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Abstract

The corresponding point coordinates determined by classic image matching approaches define
local zero-order approximations of the global mapping between two images. But the patches
around keypoints typically contain more information, which may be exploited to obtain a first-
order approximation of the mapping, incorporating local affine maps between corresponding
keypoints. Several methods have been proposed in the literature to compute this first-order
approximation. In this paper we present several modifications of the RANSAC (RANdom
SAmple Consensus) algorithm [18], that uses affine approximations and a-contrario procedures
to improve the homography estimation between a pair of images. The a-contrario methodology
provides a definition of the soundness of an estimation and allows for adaptive thresholds of
inlier/outlier discrimination. These approaches outperform the state-of-the-art for different
choices of image descriptors and image datasets, and permit to increase the probability of
success in identifying image pairs in challenging matching databases.

Keywords: homography, image comparison, image matching, robust estimation, RANSAC,
affine invariance, scale invariance, local descriptors, affine normalization, SIFT, convolutional
neural networks.

1 Introduction

Image matching consists in establishing correspondences between different images. This problem is
recognized as difficult, especially under severe viewpoint changes between images. This is a fun-
damental step in many computer vision and image processing applications such as scene recogni-
tion [7, 13, 22, 45, 46, 65, 66, 73, 74, 79] and detection [19, 52], object tracking [81], robot localiza-
tion [5,49,53,67,72], image stitching [2,6], image registration [31,78] and retrieval [21,23], 3D mod-
eling and reconstruction [1, 16, 20, 58, 75], motion estimation [76], photo management [9, 28, 68, 77],
symmetry detection [33] or even image forgeries detection [10].

State-of-the-art image matching algorithms usually consist of three parts: detector, descriptor
and matching step. They first detect points of interest in the compared images and select a region
around each point of interest, and then associate an invariant descriptor or feature to each region.
Correspondences may thus be established by matching the descriptors. Detectors and descriptors
should be as invariant as possible.

Local image detectors can be classified by their incremental invariance properties. All of them are
translation invariant. The Harris point detector [24] is also rotation invariant. The Harris-Laplace,
Hessian-Laplace and the DoG (Difference-of-Gaussian) region detectors [17, 32, 36, 38] are invariant
to rotations and changes of scale. Based on the AGAST [34] corner score, BRISK [29] performs a
3D nonmaxima suppression and a series of quadratic interpolations to extract the BRISK keypoints;
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both detections aim at quickly providing rotation and scale invariances. Some moment-based region
detectors [4,30] including the Harris-Affine and Hessian-Affine region detectors [37,38], an edge-based
region detector [70, 71], an intensity-based region detector [69, 70], an entropy-based region detec-
tor [27], and two level line-based region detectors MSER (“maximally stable extremal region”) [35]
and LLD (“level line descriptor”) [8,50,51] are designed to be invariant to affine transforms. MSER,
in particular, has been demonstrated to have often better performance than other affine invariant
detectors, followed by Hessian-Affine and Harris-Affine [39]. In his pivotal paper [32], Lowe proposed
a scale-invariant feature transform (SIFT) that is invariant to image scaling and rotation and par-
tially invariant to illumination and viewpoint changes. The SIFT method combines the DoG region
detector that is rotation, translation and scale invariant (a mathematical proof of its scale invariance
is given in [47]) with a descriptor based on the gradient orientation distribution in the region, which
is partially illumination and viewpoint invariant [32]. These two stages of the SIFT method will be
called respectively SIFT detector and SIFT descriptor. The SIFT detector is a priori less invariant
to affine transforms than the Hessian-Affine and the Harris-Affine detectors [36,38].

The apparent deformations of objects caused by changes of the camera position can be locally
approximated by affine maps, which explains why robust affine invariant methods allow to capture
strong homography deformations. A possible way to obtain affine invariance is through the recently
proposed Affnet [42]. Affnet is a Convolutional Neural Network (CNN) that was first conceived
for improving the normalized representations of Hessian-Affine [38]. As proposed in [42], these
normalized representations are then described and match by HardNet [40]. More recently the AID
descriptor [62], a CNN-based patch descriptor trained to capture affine invariance, is able to cope
directly with strong viewpoint deformations. Still, it seems that more classical Image Matching by
Affine Simulation (IMAS) methods [41,48,54,60,63] provide the best affine invariances of them all [64].
Therefore, IMAS methods might be more suited for very strong viewpoint differences, although the
price to pay is a heavier computational load.

First-order approximations of the local geometry, or simply affine approximations (see Figure 1),
can be easily obtained from affine detectors like MSER [35], Harris-Affine [37] or Hessian-Affine
[38]. Similarly, the SIFT detector can also be armed with local affine approximations [61]. When
estimating homographies from sets of correspondences with the RANSAC algorithm [18], the use of
first-order approximations allows to increase the performance in homography estimation. This has
already been proposed in [57] by composing normalized affine maps provided by the Hessian Laplace
detector. This information can be replaced with the one provided by Affnet [42] or locate [61]
since they have been shown to produce more accurate affine maps. In addition, a modification in
the RANSAC consensus step has been proposed in [61], encouraging geometry consistency. Instead
of defining inliers only through location agreement, the authors also consider the agreement in tilt,
rotations and scale of the local affine maps.

A well established way of automatically estimating the 2D homography relating two images,
see [25] p.123, is:

1. Detection and description. Compute and describe interest points in each image.

2. Putative correspondences. Compute a set of interest point matches based on similarity
between their descriptors.

3. RANSAC robust estimation. Choose the homography η with the largest number of inliers.

4. Optimal estimation. Re-estimate η from all correspondences classified as inliers, by mini-
mizing the Maximum likelihood cost function, see [25] p.95.

5. Guided matching. Further interest point correspondences can be determined using the esti-
mated η or the affine approximation around each match.
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Figure 1: Some correspondences together with local affine approximations of local geometry. Patches
on the target are warped versions of their corresponding query patch.

Figure 2: Geometric interpretation of Equation (1).

