Fuel retention in WEST and ITER divertors based on FESTIM monoblock simulations

To cite this version:

HAL Id: hal-03579873
https://hal.science/hal-03579873
Submitted on 10 May 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Fuel retention in WEST and ITER divertors based on FESTIM monoblock simulations

Rémi Delaporte-Mathurin*a,b,⇤, Hao Yanga, Julien Denisc, James Darkb, Etienne A. Hodilled, Gregory De Temmermand,e,f, Xavier Bonniind, Jonathan Moutengob, Yann Charlesb, Hugo Buferande, Guido Ciraoledo, Christian Grisoliaa

aCEA, IRFM/GCFPM, F-13108 Saint-Paul-lez-Durance, France
bUniversité Sorbonne Paris Nord, Laboratoire des Sciences des Procédés et des Matériaux, LSPM, CNRS, UPR 3407, F-93430, Villetaneuse, France
cAix-Marseille Univ., CNRS, PIIM, F-13013 Marseille
dITER Organization, Route de Vinon sur Verdon, CS 90 046, 13067, St Paul Lez Durance Cedex, France
eZenon Research, 16 rue Séguier, 75006 Paris, France
fMINES ParisTech, Université PSL, Institut des Hautes Études pour l’Innovation et l’Entrepreneuriat (IHEIE), 75006 Paris, France

Abstract

The influence of the input power, puffing rate and neutral pressure on the fuel (hydrogen isotopes) inventory of the WEST and ITER divertors is investigated. For the chosen range of parameters (relatively low temperature at the strike points), the inventory of the WEST divertor evolves as the power 0.2 of the puffing rate and as the power 0.3 of the input power. The inventory at the strike points is highly dominated by ions whereas it is dominated by neutrals in the private zone. Increasing the fuelling rate increases the retention in the private zone and decreases slightly the retention at the strike points. Increasing the input power increases the inventory at the strike points and does not affect much the inventory at the private flux region. The inventory of the ITER divertor is not strongly dependent on the divertor neutral pressure. The inventory increases from 0 Pa to 7 Pa and then decreases slightly from 7 Pa to 10 Pa. After 107 s of continuous exposure, the maximum inventory in the ITER divertor was found to be 14 g. The inventory is not maximum at the strike points due to the high surface temperature of the monoblocks in this region. The maximum accumulation of H in the ITER divertor is below 5 mg per 400 s discharge and below 2 mg per 400 s discharge after 200 discharges.

Keywords: Hydrogen transport, divertor, SolEdge3X-EIRENE, SOLPS, FESTIM

1. Introduction

Hydrogen isotopes (H1) transport in tokamaks is a crucial issue for several reasons. First, for safety reasons, the total inventory of radioactive material trapped in the reactor must be limited to a certain amount. In ITER, the limit of tritium in the vacuum vessel is 1 kg [1]. Second, outgassing of hydrogen from the monoblocks composing the divertor and from the tokamak first wall can reduce the plasma performances [2]. Finally, the lifespan of plasma facing components can be reduced due to hydrogen-induced damage (including embrittlement [3]).

Numerical modelling of H transport and retention in and outgassing from plasma facing components [4, 5, 6, 7] is therefore often required in order to tackle both issues. These simulations are supported by experimental work to determine key properties of fusion materials. H transport in monoblocks has been studied in 1D [8]. However, it was shown in [9] that the 2D edge effects had to be considered to have a better estimate of the H retention in the actively cooled divertor monoblocks. A recent major effort has been made to perform multi-dimensional simulations [9, 4, 5, 10].

In a previous study [4], the finite element code FESTIM [9, 5] was employed to simulate H isotopes transport in ITER-like monoblocks with the geometry given in [11] coupled to heat transfer. A novel method was developed to rapidly estimate the H inventory in the whole ITER divertor from plasma code results without having to run additional finite element simulation. Instead, a behaviour law relying on a data base of 600 FESTIM simulations correlates the H inventory in a monoblock to its surface temperature and surface concentrations (using a gaussian regression process as described in [12]).

The current work applies this technique to estimate the H inventory in the divertors of WEST and ITER based on SolEdge3X-EIRENE [13] and SOLPS-ITER [14] plasma simulations, respectively. The influence of control param-
eters such as the input power, the puffing rate and the divertor neutral pressure is investigated.

