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bstract

Previous work has presented kinetics of pure surfactin adsorption onto activated carbon. Being an efficient biosurfactant, the lipopeptide surfactin
as been produced in a bioprocess supported by the strain Bacillus subtilis ATCC 21332. This work is aimed at studying surfactin recovery directly
rom the culture medium. A thermodynamic study is carried out. Referring to adsorption capacity, the thermodynamic study confirmed that the

dsorption of pure surfactin is an exothermic process. The capacity of surfactin adsorption from culture media shows that the activated carbon
ould be used as efficient adsorbent for surfactin recovery in an integrated process. The study shows the importance of the temperature for process
ontrol. Aimed at fixed bed column design, surfactin adsorption modelling on a single microporous pellet is demonstrated.
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. Introduction

Some strains of Bacillus subtilis produce a variety of lipopep-
ides. The pattern of lipopeptides produced is strain-dependant.
he strain ATCC 21332 produces the surfactin lipopeptide [1],
hich is one of the most powerful biosurfactants known to

ct as detergent on biological membranes [2]. Surfactin has
he advantages of biodegradability, low toxicity and biocom-
atibility. Because of its surface active properties and being
nvironmentally friendly, the surfactin is of great industrial and
ommercials interest. Potential industrial applications include
nhanced oil recovery, crude oil dribbling lubricants, surfactant
ided bioremediation of water insoluble pollutants and uses in
he health care and in food processing industries [3–7]. How-

ver, biosurfactants are not widely available because of their
igh production cost, resulting primarily from low strain pro-
uctivities and high recovery expenses. The foregoing efforts
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egarding improvement of biosurfactant’s yield and purity moti-
ated us to develop a novel process strategy involving process
ntegration. Process integration is an attractive approach to foam
limination and to produce valuable products of high quality at
educed costs. Typical example is the integration of a fermenta-
ion process with liquid isolation of a specified reaction product
8]. In the present study, we focused on direct recovery of sur-
actin from supernatants collected at bioreactor exit following
ltration.

The adsorption of surfactin on activated carbon is studied
t batch conditions. The effects of parameters such as culture
edium composition, adsorbent particle diameter and tempera-

ure were investigated. In the goal to design a fixed bed column,
urfactin adsorption modelling on a single microporous pellet is
resented.
. Experimental

Like in our previous work [9], Merck activated carbon (Ref.
.02514.1000) with spherical geometry was used. The surfactin
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Nomenclature

A constant of Temkin isotherm (mg/L)
b constant of Temkin isotherm
B constant of Dubinin isotherm
Ce equilibrium liquid-phase surfactin concentration

(mg/L)
Cp heat capacity
Ct liquid-phase surfactin concentration at time t

(mg/L)
E constant of Dubinin isotherm
h heat transfer coefficient
�H◦ enthalpy of adsorption (kJ/kg)
ka kinetic constant of adsorption
kd kinetic constant of desorption
KF constant of Freundlich isotherm

((mg/g)/(mg/L)1/n)
KL constant of Langmuir isotherm (mg−1)
N number of experimental data
qe equilibrium solid-phase surfactin concentration

(mg/g)
qm maximum adsorption capacity of adsorbent

(mg/g)
qs maximum adsorption capacity of adsorbent in

Dubinin isotherm (mg/g)
q̄ average adsorption capacity of adsorbent (mg/g)
R universal gas constant (=8.314 J/(mol K))
s external surface area per unit particle volume
�S◦ entropy of adsorption (J/K kg)
t time (h)
T temperature (K)
1/n heterogeneity factor
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1 + KLCe

While plotting Ce/qe against Ce, a straight line with slope
1/qm was obtained.
Θ fractional coverage

dsorption had been tested by using carbon of different particle-
ize, between 0.45 and 1.40 mm. Because the limitation step
n the proposed integrated process is the fermentation rate, a
imple column of fixed bed is envisaged to the surfactin sep-
ration and purification. Therefore, in further work, activated
arbon with particle size of 1.40 mm and 0.9 was used with
espect to potential application in fixed bed (the smaller the
ctivated carbon particles, the more difficult it is to collect
hem).

