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1. Introduction. Time-delay often appears in many biological, electrical engineering systems and mechanical applications, and in many cases, delay is a source of instability [START_REF] Hale | Introduction to functional differential equations[END_REF]. In the case of distributed parameter systems, even arbitrarily small delays in the feedback may destabilize the system (see e.g. [START_REF] Datko | Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks[END_REF][START_REF] Logemann | Conditions for robustness and nonrobustness of the stability of feedback systems with respect to small delays in the feedback loop[END_REF][START_REF] Rebarber | Robustness with respect to delays for exponential stability of distributed parameter systems[END_REF][START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF]). The stability issue of systems with delay is, therefore, of theoretical and practical importance.

There are only a few works on Lyapunov-based technique for Partial Differential Equations (PDEs) with delay. Most of these works analyze the case of constant delays. Thus, stability conditions and exponential bounds were derived for some scalar heat and wave equations with constant delays and with Dirichlet boundary conditions without delay in [START_REF] Wang | Stability in abstract functional-differential equations[END_REF][START_REF] Wang | Exponential stability and inequalities of solutions of abstract functional differential equations[END_REF]. Stability and instability conditions for the wave equations with constant delay can be found in [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF][START_REF] Nicaise | Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks[END_REF]. The stability of linear parabolic systems with constant coefficients and internal constant delays has been studied in [START_REF] Huang | An analysis of delay-dependent stability for ordinary and partial differential equations with fixed and distributed delays[END_REF] in the frequency domain.

Recently the stability of PDEs with time-varying delays was analyzed in [START_REF] Caraballo | Method of Lyapunov functionals construction in stability of delay evolution equations[END_REF][START_REF] Fridman | On stability of linear parabolic distributed parameter systems with time-varying delays[END_REF][START_REF] Orlov | On exponential stability of linear retarded distributed parameter systems[END_REF]] via Lyapunov method. In the case of linear systems in the Hilbert space, the conditions of [START_REF] Caraballo | Method of Lyapunov functionals construction in stability of delay evolution equations[END_REF][START_REF] Fridman | On stability of linear parabolic distributed parameter systems with time-varying delays[END_REF][START_REF] Orlov | On exponential stability of linear retarded distributed parameter systems[END_REF] assume that the operator acting on the delayed state is bounded, which means that this condition can not be applied to boundary delays. These conditions were applied to PDEs without delays in the boundary conditions (to 2D Navier-Stokes and to a scalar heat equations in [START_REF] Caraballo | Method of Lyapunov functionals construction in stability of delay evolution equations[END_REF], to a scalar heat and to a scalar wave equations in [START_REF] Fridman | On stability of linear parabolic distributed parameter systems with time-varying delays[END_REF][START_REF] Orlov | On exponential stability of linear retarded distributed parameter systems[END_REF]).

In the present paper we analyze exponential stability of the heat and wave equations with time-varying boundary delay. Our main novel contribution is an extension of previous results from [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF][START_REF] Nicaise | Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks[END_REF] to time-varying delays. This extension is not straightforward due to the loss of translation-invariance. In the constant delay case the exponential stability was proved in [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF][START_REF] Nicaise | Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks[END_REF] by using the observability inequality which can not be applicable in the time-varying case (since the system is not invariant by translation). Hence we introduce new Lyapunov functionals with exponential terms and an additional term for the wave equation, which take into account the dependence of the delay with respect to time. For the treatment of other problems with Lyapunov technique see [START_REF] Fridman | On stability of linear parabolic distributed parameter systems with time-varying delays[END_REF][START_REF] Orlov | On exponential stability of linear retarded distributed parameter systems[END_REF][START_REF] Nicaise | Stabilization of the wave equation with variable coefficients and boundary condition of memory type[END_REF]. Note further that to the best of our knowledge the heat equation with boundary delay has not been treated in the literature. Contrary to [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF][START_REF] Nicaise | Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks[END_REF], the existence results do not follow from standard semi-group theory because the spatial operator depends on time due to the time-varying delay. Therefore we use the variable norm technique of Kato [START_REF] Kato | Linear and quasilinear equations of evolution of hyperbolic type[END_REF][START_REF] Kato | Abstract differential equations and nonlinear mixed problems[END_REF]. Finally for each problem we give explicit sufficient conditions that guarantee the exponential decay and for the first time we characterize the optimal decay rate that can be explicitly computed once the data are given.

The paper is mainly decomposed in two parts treating the heat equation (section 2) and the wave equation (section 3). In the first subsection, we set the problem under consideration and prove existence results by using semigroup theory. In the second subsection we find sufficient conditions for the strict decay of the energy and finally in the last subsection we show that these conditions yield an exponential decay.

2. Exponential stability of the delayed heat equation. First, we consider the system described by

           u t (x, t) -au xx (x, t) = 0, 0 < x < π, t > 0, u(0, t) = 0, t > 0, u x (π, t) = -µ 0 u(π, t) -µ 1 u(π, t -τ (t)), t > 0, u(x, 0) = u 0 (x), 0 < x < π, u(π, t -τ (0)) = f 0 (t -τ (0)), 0 < t < τ (0), (1) 
with the constant parameter a > 0 and where µ 0 , µ 1 ≥ 0 are fixed nonnegative real numbers, the time-varying delay τ (t) satisfies

τ (t) < 1, ∀t > 0, (2) 
and

∃M > 0 : 0 < τ 0 ≤ τ (t) ≤ M, ∀t > 0. (3) 
Moreover, we assume that

τ ∈ W 2, ∞ ([0, T ]), ∀T > 0. ( 4 
)
The boundary-value problem (1) describes the propagation of heat in a homogeneous one-dimensional rod with a fixed temperature at the left end. Here a stands for the heat conduction coefficient, u(x, t) is the value of the temperature field of the plant at time moment t and location x along the rod. In the sequel, the state dependence on time t and spatial variable x is suppressed whenever possible.

2.1. Well posedness of the problem. We aim to show that problem (1) is wellposed. For that purpose, we use semi-group theory and adapt the ideas from [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF].

We introduce the Hilbert space

V = {φ ∈ H 1 (0, π) : φ(0) = 0}.
We transform our system (1) as follows. Let us introduce the auxiliary variable z(ρ, t) = u(π, tτ (t)ρ) for ρ ∈ (0, 1) and t > 0. Note that z verifies the transport equation for 0 < ρ < 1 and t > 0

   τ (t)z t (ρ, t) + (1 -τ (t)ρ)z ρ (ρ, t) = 0, z(0, t) = u(π, t), z(ρ, 0) = f 0 (-τ (0)ρ). (5) Therefore, the problem (1) is equivalent to                u t (x, t) -au xx (x, t) = 0, 0 < x < π, t > 0, τ (t)z t (ρ, t) + (1 -τ (t)ρ)z ρ (ρ, t) = 0, 0 < ρ < 1, t > 0, u(0, t) = 0, u x (π, t) = -µ 0 u(π, t) -µ 1 z(1, t), t > 0, z(0, t) = u(π, t), t > 0, u(x, 0) = u 0 (x), 0 < x < π, z(ρ, 0) = f 0 (-τ (0)ρ), 0 < ρ < 1. (6) 
If we introduce

U := (u, z) ⊤ , then U satisfies U t = (u t , z t ) ⊤ = (au xx , τ (t)ρ -1 τ (t) z ρ ) ⊤ .
Consequently the problem (1) may be rewritten as the first order evolution equation

U t = A(t)U U (0) = (u 0 , f 0 (-τ (0))) ⊤ = U 0 , (7) 
where the time dependent operator A(t) is defined by

A(t) u z = au xx τ (t)ρ-1 τ (t) z ρ , with domain D(A(t)) := {(u, z) ∈ (V ∩ H 2 (0, π)) × H 1 (0, 1) : z(0) = u(π), u x (π) = -µ 0 u(π) -µ 1 z(1)}.
Notice that the domain of the operator A(t) is independent of the time t, i.e.

