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Abstract

In this paper, the optimal design of process systems generically used in chemical industries is studied. The closely coupled nature of optimal
design specification of the equipment, the determination of the optimal process parameters in steady-state, moreover, some issues of the application
of optimal control is shown. The solution of the overall optimization problem including (i) optimal design of the equipment and (ii) specification of
its optimal control strategy can be found relying on two different design concepts, namely, on the conventionally used sequential or, on the newly
emerged simultaneous design approaches. This paper gives the theoretical background of the ideas and presents a comparative summary of the
approaches. The two approaches are contrasted to each other in which the effects of the interaction of optimal process design and optimal control
is highlighted. A new simultaneous optimization procedure providing economic and operability benefits over the traditional stand-alone approach
is proposed. The applicability of the idea is demonstrated by means of a design study carried out for optimal design of a coaxial heat exchanger
and a reactive distillation column for the synthesis of ethyl tert butyl ether (ETBE), relying on the benefits of the utilization of optimal control.

Keywords: Optimal process design; Optimal control; Pontryagin’s minimum principle; Nonlinear systems; Reactive distillation; Coaxial heat exchanger

1. Introduction

In order to improve the quality of the design of process control
systems in the chemical industry, several methods of optimiza-
tion have been developed in the last decade. Process optimization
methods may result in a more economical and safer process
operation even under the presence of the unavoidable modeling
uncertainties and external disturbances. Traditionally, different
optimization methods are used for the specification of the equip-
ment and for determination of the basic process parameters in
steady-state. This procedure may be referred as the design of the
process, for some applications see Refs. [1,2].

Another interesting issue of the process optimization is
related to control problems. Up to now, simple PI control con-
figurations, sometimes with optimal tuning of the controller
parameters, have been used in controller design practice in the
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chemical industry. The application of the idea of optimal control
has received some attention quite lately.

Initial research in the optimization of chemical processes
focused mainly on the development of the process and con-
trol system design as independent sequential procedures. It was
shown for distillation systems quite recently that tackling the
optimization problems of both process design and control simul-
taneously may result in numerous economic benefits over the
traditional sequential design approaches, see Refs. [3-6].

Ithas beenrecognized early thatithas anumber of advantages
if, beyond traditional concepts of process engineering, some
knowledge about the process dynamics is also taken into consid-
eration when the process operation is detailed and the equipment
specification is made during planning: active operational man-
agement of chemical processes by using control with adequate
selection of control parameters may contribute to energy effi-
ciency and safety, significantly [7,8]. A classical example of this
was shown in Ref. [9], where the product (the output heat) of a
tubular reactor was used to preheat the input feed. Even though
this application was interesting to show how the utilization of the
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process dynamics may contribute to a more economic process
operation, the proposed configuration involves difficult process
control problems. The most important message of this appli-
cation was, however, that, besides the use of the optimization
methods of the design in steady-state, it is at least as important
to take the dynamics of the process into consideration yet in the
early stages of the process specification.

In this paper the effects of the interaction of process design
and control is investigated with special focus on the application
of optimal control. The basic contribution of this work is the use
of the idea of optimal control instead of simple PI schemes in
the joint process/controller design. Our work will concentrate
on the conception of a process and its optimal control capable
to maintain the operative point of the equipment in presence of
external disturbances on a certain operation interval so that some
predetermined economic criteria are satisfied. In this contribu-
tion, the external disturbances are supposed to be known as a
function of time (sinusoidal perturbations are generally consid-
ered). Uncertain parameters lying in a given interval are out the
topics of this paper.

In order to show the advantages of the proposed idea, two
basic optimization strategies are compared with each other in
this paper. According to the first strategy, which can be viewed as
the traditional approach, the optimization of the process design
and the related optimal control problems are thought separately
and they are considered as sequential design procedures. In
the second strategy, process design and control are optimized
simultaneously in the same design step.

In the simultaneous design two different solution methods
of the optimization problem are proposed. By the first method,
process and control design is carried out relying on Pontryagin’s
minimum principle [10-12]. The Euler-Lagrange equations are
derived from the underlying optimization problem which are
then solved by using a discretization technique. This method is
called the Optimal Control approach. According to the second
method, the optimal control problem is included in the con-
straints of the design problem explicitly, which is then solved
by using the technique of successive quadratic programming
(SQP). This method is called the Optimal Design approach. In
both cases, the idea of the solution of the original infinite dimen-
sional optimization problem is relied on the discretization of
the state and control variables and the optimization problem is
considered on a finite time horizon.

The paper is organized as follows. In Section 2 the formu-
lation and the alternative solution methods of the optimization
problem which will be discussed in this paper is presented. First,
the mathematical concepts of the sequential and simultaneous
design strategies are summarized. Then, the idea of the proposed
design approaches applied to these strategies (referred as Opti-
mal Control and Optimal Design) are described in details. It is
shown how the application of Pontryagin’s minimum principle
together with its particular solution methods is embedded in the
individual approaches.

For demonstrating the idea proposed in the previous section,
the stream of discussion in Section 3 is built around a simple
illustrative example in which the optimal design of a coaxial
heat exchanger is considered. In Section 4, a more challenging

example, namely, the optimal design of a catalytic distillation
process that has received particular attention recently is consid-
ered. More precisely, we will consider ethanol and isobutene
etherification in order to produce ethyl tert butyl ether (ETBE).
The summary of the simulation results concludes the discus-
sion.

2. Problem statement

Let our objective be to design the process together with its
optimal control able to maintain feasible operation of the equip-
ment (operability of the process) in the presence of disturbances
over a desired time horizon. The problem can be stated as fol-
lows:

It

min w(d)+S(X(tf),tf)Jr/g(X(t), u(t),d,nydr (1)
x(1),X0,u(t),uq,d
t()

subject to:

X(1) = fo(x(1), u(®), d, 1) =0, Vi€ (1o, 1] @
x(fo) —xo =0 3
u(to) —uo =0 “
qo(x(0), u(t), d, 1) < 0 (&)

x € X C R”" is the vector of state variables, u e/ C R™ is the
vector of manipulated (control) variables and d € D, C RY is
the vector of time invariant design variables. In this contribu-
tion, design variables are assumed to be continuous. Discrete
design variables will be considered in future works. x, € X C R”
(respect. u, e U C R™) is the vector of initial conditions of the
state variables (respect. control variables).

