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a b s t r a c t

The interest of application of liquid membrane (pertraction) processes for recovery of biosurfactants from
aqueous media was demonstrated. Transport of pure surfactin in three-liquid-phase system was studied.
Surfactin was successfully extracted from slightly acid media (pH 5.65–6.05) applying batch pertraction
in a rotating discs contactor and using n-heptane as liquid membrane. The process efficiency was found to
be strongly affected by the feed solution acidity (83% at pHF 6.05 and 97% at pHF 5.65 after 4 h pertraction).

An atypical pH effect was observed when the behaviour of surfactin extraction from aqueous media by
non-polar solvents (n-heptane and n-octane) was studied. The obtained high extraction degrees from both
xtraction
iquid membranes
iosurfactants

acid and basic media and the clearly reduced degree of extraction from neutral media could be attributed
to the different conformations of surfactin in these media.
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. Introduction

In literature, there has been considerable interest on the micro-
iological productivities [1–7], properties [1,8–12] and applications
12–17] of biosurfactants, including heptapeptide surfactin, which
s one of the most powerful ones [18]. However, few reports
ave been mentioned concerning surfactin separation, purifica-
ion and concentration [19–22]. The amphiphilic character of such
ompounds presents some limitations to their efficient recovery.
ractically, even at low concentration, the produced surfactin gen-
rates extensive foaming. This phenomenon causes substrate and
roduct outflow and the surfactin production becomes hard to con-
rol [19]. Thus, development of efficient production and separation
perations as well as processes integration are of growing interest.
ecently, Montastruc et al. have shown that an adsorption process
ay be effective for continuous surfactin isolation from culture
edia [20]. From large scale point of view the same authors have

roposed the use of a fixed bed adsorption column in the process

nown as in situ product removal (ISPR) [19]. The purity of surfactin
solated after desorption with methanol and further solvent evap-
ration is high, but the process is relatively long: 85% recovery in
4 h at 38 mg L−1 initial concentration of surfactin.

∗ Corresponding author. Tel.: +33 3 28 76 74 10; fax: +33 3 28 76 74 01.
E-mail address: Iordan.Nikov@polytech-lille.fr (I. Nikov).
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An interesting potential advance of the ISPR technology for sur-
actin recovery is the application of solvent extraction and more
specially the low-cost liquid membrane technique. The classical
olvent extraction provides relatively high surfactin purity [21], but
ts main inconvenient is the necessity of further regeneration of
he loaded solvent, and therefore the use of important quantities
f solvent. Moreover, the most efficient and generally used for bio-
urfactants recovery solvents, such as chloroform, methanol, and
cetone, are known to be toxic and harmful to the environment
nd human health [23].

The liquid membrane separation process, based on solvent
xtraction, is called pertraction and operates in three-liquid-phase
ystems. Two aqueous solutions, i.e., a feed solution F and a receiv-
ng solution R, are separated by an organic liquid M, representing
he “liquid membrane”, insoluble in both aqueous solutions. The
arget species are transported from the feed to the receiving solu-
ion across the organic liquid membrane thanks to appropriately
elected and different equilibrium conditions at the interfaces F/M
nd M/R. In fact, pertraction process is a combination of extraction
nd stripping operations performed simultaneously in one stage
24]. The main advantages of pertraction towards conventional
iquid–liquid extraction are the use of smaller quantities of organic

olvent due to continuous regeneration of the organic solvent, as
ell as the possibility to recover the target species even in cases

f low distribution coefficients [25]. The use of liquid membranes
resents an attractive approach to produce valuable products of
igh quality at reduced costs, giving the opportunity to use as

http://www.sciencedirect.com/science/journal/1369703X
mailto:Iordan.Nikov@polytech-lille.fr
dx.doi.org/10.1016/j.bej.2008.07.005
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iquid membranes less powerful but more selective, less toxic
nd less expensive solvents than in the case of classical solvent
xtraction. The interest of liquid membrane process for recovery
f fermentation products have grown rapidly because a substan-
ial part of the technological and financial success of bioprocesses
epends on the post-fermentation steps [26]. Liquid membrane
echnique was applied for recovery of fructose [27], citric acid [28],
actic acid [29], butyric acid [30], and cephalosporin C [31] from
ermentation broths. However, there are no data on biosurfactants
ecovery by using liquid membrane processes.

The aim of the present work was to study liquid membrane
ermeation of surfactin in three-liquid-phase system. To con-
rm the applicability of pertraction process on biosurfactant
ecovery, we focused on the pH effect upon equilibrium reparti-
ion of surfactin between aqueous solutions and various organic
olvents.

