Eqi

[
wi,mwis(x̄)

f (x̄)
p(x̄)

]
Eqi

[
wi,mwis(x̄)

] ·
Eqi

[
wi,mwis(x̄)

]
∑

k
j=1Eq j

[
w j,mwis(x̄)

]
=

∑
k
i=1Eqi

[
wi,mwis(x̄)

f (x̄)
p(x̄)

]
∑

k
i=1Eqi

[
wi,mwis(x̄)

]
(16)

where Eqi [x] =
∫

xqi(x)dx. Estimating this integral via Monte
Carlo leads to the following ratio estimator:

Ĩmwis =
∑

k
i=1 ∑

ni
j=1 wi,mwis(x̄i j)

f (x̄i j)
p(x̄i j)

∑
k
i=1 ∑

ni
j=1 wi,mwis(x̄i j)

(17)

where strategy i is selected to generate ni samples xi j. Note that
if the sets of samples used in the numerator and the denominator
are identical, the MWIS estimator turns into a weighted mean of
samples. Although this is not required for MWIS to work, we use
the same samples for practical reasons.

Weighting heuristics. For each sample x, the function wi,mwis(x̄)
serves two purposes. First it reweights the source density w.r.t the
target density – i.e. comparably to WIS. This is desirable since
strategy i has been sampled with density qi but the contribution
is evaluated as if the sample was drawn from the target density
p. Second, it appropriately combines the multiple strategies – i.e.
comparably to MIS – since strategy i has been selected among k
available strategies to generate the sample x̄. Our MWIS weighting
functions thus takes the following form:

wi,mwis(x̄) = wi,mis(x̄) ·wi,wis(x̄) (18)

which is a valid weighting heuristic within the MWIS framework
thanks to the self-normalization of the estimator. For this estima-
tor to converge, it is sufficient that p(x̄) > 0 whenever f (x̄) > 0
and ∃i,qi(x̄) > 0 whenever p(x̄) > 0. The WIS-related part of the
weight is constrained by the source and target pdf used, hence:

wi,wis(x̄) =
p(x̄)

ciqi(x̄)
(19)

where qi is the density that generated the sample x̄, and ci is the
probability of selecting the i-th strategy – i.e. the relative number of
samples per strategy. The MIS-related part on contrary can be any
heuristic following the MIS weighting conditions. Hence, the MIS
balance heuristic [VG95] is a good choice that takes into account
the local repartition of samples:

wi,mis(x̄) =
ciqi(x̄)

∑
k
j=1 c jq j(x̄)

. (20)

Finally, using the balance heuristic the MWIS weighting function
reduces to the simple form:

wi,mwis(x̄) =
p(x̄)

∑
k
j=1 c jq j(x̄)

. (21)

The latter equation enlightens the fact that, within balance MWIS,
we reweight the samples using a weighted mixture of distributions
– i.e. the denominator – which is also the combined distribution of
MIS balance estimators. Still, MIS and MWIS weighting functions
are different and serve different purposes.

Error and bias. Denoting the bias β and the mean squared error

(mse) ε
2 of the ratio estimator from Eq. 17, the ratio β

2

ε2 is upper
bounded, and the bound tends to zero as the number of samples
n tends to infinity [PS66]. The bound depends on the variance of
the weighting functions, hence as their variance decreases the bias
decreases, that is when the source density is closer to the target
density. For sufficiently large n, and assuming that the weighting
functions are bounded and normalized, the mse is approximately:

ε
2 ≈ 1

n ∑
i

∫
Ω

w2
i,mwis(x̄)

(
f (x̄)
p(x̄)
− I
)2

qi(x̄)dx̄ (22)

which is also equal to the variance as the bias vanishes. This estima-
tor is related to the multi-sample RIS estimator [BWP∗20,TCE05],
as a biased but consistent self-normalizing version. We illustrate
our MWIS estimator in Fig. 3 in 1D.