The objective function (1) to be minimized includes the annu-
alized investment cost w(d) and the operating (control) cost. S is
the terminal term of the control cost. The function g(-) is assumed
to be continuously differentiable with respect to all variables.

Eq. (2) refers to the dynamic process model that results in
a set of differential and algebraic equations (DAEs) with the
corresponding initial conditions (3) and (4). This model is sub-
mitted to process disturbances: notation fy is used to indicate
that the known time varying perturbation 6(¢) is part of the
design setup but 6(¢) itself is not a variable of the problem.
The vector field fis assumed to be continuously differentiable.
Eq. (5) refers to the generic design constraints. Note that there
is no assumption on the control which can be arbitrary func-
tion of time except that it is piecewise continuous. The solution
of this optimization problem can be found in two different
ways as they will be characterized briefly in the following sec-
tions.

2.1. Sequential design and control

According to the first strategy, which is followed tradition-
ally in the practice, the optimization of the process design and
the related optimal control problems are thought separately and
they are considered as sequential design procedures. First, the



design is performed for a specific working point in steady-
state. Then, for a given solution of the steady-state design
problem, one determines the optimal control in a subsequent
optimization step. This two step approach can be summarized
as follows.

Step 1. Optimal Design. The optimal design problem in steady-
state can stated as a minimax Nonlinear Programming Problem
(NLP):

minda)(d) + (tr — to) g(x()a Uy, d)

Xo,Uos
S.t.
max Jo(xo, o, d) =0 (6)
0 q9(Xo, o, d) <0
xo€XCR", u,eU CR"
deD, CR?

The basic idea of the solution of this NLP problem (6) is that
the performance criterion is minimized with respect to the per-
turbation 6 that maximizes the cost functional, that is to say the
worst-case effect of 6.

For sake of simplicity, in this contribution, problem (6) is

solved for fixed values 6, of 6: minimum value, maximum
value and nominal value. Subsequently, the optimal steady-
state solutions x, u}, d* of the modified problem (6) are used
to construct the initial condition of the optimal control problem
when the design parameters are fixed at the value set d*.
Step 2. Optimal Control. The above obtained design (d*) is now
evaluated dynamically in the presence of the perturbations and
with consideration of dynamic control constraints. It can be
easily seen that, in general, a great number of constraints are
violated. The objective is therefore to search for the optimal
control rule that ensures the operability of the process accord-
ing to the performance criterion. The optimal control problem
can be formulated as:

It

x(rln)’iun(t)S(X(lf), 1) + /gd* (x(®), u(r), t)dt

fo
S.t.
x(#) — fow)ax(x(0), u(r), 1) =0
qg,a+(x(2), u(?), 1) <0
x(ty) —x5 =0
u(ty) —up =0
xe X cC R,
vt € [t,, tf]

(N

ueldCR™

The optimal control problem (7) defined above is then solved
using the Pontyragin’s minimum principle. This will be
detailed in more depth in a subsequent section.

2.2. Simultaneous design and control

In the simultaneous approach the design and the control are
optimized simultaneously. If the terminal part S(x(#), #¢) in the

performance function (1) is equal to zero, the problem (Egs.
(1)—(5)) is stated as follows:

It
x(t),xo,rL](ltI;,uo,d,Ew(d) + /g(x(t), u(t),d, t)dr
S.t.

X(1) — fow(x(), u(®),d, 1) =0
oy (X(D), u(1), d, 1) + E* = 0
x(ty) —xo =0

u(ty) —ue =0

®)

xeXCR', ueldCR"

xo€XCR" wuoeldCR™
deD,CRI!, EtcZCR?
t € [to, t]

where the inequality constraints are transformed into equality
constraints by the introduction of slack variables &.

For the solution of the optimization problem (8) two dif-
ferent solution strategies are proposed. In the first strategy, the
optimal control problem is included in the constraints of the
design problem explicitly, which is then solved using an SQP
technique. This method was referred as Optimal Design strategy
in the introduction.

In the second strategy, the design and control optimization
is carried out on the basis of Pontyragin’s minimum principle.
The Euler-Lagrange equations are obtained from the prob-
lem of optimization. The algebraic-differential equation system
is discretized then solved by the Newton—Rapshon numeri-
cal method. This was called Optimal Control strategy. These
optimization strategies are summarized in the following sec-
tions.

As the solution of the optimal control problem embed-
ded in both the solution strategies is based on the application
of Pontryagin’s minimum principle we will, therefore, also
present the solution to Pontryagin’s minimum principle for
the special case when the terminal cost S in the performance
function (1) is considered zero. The derivation of the solu-
tion is based on the classical calculus of variations as it
follows.

2.2.1. Optimal design strategy
The optimization problem (8) can be reformulated as:

min o(d) + Jo(xo, Uo, d)
Xo,Uo,
S.L.
Jolxo, uo, d) =0 9)
q@(XOs Uo, d) S 0
xo€XCR" wuoeldCR™
deD, C RY,



In problem (9), Jo(xo, Uo, d) is given by:

If

/gd(X(t), u(t), t)de

to

min
x(t),u(t),§

S.t.
(@) — fowy,a (x(@), u(®), ) =0
qocy.a (x(0), u(®), 1) + £ =0
x(to) —xo =0
u(ty) —uo =0
xe X C R,

£ Z CR?,

Jo(xo, o, d) = (10)

ueld CR"
te[t()’tf]

Problem (10) represents the optimal control problem for the
known initial conditions and given design variables. According
to Pontryagin’s Minimum Principle, a necessary condition for
the optimal solution of problem (10) is given as follows:

Let u*(r) be the optimal control trajectory for the problem
(10) and let x*(¢) be the corresponding optimal state trajectory.
Then, there exists a differentiable costate n-vector function A(z)
and differentiable multipliers ¢(z), such that:

oH . .