. Experimental

.1. Materials (reagents, solvents and aqueous solutions)

Surfactin was purchased from Fluka and used as received. The
roduct was synthesized by Bacillus subtilis and was 98% pure. As
rganic solvents n-heptane, n-octane and 1-octanol (all p.a. grade
eagents from Merck) were used. To adjust the acidity of the aque-
us solutions KH2PO4 and K2HPO4 (both p.a. grade reagents from
erck) were used. The acidity of the aqueous solutions was mea-

ured with a pH-meter InoLab pH/ION Level 2 P (WTW GmbH &
o., KG, Germany).

.2. Procedure of equilibrium studies

Prior to study surfactin transport across a liquid membrane, its
quilibrium distribution between organic and aqueous phases was
stablished using separating funnels. Model aqueous solutions of
urfactin were preliminary prepared. Surfactin concentration was
etween 30 and 50 mg L−1 and pH between 5.5 and 8.8. As organic

iquids n-heptane, n-octane and 1-octanol, as well as their mixtures
ere used. In each experiment equal volumes of surfactin aqueous

olution and organic solvent (each of 10 mL) were shaken moder-
tely for 15 min. In order to achieve the equilibrium and complete
hase decantation the flasks were reposed for 12 h minimum. Initial
oncentrations of surfactin in the aqueous solutions were deter-
ined prior the contact between the two phases and its equilibrium

oncentrations after complete phase separation.

.3. Procedure of pertraction

Among the large variety of liquid membrane techniques
24,31–33], the pertraction in rotating discs contactor (RDC) was
elected due to its stable and efficient continuous operation
34–37]. Kinetics of surfactin transport in three-liquid-phase sys-
em was studied in laboratory RDC, presented schematically in
ig. 1. The lower part of the contactor is divided into four com-
artments: two for the feed and two for the receiving solution. The

iquid organic membrane covers both aqueous solutions and occu-
ies the common upper part of the contactor. A polymer disc (1 mm
hick, 18 cm in diameter) coated by hydrophilic material rotates in
ach compartment. The distance between two discs is 15 mm. The
ower part of each disc is immersed in the corresponding aqueous

olution. The discs rotation provides a formation and continuous
enewal of aqueous films of solutions F and R on discs surfaces as
ell as the agitation of all three phases. The contact surfaces F/M

nd M/R are of 0.07 m2. The overall mass transfer coefficients in
he RDC contactor used are in the range of 10−5 to 10−6 m s−1 [36].
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ig. 1. Schematic diagram of the experimental set-up: (1) contactor body; (2) cell
eparation plates; (3) hydrophilic discs; (4) rotation shaft.

o homogenise the aqueous solutions and to provide samples, both
iquids were circulated by means of peristaltic pumps with flow
ates of 1.5 L h−1.

The volumes of both feed and receiving solutions were of 270 mL
nd the liquid membrane phase was 1250 mL. The initial concentra-
ion of surfactin in the feed solution was 40.0 mg L−1. The velocity
f discs rotation was fixed at 10 min−1.

All experiments were carried out at room temperature of 293 K.

.4. Analysis of surfactin

Surfactin samples from aqueous solutions were analysed after
reliminary preparation following a procedure, described else-
here [19]. Finally samples are dissolved in methanol and surfactin

oncentrations were determined by reverse phase C18 HPLC (600s,
aters, USA) equipped with a Merck C18 column (5 �m, Merck, Ger-
any). The injection samples were of 20 �L. Surfactin was eluted

or 25 min at a rate of 1 mL min−1 over a mixture of ACN/H2O/TFA,
.g., 80% of acetonitrile, 20% of water, 0.1% of trifluoroacetic acid, by
olume. The spectrum was analysed using second derivative values.