4.2. MWIS for muti-view rendering

After generating path prefixes, their associated Jacobians and pdfs,
we compute MWIS weights for each of them. We compute the
weights at the first visible interaction once and use them to accumu-
late a single contribution for both direct and indirect illumination.
To avoid precision issues we re-write MWIS weights in term of
ratios of pdfs and Jacobians. In practice, we compute these ratios
event per event as a chain is transformed, since the ratios of final
pdfs may suffer precision issues due to large pdfs in dense heteroge-
neous volumes. Denoting wi→ j(x̄ j) the weight for path x̄ j in pixel
j that results from transforming path x̄i from pixel i, and using Eq.
11, Eq. 12 and the chain rule, we obtain a more numerically stable
expression:

wi→ j(x̄ j) =

c jq j(x̄ j)
ciqi(x̄i)

· |S′i→ j(x̄i)|

∑k
ckqk(x̄k)
ciqi(x̄i)

· |S′i→k(x̄i)|
=

p j→ j(x̄ j)
pi→ j(x̄ j)

∑k
pk→k(x̄k)
pi→k(x̄k)

(23)

see the supplementary document for the complete derivation. We
thus efficiently compute and sum up the ratios of source and target
pdf multiplied by the Jacobian during the prefix shift step for each
candidate pixel. We finally compute MWIS weights when adding
sample contributions to the image buffer normalizing the ratios by
the sum of ratios. The complete process is summarized in Alg. 2.

4.3. Prefix selection

The path suffix sampling process described in Sec. 4 should not in-
crease the variance of the base pixel, nor of the target pixels. We
chose to proceed similarly to Fraboni et al. [FINB19] with stochas-
tic acceptance or rejection of shifted prefixes. We accept a can-
didate shifted prefix if the associated scattering distribution at the
pivot point is similar to that of the base prefix (Fig. 6). Doing so
requires to compare scattering distributions, which is a difficult
problem. While Fraboni et al. use a heuristic that cannot be used
for phase functions, we use an acceptance probability based on a
discrete total variation (TV) approximation between pairs of scat-
tering distributions. This TV approximation is evaluated on the fly
and produces a well-defined distance for general distributions, in-
cluding phase functions. We evaluate the TV distance on a small set
of directions {ωi}i, and their density for both distributions, before
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Algorithm 2 Multi-view path tracing with MWIS pseudocode.
Note that line 17 progressively computes the estimator’s sum in
(Eq. 17).

1: for each pixel i do
2: sample base prefix x̄i (Sec. 3)
3: Sr← 0
4: for each camera k do
5: // shift the base path x̄i to camera k through pixel j
6: x̄ j← shift(x̄i,k) . eval the shifted prefix x̄ j (Sec. 3.1)

7: pi→ j(x̄ j)← ci·pi(x̄i)
|S′i→ j|

. eval the shifted pdf (Eq. 11)

8: p j→ j(x̄ j)← c j · p j(x̄ j) . eval the ideal pdf (Eq. 12)

9: Sr← Sr +
p j→ j(x̄ j)
pi→ j(x̄ j)

10: end for
11: sample light sources and compute direct (Sec. 3.2)
12: sample a path suffix and compute indirect (Sec. 3.2)
13: for each prefix x̄ j associated with pixel j do
14: // eval MWIS weights and accumulate contributions

15: wi→ j(x̄ j)←
p j→ j (x̄ j )
pi→ j (x̄ j )

Sr
. eval the weight (Eq. 21 - 23)

16: W j←W j +wi→ j(x̄ j) . denominator (Eq. 17)

17: I j← I j +
wi→ j(x̄ j)

Wj
·
(

f j(x̄ j)
p j→ j(x̄ j)

− I j

)
. eval (Eq. 17)

18: end for
19: end for

normalizing both discrete pdf sets and computing the approximate
TV distance as:

TV(p,q,{ωi}i) =
1
2 ∑

i

∣∣∣∣ p(ωi)

∑k p(ωk)
− q(ωi)

∑k q(ωk)

∣∣∣∣ . (24)

This approximation is inexpensive for a small number of directions.
In practice, we use two directions chosen according to the type of
scattering distribution at the pivot interaction. For surface interac-
tions, we use the mirror directions of both viewing directions. For
medium interactions, we use the forward directions of both view-
ing directions if the phase is forward scattering, and the backward
directions in case of backward scattering. This approximation over-
estimates the true TV distance but gives correct estimates for rough
single and bi-layered materials (i.e. rough plastics, conductors, di-
electrics, coatings) and phase functions with varying anisotropy.