73)\_ = x(t) d .x(t) = f@([)(-x(t)s u(t)a de t)

oH 2

% = 0 g q@(t)(-x(t)a M(t)v d? t) + S = 0

BH__. s _ % T g T %

o = MO = -k = [ax tADL -+ 0)3x] (11
M T8 ]

e =0—- [au + A (t)au + o (t)au] =0

MM _ 0 = 20 () = 0

875_ @ @) =

forallz € [t,, tr]. The appropriate state and control boundary con-
ditions (3) and (4) are also added to system (11). The necessary
transversality condition occurs:

(Sx = AD)8x|i= + (H(1) + S8t 1=, = O (12)

for all 7 € [1,, tr]. Sy and S; are the derivatives of the terminal
cost S with respect to the state and the time, respectively, § is the
infinitesimal operator and H is the Hamiltonian of the system
which is defined in terms of g(-), A(-) and ¢(-) as:

Hx(0), u(), M(1), ¢(1), 1) = g(x(1), u(r), 1)
AT fo(x(t), u(t), 1)
+¢T(qo (x(1), u(t), 1) + £(t)*) (13)

Since the terminal cost S in Eq. (1) is equal to zero, the transver-
sality condition (12) results as:

Mtp) =0 (14)

Then, including the equations obtained in (11) in the restrictions
of problem (9), the overall optimization problem can be stated

as:

It
i d , ,d, t)d

x(,),xo,r,?(lfi e, d,gw( )+ / g(x(0), u(?), d, r)dr
to

s.t.

fgg(-an uOv d) = 0

qeo(x07 MO’ d) S 0

X(t) = fory(x(@®), u(®),d, 1) =0

Goy(x(@), u(t), d, 1) + & =0

. 3 ) )

i) = — 5 + AT(t)a—J; n ¢T(t)£ s
%+ﬂm%+ﬂm%=o

20T E1) =0

xX(to) —x, =0

u(ty) —uo =0

AT(t) =0

xeXCR" wueldCR™

deD, CRI, EcZCR?

1€ [to, 1]

Problem (15) results in a NonLinear Dynamic Optimization
problem constrained by a set Differential and Algebraic Equa-
tions (DAE). One should note that this DAE system corresponds
to a Two Point Boundary Value Problem (TPBVP). Various dis-
cretization techniques may be used to transform problem (15)
into a Nonlinear Programming (NLP) problem that can be solved
using an adapted optimization algorithm (SQP in our case). We
can refer to this solution approach as the Explicit Optimal Design
solution approach of problem (15).

For complex chemical processes (such as reactive distilla-
tion), the optimization problem may result in a very large sized
problem. Too many process variables may cause numerical diffi-
culties (even with small degree of freedom) which tend to make
the problem computationally untractable: variable initializa-
tion, variable scaling, gradient evaluation. Thus, it is interesting
to investigate how to implement an optimization procedure to
improve stability and feasibility on this constrained (occasion-
ally large-scale) optimization problem.

For these numerically untractable cases the so called Implicit
Optimal Design solution method (in contrast to the explicit
approach presented above) is proposed as it is shown in Fig. 1.

According to this scheme, the SQP manages the design vari-
ables and the initial values of the control variables. The model
of the system is solved in steady-state in order to calculate the
initial conditions of the state variables. Then the cost functional
is computed solving the optimal control problem (10).

2.2.2. Optimal control strategy

In the Optimal Control strategy, the Pontryagin’s minimum
principle is now applied directly to the problem (8).

A new equation is added to system (11): derivatives with
respect to the design variables are equal to zero. Necessary



Qn’n a(d)+ Ig(m)’"(t)’d’t)a

d,u, SQP

Igd(x(l), u(t),1) dt

Optimal control

1,y
Initial conditions t’;i". J.gd(x(’)’”(’)”) di
u(t)x(1) h

“’.C_.fe(l\/,d(x([)v u(t),)=0
or).a (x(),u(),0+& =0
x(1,)=x,
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Pontryagin’s Minimum Principle
Discretization
Newton Raphson

Fig. 1. Algorithmic model of the implicit solution approach.

conditions yield to:

oH .

T (1) — (1) = foury(x(@), u(t),d, 1)

OH )
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oH _ . iy |% 1 O T 04

o Alt) — —A(1) = [ax + A (t)ax +o (t)ax]
Mo {Bg w4 ¢T(z)aq] =0
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fo

for all t € [t,, #]. The appropriate state and control boundary
conditions (3) and (4), respectively, are also added to system
(16). As said before, since the terminal cost S in Eq. (1) is equal
to zero, the transversality condition is equivalent to: A(ff) = 0.
H is the Hamiltonian (Eq. (13)).

The DAE system is discretized, then solved by the
Newton—Rapshon numerical method.

Remark 1. Since at the initial point steady-state is assumed,
equation fy (X0, Uo, d) = 0 1is included is system (16). The first
equation of system (16), written at t = #,:

X(ty) = f@(to)(x(to)a u(ty), d, ty) =0

Remark 2. The control #*(-)is alocal minimum of the problem
(10) if it satisfies Eq. (11) and

P H
u?
evaluated for u = u* is positive definite. This condition is

called Legendre-Clebsch condition [13]. The Optimal Design
and Optimal Control approaches, as they were presented in

>0

Fig. 2. Schematic diagram of the coaxial heat exchanger.

Sections (2.2.1) and (2.2.2), respectively, are equivalent if the
Legendre-Clebsch condition is locally satisfied.

3. Application to a coaxial heat exchanger

In this section, the methodology is illustrated considering a
very simple example: a coaxial heat exchanger (CHE). As shown
in Fig. 2, typical CHE consists of one pipe placed concentrically
inside another larger diameter pipe.

As said before, this is a simplified example: heat capacities
are constant; heat transfer between hot and cold streams occurs at
average temperature. Then, on the basis of the energy balances,
the model of the process is written as:

qnonC p, (Tyy — Thy)

YA -1
lTho - a e (17
j o C, (T.. — T, UA _ -
TCO qcPc pc( Ci co) + 22T =Ty
2 K>
where (K1) and (K>) coefficients are given by:
C Vi C V.
K| = EmPhVho Ky = %’ (18)
average temperatures (7;) and (7;) are calculated as:
_ Th, + T; - Tc. + Tt
=t g g2 fat e ; G (19)

and finally, the heat transfer area (A) and the volume (V},), respec-
tively (V.), filled by the hot, respectively cold, fluid are computed
as:

nD2¢
A =nDil,

W (20)
In this model (Eqgs. (17)—(20)), the state variables are the outlet
temperatures of the hot (7},) and cold (7, ) streams:

x(t) =T, Te,l"

The manipulated variable is the volumetric flowrate of the cold
stream (gc):

u(t) = qc

The time invariant design parameters are the diameter of the
inner tube (Dj) and the total length of the equipment (£):

d=[D; T

The temperature of the inlet hot flow is subject to a sinusoidal
disturbance:

Th, = 338.7 4 2.22 sin(1.551) 1)



Table 1

Parameter values of the heat exchanger

Parameter Notation Value
Specific heat capacity of hot fluid (J/(kg K)) Cp, 1666.34
Specific heat capacity of cold fluid (J/(kg K)) Cp. 3914.65
Hot flow rate (m>/s) qh 7.865e—4
External diameter (m) D. 0.05
Density of hot fluid (kg/m?) Ph 881.01
Density of cold fluid (kg/m3) Pe 1021.17
Heat transfer coefficient (W/(m?2 K)) U 401.51
Inlet temperature of the cold stream (K) T 299.5

The time invariant, known parameters are given in Table 1.

