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Abstract—Nowadays, thermal infrared satellite remote sensors
enable to extract very interesting information at large scale, in
particular Land Surface Temperature (LST). However such data
are limited in spatial and/or temporal resolutions which prevents
from an analysis at fine scales. For example, MODIS satellite
provides daily acquisitions with 1Km spatial resolutions which
is not sufficient to deal with highly heterogeneous environments
as agricultural parcels. Therefore, image super-resolution is a
crucial task to better exploit MODIS LSTs. This issue is tackled
in this paper. We introduce a deep learning-based algorithm,
named Multi-residual U-Net, for super-resolution of MODIS LST
single-images. Our proposed network is a modified version of U-
Net architecture, which aims at super-resolving the input LST
image from 1Km to 250m per pixel. The results show that our
Multi-residual U-Net outperforms other state-of-the-art methods.

Index Terms—Super-Resolution; CNN; U-Net; LST; MODIS;

I. INTRODUCTION

Land Surface Temperature (LST) images at a high temporal
resolution are of prime importance to efficiently monitor
physical processes related to climate change such as water
stress, evapotranspiration, wildfires or urban heat islands [1],
[2]. LST is retrieved from remote sensing images in the
Thermal InfraRed (TIR) spectral domain. Thus, sensors such
as SEVIRI (15 minutes revisit time) or MODIS (12h revisit
time) present interesting temporal resolutions. However, these
sensors do not generally retrieve the LST at a satisfactory
spatial resolution for local scale applications and fine scale
analysis, especially for highly heterogeneous environments
like urban areas, diverse agricultural plots or sparse forests.

For this reason, super-resolution methods are required to
improve the native resolution of sensors. While in the reflective
domain of the electromagnetic spectrum both statistical and
Artificial Intelligence (AI) methods of super-resolution have
been developed [3], in the TIR domain only classical statistical
methods have been applied at the moment [4]–[6]. Though
efficient, these approaches lead to limitations such as 1) the
needing of high resolution products in the Visible and Near-

Infrared (VNIR) or Short Wave Infrared (SWIR) domains
acquired in the same area and close in time and 2) scale-
invariant hypotheses which sometimes are not adapted.

This work aims to develop Convolutional Neural-Network
(CNN) models for single MODIS LST image super-resolution.
We introduce Multi-residual U-Net, developed based on the
U-Net architecture [7], that can efficiently tackle the task
of LST super-resolution. This is a promising result as no
operational methods exist yet. In next section, data are intro-
duced. At first, we describe MODIS data used for training and
validation purposes (both training and validation are performed
when upscaling LST from 4Km to 1Km of spatial resolution).
A final validation of MODIS super-resolution products from
1Km to 250m is done by comparing them to ASTER LST data
of the same area and acquired close in time. In section III, the
neural network approach is presented. This technique does not
require VNIR-SWIR high resolution products, however it is
still submitted to scale-invariant hypotheses due to the differ-
ences in the range of scales used during training (4Km-1Km)
and in final applications (1Km-250m). Lastly, experimental
results and discussions are presented in section IV.

II. MODIS AND ASTER DATA

A. MODIS

MODIS is a NASA instrument devoted to the land, atmo-
sphere and oceans observation and is widely used for climate
change studies. MODIS has 36 bands ranging from the visible
to the TIR domain (0.459 µm-14.385 µm). Bands correspond-
ing to the VNIR domain present spatial resolutions of 250m,
500m and 1000m depending on the band. Bands corresponding
to SWIR and TIR domains present a spatial resolution of
1Km [8]. In this paper, we focus on the MOD11A1 MODIS
Land Surface Temperature (LST) product [9]. Specifically,
MOD11A1 provides LST at a resolution of 1Km, with a
temporal resolution of days, with tiles of 1200 × 1200Km. We
evaluate our model on areas located in the center of Europe



which correspond to h18v04 tile under the MODIS geographic
distribution standard, as shown in Fig 1.

We use 4 years of daily MODIS LST data from 2017 to
2020 as training dataset, with a total number of 2920 images
corresponding to 1460 different dates, each one with daytime
and nighttime data. Accordingly, we use 4083 images from
2011 to 2013 as validation set. Then these images of size
1200 by 1200 pixels are sliced to obtain small ones of size 64
by 64 pixel, which will be easier to drive by our models.