D(A(t)) = D(A(0)), ∀t > 0. ( 8 
)
Now, we introduce the Hilbert space

H = L 2 (0, π) × L 2 (0, 1)
equipped with the usual inner product

u z , ũ z = π 0 uũdx + 1 0 z(ρ)z(ρ)dρ.
A general theory for equations of type [START_REF] Kato | Linear and quasilinear equations of evolution of hyperbolic type[END_REF] has been developed using semigroup theory [START_REF] Kato | Linear and quasilinear equations of evolution of hyperbolic type[END_REF][START_REF] Kato | Abstract differential equations and nonlinear mixed problems[END_REF][START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]. The simplest way to prove existence and uniqueness results is to show that the triplet {A, H, Y }, with A = {A(t) : t ∈ [0, T ]}, for some fixed T > 0 and Y = D(A(0)), forms a CD-system (or constant domain system, see [START_REF] Kato | Linear and quasilinear equations of evolution of hyperbolic type[END_REF][START_REF] Kato | Abstract differential equations and nonlinear mixed problems[END_REF]). More precisely, the following theorem gives the existence and uniqueness results and is proved in Theorem 1.9 of [START_REF] Kato | Linear and quasilinear equations of evolution of hyperbolic type[END_REF] (see also Theorem 2.13 of [START_REF] Kato | Abstract differential equations and nonlinear mixed problems[END_REF] or [START_REF] Mehmeti | Nonlinear waves in networks[END_REF]) Then, problem [START_REF] Kato | Linear and quasilinear equations of evolution of hyperbolic type[END_REF] has a unique solution

Theorem 2.1. Assume that (i) Y = D(A(0)) is a dense subset of H, (ii) 
U ∈ C([0, T ], Y ) ∩ C 1 ([0, T ], H) for any initial datum in Y . Lemma 2.2. D(A(0)) is dense in H. Proof. Let (f, h) ⊤ ∈ H be orthogonal to all elements of D(A(0)), namely 0 = u z , f h = π 0 uf dx + 1 0 z(ρ)h(ρ)dρ,
for all (u, z) ⊤ ∈ D(A(0)).

We first take u = 0 and z ∈ D(0, 1). As (0, z) ∈ D(A(0)), we get

1 0 z(ρ)h(ρ)dρ = 0.
Since D(0, 1) is dense in L 2 (0, 1), we deduce that h = 0.

In the same manner, by taking z = 0 and u ∈ D(0, π) we see that f = 0.

Let us suppose now that the speed of the delay satisfies

τ (t) ≤ d < 1, ∀t > 0 (9) 
and that µ 0 , µ 1 satisfy

µ 2 1 ≤ (1 -d)µ 2 0 . (10) 
Under these conditions, we will show that the operator A(t) generates a C 0 -semigroup in H and using the variable norm technique of Kato from [START_REF] Kato | Linear and quasilinear equations of evolution of hyperbolic type[END_REF], that problem (6) (and then (1)) has a unique solution.

For that purpose, we introduce the following time-dependent inner product on

H u z , ũ z t = π 0 uũdx + qτ (t) 1 0 z(ρ)z(ρ)dρ,
where q is a positive constant chosen later on, with associated norm denoted by . t .

Theorem 2.3. For an initial datum U 0 ∈ H, there exists a unique solution U ∈ C([0, +∞), H) to problem [START_REF] Kato | Linear and quasilinear equations of evolution of hyperbolic type[END_REF]. Moreover, if U 0 ∈ D(A(0)), then

U ∈ C([0, +∞), D(A(0))) ∩ C 1 ([0, +∞), H).
Proof. We first prove that

φ t φ s ≤ e c 2τ 0 |t-s| , ∀t, s ∈ [0, T ] (11) 
where φ = (u, z) ⊤ and c is a positive constant. For all s, t ∈ [0, T ], we have

φ 2 t -φ 2 s e c τ 0 |t-s| = 1 -e c τ 0 |t-s| π 0 u 2 dx+ q τ (t) -τ (s)e c τ 0 |t-s| 1 0 z(ρ) 2 dρ.
We notice that 1e

c τ 0 |t-s| ≤ 0. Moreover τ (t) -τ (s)e c τ 0
|t-s| ≤ 0 for some c > 0. Indeed, τ (t) = τ (s) + τ (a)(ts), where a ∈ (s, t), and thus,

τ (t) τ (s) ≤ 1 + | τ (a)| τ (s) |t -s| .
By (4), τ is bounded and therefore,

τ (t) τ (s) ≤ 1 + c τ 0 |t -s| ≤ e c τ 0 |t-s| , by (3) 
, which proves [START_REF] Nicaise | Stabilization of the wave equation with variable coefficients and boundary condition of memory type[END_REF]. Now we calculate A(t)U, U t for a t fixed. Take U = (u, z) ⊤ ∈ D(A(t)). Then

A(t)U, U t = au xx τ (t)ρ-1 τ (t) z ρ , u z t = a π 0 u xx udx -q 1 0 z ρ (ρ)z(ρ)(1 -τ (t)ρ)dρ.
By integrating by parts in space in the first term of this right hand side, we have

A(t)U, U t = -a π 0 u 2 x dx + a[uu x ] π 0 -q 1 0 z ρ (ρ)z(ρ)(1 -τ (t)ρ)dρ = -a π 0 u 2 x dx -aµ 0 u(π, t) 2 -aµ 1 u(π, t)u(π, t -τ (t)) -q 1 0 z ρ (ρ)z(ρ)(1 -τ (t)ρ)dρ.
Moreover, we have by integrating by parts in ρ:

1 0 z ρ (ρ)z(ρ)(1 -τ (t)ρ)dρ = 1 0 1 2 ∂ ∂ρ (z(ρ) 2 )(1 -τ (t)ρ)dρ = τ (t) 2 1 0 z(ρ) 2 dρ + 1 2 u 2 (π, t -τ (t))(1 -τ (t)) - 1 2 u 2 (π, t).
Therefore

A(t)U, U t = -a π 0 u 2 x dx - q τ (t) 2 1 0 z(ρ) 2 dρ -aµ 0 u(π, t) 2 -aµ 1 u(π, t)u(π, t -τ (t)) - q 2 u(π, t -τ (t)) 2 (1 -τ (t)) + q 2 u(π, t) 2 ≤ -a π 0 u 2 x dx + ( q 2 -aµ 0 )u 2 (π, t) -aµ 1 u(π, t)u(π, t -τ (t)) - q 2 u(π, t -τ (t)) 2 (1 -d) + q | τ (t)| 2τ (t) τ (t) 1 0 z(ρ) 2 dρ.
We can see that this inequality can be written

A(t)U, U t ≤ -a π 0 u 2 x dx + (u(π, t), u(π, t -τ (t)))Ψ q (u(π, t), u(π, t -τ (t))) ⊤ + κ(t) U, U t ,
where

κ(t) = ( τ (t) 2 + 1) 1 2 2τ (t) (12) 
and where Ψ q is the 2 × 2 matrix defined by