The objective is to determine the design parameters (d) of
the CHE together with its optimal control (u(#)) which is able
to maintain, at minimum annual total cost, the temperature of
the hot side (7, in the close vicinity of a reference temperature
(Tliff) over a finite time horizon of interest, in the presence of
disturbances in the temperature of the hot flow (7}, ). Constraints
related to the maximum and minimum pressure drops for both
streams are included in the problem. For sake of controllability,
the manipulated variable (u#(f) = g.) is also maintained in the
close vicinity of its nominal capacity.

3.1. Sequential design and control

According to the first strategy presented before, the optimal
design and the related optimal control problems are thought sep-
arately and they are considered as sequential procedures as it
is followed traditionally in the practice. For the CHE design
described previously, the steady-state optimal design problem
can mathematically be stated as follows:

min A+t 0) 4+ c3AP.u(0) + ca AP
Di,é,u(O),x(o)Cl t(c2u(0) 4+ c3A Peu(0) 4 ¢4 Pagn)

S.t.

F(x(0), u(0), D, £) =0
Ve > 0.45

Ve, > 0.45

x1(0) = Tpef

(22)

in which ¢; are the different cost coefficients. The total
capital cost is proportional to the heat transfer area: (c; =
592.0 $/m?). Operating cost includes the cost of the cold water
(c2 = 0.0264 $/m>) and the cost of the two pumps (¢3 = ¢4 =
15e=*$/W/h). t; is the total operating time of the process sup-
posing the life-cycle of the equipment is 15 years and the yearly
rate of operation is 6000 h/year. It is also assumed that the oper-
ation of the process is periodic over the cycles of 8 h. APy,
respectively AP, is the pressure drop in the pump operating
at the hot, respectively cold, side. Pressure drops are calculated
from the Fanning equation:

_ 2UfepnVeq and AP — 20fepcVe?
D; " D.-Dj

where (f¢) is the Fanning factor (equal to 0.001) and (Vey),
respectively (Ve,), is the velocity of the hot, respectively cold,

APy (23)

Table 2
Coaxial heat exchanger—state and design variables and costs: Best-case, nom-
inal and worst-case steady-state designs

Best-case Nominal Worst-case
Te, (K) 309 310 311
Diameter (m) 3.78e—2 3.75e—2 3.71e—-2
Length (m) 28.26 29.96 31.95
Cold flow rate (m>/s) 4.30e—4 4.36e—4 4.75e—4
Investment cost ($) 639.35 676.25 710.27
Operating cost ($) 251.87 266.60 280.21
Total cost ($) 891.24 942.82 990.49
fluide
Vi b oand W du (24)
en = — an ee = ————
] (D} — D})

The first constraint includes the process model (17) in steady-
state (+ = 0). The inequality constraints are relative to the
required minimum water speed (Vepnin = 0.45 m/s) in the pipes.
Recall that higher water speed improves the heat transfer and
minimizes fouling. The last constraint ensures that the process
reaches its objective: the output temperature of the hot fluid
should be equal to the reference 314.81 K.

The above NLP problem (22) is solved using an SQP method.
Three cases were considered according to the value of inlet hot
temperature: (a) nominal case: the inlet hot temperature was
fixed at its nominal value (338.70 K), (b) worst-case: the inlet hot
temperature was set to its highest value (340.92 K), (c) best-case:
the inlet hot temperature was set to its lowest value (336.48 K).

Table 2 summarizes the capital costs along with the optimal
value of the design variables. It can be seen that for the worst-
case design, a significant 5.05% additional cost (back-off) is
required with respect to the nominal economic optimum. This is
due to increased capital cost with over-design of the heat transfer
area of the CHE.

All the design setups were dynamically tested by simulation,
in the presence of the sinusoidal disturbance on the inlet hot
temperature. It can be easily shown that in order to be able to
maintain feasibility of the operation (respect to the constraint rel-
ative to the velocity and the output temperature of the hot fluid)
the utilization of control is required. In our case, an optimal con-
trol scheme is adopted. The performance criterion includes both
economic and controllability criteria: minimize the total cost
while maintaining the hot temperature and the cold flow at their
reference values Tg:f and g™, This performance requirement

C
can be formulated as a quadratic cost function:

tf
1
J = 5/[62“0) + c3APeu(t) + c4 A Pogn
0

os(ut) — g1 + es(xr(t) — TN 1de (25)

The Hamiltonian of the system can be written as:

1
H = E(czu + c3APeu + c4 A Pogn



2 2
+osu — g + colxr — e

gnonCp,(Toy —x1)  UA - -
A - — (T
o ( K K, h T
upeCp (T, —x2)  UA -
a2 2 (T - T
" 2( K> + Kz( h—To)
_4qh 2)
+ +0.45 +
. (nD% g
+ —H 045482 (26)
S C 2

where A; and ¢; are the co-state and multipliers variables, respec-
tively. By the application of Pontryagin’s minimum principle
(system (11)), the optimal control problem results in the follow-
ing DAE system:

e Process model: Eq. (17)
e Minimum velocity constraints:

—4qn
2
D;

—4u
m(D} — D})

+0454+& =0 (27)

+0.45+£ =0 (28)
e Adjoint system:
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e Optimal control equation:
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4
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T —ph T

This system includes four differential equations, nine equa-
tions altogether. There are nine independent variables: the state
variables (Ty, and T ), the co-state variables (A; and A7), the
multipliers (¢; and ¢»), the slack variables (¢; and &) and the
control variable (g.). Boundary conditions include final con-
ditions on the co-state variables (14) and initial conditions on
the state variables: (x(0)) is solution of the steady-state design
problem (22), considering the nominal value of the perturbed
variable.
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Fig. 3. Output temperature of the hot fluid for different design setups: nominal
case (continuous line), worst-case (ragged line), best-case and reference (grey
line).