We compare every candidate prefix to the base prefix and reject
those with large TV distances. The acceptance probability of a can-
didate prefix reads: Pi→ j = 1−TV

(
pi, p j,{ωk}k

)
. In practice, this

random selection does not introduce noticeable fireflies, but rather
reduces the variance since paths are rejected when distributions
mismatch. To avoid unnecessary computations, this test can be per-
formed before the null interactions shift (detailed in section 3.1).
To finalize the suffix, a direction is sampled through the uniform
mixture of scattering distributions associated to the accepted pre-
fixes, and the remaining part of the suffix is built by regular path
tracing as it is view-independent.

5. Applications and results

We implemented our method in a custom renderer that includes a
state of the art volumetric integrator using the spectral heteroge-

Figure 6: At the pivot point, the scattering function of all prefixes
should be similar to the base one to avoid increasing the variance.
We use an approximate measure of the shared volume of both distri-
butions (hatched region) to accept or reject the prefix. Our approx-
imation handles both surface and volume scattering distributions.

neous volumetric path sampling approach of Miller et al. [MGJ19],
with MIS between direct illumination techniques (i.e. light sam-
pling+ratio tracking and bsdf sampling+delta tracking). Our multi-
view integrator decouples the first bounce, to compute the prefixes
and MWIS weights, from the rest of the volumetric path tracing
loop. We store a single image buffer per camera to reduce memory
use. For each sample we write its respective contributions in each
framebuffer that it contributes to. We provide our C++ implemen-
tation in supplementary materials. We compare several multi-view
rendering variants: (mvpt) our multi-view rendering with MWIS
and prefix selection, (mvpt w/o selection) our multi-view rendering
with MWIS and full re-use, (amvpt) our multi-view rendering with
MWIS, prefix selection and adaptive sampling, (mismvpt) multi-
view rendering with MIS and full re-use as used in [Sch19], (vpt)
frame by frame rendering as the baseline, and finally (Fraboni et
al.) multi-view rendering adapted from [FINB19].

We illustrate our technique on several applications, including
the rendering of lenticular and lightfield images, holographic stere-
ograms, virtual walkthrough in static scenes, and videos of dynamic
scenes with motion blur. We designed several test scenes with var-
ious materials and camera setups to evaluate our algorithm under
different conditions. Our results can be better appreciated in our
supplementary video, better showing animated and parallax effects
that are not reproduced in print. In the following examples except
the Disney cloud, all volumes are procedural and made of ridged
multifractal or simpler functions [MPPW94].

Lenticular images. We print lenticular images that consist of 10
views with small baseline and horizontal parallax (Fig. 7, top). A
lenticular sheet of 60 lenticles per inch was used, images were
printed at 600 dpi, leaving 10 views per lenticle.

Lightfield images. Our lightfield display – a 8K Looking Glass
display – renders horizontal parallax light fields consisting of 45
views (Fig. 7, bottom).

Holographic stereograms. Holographic stereograms are holo-
grams printed using many ordinary renderings of the same
scene (as opposed to rendering an interference pattern). Cam-
eras are typically positioned extremely close to the object,
and baseline is very small. Each rendered image is displayed
on a spatial light modulator traversed by a laser light beam.
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Figure 7: Top row. We print lenticular images using 10 views. Bot-
tom row. Our lightfield display renders images consisting of 45
views. We demonstrate our method on 3 lightfield images.

A system of lenses prints its opti-
cal Fourier transform on a tiny part
of a sensitive film, called hogel. A
monochrome hologram can be seen
in the right inset, generated using
a prototype printer. Here, the grid
of hogels is composed of 114× 171
views. Rendering 114× 171 ≈ 20k
views at once would be intractable
due to memory limits, so we ren-
dered tiles of 7×7 views.

Virtual walkthroughs. Camera paths in static scenes can also
benefit from our method. Our supplementary video showcases a
walktrough over the dragon scene with 100 frames, each consid-
ered as one view.

Video motion blur. We demonstrate the benefit of our method on
a sequence of an animated cloud. In that case, the temporal filter-
ing (i.e., motion blur) reuses paths from views that are temporally
adjacent. We use a filter size of 5 frames.