. Results and discussion

.1. Choice of solvents: extraction of surfactin by organic solvents

To apply liquid membrane process for surfactin recovery from
queous media, including fermentation broth, it is necessary to
nd conditions suitable for its extraction by an organic liquid, but
lso conditions favourable for its back extraction into an aque-
us solution (regeneration of the organic solvent). Usually, the
. subtilis strains used for surfactin production have been culti-
ated in medium with an initial pH adjusted between 6.0 and 8.5
19]. Mostly the media have been maintained at pH 7.0 [2,38], but

n some cases final pH values decreased in the range of 6.3–6.7
5,19]. Hence, in order to isolate surfactin, its recovery from such

edia was sought out. To improve surfactin extraction, a possible
mall correction of pH was also envisaged. However, acidification
f the aqueous solutions containing surfactin, including fermenta-



Table 1
Degree of surfactin extraction from model aqueous solutions to various organic sol-
vents (phase ratio 1:1, surfactin initial concentration in the aqueous solutions was
of 40 ± 10 mg L−1)

Organic phase % Extraction

At pH 5.50 At pH 7.15 At pH 8.80

n-Heptane 83.44 7.84 61.11
n-Octane 87.73 9.42 66.24
1-Octanol 100.00 100.00 100.00
n-Heptane/1-octanol 80/20 87.70 86.50 80.49
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-Heptane/1-octanol 50/50 100.00 100.00 100.00
-Octane/1-octanol 50/50 93.30 100.00 100.00

ion broth, was quite limited, because of its tendency to precipitate
t low pH. Wei and Chu have reported a precipitation at pH < 5.5
39].

Equilibrium partition of surfactin between various organic
olvents and aqueous solutions was studied at three different equi-
ibrium pH values of the aqueous phase: 5.50, 7.15, and 8.80,
espectively. Table 1 lists the studied organic solvents (mixtures)
nd the equilibrium data on surfactin extraction in these solvents
rom aqueous solutions. Obviously, 1-octanol, the most polar from
he studied solvents, is an excellent solvent for surfactin extrac-
ion. Pure 1-octanol and its mixtures with n-heptane (e.g., 20/80,
0/50) or n-octane (50/50) provided a very efficient surfactin recov-
ry from aqueous media. However, in the studied pH interval, there
re not conditions favourable for back extraction of surfactin into
n aqueous solution and regeneration of the loaded organic sol-
ent (1-octanol or its mixtures). Therefore 1-octanol is not very
ppropriate for surfactin recovery by pertraction. An inhibition of
iological activity of fungi in presence of 1-octanol has been also
eported [40]. Usually the n-alkanes are considered as not suitable
olvents for surfactin extraction [21,41]. Table 1 confirms that the
on-polar n-heptane and n-octane are less efficient than 1-octanol
ut surfactin extraction in these solvents is strongly affected by
he change of aqueous phase acidity. For both studied alkanes, sur-
actin extraction was relatively high from slightly acid (over 80%
t pH 5.50) or slightly basic (over 60% at pH 8.80) aqueous solu-
ions, while from neutral aqueous solutions (pH 7.15) the extraction
as less than 10%. Consequently, the studied alkanes are suitable

or liquid membrane permeation of surfactin, providing conditions
avourable for surfactin extraction into the organic solvent (from
lightly acid or basic media), but also conditions for its back extrac-
ion into an aqueous solution (at the neutral zone of pH).

.2. Solvent extraction of surfactin by n-heptane and n-octane

The effect of pH on surfactin extraction from its model aque-
us solutions into selected organic solvents, namely n-heptane
nd n-octane, was studied in details over the whole range of pH
etween 5.5 and 8.8. The extraction degrees obtained at various
quilibrium pH are presented in Fig. 2. The results are almost iden-
ical for both solvents: the increase of pH provokes continuous
ecrease of degree of extraction from acid medium; then extraction
egree passes through a minimum at neutral zone of pH, and grows
p again progressively in basic medium. Such behaviour is quite
trange comparing to the usual pH effects on solvent extraction:
ncrease of extraction degree for cations and decrease for anions

ith pH increase, for example [42,43]. It could be explained by

mphiphilic character of surfactin molecules, but mostly by the
icropolarity of the different conformations of these molecules

n acid, neutral and basic media. Concerning pure surfactin, it is
ell known that it forms large rod micelles even at low concentra-

ions close to the CMC (CMC = 9.4 × 10−6 M in pure water at 25 ◦C)

w
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ig. 2. Influence of equilibrium pH on surfactin extraction by n-heptane and
-octane (surfactin initial concentration in the aqueous solutions was of
0 ± 10 mg L−1).

8]. Its properties are closely related to its molecular organization
n micelles. For best choice and understanding the optimal con-
itions for pertraction process we will analyse the effects of pH
n surfactin conformation in both micellar and non-micellar solu-
ions.