In this paper, we focus on some available improvements for the step 3. In particular, we highlight the
advantages of three local affine approximations in improving the robustness of RANSAC homography
estimations. They also enable RANSAC to reduce the amount of iterations by generating homography
candidates with only two matching pairs instead of four. Furthermore, incorporating a a-contrario
methodology [11] will, as in ORSA [43], result in: first, a threshold for inlier/outlier discrimination
that is adaptive; second, a measure of the soundness of an estimation. In order to validate and
measure the impact of these improvements, all modifications to RANSAC will be tested under several
choices of detectors, descriptors and matchers which determine the first two steps).

The last two steps (optimal estimation and guided matching) could be seen as optional, and can
be iterated until the number of correspondences is stable. Note that the local affine information
could also be exploited in these steps. In the case of guided matching, the affine information have
already been used to predict location and camera parameters from affine invariant detectors [14,15]
and also from local geometry estimators [61].

The rest of this paper is organized as follows. Section 2 summarizes a formal methodology for
approximating locally the viewpoint changes induced by motion of real cameras. Three methods for
computing those local approximations are introduced in Section 3. Section 4 presents the modified
RANSAC model. The proposed methods are illustrated with experiments in Section 5. Concluding
remarks are presented in Section 6.

3
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2 Affine maps and homographies

As stated in [48,59], a digital image u obtained by any camera at infinity is modeled as u = S1G1Au,
where S1 is the image sampling operator (on a unitary grid), A is an affine map, u is a continuous
image and Gδ denotes the convolution by a Gaussian kernel broad enough to ensure no aliasing is
induced by the δ-sampling. This model takes into account the blur incurred when tilting or zooming
a view. Note that G1 and A generally do not commute.

Let A denote the set of affine maps and define Au(x) = u(Ax) for A ∈ A, where x is a 2D vector
and Ax denotes function evaluation, A (x). We define the set of invertible orientation preserving
affinities

A+ = {L+ v ∈ A| det(L) > 0}

where L is a linear map and v a translation vector. We call S the set of similarity transformations,
which are any combination of translations, rotations and zooms. Lastly, we define the set

A+
∗ = A+ \ S,

where we exclude pure similarities. As it was pointed out in [48], every A ∈ A+
∗ is uniquely decom-

posed as
A = λR1(ψ)TtR2(φ), (1)

where R1, R2 are rotations, Tt =

[
t 0
0 1

]
with t > 1, λ > 0, φ ∈ [0, π) and ψ ∈ [0, 2π). Furthermore,

the above decomposition comes with a geometric interpretation (see Figure 2) where the longitude
φ and latitude θ = arccos 1

t
characterize the camera’s viewpoint angles (or tilt), ψ parameterizes the

camera roll and λ corresponds to the camera zoom. The so-called optical affine maps involving a tilt
t in the z-direction and zoom λ are formally simulated by:

u 7→ S1AGz√
t2−1

G√λ2−1Iu,

where I is the Shannon-Whittaker interpolator and the superscript z indicates that the operator
takes place only in the z-direction. We denote the corresponding operator by

A := S1AGz√
t2−1

G√λ2−1I .

The operator A is not always invertible and therefore its application might incur into a loss of
information. We refer to [62] for an example where no optical transformation A is found between
two views.

2.1 Local affine approximation of homographies

Let H = (hij)i,j=1,...,3 be the 3 × 3 matrix associated to the homography η (·). Let x be the ho-
mogeneous coordinates vector associated to the image point x = (x1, x2) around which we want to
determine the local affine map. We denote by

y = (y1, y2) =

(
(Hx)1

(Hx)3

,
(Hx)2

(Hx)3

)
= η (x)

the image of x by the homography η.
The first order Taylor approximation of η at x leads to

η (x+ z) = v + L (x+ z) + o (‖z‖) . (2)
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More specifically, if x = (0, 0), we know that

yi (z1, z2) = (hi1z1 + hi2z2 + hi3)
(

1
h33
− h31

h2
33
z1 +−h32

h2
33
z2 + o (‖z‖)

)
, i = 1, 2.

Then, by polynomial identification in the Taylor formula

v + L (z) = 1
h33

(
h13

h23

)
+

[
1
h33

(
h11 h12

h21 h22

)
− 1

h2
33

(
h13

h23

)(
h31 h32

)]( z1

z2

)
,

where
1
h33

(
h13

h23

)
=

(
y1

y2

)
.

If x 6= (0, 0), a simple change of variables z → z+x would lead us back to the case x = (0, 0). Notice
that the resulting homography,

η̃ (z) = η (z + x) ,

has an associated matrix determined by columns,

Hη̃ =

 H

 1
0
0

 H

 0
1
0

 H

 x1

x2

1

  .
This brief computation shows that the vector v and the matrix L are given by

L =

 h11−y1h31

h31x1+h32x2+h33

h12−y1h32

h31x1+h32x2+h33

h21−y2h31

h31x1+h32x2+h33

h22−y2h32

h31x1+h32x2+h33

 , (3)

v =

[
y1

y2

]
− Lx. (4)

This derivation allows us to compute the exact local affine approximation for a given homography.
This will be useful for Section 4.2-4.3 and to assess the accuracy of our method when using annotated
datasets.

3 Computing local affine approximations

A SIFT-like patch is simply the square crop at the origin of some similarity transformation (trans-
lation, rotation and zoom) of the original image. This also stands true for affine invariant image
matching methods, for which a patch can be considered as the square crop at the origin of a tilted
version of the original image followed by some similarity transformation. If two patches are a match
(i.e. their descriptors are similar), then, through the assumption of locality and Taylor’s formula, we
can approximate the geometry transformation by an affine map.