It should be noted that one of the main limitations for
collecting LST data is the cloud cover, leading to missing
pixels in the images. In the last years, several algorithms have
been developed to reconstruct the missing pixel values by
using auxiliary data such as Vegetation Index [10], elevation
[11] and Land Cover (LC) [12]. However, these methods
introduce reconstruction errors and increase the uncertainty of
the model prediction results. Therefore, we do not reconstruct
missing pixels, but simply discard patches containing clouds,
resulting in a total of 21650 images of 64 by 64 pixel without
missing pixels.

Fig. 1. Center Europe area (h18v04 MODIS tile) used in this study. The blue
marker indicates the location of Strasbourg at the border between France and
Germany.

B. ASTER

ASTER is a multispectral mission that includes 14 spectral
bands from the visible to the TIR domain (0.52µm-11.65µm),
and with spatial resolutions of 15m (VNIR), 30m (SWIR) and
90m (TIR), all with a swath width of 60Km.

In this paper we use the ASTER LST product as the best
reference for the validation of our MODIS super-resolved
images [13]. For validation purposes and due to the low
revisit time of ASTER, we focus on MODIS and ASTER
concomitant images acquired at the French-German border
close to Strasbourg (blue marker in figure 1) on the 26th

January 2017. As before, we retain only cloud-free patches
of 64Km by 64Km. Lastly, for comparison and validation
purposes, both products have the same map projection. Thus,
MODIS products which are provided in a sinudoidal projection
are converted into the UTM projection using the GDAL library
in Python, version 3.6.

III. SUPER-RESOLUTION METHODS FOR LST

A. Classical machine learning methods

In the TIR domain, a family of statistical sharpening
techniques namely TsHARP [4] and ATPRK [5] have been
developed to solve the image super-resolution task. These
methods rely on two main hypotheses: 1) the relationship
between the LST and VNIR-SWIR features such as the
Normalized Difference Vegetation Index (NDVI) is linear and
2) this relationship is scale invariant. In other word, based on
these hypotheses, it is possible to obtain high quality resolution
LST images by modelling the relationship between LST and
VNIR-SWIR features at a coarse scale, and applying the model
to high resolution VNIR-SWIR features to retrieve the LST
images at this finer scale. Finally, in order to enhance the high
resolution result, a residual estimation is applied to correct
fine-scale LST values. A review of these statistical sharpening
methods can be found in [6].

Since ATPRK presented the best performances in [6], we
chose it as a representative method from the classical machine
learning group to benchmark against our results from CNN-
based approach.

B. Neural Network approach

U-Net was introduced in 2015 by Ronneberger et al. [7]
and has been applied widely for semantic segmentation task.
Moreover, it is a universal network which can be modified
and employed in number of remote sensing applications such
as pansharpening [14] or even road extraction [15]. The key
element which makes U-Net robust is the idea of using long
skip connection on its symmetric network structure. This
allows the features extracted from the encoder to propagate
to the decoder, giving an information flow from low to high
network levels. By this way, the architecture of U-Net not
only enhances the construction path of the output from the
high-level feature, but also reduces significantly the problem
of gradient vanishing.

1) Multi-residual U-Net: The architecture of Multi-residual
U-Net is illustrated in Figure 2. It can be decomposed into the
input block, the encoder, the bridge, the decoder and the output
layer. The input block and the encoder extract the input’s
features from low to high level; the decoder reconstructs
the output from these encoded features. The “bridge”, in the
middle part of the architecture, lies between the encoder and
the decoder. Comparing with the original U-Net, the proposed
Multi-residual U-Net has three main differences located in
the input/output layers, the encoder and the bridge. First, the
network takes a bicubic-Interpolated Low Resolution (ILR)
image as input, and maps it to a residual image, which is
difference between the desired final high resolution (HR)
output and the ILR input. This end-to-end residual mapping
is widely employed in single image super-resolution networks
such as VDSR [16] and DMCN [17], to ease the learning
process. Secondly, our proposed architecture uses a convolu-
tional layer, instead of a max-pooling one, to downsample the
feature map. Although downsampling by convolution increases
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Fig. 2. Multi-residual U-Net architecture outline. The green circle with a ”+” symbol represents a sum operation. The purple one filled with a ”||” symbol
along with purple arrows define a concatenation operation between the output of previous upsampling layer and the corresponding encoder layer.