In aqueous media various surfactin conformations, with grad-
al shifting from one to another, have been reported [9]. At neutral
one of pH (6.5–7.5), surfactin molecules are organized mainly in �-
heet micelles. This configuration is characterized by an exposure
f a large number of carboxylic groups on the micelle surface which
ould explain more polar character of surfactin. At these conditions,
urfactin is in anionic form, with two negative charges, one at the
spartate residue and another at the glutamate one, and it is able to
ind metal cations [44]. Thus, the anionic character of surfactin in
uch media predetermines its limited solubility in non-polar sol-
ents and, therefore, its insignificant extraction by n-heptane and
-octane. Outside this neutral zone, other conformations have been
bserved [9]. With increasing the pH values, at pH 8.5 or more,
elow CMC surfactin monomers have mainly unordered conforma-
ion, but above CMC �-helices are predominantly formed. Osman
t al. have reported a strong reduction of surfactin micropolarity
ith pH increase in basic media, related to the changes of its con-

ormation [10]. At slightly acid solutions, transition of �-sheet to
-helices micelles have been also observed [9]. Thus, the strongly

educed micropolarity of �-helices comparing to �-sheet micelles
ould explain the higher surfactin extraction in n-heptane and n-
ctane obtained from both basic and acid solutions. In such media,
he lipophylic ends of surfactin molecules in unordered confor-

ation or as �-helices are more accessible to non-polar solvents
sed.

.3. Pertraction of surfactin

Kinetics of surfactin transport through a liquid membrane was
tudied in the above described laboratory RDC (Fig. 1). As far as
he two tested alkanes showed very similar extraction behaviour,
s liquid membrane n-heptane was selected because of its eas-
er evaporation. In order to provide appropriate and constant pH
alues of the aqueous solutions during whole pertraction process,
hey were buffered by potassium phosphate buffers. For kinetic
tudies on surfactin pertraction the acidity of the feed solution

as estimated to be optimal at pH ∼ 6.0, because of the high-

st extraction degree at the conditions reported to be suitable
or surfactin production by fermentation (pH 6.0–8.5) [19]. More-
ver, Wei and Chu have reported a very efficient fermentation
rocess at pH ∼ 6.0 (2.0 g L−1 surfactin) [39]. As receiving solu-



Fig. 3. Evolution of dimensionless surfactin amount in feed, membrane
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Fig. 4. Influence of feed solution acidity on surfactin pertraction
(CF

0 = 40.0 mg L−1, pHR 7.30 ± 0.05, discs rotation velocity of 10 min−1, liquid

e
e
t
r
i
r
o
a
a
b
t

t
t
d
q
t
t
n

n
b
t
s
t
c
i
f
m
s
t

T
S
t

S

P
P
P

nd receiving solutions versus time (GF
0 = 10.8 mg, pHF 6.05 ± 0.05, pHR 7.30 ±

.05, discs rotation velocity of 10 min−1, liquid membrane : n-heptane).

ion distilled water, buffered to pHR 7.30 ± 0.05, was used. Taking
nto consideration the presence of surfactant substance with risk
f deterioration of the pertraction process by droplet formation
nd mechanical transportation of surfactin, the studies were car-
ied out at moderate and constant velocity of discs rotation of
0 min−1.

Fig. 3 shows the evolution of surfactin repartition between the
hree liquid phases during a batch pertraction process at constant
cidity of the feed solution pHF 6.05 ± 0.05. The interaction between
urfactin molecules of the feed solution and n-heptane occurred at
he first interface F/M where surfactin was partially extracted to
rganic phase. The process beginning is characterized by a sharp
ecrease of surfactin amount in the feed solution and its instan-
aneous accumulation in the organic liquid membrane. Due to the
oncentration gradient created surfactin molecules extracted in the
rganic membrane phase were transferred to the second interface
/R, where the pH of the receiving solution favoured the formation

f �-sheet micelles and, therefore, surfactin transfer and accumu-
ation into this solution. The permanent stripping of the organic
olution provoked a continuous surfactin removal from the feed
olution. At the end of experimental run (after 4 h), the majority of
urfactin was accumulated in the receiving solution. However, the
xtraction from the feed solution was not complete: about 17% of
urfactin remained in F phase. The relatively high amount of sur-
actin in the liquid membrane (about 30%) results to the higher
olume of this solution and the thermodynamic conditions at the
nterfaces F/M and M/R which could not provide a complete mem-
rane stripping.