Consider two square patches, Pq and Pt, coming, for example, from the Gaussian pyramid of the
query and target images, respectively. Let cq and ct be their centers expressed in image coordinates.
Let also Aq be the affine map that converts from the query image domain to patch coordinates;
likewise At converts from target to patch coordinates. Note that, in the case of SIFT-like patches,
the affinities Aq and At are pure similarities, combining just the translation, rotation and zoom
corresponding to the location, orientation and scale associated to SIFT-like keypoints. Lastly, in
order to locally approximate the transformation between query and target images (centered at cq
and ct), we only need the affine map relating Pq and Pt, denoted by A. Figure 3 illustrates the affine
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Query patch Target patch Query on Target

Figure 3: Two pairs of patches used as query and target input patches (columns 1-2). Each pair
differs only by an affine map. Blue and green channels in the 3rd column correspond to the target
patch and a warped version of the query patch (the red line delimits its borders); the red channel is
filled with zeros.

differences between two patches and how the query is transformed into the target. All in all, around
cq, the local affine map transforming the query into the target (in image coordinates) is written as

Aq→t = A−1
t AAq. (5)

The same procedure described above can be derived for Harris-Affine and Hessian-Affine region
detectors [37,38]. Only that Aq, At are not restrained to similarities but to affine maps in general.

3.1 Affine connections between patches

We now list different choices of methods for computing A, the affine map locally connecting the
query patch to the target patch.

3.1.1 The naive method

If for some reason no strong tilt deformations are expected between query and target patches, then,
a fair assumption would be for A to be the identity in all cases. Unfortunately, this is rarely the case
for real life images. Nevertheless, it is a simplification worth trying because it entails no additional
computational complexity. Formally, we set

A := Id. (6)

3.1.2 The Affnet method

The Affnet [42] method was conceived to predict normalizing ellipse shapes for single patches based
on a 3-variable parametrization. Figure 4 depicts the passage from Affnet affine maps to the affine
map transforming query into target (i.e. A). The connection provided by two Affnet-normalizing
affine maps for the query and target patches is richer than each normalizing transformation. Indeed,
for different choices of A1 = T1R1 and A2 = T2R2 one would need the four parameters (zoom, camera

6
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Figure 4: Passage from Affnet affine maps (A1, A2) to the connecting mapping A1→2. The center of
the normalized patch (on top) corresponds to the origin in normalized coordinates.

λ− λGT ψ − ψGT t− tGT φ− φGT x− xGT y − yGT

Figure 5: Affine error prediction in terms of the affine decomposition of Equation 1 (namely zoom
λ, camera rotation ψ, tilt t, tilt direction φ, and translation x, y), for the locate method, the Affnet
method [42] and the identity map method. The [62] dataset is used; it contains 3352 patch pairs
with corresponding ground truth. The sub-index GT means ground truth, conversely, no sub-index
stands for estimated parameters.

rotation, tilt and tilt direction) in Equation 1 in order to express A2A
−1
1 . However, Affnet does not

estimate translations. Formally, we set

A := A2

(
A−1

1 x− A−1
1 c
)

+ c, (7)

where c denotes the center of patch domain and Ai are the estimated affine maps by Affnet.

3.1.3 The LOCATE method

The LOCal Affine Transform Estimator (locate) network presented in [61] directly estimates the
affine transform Alocate that maps the query patch into the target patch. locate simultaneously
tracks the direct and inverse maps which significantly improves the network performance in predicting
local approximating affine maps. This network was trained exclusively with simulated patches from
an affine camera model. We expect it to generalize the affine world to all sorts of geometry as long as
the Taylor approximation holds. locate is able to estimate all six parameters composing the affine
map. Formally, we set

A := Alocate. (8)

3.2 Precision

In order to measure the precision in a realistic environment of these three methods (Naive, Affnet
and locate) we used the viewpoint dataset presented in [62], consisting of five pairs of images with
their ground truth homographies and 3352 true matches. Notice that Equations 3-4 allow us to
compute ground truth local affine maps around each match. Figure 5 shows the accuracy of Naive
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(Identity), Affnet [42] and locate, represented by error density functions with respect to the affine
decomposition appearing in Equation 1. Ideally, we expect a Dirac delta function centered at 0
for a perfect method. This is approximately true for the locate method. Note in Figure 5 that
translations from the Affnet [42] method do not quite match those from the Identity method; this
difference can be explained by the connecting mapping itself (see Equation 7) which is different from
A2A

−1
1 x. As expected, locate is more precise than Affnet [42]. Indeed, Affnet analyzes one patch

at a time, whereas locate has access to both patches simultaneously. However, in practice, using
Affnet involves fewer computations. This trade-off must be resolved depending on the application.

4 Robust homography estimation

The standard RANSAC algorithm computes the parameters fitting a mathematical model from ob-
served data in the presence of outliers. Numerous improvements have been proposed in the literature
for RANSAC, see [43,44,55,56], but the core idea remains the same.

In the case of homography estimation, the classic RANSAC algorithm returns the homography ηj
computed at iteration j having the largest consensus of inliers among all iterations. The j-iteration
can be described in two steps:

1. (Fitting) Randomly select s matches (xi ↔ yi)i=1,...,s from the set of all matches (MT ) and
compute the homography ηj that yields the best fit.

2. (Consensus) Determine, with respect to an error function ξηj , the matches from MT in consensus
with ηj.

In this paper, two error functions ξη are used. First, the symmetric transfer error,

ξ4
η (x↔ y) :=

∥∥∥∥( ηj(x)− y
x− η−1

j (y)

)
4×1

∥∥∥∥
l2

. (9)

Note that the 4 dimensional vector inside the norm, corresponding to the concatenation of two vectors
of dimension two. The second proposal is a function measuring the classic symmetric transfer error
as well as the affine coherence,

ξ8
η (x↔ y) :=

∥∥∥∥∥∥∥∥


ηj(x)− y
x− η−1

j (y)

α
(
A

(x↔y)
E , A

(x↔y)
H

)
−
(

0
1
0
1

)


8×1

∥∥∥∥∥∥∥∥
l2

, (10)

where the α-vector was introduced in [61] and will be revisited here in the following sections. The
vector inside the norm has eight dimensions, corresponding to the concatenation of two vectors of
dimension two and a vector of dimension four.