Results. Fig. 9 illustrates how rendering errors decrease with the
number of views. As expected, as the number of views increases,
the number of reused samples increases and the variance is effec-
tively reduced in the images. However, the overhead of the shifts
and the fact that reused paths are short in these setups, break the
theoretical bound of

√
N times less error for N views.

Full render statistics and equal-time comparisons for all our re-
sults are provided in Table 1, while rendered images with compar-
ison to single-view path-tracing (vpt) can be seen in Fig. 8. Our
method significantly reduces rendering errors at equal time.

We illustrate in Fig. 4 the variance reduction due to the MWIS
(mvpt) estimator in comparison to MIS (mismvpt). MIS suffers
from the transformed densities that are not ideal on surfaces and
in volumes due to the Jacobians of shifts. In contrast, MWIS use
the knowledge of the base pdf to improve the results significantly.
We further show in Fig. 5 that re-using all paths (mismvpt and mvpt
w/o selection) may increase the variance with view-dependent scat-
tering functions (BSDF or phase functions). On the contrary our
selective re-use (mvpt), that is made possible through our self-
normalized MWIS estimator, does not degrades the result in such
cases.

Comparisons of our (mvpt) variants to the previous method of
Fraboni et al. [FINB19] (updated for volumes) and the equivalent
of [Sch19] (updated for volumes – mismvpt) are shown in Fig. 10.
The scene is composed of cloud cubes of varying anisotropy (de-
creasing from back to front, left to right), our methods (mvpt and
mvpt w/o selection) produce the best variance reduction.

6. Discussion and limitations

Our approach favorably reduces variance in comparison to classical
path tracing at equal time. However, while our method works well
in a number of useful situations, it also has limitations.

As we can see in Fig. 4, multi-view approaches may lead to un-
even sample repartition in the images (bottom crop – dragon silhou-
ette), hence leading to uneven noise levels near volume silhouettes.
Our method is also useful only on non truly specular surfaces, since
no reuse at the first real interaction can occur in such situations
which also results in undersampled regions. A simple multi-pass
adaptive sampling of the image plane, is sufficient to mitigate this
issue as illustrated in Fig. 11.

Solutions have been explored to transform constrained specu-
lar paths, such as specular manifold exploration [JM12, ZGJ20]
or techniques for direct lighting through specular chains [HDF15,
WHD17] and specular shifts (i.e. half vector copy) for gradient do-
main rendering [HGP∗19]. Our shift mappings for null scattering
chains could be combined with such techniques, to handle spec-
ular manifold exploration, independently from our contributions.
Such combination could further reduce the sample inhomogene-
ity in multi-view images. Similarly, image-based denoising tech-
niques have been proposed to further reduce noise in the context
of spatio-temporal sequences [VRM∗18, ZRJ∗15] for surfaces and
volumes [IGMM21]. While they often require exporting numerous
additional feature layers per image, our technique could feed these
denoisers with cleaner inputs for improved results.

Finally, our research prototype is designed as proof of concept
and is not representative of the true performance that an optimized
version could reach. Due to the high number of image buffers, using
adequate structures to maintain coherency while writing contribu-
tions could further improve the results of our method in equal time
comparisons.

7. Conclusion

We introduced new shift mappings in heterogeneous participating
media for path reusing purposes. We showed that our method al-
lows to render complex scattering in participating media in an ef-
ficient way by sharing the construction of difficult paths across
views, in several multi-view configurations. We improve upon clas-
sical frame by frame volumetric path tracing when the scene ben-
efits from reuse by an order of magnitude. Our shifts volumetric
mappings could be used in other path reusing applications, such as
gradient domain rendering.