2. Methodology

The H inventory of the WEST and ITER divertors will be computed by making use of a database of FESTIM simulations of H transport in ITER-like monoblocks from which a behaviour law is extracted using a gaussian regression process from the inference-tools python package [12]. These simulations model H transport in monoblocks for a fixed plasma exposure duration of 10^7 s. This corresponds to approximately 25 000 concatenated ITER discharges of 400 s each. As shown in [15], this approximation does not affect the H inventory in monoblocks with the current conditions.

These results (details can be found in [4]) are then interfaced with the exposure conditions obtained with the plasma simulations performed with the codes SOLPS [14] and SOLEDGE [13].

2.1. Plasma simulations

In this Section, the set-ups for the computation of the plasma exposure parameters are described. For the SolEdge3X-EIRENE runs, the puff rate and the input power were used as control parameters. For SOLPS-ITER calculation, the divertor neutral pressure is the control parameter.

2.1.1. SolEdge3X-EIRENE runs

The experimental WEST discharge #54903 in L-mode with a relatively stable plasma in the time window 7.9-8.1 s is selected for 2D simulations performed by SOLEDGE3X-EIRENE transport code (v588.165). A pure Deuterium plasma without drift effects is assumed. In order to make the simulations results comparable with experimental results, the simulation set-up is based on the real-time plasma state in the selected time window. For instance, the Lower-Single-Null magnetic configuration used for the simulation corresponds to the time-averaged configuration over the considered period (see Figure 1). The Scrape Off Layer input power is estimated by subtracting the core radiated power (0.22 MW) inside the core-edge interface from the total heating power (0.764 MW). The radiated power in the core plasma is calculated by the bolometer method [16]. As no impurity is assumed in the simulation, the computed radiated power is expected to be lower when compared to reality. In order to get as many divertor conditions as possible, the puff rate was varied from 4.5×10^{20} molecule s$^{-1}$ to 4.72×10^{21} molecule s$^{-1}$ and the input power from 0.449 MW to 2.5 MW. The other setup parameters of the simulation are listed in Table 1. R_{wall} is the recycling coefficient of main chamber wall, R_{pump} is the recycling coefficient of the pump, D_m is the cross-field mass diffusivity perpendicular to the flux surface, ν is the momentum diffusivity, χ_e and χ_i are the heat flux diffusivity for electrons and ions, respectively. The gas puff position is set inside the private region and the pump position is set under the baffle (see Figure 1). The values of R_{wall} and R_{pump} are chosen to match the gas puff levels in the experiment. Classic transport coefficients in L-mode WEST plasmas are applied to match experimental target profiles. The simulation result shows a good agreement with the data from the experiment.

Table 1: Setup parameters used in the SOLEDGE3X simulations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma composition</td>
<td>Deuterium, no impurity</td>
</tr>
<tr>
<td>Recycling coefficients</td>
<td>$R_{\text{wall}} = 0.99$</td>
</tr>
<tr>
<td></td>
<td>$R_{\text{pump}} = 0.95$</td>
</tr>
<tr>
<td>SOL input power</td>
<td>from 0.449 MW to 2.5 MW</td>
</tr>
<tr>
<td>Gas puff rate</td>
<td>from 4.5×10^{20} molecule s$^{-1}$ to 4.72×10^{21} molecule s$^{-1}$</td>
</tr>
<tr>
<td>Drifts</td>
<td>-</td>
</tr>
<tr>
<td>Transport coefficients</td>
<td>$D_m = 0.3 \text{ m}^2 \text{s}^{-1}$</td>
</tr>
<tr>
<td></td>
<td>$\nu = 0.3 \text{ m}^2 \text{s}^{-1}$</td>
</tr>
<tr>
<td></td>
<td>$\chi_e = \chi_i = 1.0 \text{ m}^2 \text{s}^{-1}$</td>
</tr>
</tbody>
</table>

2.1.2. SOLPS runs

Several ITER cases were taken with divertor neutral pressures varying from 1.8 Pa to 11.2 Pa. These SOLPS [14] scenarios can be found in the ITER Integrated Modelling Analysis Suite (IMAS) database [17, 18]. The nine simulations used in this work are labelled 122396, 122397, 122398, 122399, 122400, 122401, 122402, 122403 and 122404. These have been run in baseline burning plasma conditions (Q=10) and with an averaged separatrix Ne concentration of around 0.6 % [19].