A classic way of determining inliers in step 2 of the RANSAC algorithm is by thresholding the
function ξη. Another way is through the Number of False Alarms (NFA), based on the a-contrario
procedure [11]. Let εi = ξη(mli) be the ordered errors of matches in MT with respect to the current
testing homography η, i.e.,

ε1 ≤ ε2 ≤ · · · ≤ ε|MT |.

As explained in [43], the NFA of the testing homography η and its k smallest error matches from
MT is defined as,

NFA (η) = (|MT | − s)
(
|MT |
k

)(
k
s

)
P (ξη (m) ≤ εk)

(k−s) (11)

8
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where P (ξη(m) ≤ εk)
(k−s) corresponds to the probability of k matches to fall within an error threshold

εk with respect to ξη. This probability expression is explained through independence among matches
and the power k − s accounts for the fact that s matches (the ones used for estimating η) are
automatically inliers with respect to η. If there are k inliers, potentially all s out of them yield the

correct configuration; explaining the term

(
k
s

)
. Also, there are

(
|MT |
k

)
possible subsets of MT

with k elements. The number k of inliers is usually not known in advance, so all values of k are
tested (from s + 1 to |MT |), which explains the factor (|MT | − s) in Equation 11. In practice, the
errors (measured by ξη) of all data terms are collected and sorted: ε1 to ε|MT |. For each possible
k, we compute the NFA as in Equation 11, and keep only the minimum of them all, provided it is
below some threshold, usually set to 1 in the a-contrario methodology.

4.1 The benchmark RANSAC

Usually the steps 1-2 only take into account point coordinates. If no further improvements are applied,
this defines a base RANSAC, that we denote by RANSACbase. Since the homography matrix have
eight degrees of freedom and each match defines two equations, then the number of matches must
be at least s = 4.

The a-contrario RANSACbase is equivalent to the ORSA Homography estimation method pre-
sented in [43]. The probability term in Equation 11 does not need to be exact for the NFA to work,
and can be approximated by assuming a uniform distribution in R4,

P
(
ξ4
η(m) ≤ ε

)
≈

ε4 π2

2

wqhqwtht
, (12)

where we find in the numerator the volume of a sphere of radius ε in R4 and in the denominator
the volume of the set with all possible coordinates for the query (of size [wq, hq]) and target (of size
[wt, ht]) images.

Algorithm 1 details the operations taking place in RANSACbase.

4.2 Homography fitting from local affine maps in RANSAC

From Section 2.1 we know how to locally approximate a homography by an affine map. Conversely,
the problem of determining a homography from a set of affine maps at different locations was ad-
dressed in [3,57]. Let x↔ y be a match and L = (lij)i,j=1,2 the linear map in Equation 2. Then the
unknown homography η must satisfy

E6×9 · ~h = ~0, (13)

where E6×9 is the matrix 

1 −y1 − l11x1 −l11x2 −l11

1 −l12x1 −y1 − l12x2 −l12

1 −y2 − l21x1 −l21x2 −l21

1 −l22x1 −y2 − l22x2 −l22

x1 x2 1 −y1x1 −y1x2 −y1

x1 x2 1 −y2x1 −y2x2 −y2

 , (14)

and ~h = [h11, h12, h13, h21, h22, h23, h31, h32, h33]T is a vectorized version of the matrix H associated
to η. The first four rows of E6×9 are determined by Equation (3) and the last two are the classic
equations derived from rewriting η (x) = y in terms of Hx = y.

9
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Algorithm 1 RANSACbase

input:
MT - set of all matches.
parameters:
Niters - Number of iterations.
κ - Spatial inliers threshold.
useNFA - A bool stating if NFA measure should be used.
start:
foreach j ∈ {1, · · · , Niters} do

Randomly select m1 = (x1 ↔ y1), · · · ,m4 = (x4 ↔ y4) from MT

// Homography fitting by the Direct Linear Transformation (DLT) algorithm . see [25] p.88

Ei =

[
xi1 xi2 1 −yi1xi1 −yi1xi2 −yi1

xi1 xi2 1 −yi2xi1 −yi2xi2 −yi2

]
2×9

, . where zi = (zi1, z
i
2)

E =

 E1
...
E4


8×9

~hj is the unit singular vector corresponding to the smallest singular value of E. . where ~hj is a
vectorized version of the matrix Hj associated to the homography ηj.

// Selection of inliers with respect to the symmetric transfer error
Ij =

{
(x↔ y) ∈MT | ξ4

η ((x↔ y)) < κ
}

if useNFA then

εj,· = Sort
({
ξ4
η ((x↔ y))

}
(x↔y)∈Ij

)
foreach k ∈ {3, · · · , |Ij|} do

NFAjk = (|MT | − 4)

(
|MT |
k

)(
k
4

)(
ε4j,k

π2

2

wqhqwtht

)k−4

if useNFA then

j?, k? = arg minj,kNFA
j
k

if NFAj
?

k? < 1 then
MI is the subset of Ij

?
achieving the first k? smaller values in εj?,·

else
MI = ∅

else
j? = arg maxj |Ij|
MI = Ij? if |Ij?| > 2 else ∅

return Mj? , ηj?
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Clearly, two matches with their corresponding local affine maps already over-determine the ho-
mography matrix. Indeed, putting those equations together provides us with 12 equations[

E1

E2

]
12×9

· ~h = ~0,

where Ei denotes the matrix E appearing in Equation 13 for each match. To avoid the solution
~h = ~0 we look for a unitary vector ~h minimizing∥∥∥∥[ E1

E2

]
· ~h
∥∥∥∥ ,

see [25] (algorithm 4.1, p.91) for computational details.
We call RANSAC2pts a RANSACbase version in which the classic homography fitting of step 1 is

replaced by the homography fitting of this section. Note that RANSAC2pts only needs two samples
at each iteration (s = 2). These samples carrying additional information consisting in affine approx-
imations of local geometry deformations around them. The affine approximations can be provided
by one of the methods introduced in Section 3.