Ψ q = 1 2 q -2aµ 0 -aµ 1 -aµ 1 -q(1 -d) . (13) 
As -q(1d) < 0, we notice that the matrix Ψ q is negative (in the sense that

XΨ q X ⊤ ≤ 0, for all X = (x 1 , x 2 ) ∈ R 2 ) if and only if q 2 -2aµ 0 q + a 2 µ 2 1 1 -d ≤ 0. ( 14 
)
The discriminant of this second order polynomial (in

q) is ∆ = 4a 2 µ 2 0 - µ 2 1 1 -d ,
which is non negative if and only if [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF] holds. Therefore, the matrix Ψ q is negative for some q > 0 if and only if [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF] is satisfied. Hence, we choose q satisfying ( 14) or equivalently such that

aµ 0 -a µ 2 0 - µ 2 1 1 -d ≤ q ≤ aµ 0 + a µ 2 0 - µ 2 1 1 -d .
Such a choice of q yields

A(t)U, U t -κ(t) U, U t ≤ 0, (15) 
which proves the dissipativeness of Ã(t) = A(t)κ(t)I for the inner product

•, • t . Moreover κ ′ (t) = τ (t) τ (t) 2τ (t)( τ (t)+1) 1 2 -τ (t)( τ (t) 2 +1) 1 2 2τ (t) 2
is bounded on [0, T ] for all T > 0 (by ( 4)) and we have

d dt A(t)U = 0 τ (t)τ (t)ρ-τ (t)( τ (t)ρ-1) τ (t) 2 z ρ with τ (t)τ (t)ρ-τ (t)( τ (t)ρ-1) τ (t) 2
bounded on [0, T ] by [START_REF] Fridman | On stability of linear parabolic distributed parameter systems with time-varying delays[END_REF]. Thus

d dt Ã(t) ∈ L ∞ * ([0, T ], B(D(A(0)), H)), (16) 
the space of equivalence classes of essentially bounded, strongly measurable functions from [0, T ] into B(D(A(0)), H).

Let us prove that A(t) is maximal, i.e., that λI -A(t) is surjective for some λ > 0 and t > 0.

Let (f, h) T ∈ H. We look for U = (u, z)

T ∈ D(A(t)) solution of (λI -A(t)) u z = f h or equivalently λu -au xx = f λz + 1-τ (t)ρ τ (t) z ρ = h. (17) 
Suppose that we have found u with the appropriate regularity. We can then determine z, indeed z satisfies the differential equation

λz + 1 -τ (t)ρ τ (t) z ρ = h
and the boundary condition z(0) = u(π). Therefore z is explicitly given by

z(ρ) = u(π)e -λτ (t)ρ + τ (t)e -λτ (t)ρ ρ 0 e λτ (t)σ h(σ)dσ,
if τ (t) = 0, and

z(ρ) = u(π)e λ τ (t) τ (t) ln(1-τ (t)ρ) + e λ τ (t) τ (t) ln(1-τ (t)ρ) ρ 0 h(σ)τ (t) 1 -τ (t)σ e -λ τ (t) τ (t) ln(1-τ (t)σ) dσ,
otherwise. This means that once u is found with the appropriate properties, we can find z. In particular, we have if τ (t) = 0,

z(1) = u(π)e -λτ (t) + τ (t)e -λτ (t) 1 0 e λτ (t)σ h(σ)dσ = u(π)e -λτ (t) + z 0 ,
where z 0 = τ (t)e -λτ (t) 1 0 e λτ (t)σ h(σ)dσ is a fixed real number depending only on h, and if τ (t) = 0

z(1) = u(π)e λ τ (t) τ (t) ln(1-τ (t)) + e λ τ (t) τ (t) ln(1-τ (t)) 1 0 h(σ)τ (t) 1 -τ (t)σ e -λ τ (t) τ (t) ln(1-τ (t)σ) dσ = u(π)e λ τ (t) τ (t) ln(1-τ (t)) + z 0 ,
where

z 0 = e λ τ (t) τ (t) ln(1-τ (t)) 1 0 h(σ)τ (t)
1-τ (t)σ e -λ τ (t) τ (t) ln(1-τ (t)σ) dσ depends only on h. It remains to find u. By [START_REF] Wang | Exponential stability and inequalities of solutions of abstract functional differential equations[END_REF], u must satisfy

λu -au xx = f.
Multiplying this identity by a test function φ, integrating in space and using integration by parts, we obtain

π 0 (λu -au xx )φdx = π 0 (λuφ + au x φ x )dx -au x (π)φ(π) + au x (0)φ(0).
But using the fact that (u, z) ⊤ must belong to D(A(t)), we have

π 0 (λu -au xx )φdx = π 0 (λuφ + au x φ x )dx + aµ 0 u(π)φ(π) + aµ 1 z(1)φ(π). Therefore π 0 (λuφ + au x φ x )dx + aµ 0 u(π)φ(π) + aµ 1 z(1)φ(π) = π 0 f φdx.
Using the above expression for z(1), we arrive at the problem

π 0 (λuφ + au x φ x )dx + a(µ 0 + µ 1 e -λτ (t) )u(π)φ(π) = π 0 f φdx -aµ 1 z 0 φ(π), ∀φ ∈ V (18) if τ (t) = 0, or otherwise π 0 (λuφ + au x φ x )dx + a(µ 0 + µ 1 e λ τ (t) τ (t) ln(1-τ (t)) )u(π)φ(π) = π 0 f φdx -aµ 1 z 0 φ(π), ∀φ ∈ V. ( 19 
)
These problems have a unique solution u ∈ V by Lax-Milgram's lemma, because the left-hand side of (18) or ( 19) is coercive on

V . If we consider φ ∈ D(0, π) ⊂ V , then u satisfies λu -au xx = f in D ′ (0, π).
This directly implies that u ∈ H 2 (0, π) and then u ∈ V ∩ H 2 (0, π). Coming back to (18) and by integrating by parts, we find, for τ (t) = 0,

a[u x (π) + (µ 0 + µ 1 e -λτ (t) )u(π)]φ(π) = -aµ 1 z 0 φ(π),
and then

u x (π) = -(µ 0 + µ 1 e -λτ (t) )u(π) -µ 1 z 0 = -µ 0 u(π) -µ 1 (e -λτ (t) u(π) + z 0 ) = -µ 0 u(π) -µ 1 z(1).
We find the same result if τ (t) = 0. In summary we have found (u, z) ⊤ ∈ D(A(t)) satisfying ( 17) and thus λI -A(t) is surjective for some λ > 0 and t > 0. Since κ(t) > 0, we directly deduce that

λI -Ã(t) = (λ + κ(t))I -A(t) is surjective (20)
for some λ > 0 and t > 0.

Then, [START_REF] Nicaise | Stabilization of the wave equation with variable coefficients and boundary condition of memory type[END_REF], [START_REF] Rebarber | Robustness with respect to delays for exponential stability of distributed parameter systems[END_REF] and (20) imply that the family à = { Ã(t) : t ∈ [0, T ]} is a stable family of generators in H with stability constants independent of t, by Proposition 1.1 from [START_REF] Kato | Linear and quasilinear equations of evolution of hyperbolic type[END_REF]. Therefore, the assumptions (i)-(iv) of Theorem 2.1 are verified by ( 8), [START_REF] Nicaise | Stabilization of the wave equation with variable coefficients and boundary condition of memory type[END_REF], ( 15), ( 16), (20) and Lemma 2.2, and thus, the problem

Ũt = Ã(t) Ũ Ũ (0) = U 0 . has a unique solution Ũ ∈ C([0, +∞), H) and Ũ ∈ C([0, +∞), D(A(0)))∩C 1 ([0, +∞), H) if U 0 ∈ D(A(0)). Setting U (t) = e β(t) Ũ (t)
with β(t) = t 0 κ(s)ds, we remark that it is a solution of (7) because

U t (t) = κ(t)e β(t) Ũ (t) + e β(t) Ũt (t) = κ(t)e β(t) Ũ (t) + e β(t) Ã(t) Ũ (t) = e β(t) (κ(t) Ũ (t) + Ã(t) Ũ (t)) = e β(t) A(t) Ũ (t) = A(t)e β(t) Ũ(t) = A(t)U (t),
which concludes the proof.