We further introduced a new MWIS estimator that is convenient
when classical MIS is not and that effectively reduces the variance
of a set of arbitrary techniques (mixed poor and good). Even though

© 2022 The Author(s)
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Figure 8: Side by side comparison of our technique (mvpt) against independent volumetric path tracing (vpt) on different sequences.
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Figure 9: Comparisons with variable number of cameras. Increasing the number of views results in lower error at equal rendering time.

our estimator is biased but consistent, we believe that the combina-
tion of MIS and WIS is a powerful tool that may improve estimates
in other applications. A formal study and an unbiased version of
our estimator, that does not require stochastic resampling nor addi-
tional random walk, are also interesting research directions.
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Figure 10: We compare our methods (mvpt) that use our MWIS estimator with and without prefix selection, to (mismvpt) that uses MIS and
no selection, and state of the art multiple view rendering estimators [FINB19] that uses a biased MIS variant and a different prefix selection
taking into account both Jacobian variations and scattering functions (updated with our shifts and scattering function similarity). Reusing
all prefixes disregarding the scattering components (mismvpt and mvpt w/o selection) results in noisier estimates than the baseline (vpt) in
anisotropic volumes (bottom crops). Although the selection proposed by Fraboni et al. (gray – blue curve and insets) limits the degradations
due to large variations of Jacobians, it still exhibits fireflies and a visible bias that is not consistent as the number of samples increases. Our
multi-view (mvpt) solutions exhibit lower levels of noise and no visible bias (nor in the curve slopes) nor artifacts even at low sample count,
and performs better than independent path tracing (vpt) and (mismvpt).
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Figure 11: Adaptive refinement. The top row shows a scene with isotropic phase function and a glossy ground. The bottom row shows mixed
isotropic and strongly forward anisotropic volumes (g = 0.98). As we expect less re-use with strongly view-dependent scattering functions
(mvpt), the adaptive variant of multi view rendering (amvpt) helps distribute samples in the undersampled areas. The adaptive variant has
a small overhead due to error and sample maps evaluation, and distributes less samples in regions where the multi-view already performs
well.
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Appendix A: Definitions

We explicit notations and definitions for the measurement contri-
bution function in volumetric light transport (Eq. 2) as defined by
Novak et al. [NGHJ18] for the manuscript to remain self-contained.

G(x,y) =
D(x,y)D(y,x)
‖x− y‖2 where

D(x,y) =
{
|n(x) ·ωx→y| if x is on a surface,
1 if x is in a medium.

T (x,y) = e−
∫ ty

tx µt (xt )dt where xt = x+ t ·ωx→y

Le(x,y) =
{

Le(x,ωx→y) if x is on a surface,
µa(x)Le(x,ωx→y) if x is in a medium.

fs(x,y,z) =
{

fr(ωy→x,ωy→z) if y is on a surface,
µs(y) fp(ωy→x,ωy→z) if y is in a medium.

Appendix B: Majorant optical depth shift derivation

We complete the derivation of our shift mapping of medium inter-
action depths using the majorant optical depth. Starting from Eq. 7

and noting C =
τ̄
′
max

τ̄max
, we have:

τ̄
′(t′) =C · τ̄(t) (25)

Plugging the piecewise constant definition of the majorant optical
depth (Eq. 6) into the latter equation leads to:
nt′

∑
i=1

µ̄′i
(
min

(
t′, t′max,i

)
− t′min,i

)
=C ·

nt

∑
j=1

µ̄ j
(
min

(
t, tmax, j

)
− tmin, j

)
(26)

where nt is the volume section index containing depth t on the base
segment (and resp. nt′ on the target segment for depth t′), tmin, j,
tmax, j and µ̄ j are the entry, the exit and the constant majorant ex-
tinction coefficient of the j-eth volume section of the base segment
(and resp. t′min,i, t′max,i and µ̄′i on the target segment).

We can rearrange the above equation as follows:

(26)⇔ µ̄′nt′
· t′+a1 =C · [µ̄nt · t +a2]

⇔ t′ =C · µ̄nt

µ̄′nt′
· t +R

(27)

where a1 = ∑
nt′−1
i=1 µ̄′i

(
t′max,i− t′min,i

)
− µ̄′nt′

· t′min,nt′
,

a2 = ∑
nt−1
j=1 µ̄ j

(
tmax, j− tmin, j

)
− µ̄nt · tmin,nt and R = C·a2−a1

µ̄′nt′
.

Replacing the constant C and rewriting the majorant extinction
coefficients as function of depth, as µ̄nt = µ̄(t), leads to the final
form of Eq. 8.
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