The a-contrario RANSAC2pts differs little from the a-contrario RANSACbase. Indeed, the only
difference being s = 2 in Equation 11. Algorithm 2 details all operations taking place in RANSAC2pts.

4.3 Affine consensus for RANSAC homography

When matching two image patches, the transformation that relates them may not be consistent with
the global transformation of the scene. This can be due to the presence of symmetric objects or even
to failures in the matching process. For instance, suppose that two patches centered at the same scene
location but with incoherent rotations are identified by a matching method. The symmetry issue is
easy to address as usually we should have encountered as many keypoints as degrees of symmetry
around the center; so at least two rotations will correspond. However, aberrant matches are not
treated by the matching method nor by RANSAC. This problem can be circumvented by imposing
consistency between the local approximating affine maps and the testing homography proposed by
RANSAC.

To impose local geometry consistency, most existing works [41,80] propose to measure the incurred
error in mapping keypoints of a match x ↔ y, e.g. ‖y − A(x)‖ + ‖x − A−1(y)‖. Unlike them,
[61] proposes to enforce geometry consistency directly on the transformations parameters given by
Equation 1. Finally, we redefine the consensus set of the RANSAC model by imposing geometry
consistency as in [61].

Inliers are now defined as follows. Let AE and AH be, respectively, the estimated affine map by
one of the methods introduced in Section 3 and the testing affine map computed from the testing
homography (using Equation (3)). Let also [λE, ψE, tE, φE] and [λH , ψH , tH , φH ] be, respectively, the
affine parameters of AE and AH . We define the α-vector between AE and AH as:

α (AE, AH) =
[
max

(
λE
λH
, λH
λE

)
, ∠ (ψE, ψH) ,max

(
tE
tH

tH
tE

)
, ∠ (φE, φH)

]
, (15)

where ∠(·, ·) denotes the angular difference. To test consistency between AE and AH we add to the
classic threshold on the Euclidean distance, four more thresholds on the α-vector. A perfect match
would result in an α-vector equal to [1, 0, 1, 0]. If we assume independence on each dimension, the
resulting probability of a match passing all thresholds is the multiplication of individual probabilities.
With this in mind, we claim that rough thresholds are enough to obtain good performances and that
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Algorithm 2 RANSAC2pts

input:
MT - set of all matches.
AT - Local affine approximations associated to each match in MT .
parameters:
Niters - Number of iterations.
κ - Spatial inliers threshold.
useNFA - A bool stating if NFA measure should be used.
start:
foreach j ∈ {1, · · · , Niters} do

Randomly select m1 = (x1 ↔ y1) and m2 = (x2 ↔ y2) from MT . Let also L1 + v1, L2 + v2 ∈ AT
be their associated affine maps.

// Homography fitting by the Direct Linear Transformation (DLT) algorithm . see [25] p.88

Ei =


1 −yi1 − li11x

i
1 −li11x

i
2 −li11

1 −li12x
i
1 −yi1 − li12x

i
2 −li12

1 −yi2 − li21x
i
1 −li21x

i
2 −li21

1 −li22x
i
1 −yi2 − li22x

i
2 −li22

xi1 xi2 1 −yi1xi1 −yi1xi2 −yi1
xi1 xi2 1 −yi2xi1 −yi2xi2 −yi2


6×9

, .
where

zi = (zi1, z
i
2) ,

Li = (lilk)l,k=1,2.

E =

[
E1

E2

]
12×9

~hj is the unit singular vector corresponding to the smallest singular value of E. . where ~hj is a
vectorized version of the matrix Hj associated to the homography ηj.

// Selection of inliers with respect to the symmetric transfer error
Ij =

{
(x↔ y) ∈MT | ξ4

η ((x↔ y)) < κ
}

if useNFA then

εj,· = Sort
({
ξ4
η ((x↔ y))

}
(x↔y)∈Ij

)
foreach k ∈ {3, · · · , |Ij|} do

NFAjk = (|MT | − 2)

(
|MT |
k

)(
k
2

)(
ε4j,k

π2

2

wqhqwtht

)k−2

if useNFA then

j?, k? = arg minj,kNFA
j
k

if NFAj
?

k? < 1 then
MI is the subset of Ij

?
achieving the first k? smaller values in εj?,·

else
MI = ∅

else
j? = arg maxj |Ij|
MI = Ij? if |Ij?| > 2 else ∅

return Mj? , ηj?

12
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there is no need to optimize them. Thus, we propose to further refine inliers by accepting only those
matches also satisfying

α (AE, AH) <
[
2,
π

4
, 2,

π

8

]
, (16)

where the above logical operation is true if and only if it holds true for each dimension.

We call RANSACaffine the version of RANSAC2pts that includes the affine consensus presented
in this section. The NFA (Equation 11) for the a-contrario RANSACaffine is determined by: two
samples to fit the testing homography, s = 2; and a probability term that is approximated by a
uniform random variable in a hyperrectangle of R8,

P
(
ξ8
η(m) ≤ ε

)
≈

ε8 π4

4!

wqhqwtht122π2
, (17)

where on top we find the volume of a sphere of radius ε in R8 and at the bottom the volume of the
hyperrectangle [0, wq − 1]× [0, hq − 1]× [0, wt − 1]× [0, ht − 1]× [0, 11]2 × [0, π]2.

Algorithm 3 details all operations taking place in RANSACaffine.

5 Experiments

In order to quantify the benefits of the local affine approximations for the homography estimation
problem, we will compare RANSAC2pts and RANSACaffine to RANSACbase. The three variants of
RANSAC presented in this work are based on the original RANSAC algorithm and do not include
recent modifications proposed in the literature (e.g. RANSAC USAC [55], etc). Even if they are not
entirely comparable to ORSA [43] nor RANSAC USAC [55], a line on each experiment will be added
for ORSA or USAC as benchmark to compare against the state-of-the-art. The reader should keep in
mind that most improvements proposed in RANSAC USAC [55] can also be applied to RANSAC2pts

and RANSACaffine.