Higher surfactin recovery was obtained when feed solution acid-
ty was slightly increased. Fig. 4 shows the effect of feed solution
cidity on the kinetic profiles of surfactin concentrations in both
queous solutions at different initial acidities of the feed solu-

ion. As expected, the extraction efficiency increases at lower pHF
ecause of the more favourable equilibrium conditions at the inter-
ace F/M. At pHF 5.65 ± 0.05 surfactin recovery from feed solution
as almost complete (about 97%). The faster and more efficient

p
f
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m

able 2
urfactin distribution in all three phases at the end of pertraction process and at equilibr
wo-phases equilibriums at the interfaces F/M and M/R (pHF 5.65, pHR 7.30)

olution After 4 h pertraction in RDC At equilibrium between the t

Surfactin content (mg) Surfactin concentration (mg L

hase F 0.35 1.28
hase M 3.54 2.95
hase R 6.91 25.60
membrane : n-heptane).

xtraction of surfactin from F solution in this case induced also an
nhanced surfactin transfer to R solution. At the end of experimen-
al run (after 4 h), almost 2/3 of surfactin was accumulated in the
eceiving solution. Table 2 regroups the data on surfactin repartition
n all three phases at the end of pertraction process and at equilib-
ium between the three liquids in contact, calculated on the basis
f the two two-phases equilibriums estimated at the interfaces F/M
nd M/R, respectively. One can conclude that even at the moderate
gitation applied (10 min−1) pertraction process was quite rapid,
ecause the final concentrations in the three phases were very close
o the equilibrium ones.

It should be mentioned that in all reported studies on fermen-
ation products recovery by pertraction [26–30] the transport of
argeted substances was facilitated by extracting agents (carriers),
issolved in an organic diluent. The carriers used (Alamine 336, Ali-
uat 336, TOMAC, Hostarex A327, trilaurylamine) are harmful and
oxic. In contrast, in our studies no carriers were used and surfactin
ransport in the model system used was provided by using of pure
-heptane as a liquid membrane.

The observed relatively high surfactin permeability through the
-heptane liquid membrane offers a new opportunity to isolate the
iosurfactant from fermentation broth. A further coupling of per-
raction to fermentation process for in situ removal of produced
urfactin could contribute to resolve the problem with foam forma-
ion during fermentation process. Obviously, an optimization of the
onditions suitable for both fermentation and pertraction processes
s required. In fact, the conditions at pH < 6.0 are more favourable
or surfactin pertraction, but less suitable for its production by fer-

entation. Nevertheless, Wei et al. have reported a satisfactory
urfactin production at pH 5.75 (0.85 g L−1) [6]. Processes integra-
ion fermentation–pertraction seems to be applicable for surfactin
roduction, since liquid membrane purification has been success-
ully coupled to fermentation in phenol production [45], as well as

o solid–liquid extraction for continuous isolation of alkaloids from

edicinal plants [46,47].

ium between the three liquid phases in contact, estimated on the basis of the two

hree liquid phases in contact (calculated)

−1) Surfactin content (mg) Surfactin concentration (mg L−1)

0.30 1.10
2.93 2.44
7.57 28.05
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. Conclusion

When the behaviour of surfactin extraction from aqueous media
y various organic solvents (mixtures) at equilibrium was studied,
he non-polar n-heptane and n-octane were found to be the most
uitable for surfactin recovery by pertraction process. The degree of
urfactin removal into these two alkanes was found to be strongly
ffected by the aqueous solution acidity. The observed minimum
f degree of extraction from neutral media could be attributed
o the higher hydrophility of the �-sheet micelles formed by sur-
actin molecules at these conditions. In both acid and basic media,
urfactin conformation alters from �-sheet to �-helices. At these
onditions, the non-polar ends of surfactin molecules are more
xposed to contact the organic solvents used and, as result, higher
xtraction degrees were obtained.

The obtained results on surfactin transport in three-liquid-
hase system show that it can be successfully recovered from
lightly acid media by means of pertraction in a rotating discs con-
actor, using n-heptane as liquid membrane. The process efficiency
as found to be strongly affected by the feed solution acidity (about
3% at pHF 6.05 and about 97% at pHF 5.65 after 4 h pertraction).
he pertraction process was relatively fast: about 90% of surfactin
as removed from F phase in 30 min and, in 2 h, more of 50% was

lready transferred in R phase.
The obtained efficient surfactin recovery by pertraction sug-

ests a new prospect to isolate the biosurfactant from fermentation
roth. A further coupling of liquid membrane purification to fer-
entation process for in situ removal of produced surfactin is

nvisaged. However, the integrated process should be accom-
lished at the conditions optimal for both fermentation and
ertraction processes.
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