In this work, the adsorption of pure surfactin from aqueous
uffer solution has been studied and the surfactin was adsorbed
irectly from the culture media. The culture media with surfactin
as obtained with the B. subtilis ATCC 21332 in the medium
escribed by Leclere et al. [10]. The sorption capacity of the
dsorbents has been studied using the adsorption isotherm tech-

ique. In each adsorption experiment, 20 mL culture media and
5 g/L activated carbon were placed in a 150 mL flask. Then,
he flask was laid in a controlled environment incubator shaker
New Brunswick Scientific Co., USA) at 200 rpm. The surfactin

F
i
c

oncentration was determined by reverse phase C18 HPLC [9].
ollowing the adsorption, the amount of surfactin was calculated
y using a procedure described by Liu et al. [9].

. Results and discussion

.1. Adsorption of pure surfactin from aqueous solution

In our previous work, adsorption of pure surfactin onto acti-
ated carbon from aqueous buffer solution was studied. The
sotherms for adsorption of surfactin onto the activated carbon
t 20, 30 and 40 ◦C are shown in Fig. 1 [9]. It is shown that
emperature has a pronounced effect on the adsorption capacity
f the activated carbon. The increase of temperature accompa-
ied by decrease of surfactin adsorption capacity suggests that
he adsorption process of surfactin micelles onto the activated
arbon is exothermic. The highest adsorption capacities of car-
on for pure surfactin at 20, 30 and 40 ◦C are about 39, 28 and
8 mg/g carbon, respectively. Fig. 1 shows also that at lower
urfactin concentrations the amount of surfactin adsorption at
quilibrium, qe, rises sharply and thereafter the increase is grad-
al with the increase of the solute concentration and qe levels
ff.

Some isotherm models including Freundlich, Langmuir,
emkin and Dubinin-Radushkevich equations were used to fit

he experimental data.
The Langmuir isotherm assumes monolayer adsorption onto

surface containing a finite number of adsorption sites with no
ransmigration of adsorbate in the plane surface. The Langmuir
sotherm is given as

= qmKLCe (1)
ig. 1. Experimental results (symbols) and model correlation (lines) of
sotherms of pure surfactin adsorption from aqueous solution onto activated
arbon.
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Table 1
Parameters corresponding to different isotherm equations

T (◦C) qm (mg/g) KL (mg−1) R2

Langmuir
20 38.92 8.16 0.999
30 28.5 4.24 0.999
40 18.86 1.48 0.996

T (◦C) KF [(mg/g)/(mg/L)1/n] 1/n R2

Freundlich
20 30.49 0.0922 0.991
30 19.66 0.1399 0.966
40 13.6 0.0878 0.947

T (◦C) A (g−1) b R2

Temkin
20 8.598 × 105 1.032 × 103 0.987
30 1.693 × 104 1.131 × 103 0.898
40 9.240 × 105 2.486 × 103 0.891

T (◦C) qs (mg/g) E R2

Dubinin-Radushkevich
20 37.3 1.294 × 104 0.968
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The Freundlich isotherm, on the other hand, assumes het-
rogenous surface energies, in which the energy term in
angmuir equation is a function of surface coverage:

e = KFC1/n
e (2)

Temkin and Pysher considered the effect of indirect adsor-
ate/adsorbate interactions on adsorption isotherm. The heat of
dsorption of all molecules in the layer would decrease lin-
arly with coverage due to adsorbate/adsorbate interactions The
emkin isotherm has been used in the form as follows:

e =
(

RT

b

)
ln(ACe) (3)

A plot of qe versus ln Ce allows to determine parameters b
nd A.

Another popular equation for the analysis of isotherms of a
igh degree of rectangularity is Dubinin-Radushkevich isotherm
hich is, as follows:

e = qs exp(−Bε2) (4)

here ε can be correlated:

= RT ln

(
1 + 1

Ce

)
(5)

The constant B gives the mean free energy E of sorption per
olecule of the sorbate when it is transferred to the surface of

he solid from infinity in the solution and can be computed by
sing the relationship:

=
[

1√
2B

]
(6)

A plot of ln qe versus ε2 enables the constants qs and E to be
etermined.