All experiments in this section were conducted on four well known datasets for homography
estimation. Those datasets are: EF [82], EVD [41], OxAff [39] and SymB [26]. The EF dataset
presents challenging non-linear lighting variations and occlusions. Both EVD and OxAff datasets
present several pairs incurring in strong viewpoint differences. In particular, viewpoint differences
between pairs in the EVD dataset are extreme and most matching methods will struggle to find cor-
rect matches. Lastly, the SymB dataset consists of painting-to-photo pairs, which will be challenging
for detectors, descriptors and local geometry estimators that where not intended to be used under
this circumstances. All datasets include ground truth homographies that were used to verify the
accuracy.

Four combinations of state-of-the-art detectors and descriptors were used as starting point for all
RANSACs. These choices are: SIFT [32] + AID [62]; SIFT [32] + HardNet [40]; HessianAffine [38]
+ AID [62]; HessianAffine [38] + HardNet [40]. Once local features were detected and matched, then
each homography estimation method was applied and we declared a success if at least 80% of inliers
(in consensus with the estimated homography) were in consensus with the ground truth homography.
Four metrics are reported: the number of successes; the number of correctly matched image pairs; the
average number of correct inliers; and the average pixel error. Notice that all these metric indicators
are computed by first thresholding the symmetric transfer error (ξ4

ηgt(·) ≤ κ) with respect to the
ground truth homography ηgt of all matches in consensus with the estimated homography. These
last two elements are nothing more than the output: MI , ηj? . The two steps of RANSAC (fitting
and consensus) are iterated a 1000 times for each of the RANSAC variants, except for ORSA that
is iterated a 10000 times and USAC that adapts the number of iterations at each execution.
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Algorithm 3 RANSACaffine

input:
MT - set of all matches.
AT - Local affine approximations associated to each match in MT .
parameters:
Niters - Number of iterations.
κ - Spatial inliers threshold.
~αmax - Affine inliers thresholds (a 4-sized vector).
useNFA - A bool stating if NFA measure should be used.
start:
foreach j ∈ {1, · · · , Niters} do

Randomly select m1 = (x1 ↔ y1) and m2 = (x2 ↔ y2) from MT . Let also L1 + v1, L2 + v2 ∈ AT
be their associated affine maps.

// Homography fitting by the Direct Linear Transformation (DLT) algorithm . see [25] p.88

Ei =


1 −yi1 − li11x

i
1 −li11x

i
2 −li11

1 −li12x
i
1 −yi1 − li12x

i
2 −li12

1 −yi2 − li21x
i
1 −li21x

i
2 −li21

1 −li22x
i
1 −yi2 − li22x

i
2 −li22

xi1 xi2 1 −yi1xi1 −yi1xi2 −yi1
xi1 xi2 1 −yi2xi1 −yi2xi2 −yi2


6×9

, .
where

zi = (zi1, z
i
2) ,

Li = (lilk)l,k=1,2.

E =

[
E1

E2

]
12×9

~hj is the unit singular vector corresponding to the smallest singular value of E. . where ~hj is a
vectorized version of the matrix Hj associated to the homography ηj.

// Selection of inliers with respect to the symmetric transfer error and the affine information
Sj =

{
(x↔ y) ∈MT | ξ4

η ((x↔ y)) < κ
}

Tj =
{

(x↔ y) ∈MT |α
(
A

(x↔y)
E , A

(x↔y)
H

)
< ~αmax

}
. A

(x↔y)
E is the associated affine map to (x↔ y) in AT ; and A

(x↔y)
H is the best approximating

affine map at (x↔ y) computed from the testing homography ηj using Equation 3.
if useNFA then

εj,· = Sort
({
ξ8
η ((x↔ y))

}
(x↔y)∈Sj

)
foreach k ∈ {3, · · · , |Sj|} do

NFAjk = (|MT | − 2)

(
|MT |
k

)(
k
2

)(
ε8j,k

π4

4!

wqhqwtht122π2

)k−2

if useNFA then

j?, k? = arg minj,kNFA
j
k

if NFAj
?

k? < 1 then
MI is the subset of Sj

?
achieving the first k? smaller values in εj?,·

else
MI = ∅

else
j? = arg maxj |Sj

⋂
Tj|

MI = Sj?
⋂
Tj? if |Sj?

⋂
Tj? | > 2 else ∅

return MI , ηj?
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Table 1 Homography estimation performances for RANSAC USAC [55], RANSACbase, RANSAC2pts

and RANSACaffine. Four combinations of detectors and descriptors are used: SIFT [32] + AID [62];
SIFT [32] + HardNet [40]; HessianAffine [38] + AID [62]; HessianAffine [38] + HardNet [40]. Affine
approximations are provided by each method presented in Section 3.1; ‘None’ states that no affine
information is provided. Each RANSAC runs for 1000 internal iterations, except for USAC that
adapts the number of iterations at each execution. To measure probability of success, all RANSACs
were run 20 times on resulting matches from each pair of images. Legend: S - the number of successes
(bounded by 20× number ); the number of correctly matched image pairs; inl. - the average number
of correct inliers; AvE - the average pixel error. All these metric indicators are computed by first
thresholding the symmetric transfer error with respect to the ground truth homography of all matches
in consensus with the estimated homography. The numbers of image pairs in a dataset are boxed.