Fig. 3 shows the profiles of the temperature of the hot fluid. It
should be noted that, for both the nominal and the worst-case, the
optimal control can not maintain the outlet hot temperature in the
close vicinity of the reference over the entire time horizon: when
the minimum velocity constraint is saturated (Fig. 4), the gap
between the outlet hot temperature and the reference temperature
increases.

The optimal control can maintain the temperature of the hot
fluid over the entire time horizon only in the best-case. Indeed,
this case has been optimized for a minimal input temperature of
the hot fluid which results in an under-sized design. The con-
trol respects the minimum velocity constraints (0.45 m/s) and
maintains the output temperature of the hot fluid at its reference
value.

Table 3 shows the operating costs obtained for the system
subject to perturbations while using the sequential approach. Of
course time invariant design parameter and investment cost are
the same as those presented in Table 2. Operating cost 1 is the
cost of water and the operating cost of the pumps. Operating
cost 2 is the penalty cost associated with the deviation between
the output temperature of the hot fluid and the reference temper-
ature. As said before, Operating cost 2 is equal to zero only for
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Fig. 4. Water speed at the cold side for sequential and simultaneous approach.



Table 3
Comparison of sequential and simultaneous strategies

Best-case Nominal Worst-case Simultaneous
Diameter (m) 3.78e—2 3.75e-2 3.71e—2 3.93e—2
Length (m) 28.26 29.96 31.95 29.07
Flow rate reference (m>/s) 4.30e—4 4.36e—4 4.75e—4 4.41e—4
Investment cost ($) 639.35 676.25 710.27 683.57
Operating cost 1 ($) 312.16 259.85 260.14 263.42
Operating cost 2 ($) 0.0 3.42 3.55 0.0
Total cost 1 ($) 951.53 936.10 970.42 947.00
Total cost 2 ($) 951.53 939.52 973.97 947.00
the best-case. Comparing Operating cost 1 for the dynamic pro- cost relative to the design parameters:
cess (Table 3) and Operating cost for the steady-state (Table 2), 1
one should note that, for the best-case, dynamic operation cost H = cinDit + 5(c2u + c3APeu + c4 A Phgn
is greater than steady-state operating cost. Input temperature of
the hot fluid will alwgys be k.ligher or equal to the reference +es(u — qgef)z + colx) — Tﬁgf)z)
temperature of the design requirements. Consequently, the cold
water flowrate will always be higher or equal to the reference 1 (CIhphCPh(Thi — 1) _ %(Th _ Tc)>
flux in order to be able to satisfy the minimum speed con- K K
straint..At the opposite, fpr the nominal and the worth cases, .the upeCp(Te, — x2)  UA _ ~
dynamic operating cost is lower than the steady-state operating +A2 B + ?(Th —To)
cost. 2 2
—4q;,
+o1 < qu +0.45 +.§%>

3.2. Simultaneous design and control i

—4u 5

In order to determine the design parameters (D;, £) and the too | 55 045+ 8 (34
. . . ) n(Dg — DY)

optimal control profiles simultaneously, the CHE illustrative

example has been solved using to the two approaches presented
earlier. According to the Optimal Design approach [14], invest-
ment cost is included in expression (25) as follows:
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1
J =cinDil + 5/[0214(1‘) + c3APeu(t) + caA Phgn
0

2 2
Fes(u(t) — g + colxi(r) — T2 1dr (33)
Then J is minimized and this minimization is subject to the
following constraints:

e Process model (17)

e Minimum velocity constraints (27) and (28)
e Adjoint system (29)—(31)

e Optimal control Eq. (32)

The optimization variables are: the state variables (7, and
T¢,), the co-state variables (A and A7), the multipliers (¢; and
¢2), the slack variables (§1 and &), the control variable (g.) and
the time invariant design parameters (¢) and (D;). The prob-
lem has been solved using a SQP algorithm. For this simple
example, the Explicit Optimal Design solution strategy has been
used.

According to the procedure proposed as the Optimal Control
approach, the Hamiltonian is modified including the investment

Applying Pontryagin’s minimum principle, Eqgs. (17) and
(27)-(32) are obtained. Furthermore, as said before (system
(16)), additional equations are derived: derivatives with respect
to the design parameters:

e Derivative with respect to the CHE length

If
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e Derivative with respect to the CHE internal diameter

(35)
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The whole system includes 11 equations: (17), (27)—(32),
(35) and (36). There are four differential equations and 11 inde-
pendent variables: the state variables (7}, and T, ), the co-state
variables (A1 and Aj), the multipliers (¢; and ¢»), the slack
variables (&1 and &), the control variable (g.) and the time
invariant design parameters () and (D;). The above system
is discretized and the resulting algebraic nonlinear equations
are solved using a Newton—Raphson technique. (11 x n) Equa-
tions, where n is the number of discretization points, are to be
solved.

Within the simultaneous approach, both the Optimal Design
and the Optimal Control solution strategies have been used.
As expected, the optimization variables (state variables, time
invariant design variables and control variables) have the same
optimal values: the two solution strategies are equivalent from a
mathematical point of view. For such a simple example, the two
formulations are also equivalent if one considers the numerical
performances and the formulation load. The second point, which
is the main conclusion, is that a feasible solution is achieved:
the control can maintain the temperature of the hot fluid on the
entire time horizon. In Table 3, these results are compared to
those obtained according to the sequential approach.

For comparison between the sequential and simultaneous
approaches, only the sequential best-case can be selected: per-
formance requirements are satisfied only for this case (then
operative cost 2 is equal to zero).

Comparing the different costs, one should note that the simul-
taneous strategy results in capital cost 6.91% higher than the
sequential one. On the other hand, it provides significantly lower
operating cost (15.61% less). Finally, for this example, the total
cost is lightly reduced.

It can be interesting to consider a constraint for the maximal
speed of the flowrate (problem of erosion for example). The new
problem in steady-state can be written as:

Di,Z,IB(l(%,x(O)ClA + tr(cou(0) + c3 A Pou(0) + c4 A Phgn)
S.t.

F(x(0), u(0), D;, £) =0

0.65 > Ve, > 0.45

0.65 > Ve, > 0.45

x1(0) = Tt

(37)

All the simulations were repeated using the new constraints.
The results obtained for the design in steady-sate are the same as
those presented in Table 2: the new constraints are not saturated.

Table 4

Simultaneous design strategy with minimal and maximal velocity constraints
Simultaneous

Diameter (m) 4.03e—2

Length (m) 29.52

Flow rate reference (m>/s) 4.05¢—4

Investment cost ($) 710.29

Operation cost 1 ($) 241.22

Operation cost 2 ($) 0.0
Total cost 1 ($) 951.51
Total cost 2 ($) 951.51

Nevertheless new design has been obtained for the simultaneous
approach (see Table 4).