2.2. Application to divertors

The distribution of the exposure conditions (angles of incidence, particles energies, particles fluxes and heat flux) are produced by SOLEDGE/SOLPS along the divertors of WEST and ITER (see Figures 1 and 3). These exposure conditions are converted into distributions of surface temperature T_{surface} and surface hydrogen concentration c_{surface} by Equations (1) and (2).

$$T_{\text{surface}} = 1.1 \times 10^{-4} \varphi_{\text{heat}} + T_{\text{coo}}$$

where φ_{heat} is the surface heat flux in W m$^{-2}$ and $T_{\text{coo}} = 323 \text{ K}$ is the coolant temperature.
The relation between the heat flux φ_{heat} and the surface temperature T_{surface} (see Equation (1)) has been obtained from heat transfer simulations of ITER monoblocks [4].

The relation between the surface concentration of mobile H c_{surface} (m$^{-3}$), the particle flux $\varphi_{i \in \{\text{ions, atoms}\}}$ and T_{surface} is given by:

$$c_{\text{surface}} = (1 - r_{\text{atoms}}) \frac{R_{p,\text{atoms}} \varphi_{\text{atoms}}}{D(T_{\text{surface}})} + (1 - r_{\text{ions}}) \frac{R_{p,\text{ions}} \varphi_{\text{ions}}}{D(T_{\text{surface}})} \quad (2)$$

where the reflection coefficients r_i and implantation depths $R_{p,i}$ in m depend on the particle energy and angle of incidence (see Figure 2) and computed with SRIM [20], φ_i are the particles fluxes in m$^{-2}$ s$^{-1}$ and $D(T)$ is the H diffusion coefficient in m2 s$^{-1}$. The implantation range and reflection coefficient were calculated with deuterium ions (mass of 2.014 and hydrogen species) on a W target. The deviation between protium, deuterium and tritium was below the angstrom for the range of energy used in this work.

According to the behaviour law obtained in [4], the temporal evolution of the H inventory along the divertors can be estimated from the surface concentration of mobile H and surface temperature (see Figure 3).
Even though cycling can have an effect on H outgassing at the monoblock plasma facing surface, it was shown in [15] that the evolution of the monoblock inventory with the fluence was not affected. Moreover, it can be shown that the divertors inventories evolve with a power law dependence of time.

3. Results

All the computations have been made for very long exposure times (10^7 s) in order to better visualise trends.

3.1. WEST

Two parametric studies were performed on the WEST divertor varying the input power and the puffing rate. In this Section, the inner and outer strike points are located at 0.2 m and 0.36 m respectively (see Figure 1).

The relation between the implantation range R_p and the incident energy and angle of incidence can be obtained from SRIM [20] results (see Figure 2a). It was found that the angle of incidence had low influence on the implantation range. R_p can then be expressed (in m) as a function of the incident energy only (see Equation (3)).

$$ R_p = 1.9 \times 10^{-10} E^{0.59} $$

(3)

where E is the incident energy in eV.

The evolution of the reflection coefficient r can also be estimated with SRIM for a perfect surface. The reflection coefficient varies from around 0.5 at 0° to 0.8 at 80° (see Figure 2b). According to [18], the incident angles for ions and atoms were assumed to be 60° and 45°, respectively. It should be noted that since SRIM is based on the binary collision approximation, values around 10 eV might not be fully valid.

The source-code of the tool described in this work (divHRetention) is under version control and openly available via Github under a MIT licence [21]. The divHRetention python package is distributed via PyPi [22].

Figure 3: Method of H inventory estimation based on the surface concentration, the surface temperature and the behaviour law obtained in [4]. First $T_{surface}$ (top left) and $c_{surface}$ (bottom right) are calculated with equations 1 and 2 from the plasma simulation outputs. Then, both are reported on the behaviour law for the various position in the divertor (top right). The area corresponds to the 95% confidence interval computed by the Gaussian regression.

Figure 4: Distribution of heat flux, particle flux and particle energy along the WEST divertor computed by SOLEDGE3X-EIRENE with input powers varying from 0.49 MW to 2.0 MW with a puffing rate of 2.5×10^{21} molecules s$^{-1}$.

3.1.1. Power scan

The SOL input power was varied between 0.45 MW and 2.0 MW. Two puffing rate values were used: 2.5×10^{21} molecule s$^{-1}$ and 4.4×10^{21} molecule s$^{-1}$.