D
e
te

c
to

r
+

D
e
sc

ri
p
to

r

EF dataset
[82]

EVD dataset
[41]

OxAff dataset
[39]

SymB dataset
[26]

Affine
maps

Homography
Estimator

S 33 inl. AvE S 15 inl. AvE S 40 inl. AvE S 46 inl. AvE

S
IF

T
+

A
ID

None
RANSACbase 182 19 85 6.7 17 1 53 7.1 714 39 1651 4.8 220 22 484 6.6

USAC 176 10 144 5.3 0 0 0 - 659 35 1887 4.6 200 11 767 6.6

locate
RANSAC2pts 367 24 91 6.7 21 2 71 6.9 783 40 1603 5.0 382 31 348 7.0
RANSACaffine 400 28 44 6.3 21 2 58 6.4 794 40 939 4.6 417 35 168 7.0

Affnet
RANSAC2pts 341 26 71 6.5 19 1 42 8.1 737 39 1217 4.7 365 32 252 6.9
RANSACaffine 350 28 31 6.1 19 1 28 6.9 765 40 539 4.3 393 35 120 6.8

Naive
RANSAC2pts 355 26 80 6.5 14 1 31 8.6 756 40 1299 4.8 402 33 297 7.0
RANSACaffine 381 27 49 6.5 19 3 11 9.1 721 38 816 4.7 450 37 151 7.0

S
IF

T
+

H
a
rd

N
et None

RANSACbase 500 25 48 3.3 0 0 0 - 760 38 784 2.2 580 29 114 2.9
USAC 500 25 48 3.3 0 0 0 - 780 39 763 2.2 580 29 113 2.9

locate
RANSAC2pts 560 28 43 3.6 0 0 0 - 780 39 764 2.3 620 31 106 3.0
RANSACaffine 560 28 31 3.7 0 0 0 - 780 39 532 2.2 620 31 71 3.3

Affnet
RANSAC2pts 560 28 43 3.5 0 0 0 - 780 39 712 2.1 620 31 94 2.9
RANSACaffine 560 28 26 3.4 0 0 0 - 780 39 370 2.0 620 31 59 3.1

Naive
RANSAC2pts 560 28 43 3.6 0 0 0 - 780 39 717 2.2 620 31 105 3.0
RANSACaffine 580 29 38 3.4 0 0 0 - 729 38 553 2.2 620 31 80 2.8

H
es

sA
ff

+
A

ID

None
RANSACbase 74 8 33 4.8 6 2 13 5.9 582 34 161 2.4 92 12 87 3.6

USAC 63 4 68 4.9 0 0 0 - 580 29 170 2.3 67 4 135 3.3

locate
RANSAC2pts 214 20 30 5.3 25 2 12 7.2 693 38 142 2.5 227 22 49 4.2
RANSACaffine 215 21 14 4.3 24 2 7 5.4 689 38 84 2.1 222 24 33 3.7

Affnet
RANSAC2pts 202 17 25 5.0 7 2 9 7.9 659 35 123 2.5 225 22 42 4.2
RANSACaffine 216 19 10 4.4 20 2 5 6.9 668 37 57 2.2 224 24 22 3.7

Naive
RANSAC2pts 185 17 27 5.0 3 1 8 7.5 660 36 126 2.5 219 22 39 4.3
RANSACaffine 178 17 13 4.2 13 2 4 6.9 657 37 58 2.2 198 20 22 3.7

H
es

sA
ff

+
H

ar
d

N
et None

RANSACbase 418 21 27 3.8 0 0 0 - 721 37 134 1.6 384 22 36 3.6
USAC 431 23 26 3.7 0 0 0 - 720 37 134 1.5 402 22 35 3.6

locate
RANSAC2pts 535 27 22 3.6 0 0 0 - 760 38 127 1.6 517 26 27 3.5
RANSACaffine 535 27 13 3.2 0 0 0 - 760 38 78 1.5 555 28 18 2.9

Affnet
RANSAC2pts 516 26 21 3.5 0 0 0 - 760 38 121 1.5 460 24 28 3.3
RANSACaffine 543 29 11 3.4 20 1 2 1.9 760 38 61 1.4 563 30 13 3.5

Naive
RANSAC2pts 517 26 21 3.2 0 0 0 - 760 38 123 1.5 499 25 25 3.7
RANSACaffine 554 29 11 3.4 20 1 2 1.9 760 38 61 1.4 560 29 13 3.8
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Table 2 A-contrario homography estimation performances for ORSA [43], RANSACbase,
RANSAC2pts and RANSACaffine. Four combinations of detectors and descriptors are used: SIFT [32]
+ AID [62]; SIFT [32] + HardNet [40]; HessianAffine [38] + AID [62]; HessianAffine [38] + Hard-
Net [40]. Affine approximations are provided by the locate method presented in Section 3.1; ‘None’
states that no affine information is provided. Each RANSAC runs for 1000 internal iterations, except
for ORSA that runs for 10000 iterations. To measure probability of success, all RANSACs were
run 20 times on resulting matches from each pair of images. Legend: S - the number of successes
(bounded by 20× number ); the number of correctly matched image pairs; inl. - the average num-
ber of correct inliers; AvE - the average pixel error. All these metric indicators are computed by
first thresholding the symmetric transfer error with respect to the ground truth homography of all
matches in consensus with the estimated homography. The numbers of image pairs in a dataset are
boxed.

D
e
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c
to

r
+

D
e
sc

ri
p
to

r

EF dataset
[82]

EVD dataset
[41]

OxAff dataset
[39]

SymB dataset
[26]

Affine
maps

A-contrario
Homography

Estimator
S 33 inl. AvE S 15 inl. AvE S 40 inl. AvE S 46 inl. AvE

S
IF

T
+

A
ID

None
RANSACbase 201 19 80 6.4 13 1 53 7.2 712 39 1539 4.4 221 21 489 6.5

ORSA 279 21 119 6.2 19 1 172 6.8 783 40 1519 4.7 408 30 469 7.0

locate
RANSAC2pts 363 26 89 6.5 21 2 80 6.9 780 40 1520 4.8 388 33 337 7.0
RANSACaffine 377 27 66 5.9 22 2 63 7.5 780 40 1208 3.9 380 31 272 6.5

S
IF

T
+

H
a
rd

N
e
t None

RANSACbase 460 23 48 3.2 0 0 0 - 740 37 702 1.6 500 25 114 2.6
ORSA 506 26 44 3.0 0 0 0 - 760 38 686 1.6 579 29 99 2.6

locate
RANSAC2pts 500 25 46 3.2 0 0 0 - 760 38 726 1.9 580 29 104 2.8
RANSACaffine 500 25 43 3.2 0 0 0 - 760 38 705 1.9 580 29 96 2.7