2.2. The decay of the energy. We here suppose that

µ 2 1 < (1 -d)µ 2 0 . (21) 
Let us choose the following energy

E(t) = 1 2 π 0 u 2 (x, t)dx + qτ (t) 2 1 0 u 2 (π, t -τ (t)ρ)dρ, ( 22 
)
where q is a positive constant chosen later.

Proposition 1. Let ( 9) and (21) be satisfied. Then for all regular solution of problem (1), the energy is decreasing and satisfies

E ′ (t) ≤ -a π 0 u 2 x (x, t)dx+(u(π, t), u(π, t -τ (t))) Ψ q (u(π, t), u(π, t -τ (t))) ⊤ < 0, (23 
) where Ψ q is the matrix defined in [START_REF] Orlov | On exponential stability of linear retarded distributed parameter systems[END_REF].

Proof. Differentiating (22) and by (1), we obtain

E ′ (t) = π 0 uu t dx + q τ (t) 2 1 0 u 2 (π, t -τ (t)ρ)dρ +qτ (t) 1 0 u(π, t -τ (t)ρ)u t (π, t -τ (t)ρ)(1 -τ (t)ρ)dρ = a π 0 uu xx dx + q τ (t) 2 1 0 u 2 (π, t -τ (t)ρ)dρ +qτ (t) 1 0 u(π, t -τ (t)ρ)u t (π, t -τ (t)ρ)(1 -τ (t)ρ)dρ.
By integrating by parts in space, we find

a π 0 uu xx dx = -a π 0 u 2 x dx + a[u(x, t)u x (x, t)] π 0 = -a π 0 u 2 x dx -aµ 0 u 2 (π, t) -aµ 1 u(π, t)u(π, t -τ (t)).
Setting z(ρ, t) = u(π, tτ (t)ρ), we see that z ρ (ρ, t) = -τ (t)u t (π, tτ (t)ρ), and by integrating by parts in ρ, we get

1 0 u(π, t -τ (t)ρ)u t (π, t -τ (t)ρ)(1 -τ (t)ρ)dρ = - 1 τ (t) 1 0 z(ρ, t)z ρ (ρ, t)(1 -τ (t)ρ)dρ = - 1 2τ (t) 1 0 ∂ ρ (z(ρ, t) 2 )(1 -τ (t)ρ)dρ = 1 2τ (t) 1 0 z(ρ, t) 2 (-τ (t))dρ - 1 2τ (t) [z 2 (ρ, t)(1 -τ (t)ρ)] 1 0 = - τ (t) 2τ (t) 1 0 u 2 (π, t -τ (t)ρ)dρ - 1 -τ (t) 2τ (t) u 2 (π, t -τ (t)) + 1 2τ (t) u 2 (π, t).
Therefore, we obtain

E ′ (t) = -a π 0 u 2 x dx -(aµ 0 - q 2 )u 2 (π, t) -aµ 1 u(π, t)u(π, t -τ (t)) - q 2 (1 -τ (t))u 2 (π, t -τ (t)).
We can see that this inequality can be written as

E ′ (t) ≤ -a π 0 u 2 x dx + (u(π, t), u(π, t -τ (t)))Ψ q (u(π, t), u(π, t -τ (t))) ⊤ .
As -q(1d) < 0, Ψ q is negative definite if and only if

q 2 -2aµ 0 q + a 2 µ 2 1 1 -d < 0. ( 24 
)
The discriminant of this second order polynomial is ∆ = 4a 2 µ 2 0 -

µ 2 1
1-d , which is positive if and only if (21) holds. Therefore, the matrix Ψ q is negative definite for some q > 0 if and only if (21) is satisfied, and in that case, we choose q such that aµ 0a µ 2 0 -

µ 2 1 1 -d < q < aµ 0 + a µ 2 0 - µ 2 1 1 -d , (25) 
which concludes the proof.

2.3. Exponential stability. In this section, we prove the exponential stability of the heat equation (1) by using the following Lyapunov functional

E(t) = E(t) + γE 2 (t), (26) 
where γ > 0 is a parameter that will be fixed small enough later on, E is the standard energy defined by ( 22) and E 2 is defined by

E 2 (t) = q t t-τ (t) e 2δ(s-t) u 2 (π, s)ds = qτ (t) 1 0 e -2δτ (t)ρ u 2 (π, t -τ (t)ρ)dρ, ( 27 
)
where δ > 0 is a fixed positive real number.

Remark 1. Let us notice that the energies E and E are equivalent, since

E(t) ≤ E(t) ≤ (2γ + 1)E(t).
The result about the decay of the energy E is the following one:

Theorem 2.4. Let ( 9) and (21) be satisfied. Then the energy E decays exponentially, more precisely there exist two positive constants α and C such that

E(t) ≤ Ce -αt E(0), ∀t > 0.
Proof. First, we differentiate E 2 to have

d dt E 2 (t) = τ (t) τ (t) E 2 (t) + qτ (t) 1 0 (-2δ τ (t)ρ)e -2δτ (t)ρ u 2 (π, t -τ (t)ρ)dρ + J,
where

J = 2qτ (t) 1 0 e -2δτ (t)ρ u(π, t -τ (t)ρ)u t (π, t -τ (t)ρ)(1 -τ (t)ρ)dρ.
Moreover, by noticing one more time that z(ρ, t) = u(π, t-τ (t)ρ) and by integrating by parts in ρ, we have

J = -q 1 0 e -2δτ (t)ρ ∂ ∂ρ (z(ρ, t) 2 )(1 -τ (t)ρ)dρ = q 1 0 z 2 (ρ, t)(-2δτ (t)(1 -τ (t)ρ) -τ (t))e -2δτ (t)ρ dρ -qe -2δτ (t) z 2 (1, t)(1 -τ (t)) + qz 2 (0, t) = q 1 0 (-2δτ (t)(1 -τ (t)ρ) -τ (t))u 2 (π, t -τ (t)ρ)e -2δτ (t)ρ dρ -qe -2δτ (t) u 2 (π, t -τ (t))(1 -τ (t)) + qu 2 (π, t).
Therefore, we have

d dt E 2 (t) = τ (t) τ (t) E 2 (t) + q 1 0 (-2δτ (t) -τ (t))u 2 (π, t -τ (t)ρ)e -2δτ (t)ρ dρ -qe -2δτ (t) u 2 (π, t -τ (t))(1 -τ (t)) + qu 2 (π, t) = -2δE 2 (t) -qe -2δτ (t) u 2 (π, t -τ (t))(1 -τ (t)) + qu 2 (π, t).
As τ (t) < 1 (see ( 2)), we obtain

d dt E 2 (t) ≤ -2δE 2 (t) + qu 2 (π, t). (28) 
Consequently, gathering (23), ( 26) and (28), we obtain

d dt E(t) ≤ -(aµ 0 - q 2 -qγ)u 2 (π, t) - q 2 (1 -d)u 2 (π, t -τ (t)) -aµ 1 u(π, t)u(π, t -τ (t)) -a π 0 u 2 x (x, t)dx -2γδE 2 (t),
or equivalently

d dt E(t) ≤ (u(π, t), u(π, t -τ (t))) Ψq (u(π, t), u(π, t -τ (t))) ⊤ -a π 0 u 2 x (x, t)dx -2γδE 2 (t), ( 29 
)
where Ψq is the 2 × 2 matrix defined by