the number of parameters in the network, it retains more
information of its input feature maps. Thus the convolution
operation takes into account all of the neuron values in its
perceptive field to produce the output, not just the maximum
value as in max-pooling downsampling. Furthermore, the fully
convolutional encoder of U-Net is replaced by our residual-
style encoder, which is inspired by the work of He et al. [18].
Following them, we use residual learning to effectively resolve
the degradation problem of deep network caused by gradient
vanishing/exploding, and so we guarantee its performance.
Based on their structure of the residual building block, we
proposed a replacement of two consecutive convolutional
layers in the original U-Net architecture by one residual unit
followed by a convolution block (sequentially made of a con-
volutional layer and a batch normalization layer followed by
the ReLU activation). A residual unit includes two consecutive
convolution blocks with the same number of filters, along with
an identity mapping [18]. The final modification in Multi-
residual U-Net is the bridge. Our approach is inspired by
Johnson et al. [19] who placed between the encoder and
the decoder a transformation structure composed of several
residual blocks, which are the same building blocks of ResNet
introduced in [18]. According to [19], this transformation
structure plays the role of a connection, which transforms the
features at the last encoding block to the first block of the
decoding path, increasing the performance of their generator
network in style transfer and super-resolution objectives. From
experiments, the best performances of our Multi-residual U-
Net are found with only one residual block, and so we reduce
the number of blocks in the bridge of our model to one.

2) Loss function: We used Mean Squared Error (MSE) as
the principle loss function during the training process. MSE is
frequently used in Neural Network training since it has been
proved to provide good performances [20].

LMSE =
1

N.M

N∑
i=1

M∑
j=1

(LSTGT
i,j − LSTSR

i,j )2 (1)

where LSTGT
i,j is the LST of the jth pixel of ith high res-

olution ground truth image and LSTSR
i,j is the corresponding

LST in the super-resolution output of the deep learning model.
N is the number of images in a mini-batch, and M is the total
number of pixels within an image.

3) Training setting: To train our Multi-residual U-Net,
we first split the 4-year MODIS LST dataset from 2017 to
2020 into train and test set with 75% and 25% of images
respectively with daytime and nighttime jumbled. The inputs
of the neural network were the ILR images, which were
obtained by first downsampling with Norm-L4, according to
Stefan-Boltzmann law, each 64× 64 image at 1Km of spatial
resolution to one at 4Km of spatial resolution, and second by
upscaling these images using bicubic interpolation to return
newly an image with size 64 × 64 and spatial resolution
of 1Km. Before feeding into the model, these ILR images
were divided by the maximum value from the train set for
normalization.

So, MODIS 64×64 LST images at 1Km of spatial resolution
are used as ground truth during training, while normalized ILR
images of same dimensions and spatial resolution are used as
inputs. We trained our model for 300 epochs with a batch size
of 32. During the training process, we set the learning rate at
0.0001 for the first 50 epochs and divided it by 100 for the
rest of the process.

IV. RESULTS AND DISCUSSION

A. Performance Assessment
To evaluate the performances of our model on single LST

image super-resolution compared to other available methods,
we employed the standard RMSE (Root Mean Square Error)
defined as the root square of eq.(1). Furthermore, we used
PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structure
Similarity Index) [21] which are well-known metrics for
quantifying the resemblance between two images:

PSNR = 20 log10

(
DRGT√
MSE

)
(2)

SSIM =
(2µGTµSR + c1) (2σGTSR + c2)

(µ2
GT + µ2

SR + c1) (σ2
GT + σ2

SR + c2)
(3)



where the subscripts GT and SR denote the high resolution
ground truth image and the super-resolution model’s output.
The term DRGT =MAXGT−MINGT is the dynamic range,
measured by the difference between the highest pixel value
and the lowest pixel value of the ground truth image; MSE
is the mean-square error between GT and SR, see eq.(1); µ
represents the mean of the image, σ represents the variance
of the image (in case the subscript is GT or SR) or the
covariance of two images (in case the subscript is GTSR)
and c1 = (0.01 ·DRGT )

2 and c2 = (0.03 ·DRGT )
2 are two

stabilizing factors in SSIM computation.

B. Results on validation dataset

Since we trained our models on 4-year LST dataset from
2017 to 2020, we used images from 2011-2013 to evaluate
the performances. Within the validation set, each LST image
is paired with a NDVI image in the same region and with
the closest acquisition time. The pairs are served as the input
of ATPRK method. For other neural network approaches,
only single LST images are required. The benchmark results
are shown in the table I and the qualitative comparison is
demonstrated in Figure 3.