The heat flux at the strike points increased with the input power from 0.1 MW m$^{-2}$ to 10 MW m$^{-2}$ (see Figure 4). The incident flux of particle was not significantly affected by the input power variation. The particle incident energy however increased up to 100 eV at the strike points.

The maximum retention was found to be located at the strike points (see Figure 5). The inventory at the outer strike point was higher than at the inner strike point. The retention at the strike points was found to increase with the SOL input power whereas it slightly decreased in the private zone (see Figure 6a). This was explained by an attachment of the plasma decreasing the particle flux in the private zone. Since the surface temperature is constant, this leads to a decrease in the surface concentration of hydrogen as seen on Figure 5. On the other hand, the increasing temperature at the strike points only enhanced
the diffusion process while remaining low enough so that hydrogen could get trapped. The total inventory in the WEST divertor is computed as follows:

\[
\text{inv}_{\text{divertor}} = N_{\text{PFU}} \cdot \int \text{inv}_{\text{PFU}}(x) \, dx
\]

where \(N_{\text{PFU}} = 480 \) is the number of PFU (Plasma Facing Units) in WEST, inv_{PFU} is the inventory per unit thickness in H m\(^{-1}\) (see Figure 5) and \(x \) the distance along the target in m.

At the strike points, the retention is dominated by the ion flux whereas neutrals are dominant in the private zone (see Figure 6b). The contribution of ions at the strike points increased with the input power but remained approximately constant in the private zone.

The divertor inventory increased with the input power (see Figure 7) and evolved as the power 0.3 of the input power. The maximum divertor inventory was \(8.8 \times 10^{23} \) H at 2.0 MW of SOL input power. This value of input power is still relatively low. Increasing the puffing rate lead to an increase in the inventory. This will be explained more thoroughly in Section 3.1.2.

The divertor inventory was found to increase as a square root of time.

3.1.2. Density scan

A parametric study on the puffing rate was performed. The puffing rate varied between \(4.4 \times 10^{20} \) molecule s\(^{-1}\) and \(4.7 \times 10^{21} \) molecules s\(^{-1}\). The SOL input power was fixed to 0.45 MW.

The heat flux was found to increase with the puffing rate in the private region, whereas it decreases at the strike points (see Figure 8). The particle flux on the other hand, increases with the puffing rate in every region, especially for the neutral particles. The incident energy of particles decreased with the puffing rate.

The maximum retention was again located at the strike points for all puffing rates values (see Figure 9). The inventory at the outer strike point was higher than at the inner strike point. The inventory in the private zone was found to increase with the puffing rate whereas it was almost constant at the strike points (see Figure 11a). As for the power scan, the ions contribution to the inventory is rather low in the private zone (see Figure 11b). Moreover, the contribution of ions decreases rapidly at the strike points and represents only half of the surface concentration at \(4 \times 10^{21} \) molecule s\(^{-1}\).

The inventory in the whole WEST divertor is computed from Equation (4). As for the power scan, the divertor inventory per unit thickness (H/m) and inventory along the WEST divertor with input powers varying from 0.49 MW to 2.0 MW with a puffing rate of \(2.5 \times 10^{21} \) molecule s\(^{-1}\).
The inventory increased as the power 0.2 of the puffing rate (see Figure 10). The maximum inventory was found to be 5×10^{23} H at 4.7×10^{21} molecules s$^{-1}$.

The divertor inventory was found to increase as a square root of time.

3.2. ITER

The heat flux was maximum at the outer strike point reaching 20 MW m$^{-2}$ (see Figure 12). The neutral particles incident energy was found to be at least one order of magnitude lower than that of the ions.

Peak temperatures at strike points increased when decreasing the divertor neutral pressure (see Figure 13). The peak temperature at the outer strike point reached 2000 K at 2 Pa and more than 1000 K at the inner strike point which is in accordance with the results obtained by Pitts et al [19]. This is consistent with the higher heat flux observed at the outer strike point (see Figure 12). The inventory in the whole divertor is computed as follow:

$$\text{inv}_{\text{divertor}} = N_{\text{cassettes}} \cdot (N_{\text{PFU-IVT}} \cdot \int \text{inv}_{\text{IVT}}(x) \, dx + N_{\text{PFU-OVT}} \cdot \int \text{inv}_{\text{OVT}}(x) \, dx)$$

(5)

with $N_{\text{cassettes}} = 54$ the number of cassettes, $N_{\text{PFU-IVT}} = 16$ and $N_{\text{PFU-OVT}} = 22$ the number of plasma facing units per cassette in the inner and outer targets respectively, inv_{IVT} and inv_{OVT} the hydrogen inventory profile along the inner and outer targets respectively and x the distance along the targets.