Ψq = 1 2 q(1 + 2γ) -2aµ 0 -aµ 1 -aµ 1 -q(1 -d) = Ψ q + γ q 0 0 0 .
Now fix q > 0 such that Ψ q is negative definite (consequence of the assumption (21)). By a perturbation argument, we deduce that for γ > 0 small enough, Ψq is negative. More precisely, we take γ = -λ q , when λ is the greatest negative eigenvalue of Ψ q , or equivalently XΨ q X ⊤ ≤ λ|X| 2 , for all X ∈ R 2 . We can easily check that

λ = 1 4 -2aµ 0 + dq + 4a 2 (µ 2 0 + µ 2 1 ) + 4a(d -2)µ 0 q + (d -2) 2 q 2 < 0. (30)
Therefore, for γ = -λ q , we find

d dt E(t) ≤ -2δγE 2 (t) -a π 0 u 2 x (x, t)dx. (31) 
As u(0, t) = 0 for all t > 0, by the min-max principle, we have

π 0 u 2 (x, t)dx ≤ 4 π 0 u 2 x (x, t)dx,
because the first eigenvalue of the Laplace operator with Dirichlet boundary condition at 0 and Neumann boundary condition at

π is -1 4 . Therefore -a π 0 u 2 x (x, t)dx ≤ - a 4 π 0 u 2 (x, t)dx.
This estimate in (31) and by the definition ( 27) of E 2 , we obtain

d dt E(t) ≤ - a 4 π 0 u 2 (x, t)dx -2qδγτ (t) 1 0 e -2δτ (t)ρ u 2 (π, t -τ (t)ρ)dρ.
Since τ (t) ≤ M (see [START_REF] Datko | Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks[END_REF]) and in view of the definition ( 22) of E(t), there exists a constant γ ′ > 0 (depending on γ and δ, namely

γ ′ ≤ min( a 2 , 4δγe -2δM )) such that d dt E(t) ≤ -γ ′ E(t).
By applying Remark 1, we obtain

d dt E(t) ≤ - γ ′ 2γ + 1 E(t).
This implies that

E(t) ≤ E(0)e -αt , with α = γ ′ 2γ + 1 ≤ 1 q -2λ min aq 2 , -4λδe -2δM .
Remark 1 leads to

E(t) ≤ E(t) ≤ E(0)e -αt ≤ (2γ + 1)E(0)e -αt .
Remark 2. In the proof of Theorem 2.4, we notice that we have explicitely calculated the decay rate of the energy, given by

α = 1 q -2λ min aq 2 , -4λδe -2δM ,
where λ is given by (30), q by (25) and δ is a positive real number. Therefore, we can choose δ so that the decay of the energy is as quick as possible. For that purpose, we notice that the function δ → -4λδe -2δM admits a maximum at δ = 1 2M and that this maximum is -2λ

Me . Thus the larger decay rate of the energy is given by

α max = 1 q -2λ min aq 2 , -2λ M e .
Obviously, this quantity can be calculated if the data µ 0 , µ 1 and τ are given.

3. Exponential stability of the delayed wave equation. We now consider the system described by

           u tt (x, t) -au xx (x, t) = 0, 0 < x < π, t > 0, u(0, t) = 0, t > 0, u x (π, t) = -µ 0 u t (π, t) -µ 1 u t (π, t -τ (t)), t > 0, u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), 0 < x < π, u t (π, t -τ (0)) = f 0 (t -τ (0)), 0 < t < τ (0), (32) 
whith the constant parameter a > 0 and where µ 0 , µ 1 ≥ 0 are fixed nonnegative real numbers, the time-varying delay τ (t) still satisfies ( 2), ( 3) and ( 4). The boundary-value problem (32) describes the oscillations of a homogeneous string fixed at 0 and with a feedback law at π.

3.1.

Well posedness of the problem. We aim to show that problem (32) is well-posed. For that purpose, we use the same ideas than before. We transform our system (32) as follows. Let us introduce the auxiliary variable z(ρ, t) = u t (π, tτ (t)ρ) for ρ ∈ (0, 1) and t > 0. Note that z verifies the transport equation for 0 < ρ < 1 and t > 0 (compare with ( 5))

   τ (t)z t (ρ, t) + (1 -τ (t)ρ)z ρ (ρ, t) = 0, z(0, t) = u t (π, t), z(ρ, 0) = f 0 (-τ (0)ρ). (33)
Therefore, the problem (32) is equivalent to

               u tt (x, t) -au xx (x, t) = 0, 0 < x < π, t > 0, τ (t)z t (ρ, t) + (1 -τ (t)ρ)z ρ (ρ, t) = 0, 0 < ρ < 1, t > 0, u(0, t) = 0, u x (π, t) = -µ 0 u t (π, t) -µ 1 z(1, t), t > 0, z(0, t) = u t (π, t), t > 0, u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), 0 < x < π, z(ρ, 0) = f 0 (-τ (0)ρ), 0 < ρ < 1. ( 34 
)
If we introduce U := (u, u t , z) ⊤ , then U satisfies

U t = (u t , u tt , z t ) ⊤ = (u t , au xx , τ (t)ρ -1 τ (t) z ρ ) ⊤ .
Consequently the problem (32) may be rewritten as the first order evolution equation

U t = A(t)U U (0) = (u 0 , u 1 , f 0 (-τ (0).)) ⊤ = U 0 , ( 35 
)
where the time dependent operator A(t) is defined by

A(t)   u ω z   =   ω au xx τ (t)ρ-1 τ (t) z ρ   , with domain D(A(t)) := {(u, ω, z) ∈ (V ∩ H 2 (0, π)) × V × H 1 (0, 1) : z(0) = ω(π), u x (π) = -µ 0 ω(π) -µ 1 z(1)},
where we recall that

V = {φ ∈ H 1 (0, π) : φ(0) = 0}.
Again, we notice that the domain of the operator A(t) is independent of the time t, i.e. D(A(t)) = D(A(0)), ∀t > 0.

(36)

Now, we introduce the Hilbert space

H = V × L 2 (0, π) × L 2 (0, 1)
equipped with the usual inner product

  u ω z   ,   ũ ω z   = π 0 (au x ũx + ω ω)dx + 1 0 z(ρ)z(ρ)dρ. Lemma 3.1. D(A(0)) is dense in H.
Proof. The proof is the same as the one of Lemma 2.1 of [START_REF] Nicaise | Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks[END_REF], we give it for the sake of completeness. Let (f, g, h) ⊤ ∈ H be orthogonal to all elements of D(A(0)), namely

0 =   u ω z   ,   f g h   = π 0 (au x f x + ωg)dx + 1 0 z(ρ)h(ρ)dρ, for all (u, ω, z) ⊤ ∈ D(A(0)).
We first take u = 0 and w = 0 and z ∈ D(0, 1). As (0, 0, z) ∈ D(A(0)), we get

1 0 z(ρ)h(ρ)dρ = 0.
Since D(0, 1) is dense in L 2 (0, 1), we deduce that h = 0.