Then, we calculated the new optimal control. Fig. 5 shows
the output temperature and velocity variation for the best-case
and the new simultaneous case. It is interesting to note that
when the speed reaches its constrained maximal value, the con-
trol saturates and it is not be possible to maintain the reference
temperature [6].

Therefore, in this case, the sequential approach does not per-
mit to find an acceptable control, which underlines the usefulness
of the simultaneous approach. Indeed, Fig. 5 a shows that the
maximal speed is never reached when the simultaneous approach
is applied. The control is not therefore ever saturated and the
reference is always maintained.

3.3. Conclusion

This simple example illustrates the fact that the more con-
strained the problem is, the more difficult it is to obtain a feasible
process operation using the sequential solution strategy: consid-
ering the minimum fluid velocity constraints, only the sequential
best-case is feasible on the whole time interval; considering the
additional maximum velocity constraint, the hot fluid temper-
ature can not be maintained at its reference value, even in the
sequential best-case.

On the other hand, using the simultaneous solution strategy,
a better process operability can be achieved: the hot fluid tem-
perature is maintained at its reference value. Of course, it is
not always possible to achieve a feasible solution, even with
the simultaneous solution strategy: decreasing the upper bound
of the cold fluid speed, D; will decrease and, consequently, the
speed of the hot fluid (interior tube) will increase. If one reaches
the upper bound of the hot fluid speed, the problem will not have
a feasible solution.
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Fig. 5. (a) Water velocity at the cold side for the sequential design best-case
(continuous line) and the simultaneous approach (ragged line) with minimal
and maximal velocity constraints (b) deviation of the output temperature of hot
fluid from the reference (grey line) for the sequential design when minimal and
maximal velocity constraints are applied.

On such an example, operability benefits are greater than
economic benefits.

4. Application to the catalytic distillation

In this example the production of ETBE from the etherifi-
cation of isobutylene with ethanol is considered in a catalytic
distillation column (Fig. 6). The reaction takes place on tray 4,
5 and 6 of the column: 400 g of Amberlyst 15 Wet is introduced
on each reactive stage. Ethanol is fed on tray 3 and butenes are
fed on tray 8. Inlet streams are described in Table 5. Operat-
ing pressure is equal to 9.5 kPa. The column is modelled using
the classical Mass Equilibrium Summation Heat (MESH) equa-
tions: vapor-liquid equilibrium is assumed on each stage (except
total condensor). The combination of alcohol, olefin and ether
forms a highly non-ideal liquid phase and azeotropes have been
detected experimentally [15]. Liquid nonideality is modelled
using the UNIFAC model. For reactive stages, the mass bal-
ances are modified by the introduction of a reaction term. The
kinetic law is taken from Ref. [16]. Liquid hold-up is evaluated
using the Francis correlation. More information on the catalytic
distillation process can be found in Ref. [5].

Sc condenser
1
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R=L/D
Ethanol 3 k—Dc—y
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Qr
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B
Reboiler

Fig. 6. Reactive distillation column for ETBE process.

The objective is to determine the design parameters (diameter
of the column D¢, area of the condenser S. and flow rate of the
butene feed Fj) together with its optimal control, at minimum
annual total cost, when the butene feed is subject to a sinusoidal
disturbance in its composition (i-butene/n-butene) given by:

zig = 0.3 4+ 0.025 sin(0.15¢) (38)
The control variables are the reflux (R) and the reboiler duty (Q;).
Then, one needs to seek for the optimal control that maintains

the ETBE composition at the bottom of the column, as close as
possible to a reference value: x™f = 0.83.

4.1. Sequential design and control

The optimal design problem, in steady-state, is stated as fol-
lows:

Table 5
ETBE reactive distillation column characteristics
Fixed operating parameters Value
Feed 1
Stage 3
Flow rate (mol/s) 0.02853
Temperature (K) 323
Composition
Ethanol (mol%) 100
Feed 2
Stage 8 951.51
Temperature (K) 342.38
Composition (nominal)
n-Butene (mol%) 70
i-Butene (mol%) 30
Pressure (kPa) 9.5




min Ciny + Cop
X, D¢, Sc, Fa, Or, R

S.t.
f(x7 DCv SCy Fa’ Qr, R) =0 (39)
D¢ > Dpin

f

XETBE,ne = X'°

The minimized objective function is equal to the total annualized
cost. It includes the investment cost (Ciny):

Ciny = Ceol + Ctray + Ceond

where (Co) is the annualized installed cost of the column shell:

1 /M&S
Ceol = < (280> 101.9D196 08022 18 + F.) Fryc
(Ctray) is the cost of the internal parts of the column:

1 /M&S
Curay = S (280> 4.7D1%° Ny F, Fiae

and (Cong) is the annualized installed cost of the condenser [17]:

Ceond = % (N;‘OS> 101.3806 F,

(M&S) is the Marshall and Swift index (1050). (H,) corresponds
to the column height (1.5 ft). (F;) is a material factor (equal to
unity in our case for stainless steel at the operating pressure).
(Ffac) is a scale factor (equal to 2). The operating cost (Cop) is
calculated as follows:

Copzler+C2Fw+03Fa_C4B

in which ¢; are the costs of the exchanger duties, the raw mate-
rial and the product. Table 6 shows the numerical values of the
different costs.

In the first constraint of problem (39), frepresents the steady-
state process model: equilibrium model using MESH equations.
The inequality constraint refers to the minimum column diam-
eter calculated using the equation proposed by [18]. In order
to solve the corresponding Nonlinear Programming Problem
(NLP), a Successive Quadratic Programming (SQP) method has
beenused [19]. Three cases are considered according to the value
of feed 2 composition (perturbed variable): (a) nominal case: the
composition is fixed at its nominal value in i-butene (0.3/07 i-
butene/n-butene), (b) worst-case: the composition is set to its

Table 6
ETBE reactive distillation column: coefficients for the evaluation of the operat-
ing costs

Unit
Vapor cost c|
Cooling water cost ¢

8.055e—6 US$ kW ™!
2.642e—5 US$kg™!

Materials

Butene cost 3 8.25¢—3 US$ mol !

Product

ETBE cost ¢4 25.3e—3 US$mol~!