Isotherm parameters for the four isotherms at different tem-
eratures are given in Table 1 along with the values of the
orrelation coefficients and the error functions values. Fig. 1 and
able 1 compare the different models proposed. It is seen that

his adsorption is accomplished in two stages, i.e. a first stage of
ow concentration and a second one at high concentration. The
ransition between the two parts is close to 5 mg/L. We believe
hat the Langmuir model is more appropriate, since it is most
mportant to represent the maximum adsorption capacity. More-
ver, this model is suitable to use at different temperatures. The
hape of adsorption isotherm is perhaps related to solid–liquid
nteraction (the progressive filling of adsorption sites) and/or to
he CMC concentration. In the previous work [9], we showed
hat before the adsorption, the surfactine was demicellized then
he surfactine was adsorbed. In the last step, because the con-
entration is higher than the CMC value, we obtain a surfactine
icelle and this micelle may fill the active carbon pore.

.2. Thermodynamics adsorption of pure surfactin from

queous solution

The Langmuir model was originally developed to represent
hemisorption on a set of distinct localized adsorption sites. The

m
Θ

30 23.35 1.157 × 104 0.827
40 16.4 1.447 × 104 0.850

asics assumptions on which the model is based areas follows:

. Molecules are adsorbed at a fixed number of well-defined
localized sites.

. Each site can hold one adsorbate molecule.

. All sites are energetically equivalent.

. There is no interaction between molecules adsorbed on
neighboring sites.

Considering the exchange of molecules between adsorbed
nd liquid phase:

ate of adsorption : kaC(1 − Θ) (7)

ate of desorption : kdΘ (8)

here qs is the total number of sites per unit weight or vol-
me of adsorbent and Θ = q/qs is the fractional coverage. At
quilibrium, the rates of adsorption and desorption are equal:

Θ

1 − Θ
= ka

kd
C = KLC (9)

here KL = ka/kd is the adsorption equilibrium constant. Eq. (9)
an be rearranged to the commonly quoted form:

= q

qm
= KLC

1 + KLC
(10)
This expression shows the correct asymptotic behavior for
onolayer adsorption since at saturation C → ∞, q → qs, and
→ 1. While at low sorbate concentrations, Henry’s law is
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)
q→0

= KLqm = K′ (11)

qs is supposed to represent a fixed number of surface sites
nd it should therefore be a temperature-independent constant
hile the temperature dependence of the equilibrium constant

hould follow a Van’t Hoff equation:

L = K0 exp

(−�H◦

RT

)
(12)

The assumptions of identical sites with no interactions
etween adsorbed molecules imply that the adsorption heat is
ndependent on coverage. It follows by differentiation of Eq.
11) that the isosteric heat of sorption (−�HS) is the same as
he limiting heat of sorption (−�H◦):

∂ ln C

∂T

)
q

= �HS

RT 2 = d ln KL

dT
= d ln K′

dT
= �H◦

RT 2 (13)

To calculate it, both �H◦ and �S◦ can be first determined by
he slope of the linear Van’t Hoff plot, i.e. as ln KL versus (1/T)
sing equation:

H◦ =
[
R

d ln K

d(1/T )

]
(14)

H◦ obtained here corresponds to isosteric heat of adsorption
�Hst,0) with zero surface coverage (i.e. qe = 0) [11].

Fig. 2 presents a Van’t Hoff’s plot of Langmuir isotherm, from
hich �H◦ = −64.96 kJ/kg and �S◦ = −203.52 J/kg/K have
een obtained. If adsorption were a significant one, the change
f free energy, �G◦, should be negative. The negative value

f �S◦ suggests decreased randomness at the solid/solution
nterface.

Using the Van’t Hoff law, the KL value versus temperature
as determined. In order to complete this study, we assumed

ig. 2. Van’t Hoff plot of adsorption equilibrium constant K using Langmuir
sotherm.
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b

o determine the qm Langmuir parameter that represents the
aximum capacity of active carbon at different temperatures.
he evolution of this parameter is very important in the case of
onisothermal adsorption without assumptions.