In the same manner, by taking u = 0, z = 0 and ω ∈ D(0, π) we see that g = 0.

The above orthogonality condition is then reduced to

0 = a π 0 u x f x dx, ∀(u, ω, z) ∈ D(A(0)).
By restricting ourselves to ω = 0 and z = 0, we obtain

1 0 u x f x dx = 0, ∀(u, 0, 0) ∈ D(A(0)).
But we easily check that (u, 0, 0

) ∈ D(A(0)) if and only if u ∈ D(∆) = {v ∈ H 2 (0, π) : v(0) = 0, v ′ (1) = 0}
, the domain of the Laplace operator with mixed boundary conditions. Since it is well known that D(∆) is dense in V (equipped with the inner product < ., . > V ), we conclude that f = 0.

As before we suppose that the speed of the delay satisfies ( 9) and [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF]. Under these conditions, we will show that the operator A(t) generates a C 0 -semigroup in H and the unique solvability of problem (35).

For that purpose, we introduce the following time-dependent inner product on

H   u ω z   ,   ũ ω z   t = π 0 (au x ũx + ω ω)dx + qτ (t) 1 0 z(ρ)z(ρ)dρ,
where q is a positive constant chosen such that Ψ q is negative (guaranteed by the assumptions ( 9) and ( 10)), with associated norm denoted by . t .

Theorem 3.2. For an initial datum U 0 ∈ H, there exists a unique solution U ∈ C([0, +∞), H) to problem (35). Moreover, if U 0 ∈ D(A(0)), then

U ∈ C([0, +∞), D(A(0))) ∩ C 1 ([0, +∞), H).
Proof. We first notice that

φ t φ s ≤ e c 2τ 0 |t-s| , ∀t, s ∈ [0, T ] (37) 
where φ = (u, ω, z) ⊤ and c is a positive constant. Indeed, for all s, t ∈ [0, T ], we have

φ 2 t -φ 2 s e c τ 0 |t-s| = 1 -e c τ 0 |t-s| π 0 (au 2 x + ω 2 )dx + q τ (t) -τ (s)e c τ 0 |t-s| 1 0 z(ρ) 2 dρ,
and we conclude as in the proof of Theorem 2.3. Now we calculate A(t)U, U t for a t > 0 fixed. For an arbitrary U = (u, ω, z) ⊤ ∈ D(A(t)), we have

A(t)U, U t =   ω au xx τ (t)ρ-1 τ (t) z ρ   ,   u ω z   t = π 0 (aω x u x + au xx ω)dx -q 1 0 z ρ (ρ)z(ρ)(1 -τ (t)ρ)dρ.
By integrating by parts in space, we have

A(t)U, U t = a[ωu x ] π 0 -q 1 0 z ρ (ρ)z(ρ)(1 -τ (t)ρ)dρ = -aµ 0 z(0) 2 -aµ 1 z(0)z(1) -q 1 0 z ρ (ρ)z(ρ)(1 -τ (t)ρ)dρ.
Moreover, we have by integrating by parts in ρ:

1 0 z ρ (ρ)z(ρ)(1 -τ (t)ρ)dρ = 1 0 1 2 ∂ ∂ρ (z(ρ) 2 )(1 -τ (t)ρ)dρ = τ (t) 2 1 0 z(ρ) 2 dρ + 1 2 z(1) 2 (1 -τ (t)) - 1 2 z 2 (0).
These two identities yield

A(t)U, U t = -aµ 0 z(0) 2 -aµ 1 z(0)z(1)- q 2 z(1) 2 (1-τ (t))+ q 2 z 2 (0)- q τ (t) 2 1 0 z(ρ) 2 dρ.
We can see, that this identity implies that

A(t)U, U t ≤ (z(0), z(1))Ψ q (z(0), z(1)) ⊤ + κ(t) U, U t ,
where Ψ q is the matrix defined by (13) and κ(t) is given by ( 12). As we have chosen q such that the matrix Ψ q is negative, we have

A(t)U, U t -κ(t) U, U t ≤ 0, (38) 
which proves the dissipativeness of Ã(t) = A(t)κ(t)I for the inner product •, • t .

As in the proof of Theorem 2.3, we see that (4) implies that

d dt Ã(t) ∈ L ∞ * ([0, T ], B(D(A(0)), H)). (39) 
Let us finally prove that A(t) is maximal, i.e., that λI -A(t) is surjective for some λ > 0 and t > 0.

Let (f, g, h) T ∈ H. We look for U = (u, ω, z) T ∈ D(A(t)) solution of (λI -A(t))

  u ω z   =   f g h   or equivalently    λu -ω = f λω -au xx = g λz + 1-τ (t)ρ τ (t) z ρ = h. (40) 
Suppose that we have found u with the appropriate regularity. Then, we have

ω = -f + λu ∈ V.
We can then determine z, indeed z satisfies the differential equation

λz + 1 -τ (t)ρ τ (t) z ρ = h
and the boundary condition z(0) = ω(π) = -f (π) + λu(π). Therefore z is explicitly given by z(ρ) = λu(π)e -λτ (t)ρf (π)e -λτ (t)ρ + τ (t)e -λτ (t)ρ ρ 0 e λτ (t)σ h(σ)dσ, if τ (t) = 0, and

z(ρ) = λu(π)e λ τ (t) τ (t) ln(1-τ (t)ρ) -f (π)e λ τ (t) τ (t) ln(1-τ (t)ρ) +e λ τ (t) τ (t) ln(1-τ (t)ρ) ρ 0 h(σ)τ (t) 1 -τ (t)σ e -λ τ (t) τ (t) ln(1-τ (t)σ) dσ,
otherwise. This means that once u is found with the appropriate properties, we can find z and ω. In particular, we have if τ (t) = 0, z(1) = λu(π)e -λτ (t) -f (π)e -λτ (t) +τ (t)e -λτ (t) 1 0 e λτ (t)σ h(σ)dσ = λu(π)e -λτ (t) +z 0 , where z 0 = -f (π)e -λτ (t) + τ (t)e -λτ (t) 1 0 e λτ (t)σ h(σ)dσ is a fixed real number depending only on f and h, and if τ (t) = 0

z(1) = λu(π)e λ τ (t) τ (t) ln(1-τ (t)) -f (π)e λ τ (t) τ (t) ln(1-τ (t)) +e λ τ (t) τ (t) ln(1-τ (t)) 1 0 h(σ)τ (t) 1 -τ (t)σ e -λ τ (t) τ (t) ln(1-τ (t)σ) dσ
= λu(π)e λ τ (t) τ (t) ln(1-τ (t)) + z 0 , where

z 0 = -f (π)e λ τ (t) τ (t) ln(1-τ (t)) + e λ τ (t) τ (t) ln(1-τ (t)) 1 0 h(σ)τ (t) 1 -τ (t)σ e -λ τ (t) τ (t) ln(1-τ (t)σ) dσ
depends only on f and h. It remains to find u. By (40), u must satisfy

λ 2 u -au xx = g + λf.
Multiplying this identity by a test function φ, integrating in space and using integration by parts, we obtain Using the above expression for z(1) and ω = λuf , we arrive at the problem