Table 7
Catalytic Distillation design variables and costs: best-case, nominal and worst-
case steady-state design

Best-case Nominal ‘Worst-case
Diameter (m) D, 9.222e—2 9.533.e—2 9.874e—2
Condenser area (m?) Se 0.348 0.3695 0.392
Feed rate (mol/s) F, 7.555e—2 8.179e—2 8.9315e—2
Reboiler duty (kW) O 4.139 4.428 4.758
Reflux R 3.964 3.659 3.361
Water cost ($) 35.57 37.36 39.41
Vapor cost ($) 996.47 1065.90 1145.33
Profit ETBE ($) 20398.18 20214.15 20014.90
Investment cost ($) Ciny 661.68 685.78 712.33
Operating cost ($) Cop —741.73 1051.52 3187.09
Total cost ($) —80.04 1737.31 3899.51

lowest value in i-butene (0.275/0.725) and (c) best-case: the
composition disturbance is set to its highest value in i-butene
(0.325/0.675). Table 7 summarizes the capital cost along with
the optimal value of the design variables.

It can be seen that for the worst-case design a significant
124.25% additional cost is required with respect to the nominal
economic optimum. This is due to the necessity to increase the
flow rate of butene feed in order to compensate the lowering of
the fraction in isobutene. Note that the reaction is equimolar in
Ethanol and isobutene. In the best-case, the increased fraction
in isobutene is compensated decreasing the butene flow rate. Of
course, the diameter of the column increases with the feed rate.

All the design setups were tested by a dynamic process sim-
ulation. It can be easily seen that, in order to be able to maintain
feasibility of the operation in the presence of the sinusoidal inlet
composition disturbance, the utilization of some control policy
is required. In our case, an optimal control scheme is adopted.
The performance criterion of the optimal control is to maintain
the ETBE composition at a reference value (x"f). Reflux and
reboiler duty are also maintained in the vicinity of their reference
values, while minimizing the operating cost. This performance
criterion can be formulated as a quadratic cost function:
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where P; are constants associated to the particular cost types.

Table 8
Catalytic distillation: costs of the optimal control problem (sequential strategy)
Best-case Nominal Worst-case
Water cost ($) 41.48 37.15 39.42
Vapor cost ($) 1041.80 1063.42 1107.17
Profit ETBE ($) 18628.14 20259.15 21965.73
Investment cost ($) 661.68 685.78 712.33
E($) 0.151 0.154 0.211
Operating cost ($) 1284.9 1005.77 1368.14
Total cost ($) 1946.58 1691.55 2080.47




Table 9

Comparison of the optimal solutions: time invariant optimization variables and costs

Sequential nominal

Simultaneous Simultaneous*

Diameter (m) D, 9.533e—2
Condenser area (m?) Se 0.3695
Feed rate (mol/s) F, 8.179e—2
Reboiler duty (kW) oref 4.428
Reflux Ref 3.659
Water cost ($) 37.15
Vapor cost ($) 1063.42
Profit ETBE ($) 20259.15
Investment cost ($) Ciny 685.78
Operating cost ($) Cop 1005.77
Total cost ($) 1691.55

9.464e—2 9.464e—2
0.3699 0.3619
8.181e—2 8.181e—2
4.350 4.350
3.585 3.585
35.93 37.11
1047.01 1046.92
20243.10 20242.99
681.21 679.94
1008.11 1010.18
1689.31 1690.12

Table 8 shows the operating costs obtained while solving the
optimal control problem (11) using the Pontryagin’s Minimum
Principle.

It can be seen that, in each case, the optimal control maintains
the system in the vicinity of the reference ETBE composi-
tior} over the entire time horizon: the value of the term E =

f
2. .
P / (x™f — XETBE.ne) is quite small.
0

As expected, this result is similar to the one obtained with
the heat exchanger example (Table 3): the smallest total cost is
obtained for the nominal case.

4.2. Simultaneous design and control

In the simultaneous approach, the design and the control
are optimized simultaneously, using an objective function that
includes both the performance of the design and the control:

It

2 2
J = Cipy + /(Pl(xref — XETBEne) + P2(R™f —R)
0

PO — 01 + Copdt @1

According to the simultaneous approach (problem (8)), the
above modified objective function is minimized. The optimiza-
tion variables include the time invariant design parameter:

d =[D¢, Sc, Fal"

Time (s)

the control variables and their initial conditions (reference val-
ues):

u(®) = [R(), 00T and uo = [R™, Q™"

and the state variables (x(¢)), with their initial conditions (x,).
According to the Equilibrium model, state variables are, for
each equilibrium stage: vapor and liquid compositions, vapor
and liquid flow rates, temperature, liquid hold-up. This mini-
mization is submitted to a set of constraints that includes the
dynamic process model, the minimum diameter constraint and
the perturbation law.

The total number of variables is equal to (((2nc 4 10)(ne —
2) 4+ 2(2nc + 8) + 6)np) where (np) is the number of discretiza-
tion points, (nc) the number of components and (ne) the number
of trays of the column. Since this model is quite complex, we
have used the Implicit Optimal Design solution strategy (cf. Sec-
tion (2.2.1) and Fig. 1): for the considered example, with 600
discretization points, the optimal control sub-problem results in
a nonlinear algebraic system with more than 110,000 variables
and equations. The great sparsity of the Jacobian, matrix (more
than 99.9% of the elements are equal to zero) has been exploited.
In order to reduce the computational load, analytical derivatives
have been generated.

The results of the sequential and the simultaneous optimiza-
tion methods are presented in Table 9. The considered sequential
optimization is the Nominal case. Optimal values of the time
invariant optimization variables are presented together with the
different costs.
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Fig. 7. Comparison of the optimal solutions: reflux and reboiler duty for the sequential approach (continuous line) and simultaneous approach (ragged line).
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Fig. 8. Vapor velocity (black) and maximum vapor velocity (grey): sequential
approach (continuous line) and simultaneous approach (ragged line).

In this example, the different costs are not really affected
by the solution strategy. The optimal control policy (Fig. 7) are
also quite similar. Reflux and reboiler duty are lower in the case
of the simultaneous approach. Furthermore, the amplitude of
the sinusoidal variation is lower in the simultaneous approach.
This is a first interesting result from a process operation point of
view.