According to the observed experimental point, we propose
linear function between temperature and the qm value in the
angmuir model. The fitting model is

m = −T + 332.82 (15)

ith qm (mg/g) and T (K).
As expected, qm is decreased with an increase in temperature

ue to a decrease in adsorption capacities at higher tempera-
ures. It can also been noticed that the difference in capacities at
wo different temperatures goes on increasing with an increase
n concentration and reaches a constant value at a higher con-
entration level of surfactin. The decrease in saturation capacity
ith an increase in temperature can be explained on the basis
f the fact that in the original Langmuir formulation the satura-
ion limit was assumed to coincide with the saturation of a fixed
umber of identical surface sites and as such it should be inde-
endent on temperature. In fact, a modest decrease in saturation
apacity with temperature is generally observed and is indeed
o be expected provided that the saturation limit corresponds to
lling of the micropore volume rather than with the saturation
f a set of surface sites.

.3. Adsorption of surfactin from culture media

A batch process was adopted to determine both the adsorption
inetics and adsorption capacity of surfactin from the culture
edia onto the activated carbon. Fig. 3 shows the kinetics of

urfactin adsorption onto carbon with two different diameters of

.9 and 1.4 mm at 37 ◦C. A decrease of activated carbon size was
ccompanied with an increase of adsorption rate. The adsorp-
ion capacities of surfactin from culture media onto the activated
arbon for both diameters were 16.8 mg/g carbon, which was

ig. 3. Kinetics of surfactin adsorption from culture media onto activated car-
ons of two different diameters at 37 ◦C.
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bout 26% lower than that of pure surfactin from the aque-
us solution, e.g. 22.8 mg/g carbon, calculated at 37 ◦C. The
act could be explained by the presence of other components
n the media following the 48 hours fermentation. For example,
lucose was also present while the strains’ secretion contained
ther proteins. It is normal that the equilibrium concentration
btained in the solid was lower in the culture medium than
he experimental points using the pure surfactin. The differ-
nce in adsorption capacity between single component solution
nd culture media is that the latter is a multicomponent system
ith significant interactive effects between solutes and adsorbent

urface, and between solutes in solution. Also there are compet-
tive effects between the solutes towards the adsorbent surface.
n Fig. 3, the equilibrium concentration in the solid phase for
he two different diameters, e.g. 1.4 and 0.9 mm, was similar,
amely, 16.76 and 16.82 mg of surfactin per active carbon mass,
espectively. To recover 90% of surfactin pure methanol was
sed.

.4. Kinetics modeling for surfactin adsorption from
ulture media

The simplest case to consider is a single microporous adsor-
ent particle exposed to a step change in sorbate concentration
t external surface of the particle at time zero. Heat transfer is
ssumed to be sufficiently rapid, relative to the sorption rate, so
hat temperature gradients both the one through the particle and
he one between particle and surrounding fluid are negligible.

Moreover, using the previous enthalpy value, the heat capac-
ty of active carbon (0.93 J/(g K)) and the case which the
dsorption capacity is the maximum in the temperature range
0–40 ◦C, the temperature in the active carbon pellet was
ncreased to 2.8 ◦C with a adiabatic assumptions in the pellet
without heat transfer between the sold phase and the liquid).

The result shows that it is not necessary to take into account
ome nonisothermal adsorption conditions. In such case, we
eed to consider the temperature effect; a widely used model
as developed by Ruthven et al. [12].