π 0 (λ 2 uφ + au x φ x )dx + a(µ 0 + µ 1 e -λτ (t) )λu(π)φ(π) = π 0 (g + λf )φdx + a(µ 0 f (π) -µ 1 z 0 )φ(π), ∀φ ∈ V (41) if τ (t) = 0, or otherwise π 0 (λ 2 uφ + au x φ x )dx + a(µ 0 + µ 1 e λ τ (t) τ (t) ln(1-τ (t)ρ) )λu(π)φ(π) = π 0 (g + λf )φdx + a(µ 0 f (π) -µ 1 z 0 )φ(π), ∀φ ∈ V. (42) 
These problems have a unique solution u ∈ V by Lax-Milgram's lemma, because the left-hand side of (41) or (42) is coercive on V . If we consider φ ∈ D(0, π) ⊂ V , then u satisfies

λ 2 u -au xx = g + λf in D ′ (0, π).
This directly implies that u ∈ H 2 (0, π) and then u ∈ V ∩ H 2 (0, π). Coming back to (41) and by integrating by parts, we find, for τ (t) = 0,

a[u x (π) + (µ 0 + µ 1 e -λτ (t) )λu(π)]φ(π) = a(µ 0 f (π) -µ 1 z 0 )φ(π),
and then

u x (π) = -(µ 0 + µ 1 e -λτ (t) )λu(π) -(µ 1 z 0 -µ 0 f (π)) = -µ 0 (λu(π) -f (π)) -µ 1 (e -λτ (t) λu(π) + z 0 ) = -µ 0 ω(π) -µ 1 z(1).
We find the same result if τ (t) = 0. In summary we have found (u, ω, z) ⊤ ∈ D(A(t)) satisfying (40) and thus λI -A(t) is surjective for some λ > 0 and t > 0. Again as κ(t) > 0, this proves that

λI -Ã(t) = (λ + κ(t))I -A(t) is surjective (43)
for some λ > 0 and t > 0.

Then, (37), ( 38) and (43) imply that the family à = { Ã(t) : t ∈ [0, T ]} is a stable family of generators in H with stability constants independent of t, by Proposition 1.1 from [START_REF] Kato | Linear and quasilinear equations of evolution of hyperbolic type[END_REF]. Therefore, the assumptions (i)-(iv) of Theorem 2.1 are verified by (36), (37), (38), (39), (43) and Lemma 3.1, and thus, the problem Ũt = Ã(t) Ũ Ũ (0) = U 0 . has a unique solution Ũ ∈ C([0, +∞), H) and Ũ ∈ C([0, +∞), D(A(0)))∩C 1 ([0, +∞), H) if U 0 ∈ D(A(0)). As before, the requested solution of (35) is given by

U (t) = e β(t) Ũ (t)
with β(t) = t 0 κ(s)ds.

3.2.

The decay of the energy. As for the heat equation, we restrict the hypothesis [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF] to obtain the decay of the energy. Namely we suppose that (21) holds.

Let us choose the following energy (which corresponds to the time-dependent inner product in H)

E(t) = 1 2 π 0 u 2 t (x, t) + au 2 x (x, t) dx + qτ (t) 2 1 0 u 2 t (π, t -τ (t)ρ)dρ, ( 44 
)
where q is a positive constant chosen such that Ψ q is negative definite (possible if ( 9) and (21) hold).

Proposition 2. Let the assumptions ( 9) and (21) be satisfied. Then for all regular solution of problem (32), the energy is decreasing and verifies

E ′ (t) ≤ (u t (π, t), u t (π, t -τ (t))) Ψ q (u t (π, t), u t (π, t -τ (t))) ⊤ < 0, (45) 
where Ψ q is the matrix defined in [START_REF] Orlov | On exponential stability of linear retarded distributed parameter systems[END_REF].

Remark 3. In the case where the delay is constant in time, i.e. τ (t) = τ for all t > 0 and thus d = 0, we recover the results from [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF][START_REF] Nicaise | Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks[END_REF]. Indeed in [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF][START_REF] Nicaise | Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks[END_REF], the energy is decreasing under the assumption µ 1 < µ 0 .

Proof. Differentiating (44) and integrating by parts in space, we obtain

E ′ (t) = π 0 (u t u tt + au x u xt )dx + q τ (t) 2 1 0 u 2 t (π, t -τ (t)ρ)dρ +qτ (t) 1 0 u t (π, t -τ (t)ρ)u tt (π, t -τ (t)ρ)(1 -τ (t)ρ)dρ = π 0 u t (u tt -au xx )dx + a[u x u t ] π 0 + q τ (t) 2 1 0 u 2 t (π, t -τ (t)ρ)dρ +qτ (t) 1 0 u t (π, t -τ (t)ρ)u tt (π, t -τ (t)ρ)(1 -τ (t)ρ)dρ = au x (π, t)u t (π, t) + q τ (t) 2 1 0 u 2 t (π, t -τ (t)ρ)dρ +qτ (t) 1 0 u t (π, t -τ (t)ρ)u tt (π, t -τ (t)ρ)(1 -τ (t)ρ)dρ.
Recalling that z(ρ, t) = u t (π, tτ (t)ρ), we see that

1 0 u t (π, t -τ (t)ρ)u tt (π, t -τ (t)ρ)(1 -τ (t)ρ)dρ = - τ (t) 2τ (t) 1 0 u 2 t (π, t -τ (t)ρ)dρ - 1 -τ (t) 2τ (t) u 2 t (π, t -τ (t)) + 1 2τ (t) u 2 t (π, t).
Therefore, we obtain

E ′ (t) = au x (π, t)u t (π, t) + q τ (t) 2 1 0 u 2 t (π, t -τ (t)ρ)dρ - q τ (t) 2 1 0 u 2 t (π, t -τ (t)ρ)dρ -q 1 -τ (t) 2 u 2 t (π, t -τ (t)) + q 2 u 2 t (π, t),
which implies

E ′ (t) = -aµ 0 u 2 t (π, t)-aµ 1 u t (π, t-τ (t))u t (π, t)- q 2 (1-τ (t))u 2 t (π, t-τ (t))+ q 2 u 2 t (π, t).
By the condition ( 9) we can see that this identity yields

E ′ (t) ≤ (u t (π, t), u t (π, t -τ (t))) Ψ q (u t (π, t), u t (π, t -τ (t))) ⊤ .
This concludes the proof as Ψ q is negative definite.

3.3. Exponential stability. In this section, under the assumptions ( 9) and ( 21), we prove the exponential stability of the wave equation (32) by using the following Lyapunov functional

E(t) = E(t) + γ 2 π 0 xu t u x dx + E 2 (t) , (46) 
where γ > 0 is a parameter that will be fixed small enough later on, E is the standard energy defined by (44) with q a positive constant fixed such that Ψ q is negative definite and E 2 is defined by

E 2 (t) = q t t-τ (t) e 2δ(s-t) u 2 t (π, s)ds = qτ (t) 1 0 e -2δτ (t)ρ u 2 t (π, t -τ (t)ρ)dρ, ( 47 
)
where δ > 0 is a fixed positive real number. The Lyapunov functional E(t) + 2γ π 0 xu t u x dx is standard in problems with boundary conditions with memory (see for instance [START_REF] Nicaise | Stabilization of the wave equation with variable coefficients and boundary condition of memory type[END_REF]). We have added the two terms to the standard energy E(t) in order to take into account the dependence of τ with respect to t.

First we notice that the energies E and E are equivalent.