H
e
ss

A
ff

+
A

ID

None
RANSACbase 85 10 32 4.5 4 1 15 7.4 583 35 139 1.9 95 12 78 3.5

ORSA 138 12 39 4.3 15 1 41 6.2 651 35 130 1.5 174 16 58 2.7

locate
RANSAC2pts 209 19 30 4.9 19 2 12 6.3 687 38 133 2.1 221 21 47 4.0
RANSACaffine 187 18 26 4.1 10 1 10 4.6 678 37 118 1.8 215 20 41 3.4

H
e
ss

A
ff

+
H

a
rd

N
e
t None

RANSACbase 405 21 25 3.2 0 0 0 - 716 36 123 1.3 363 20 35 3.0
ORSA 432 22 25 3.2 0 0 0 - 716 36 123 1.3 402 21 32 2.9

locate
RANSAC2pts 453 23 24 3.6 0 0 0 - 740 37 124 1.3 415 21 32 3.5
RANSACaffine 430 22 23 3.2 0 0 0 - 740 37 117 1.3 380 19 31 3.2

In Section 4 we have introduced, for the proposed RANSACs, a procedure allowing to order and
validate estimations with respect to a measure of statistical significance, the NFA. However, the typi-
cal thresholding for determining inliers is less costly and might be a preferred option depending on the
application. With this in mind, experiments are separated in two (Subsection 5.1 and Subsection 5.2)
and are presented in form of tables. Each table should be analyzed by blocks. Each block consists
of a fixed matching method and dataset. The reader should pay special attention to the first two
columns: total number of successes and total number of image pairs identified at least once. The best
method should have these two indicators as high as possible, for most choices of matching method
and dataset (i.e. blocks). In all cases, the gap between RANSACbase and RANSAC2pts/RANSACaffine

will give a measure of the improvement provided by the local affine approximations.

5.1 Fixed thresholds for inlier discrimination

Table 1 shows a comparison of homography estimation methods using fixed thresholds for in-
lier/outlier discrimination. The performance of each RANSAC (combined with the affine approxi-
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mations of Section 3.1) is tested on the four aforementioned datasets for the four choices of detectors
and descriptors presented above. The RANSAC USAC [55] method is added to Table 1 in order to
compare the proposed RANSACs against a well established state-of-the-art method.

The USAC [55] method shows better performances than RANSACbase when equipped with the
HardNet [40] descriptor. This situation is inverted for the AID [62] descriptor. A plausible expla-
nation is the higher rate of false positive matches for the AID [62] descriptor with respect to the
HardNet [40] descriptor, which might be harming the performance of some steps (like the Td,d and
Bail-Out tests, among others) present in USAC [55].

The reader will also note the performance drop of the locate method in estimating affine ap-
proximations between image pairs in the case of the SymB [26] dataset. Indeed, locate misreads
the information when analyzing the painting-to-photo patch pairs, an invariance for which locate
was not trained. The Affnet [42] method is less affected by these painting-to-photo image pairs as
it analyzes separately each patch, so it is the structure that provides the invariance. However, the
Affnet and Naive methods show similar performances under the SymB [26] dataset.

Incorporating the affine information to the homography fitting step allowed to boost the total
number of successes in retrieving ground truth homographies for almost any configuration of detector
and descriptor. Indeed, having decreased the sample size (from 4 to 2) has increased the probability
that at least one of the 1000 random samples that were drawn while iterating is free from outliers.
This implies that the homography fitting step is more likely to capture the true homography in fewer
iterations. Therefore, the processing time spent in computing local approximating affine maps could
be compensated later on by decreasing the number of internal iterations. Furthermore, we have
observed that, in general, even if RANSACaffine produces less apparent inliers, the quality of those
matches yields a higher probability of success for the same number of internal iterations. Moreover,
the affine approximations provided by all methods presented in Section 3.1 often resulted in an added
value.

5.2 Adaptive thresholds for inlier discrimination

A comparison of the proposed a-contrario RANSACs is provided in Table 2. ORSA [43] is used for
benchmarking. Note that ORSA runs for 10000 iterations whereas the proposed methods runs for
1000 iterations. Nevertheless, RANSAC2pts and RANSACaffine attain comparable (sometimes better)
results with respect to ORSA [43]. This points out that the affine information is making up for the
9000 never-done iterations in the proposed a-contrario RANSACs.

The reader will notice in Table 1 that HessianAffine [38] + HardNet [40] combined with two of
the proposed methods have systematically exhibit 2 correct matches out of 3 inliers of the estimated
homography; whereas in Table 2 the a-contrario methods did not validate those 3 matches to be of
statistical significance.

6 Conclusions

In this paper we reviewed three methods for estimating local affine maps between images. They
provide first-order approximations of local geometry. This information is proved to be beneficial
for homography estimation, for which we presented several RANSAC versions that systematically
improved results in four well known datasets [26, 39, 41, 82]. The proposed RANSACs regularly
improved the number of successes in retrieving the ground truth homographies with respect to a
baseline RANSAC, and, in a minor degree, with respect to well-established homography estimation
methods like USAC [55] and ORSA [43]. The Number of False Alarms (NFA) from the a-contrario
procedure [11] helps us measure the soundness of estimated homographies and allows for adaptive
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(a) Resulting matches from the SIFT-AID [62] method.

(b) Transforming query into target with the best scoring homography found by the
a-contrario RANSACaffine equipped with the locate method.

(c) Matches in consensus with the above homography.

(d) 10 random matches from (c) with their estimated affine approximations.

Figure 6: Visual results associated with this demo.
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thresholds of inlier/outlier discrimination. The computations needed for estimating local affine maps
around each match can be compensated later on by reducing the number of internal iterations of
these RANSAC algorithms.
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[7] Matthew Brown and Sabine Süsstrunk, Multi-spectral SIFT for scene category recogni-
tion, in Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, IEEE,
2011, pp. 177–184.

[8] F. Cao, J.-L. Lisani, J.-M. Morel, P. Musé, and F. Sur, A Theory of Shape Identifica-
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