Heat conduction through adsorbent particles is generally
uch faster than heat transfer at the external surface and it is a

ensible approximation to consider the particle as an essentially
sothermal one with the heat transfer resistance being concen-
rated in the external film [13]. Thus, the energy equation for the
olid can be represented in the following form:

�H
dq̄

dt
= Cp

dT

dt
+ hs(T − T0) (16)

T − T0

Qe

(
∂q∗
∂T

)
c
=

ith q̄ = 3

r3
c

rc∫
r=0

r2q · dr (17)
m
R
e

For most particle shapes, the equivalent sphere is an accept-
ble approximation and the transport may therefore be described
y a diffusion equation written in spherical coordinates:

∂q

∂t
= 1

r2

∂

∂r

(
r2Dc

∂q

∂r

)
(18)

If diffusivity is constant, this equation simplifies to

∂q

∂t
= Dc

(
∂2q

∂r2 + 2

r

∂q

∂r

)
(19)

here Dc is intracrystalline diffusivity and q(r, t) is the adsorbed
hase concentration. The initial and boundary conditions are:

(r, 0) = 0,

(
∂q

∂r

)
r=0

= 0

The equilibrium relationship at the solid surface is assumed
o be linear because for surfactin adsorption, if the liquid concen-
ration is higher than 5 mg/L, the maximum adsorption capacity
epends just in temperature:

q′

Qe
= 1 +

(
∂q∗
∂T

)
c

(
T − T0

Qe

)
(20)

here q′ is the adsorbed phase concentration at the solid surface
nd (∂q*/∂T)c is the slope equilibrium of the equilibrium line
hich is taken as constant over the step. The analytic solution is

q̄(t)

Qe
= 1 −

∞∑
n=1

9
[

(pn cot(pn)−1)
p2

n

]2
exp

(−p2
nDct

R2
c

)
1
β

+ 3
2

[
pn cot(pn)(pn cot(pn)−1)

p2
n

+ 1
] (21)

here pn is given by the roots of the equation:

β(pn cot(pn) − 1) = p2
n − α (22)

nd the parameter α and β are defined by

= hs

Cp

R2
c

Dc
, β = �H

Cp

(
∂q∗
∂T

)
c

The corresponding expression for the temperature evolution
s

−3
[
(pn cot(pn) − 1)/p2

n

]
exp(−p2

nDct/R
2
c)

1/β) + (3/2)
[
(pn cot(pn)(pn cot(pn) − 1)/p2

n) + 1
] (23)

In the isothermal condition, it is necessary to use the Eq. (18)
r (19). In this paper, the assumption is to consider a constant
iffusivity value.The initial and boundary conditions are:

(r, 0) = 0, q(rc, t) = Qe,

(
∂q

∂r

)
r=0

= 0

The analytic solution is

¯(t) = Qe

(
1 − 6

π2

∑ 1

n2 exp

(
−π2n2Dct

R2
c

))
(24)
The Dc values by parameter identification (optimization
ethod) are respectively 7.86 × 10−13 and 7.5 × 10−13 m2/s for
c equal to 0.7 and 0.45 mm) (Fig. 4). In comparison to lit-
rature diffusion coefficient, the values obtained are similar.
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molecular sieve crystals, AIChE J. 26 (1980) 16–23.

[13] L.K. Lee, D.M. Ruthven, Analysis of thermal effects in adsorption rate
ig. 4. Comparison between experiments (symbols) in Fig. 3 and modeling
orrelation (lines) for the kinetics of surfactin adsorption from culture media
nto activated carbons using two different diameters at 37 ◦C.

or example, n-heptane/zeolite 5 Å at T = 298 K, the diffusivity
s 3 × 10−16 m2/s [14]. But compared to gas/solid adsorption,
he value is very low; in general, the literature value was
× 10−6 m2/s.

. Conclusion

The thermodynamics of surfactin adsorption from aque-
us solutions onto activated carbon has been studied. The
angmuir model is proposed to represent well the maximum
dsorption capacity. The exothermic character of surfactin
dsorption is demonstrated with �H◦ = −64.96 kJ/kg and

S◦ = −203.52 J/kg/K. The adsorption capacity from culture
edium is found to be 26% lower than the pure one. Pellet

iameter of 0.9 mm is proposed to ensure good recovery condi-
ions. The modelling of surfactin adsorption on a single pellet

[

as realized. Based on the adsorption experiment, a correlation
etween the maximum adsorption capacity and temperature is
roposed. Both adsorption equilibria and kinetics confirm that
n real media, the activated carbon acts as an effective adsorbent
or surfactin recovery.
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