TABLE I
EVALUATION OF SEVERAL METHODS FOR LST IMAGE

SUPER-RESOLUTION WITH SCALE RATIO ×4. THE BOLD NUMBERS
INDICATE THE BEST PERFORMANCE.

Method PSNR SSIM RMSE
Bicubic 23.91 0.61 0.69
ATPRK 21.59 0.61 0.90
VDSR 25.42 0.72 0.58
DCMN 25.05 0.71 0.61
Multi-residual U-Net 28.40 0.85 0.39

As can be shown in table I, our Multi-residual U-Net
provided the best performance among considered approaches.
Thanks to a complex architecture, our model surpassed other
methods with a significant improvement in PSNR and SSIM.
As shown in Figure 3, it recovered a much more detailed
image than VDSR and DMCN. The output of Multi-residual
U-Net had high similarity compared to the high resolution
ground truth. Besides, the classical method ATPRK recovered
well the overall structure of the ground truth and provided an
impression of a high contrast image thanks to the relationship
with NDVI. However much information was unable to be
brought back correctly explaining the low PSNR value.

Although our model outperformed other techniques, es-
pecially bicubic, there were certain cases in which bicubic
achieved better performances. The major reason came from
low dynamic ranges within LST small images. When dealing
with low variability, linear interpolation methods such as
bicubic can provide a good approximation with little amount
of error since the distances between values are relatively small.
Nevertheless, in this evaluation, only 34 out of 4083 images
(which means less than 1%) fit the mentioned circumstance.
These cases are minorities and have tiny impact on quantitative
performance assessment.

Ground truth, PSNR/SSIM Bicubic, 22.78/0.65

ATPRK, 21.03/0.70 VDSR, 25.98/0.81

DMCN, 24.69/0.78 Ours, 31.40/0.96
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Fig. 3. Qualitative results of super-resolution methods with scale ratio ×4,
here going from 4 to 1Km of resolution.

C. Validation with ASTER

The main objective of this research is to investigate the
possibility of improving the resolution from 1Km to 250m
per pixel, which is the best spatial resolution of the VNIR
MODIS images. To evaluate the performance of our model
for this goal, we employed ASTER data mentioned in section
II-B as the reference.

Since the ASTER LST images present an initial spatial reso-
lution of 90m, we use an area-weighted linear downsampling
to obtain ASTER LST images at 250m of resolution, i.e. a
linear downsampling which takes into account the considered
area of the pixels used in the interpolation.

In this section, we compare ours Multi-residual U-net,
representing neural network based approaches, with ATPRK
and bicubic. The quantitative evaluation is done in table II and
the visualization is in figure 4.

TABLE II
QUANTITATIVE COMPARISON BETWEEN ASTER AND

SUPER-RESOLUTION MODIS AT 250M FOR 7 CLOUD-FREE IMAGES.

Method PSNR SSIM RMSE
Bicubic 19.56 0.39 1.48
ATPRK 19.66 0.41 1.46
Multi-residual U-Net 19.68 0.42 1.46

The reconstruction results are not pleasing visually since
our model attempted to recover the resolution of 250m from
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Fig. 4. Qualitative results of super-resolution methods with scale ratio ×4,
here going from 1Km to 250m of resolution.

1Km per pixel with the learned parameters trained when going
from 4Km to 1Km per pixel. So, this indicates that scale-
invariant hypotheses of classical machine learning methods
are not adapted in these ranges. The use of a local loss (as
gradient loss of VGG loss) would probably help in recover-
ing finer structures. Nevertheless, it should be outlined that
the presented metrics of Multi-residual U-Net shows slight
improvement compared to bicubic and similar performances
than ATPRK, which indicates the possibility of appearance of
repeatable characteristics occurring in both upscaling process.

V. CONCLUSIONS

In this paper, we proposed a new U-net based architecture
called Multi-residual U-Net to solve the super-resolution
task for MODIS LST images from 1Km to 250m per pixel.
During training on MODIS data from 4Km to 1Km per pixel,
the proposed architecture outperformed other neural network
approaches such as VDSR and DMCN as well as ATPRK.
Moreover, Multi-residual U-Net applied on MODIS LST
from 1Km to 250m per pixel reached the performances of
ATPRK. Future research will deal with compensating the
scale-invariant hypothesis which is not adapted for resolutions
ranging from 4Km to 250m. Finally, we point out the interest
of such a super-resolution method for the future mission TR-
ISHNA [22], since these methods apply on single LST images
without needing VNIR-SWIR products at better resolutions.
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