As said before, a minimum diameter constraint is con-
sidered. The minimum diameter calculation is obtained from
the maximum velocity of the vapor phase in the column:
the column is designed to operate at 80% of the flooding
velocity. Therefore, flooding velocity is a function of vapor
properties (temperature, composition, etc.) which are time
dependent. It also depends on the geometrical parameters of
the plate. In this study, these parameters (weir height, weir
length, etc.) are supposed to be fixed and known. In Fig. 8,
the vapor velocities for both the sequential and the simulta-
neous approaches are compared to the maximum velocities.
For the simultaneous approach, the constraint is satisfied over
the entire time horizon. At the opposite, with the sequen-
tial approach, flooding may occur since the constraint is
violated.

For some practical reasons, it can be interesting to consider a
new constraint: outlet temperature of the cold utility (7,) (water
stream from the condenser) should be lower than a maximum
value. Considering the sequential approach, at the design step,
the new optimization problem in steady-state is modified as
follows:
x,DC,Slj,lilgvlv,Qr,RCinv + Cop

S.t.
S(x, D¢, S, Fa, Or, R, Fyy) =0

D¢ = Dpin

(42)

£
XETBEne = X'°

Ty <3255K

Note that the results obtained for problem (42) are the same
as those presented in Table 9(problem (39)): the new constraint
is not limiting. For the simultaneous approach, however, the
optimal design parameters are lightly altered. The results are
presented in Table 9(column entitled ‘Simultaneous™’).
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Fig. 9. Outlet temperature of the cooling water in the condenser: sequential
approach (continues line) and simultaneous approach (ragged line).

Fig. 9 shows the outlet water temperature for both the
simultaneous and the sequential approaches. Considering the
simultaneous approach (ragged line), one should note that the
maximum temperature constraint is satisfied over the complete
time horizon. Now let us consider the sequential approach (con-
tinuous line). If the maximum temperature constraint is included
in the optimal control problem, no solution could be found:
at the optimal control step of the sequential approach, the
time invariant parameters, such as exchanger area, are fixed;
for these values, there is no control policy that can satisfy
the operating constraint. If the maximum temperature con-
straint is not included, as shown in Fig. 9, the constraint is
violated.

4.3. Conclusion

The second example is much more challenging than the previ-
ous one: there are many more equations and variables; the model
is much more complex (nonlinearity, rigorous thermodynamic
models, etc.).

From the economical point of view, simultaneous and sequen-
tial results are very similar (Table 9). Actually, as in the previous
heat exchanger simple example, the simultaneous approach is
proved to be better from the operability point of view: the vapor
velocity is lower than the maximum flooding velocity on the
whole time interval. Using the sequential approach, flooding
occurs!

Furthermore, if an additional constraint is introduced (maxi-
mum outlet temperature of the cold utility), there is no solution
according to the sequential approach (the constraint has to be
violated for the fixed values of the design parameters). Again the
simultaneous approach is proved to be better since an optimal
control policy is found.

5. General conclusions—future work

The emergence of the generic idea of optimality in the
advanced methods of planning and implementation of complex
interacting processes in chemical industry is probably one of the
most important design principles in the past ten years. Uniquely
amongst modern theories, optimal design and control can han-
dle state, energy and actuator constraints in a straightforward



way, enabling plants to operate more closely to their ultimate
profitable margins.

Initial research in the optimization of chemical processes
focused mainly on the development of the process and con-
trol system design as independent sequential procedures. Recent
results of research in this field have demonstrated that pro-
cess and control design performed simultaneously may result
in numerous economic benefits over the traditional sequential
design approaches. In this paper the effects of the interaction of
process and control design with special focus on the application
of optimal control is investigated.

The basic contribution of this work is twofold. From the
one hand, the application of the idea of optimal control in
the process control design instead of the use of tradition-
ally used PI controllers is a relatively new idea which has
been considered in the chemical engineering practice quite
lately. From the other hand, the simultaneous design, by merg-
ing process and control optimization into a single design
phase, provides considerable operability benefits over traditional
approaches.

The simultaneous approach, with the synergistic combination
of the two optimization ideas integrates the design specifica-
tions of the process and control design problems into a single
performance criterion. As a result, it fuses process and control
optimization into a single design procedure in which the two
optimization problems become closely coupled. With a simple
illustrative example (coaxial heat exchanger), the effectiveness
of the integrated design approach was demonstrated proving to
achieve a better design both from economic and operability point
of view. The integrated strategy was also successfully applied
to a catalytic distillation process, which has a great industrial
relevance in advanced petrochemical technologies, by showing
how better operability can be achieved using the simultaneous
approach.

In future works the introduction of discrete design vari-
ables and discrete control policy is to be considered. In order
to improve the probability to find the exact global optimum,
new global dynamic optimization techniques must be developed.
Stochastic programming tools may be of great interest. Imple-
mentation of the optimal control policy is another challenging
issue: optimization of the control loop structure and optimization
of the controller parameters. Though the presented results are
capable to handle process perturbations, process uncertainties
are to be considered too: in this contribution, external distur-
bances are supposed to be known. Furthermore, in the considered
examples, these perturbations are sinusoidal. For sake of gener-
ality, uncertain parameters are to be considered. Such parameters
lie in a given interval and no specific models are required to
describe the time dependence. Then a new solution strategy must
be developed.

Nomenclature

A heat transfer area (m2)
B bottom flow rate (mol/s)
c cost coefficient

C cost ($)

Cp specific heat capacity (J/(kg K))

q
q()

N><><§<Q: NT X

design parameter

column diameter (m)
diameter of the outer tube (m)
diameter of the inner tube (m)
process model

friction factor

feed flow rate (mol/s)

material factor

scale factor

water flow rate (mol/s)
operating cost ($)
Hamiltonian

column height (ft)

length (m)

Marshall and Swift index
number of components
number of trays of the column
number of discretization points
pressure (bar)

penalization cost

pressure drop (Pa)

volumetric flowrate (m3/s)
design constraints

reboiler duty (kJ/s)

reflux ratio

terminal term of the operating cost ($)
condenser area (m)

time (h, s)

temperature (K)

control variable

heat transfer coefficient (W/(m? K))
volume (m?)

velocity (m/s)

state variable

molar composition (reactive distillation example)

feed molar composition

Greek letters

A co-state variable

w annualized investment cost ($)
[0 Lagrange multiplier

o density (kg/m?)

0 perturbed parameter

& slack variable

Subscripts

c cold

col column

cond  condenser

f final

h hot

i input

inv investment

min minimum

0 initial

0 output (heat exchanger example)
op operating



tray tray

Superscripts
ref reference
* optimal
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