Lemma 3.3. For γ small enough, there exist two positive constants C 1 (γ) and

C 2 (γ) such that C 1 (γ)E(t) ≤ E(t) ≤ C 2 (γ)E(t).
Proof. We have

2γ π 0 xu x u t dx ≤ γπ π 0 (u 2 x + u 2 t )dx ≤ γπc π 0 (au 2 x + u 2 t )dx,
where c = max(1, 1 a ) and We are ready to state our result about the decay of the energy E: Theorem 3.4. Let ( 9) and (21) be satisfied. Then the energy E decays exponentially, more precisely there exist two positive constants α and C such that E(t) ≤ Ce -αt E(0), ∀t > 0.

γqτ (t) 1 0 e -2δτ (t)ρ u 2 t (π, t -τ (t)ρ)dρ ≤ γqτ (t)
Proof. First we remark that But by integrating by parts in space and by (32), we have ⊤ ,

where Φq is the matrix defined by Φq = 1 2 q(1 + 2γ) -2aµ 0 + 2γπ(1 + 2aµ 2 0 ) -aµ 1 -aµ 1 4aγπµ 2 1q(1d) = Ψ q + γ q + π(1 + 2aµ 2 0 ) 0 0 2aπµ 2 1 .

Noticing that max q + π(1 + 2aµ 2 0 ), 2aπµ 2 1 = q + π(1 + 2aµ 2 0 ) by ( 21), for γ sufficiently small, i.e. γ ≤ -λ q+π(1+2aµ 2 0 ) , where λ is the greatest negative eigenvalue of Ψ q given by (30), Φq is negative and therefore where α is explicitely given by α = γ ′ 1+2γcπ . Therefore E(t) ≤ E(0)e -αt ,

d

π 0 (λ 2 u 0 (λ 2 0 (λ 2 u 0 (λ 2 0 (λ 2

 0202020202 au xx )φdx = π uφ + au x φ x )dxau x (π)φ(π) + au x (0)φ(0). But using the fact that (u, ω, z) ⊤ must belong to D(A(t)), we haveπ au xx )φdx = π uφ + au x φ x )dx + aµ 0 ω(π)φ(π) + aµ 1 z(1)φ(π). Therefore π uφ + au x φ x )dx + aµ 0 ω(π)φ(π) + aµ 1 z(1)φ(π) = π 0 (g + λf )φdx.

d dt 2 π 0 xu t u x dx = 2 π 0 xu tt u x dx + 2 π 0 xu t u xt dx = 2a π 0 xu xx u x dx + 2 π 0 xu t u xt dx = a π 0 x∂ x (u 2 x )dx + 2 π 0 xu t u xt dx = -a π 0 u 2 x

 0202002002202 dx + aπu 2 x (π, t) + 2 π 0 xu t u xt dx.

  {A(t) : t ∈ [0, T ]} is stable with stability constants C and m independent of t (i.e. the semigroup (S t (s)) s≥0 generated by A(t) satisfies S t (s)u H ≤ Ce ms u H , for all u ∈ H and s ≥ 0),

	(8) holds,
	(iii) for all t ∈ [0, T ], A(t) generates a strongly continuous semigroup on H and
	the family A = (iv) ∂ t A belongs to L ∞ * ([0, T ], B(Y, H)), the space of equivalent classes of es-
	sentially bounded, strongly measure functions from [0, T ] into the set B(Y, H) of
	bounded operators from Y into H.

  As in the proof of Theorem 2.4, by integration by parts, we have -τ (t)ρ) -τ (t))u t (π, tτ (t)ρ)e -2δτ (t)ρ dρ -qe -2δτ (t) u 2 t (π, tτ (t))(1 -τ (t)) + qu 2 t (π, t). + au 2 x )dx -2γδE 2 (t) + (u t (π, t), u t (π, tτ (t))) Φq (u t (π, t), u t (π, tτ (t)))

									1
	J w = q (-2δτ (t)(1 These identities yield 0
	d dt	E 2 (t) = =	τ (t) τ (t) -qe -2δτ (t) u 2 E 2 (t) + q t (π, t -τ (t))(1 -τ (t)) + qu 2 1 (-2δτ (t) -τ (t))u 2 t (π, t -τ (t)ρ)e -2δτ (t)ρ dρ 0 t (π, t) τ (t) τ (t) E 2 (t) + -2δτ (t) -τ (t) E 2 (t) -qe -2δτ (t) u 2 t (π, t -τ (t))(1 -τ (t)) τ (t) +qu 2 t (π, t).
	As τ (t) < 1 (see (2)), we obtain
									d dt	E 2 (t) ≤ -2δE 2 (t) + qu 2 t (π, t).	(49)
	Consequently, gathering (46), (48) and (49), we obtain
						d dt	E(t) ≤ -γ	0	π	(u 2 t
									π
									0	u 2 t dx + πu 2 t (π, t),
	that is to say			π
	2 xu Thus 0
			d dt		2	0	π	xu t u x dx = -	0	π	(u 2 t + au 2 x )dx + πu 2 t (π, t) + aπu 2 x (π, t).
	By the boundary conditions in (32) and Cauchy-Schwarz's inequality, we finally find
	d dt	2	0	π	xu t u x dx ≤ -	0	π	(u 2 t + au 2 x )dx + π(1 + 2aµ 2 0 )u 2 t (π, t)
									+ 2aπµ 2 1 u 2 t (π, t -τ (t)). (48)
	Then, we differentiate E 2 to have
		d dt	E 2 (t) =	τ (t) τ (t)	E 2 (t) + qτ (t)	0	1	(-2δ τ (t)ρ)e -2δτ (t)ρ u 2 t (π, t -τ (t)ρ)dρ + J w ,
	where						
			J w = 2qτ (t)

π 0 xu t u xt dx = -π 0 xu xt u t dxt u xt dx = -π 0 u 2 t dx + πu 2 t (π, t). 1 0 e -2δτ (t)ρ u t (π, tτ (t)ρ)u tt (π, tτ (t)ρ)(1 -τ (t)ρ)dρ.

  Since τ (t) ≤ M (see[START_REF] Datko | Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks[END_REF]), in view of the definition of E, there exists a constant γ ′ > 0 (depending on γ and δ: γ ′ ≤ 2γ min 1, 2δe -2δM ) such that

								π
			dt	E(t) ≤ -γ		0	(u 2 t + au 2 x )dx -2δγE 2 (t).
	By the definition (47) of E 2 , this estimate becomes
	d dt	E(t) ≤ -γ	0	π	(u 2 t + au 2 x )dx -2δγqτ (t)e -2δτ (t)	0	1	u 2 t (π, t -τ (t)ρ)dρ.
						d dt	E(t) ≤ -γ ′ E(t).
	By applying Lemma 3.3, we arrive at
						d dt	E(t) ≤ -αE(t),

and Lemma 3.3 allows to conclude the proof:

Remark 4. In the case where the delay is constant in time and a = 1, we recover some results from [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF][START_REF] Nicaise | Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks[END_REF]. Moreover, in [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF][START_REF] Nicaise | Stabilization of the wave equation on 1-D networks with a delay term in the nodal feedbacks[END_REF], the energy is defined by

where ξ is a positive constant satisfying

under the condition (21), which corresponds to the definition (44) of E with q = ξ τ . Remark 5. In the proof of Theorem 3.4, we notice that we can explicitely calculate the decay rate α of the energy, given by

and γ ≤ -λ q + π(1 + 2aµ 2 0 ) (by Lemma 3.3 and Theorem 3.4) and c = max 1, 1 a where λ is given by (30), q by (25) and δ is a positive real number. Therefore, we can choose δ such that the decay of the energy is as quick as possible. By Remark 2, we get that the larger decay rate of the energy is given by