The inventory in the outer target was found to be nearly twice that of the inner target. This is greatly explained by the larger number of plasma facing units in the outer target and therefore a greater exposed surface. The global inventory increases with the divertor neutral pressure and a slight roll-over is observed above 7 Pa (see Figure 14). This roll-over is consistent with the results obtained in [19]. It is mainly due to the surface temperature variations near the outer strike point inducing variation in the near strike point inventory (see Figure 13b).

The inventory increase was found to be more important in the outer vertical target. This was explained by the fact that the plasma is more detached at the inner target. Therefore the surface temperature reduction is more significant in the outer vertical target and the surface concentration is increased (see Figure 13b).

The maximum inventory was found at around 7 Pa and was approximately 14 g of H which is well below the ITER in-vessel safety limit of tritium (1 kg), especially considering only half of this quantity will be tritium. This is especially true considering that this was for a very long exposure time of 107 s which corresponds to 25 000 pulses of 400 s.

The inventory at the inner and outer strike points globally increases with the divertor neutral pressure (see Figure 10).
It was shown that the inventory in WEST increases as the power 0.3 of the SOL input power and as the power 0.2 of the puffing rate. The inventory in the ITER divertor was found to first increase with the neutral pressure up to 7 Pa then decrease, though the variation was smoother. The inventory in the outer vertical target of the ITER divertor is twice that of the inner vertical target. These results were in good agreement with the observations made in [19].

However, it should be noted that for these simulations both machines do not operate in the same regime. While WEST operates at low SOL input power, ITER operates at high input power with a high recycling divertor. These differences in the operation regime can explain different trends.

The underlying monoblock model has also a few limitations, as detailed in [4]. First, the set of trapping parameters that was used may not be relevant for every region of the divertor. These properties can however be estimated from experimental work [23, 24]. The accuracy of the results could therefore be improved by running a new batch of FESTIM monoblock simulations with different trapping parameters like neutron-induced traps. The impact of edge localised modes is assumed to be negligible for very long exposure times [25].

Then, this model does not take into account retention in Be co-deposited layers. These are expected to be the main driver for H retention in ITER [26]. Estimations of the retention rate in these layers range from 100 mg to 300 mg per 400 s shot [27]. The retention rate computed in this study is much lower and remains below 5 mg per discharge. However, this work is still relevant for full-W environments like WEST and DEMO.

Additionally, the FESTIM results used in this model are 2D simulations. It could be argued that 3D edge effects due to desorption from the gaps between the monoblocks would decrease the estimated inventory. The current assumption is therefore conservative and is a worst-case scenario. However, the influence of 3D edge effects on the monoblock inventory and outgassing fluxes will be investigated in future work.

Acknowledgements

The project leading to this publication has received funding from Excellence Initiative of Aix-Marseille University - A*MIDEX, a French “Investissements d’Avenir” programme as well as from the French National Research Agency (Grant No. ANR-18-CE05-0012). This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. The views and opinions expressed herein do not necessarily reflect those of the ITER Organization.
Figure 12: Heat flux, particle flux and particle energy along ITER divertor computed by SOLPS with neutral pressures varying from 2 Pa to 11 Pa.

Figure 13: Surface temperature, surface concentration and inventory along ITER divertor with neutral pressures varying from 2 Pa to 11 Pa. Area corresponds to the 95% confidence interval.

References

Figure 14: Hydrogen inventory in the ITER divertor as a function of neutral pressure after 10^7 s of exposure (approximately 25,000 discharges).

Figure 15: H retention at the strike points (defined as maximum temperature) as a function of the divertor neutral pressure.

Figure 16: Evolution of the H inventory of the ITER divertor with the number of 400 s discharges.

[22] Rémi Delaporte-Mathurin. divHretention: Tool to estimate H retention in tokamak divertors, v0.1.3 PyPi distribution.

