Mariano Rodríguez 
email: mariano.rodriguez@ens-paris-saclay.fr
  
Gabriele Facciolo 
email: gabriele.facciolo@ens-paris-saclay.fr
  
Jean-Michel Morel 
email: jean-michel.morel@ens-paris-saclay.fr
  
Robust homography estimation from local affine maps

Keywords: homography, image comparison, image matching, robust estimation, RANSAC, affine invariance, scale invariance, local descriptors, affine normalization, SIFT, convolutional neural networks

published or not. The documents may come    

Introduction

Image matching consists in establishing correspondences between different images. This problem is recognized as difficult, especially under severe viewpoint changes between images. This is a fundamental step in many computer vision and image processing applications such as scene recognition [START_REF] Brown | Multi-spectral SIFT for scene category recognition[END_REF][START_REF] Fan | Matching slides to presentation videos using SIFT and scene background matching[END_REF][START_REF] Gordon | What and Where: 3D Object Recognition with Accurate Pose[END_REF][START_REF] Moreels | Common-frame model for object recognition[END_REF][START_REF]Evaluation of Features Detectors and Descriptors based on 3D Objects[END_REF][START_REF] Ruiz-Del Solar | A New Approach for Fingerprint Verification Based on Wide Baseline Matching Using Local Interest Points and Descriptors[END_REF][START_REF] Scovanner | A 3-dimensional SIFT descriptor and its application to action recognition[END_REF][START_REF] Van De Sande | Evaluating color descriptors for object and scene recognition[END_REF][START_REF] Veloso | Learning visual object definitions by observing human activities[END_REF][START_REF] Yao | Robust multi-view feature matching from multiple unordered views[END_REF] and detection [START_REF] Fritz | Building detection from mobile imagery using informative SIFT descriptors[END_REF][START_REF] Negre | Comparative study of People Detection in Surveillance Scenes, Structural, Syntactic and Statistical Pattern Recognition[END_REF], object tracking [START_REF] Zhou | Object tracking using SIFT features and mean shift[END_REF], robot localization [START_REF] Bennewitz | Metric Localization with Scale-Invariant Visual Features Using a Single Perspective Camera[END_REF][START_REF] Murarka | Building Local Safety Maps for a Wheelchair Robot using Vision and Lasers[END_REF][START_REF] Nister | Scalable recognition with a vocabulary tree[END_REF][START_REF] Se | Vision-based mobile robot localization and mapping using scaleinvariant features[END_REF][START_REF] Valgren | SURF & seasons: Appearancebased long-term localization in outdoor environments[END_REF], image stitching [START_REF] Agarwala | Photographing long scenes with multi-viewpoint panoramas[END_REF][START_REF] Brown | Recognising panoramas[END_REF], image registration [START_REF] Liu | Sift flow: Dense correspondence across scenes and its applications[END_REF][START_REF] Yang | Alignment of challenging image pairs: Refinement and region growing starting from a single keypoint correspondence[END_REF] and retrieval [START_REF] Gong | Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval[END_REF][START_REF] Hare | Salient regions for query by image content[END_REF], 3D modeling and reconstruction [START_REF] Agarwal | Building rome in a day[END_REF][START_REF] Faugeras | Three-Dimensional Computer Vision: A Geometric Viewpoint[END_REF][START_REF] Geiger | Stereoscan: Dense 3d reconstruction in real-time[END_REF][START_REF] Riggi | Fundamental Matrix Estimation via TIP-Transfer of Invariant Parameters[END_REF][START_REF] Vergauwen | Web-based 3D Reconstruction Service[END_REF], motion estimation [START_REF] Weinzaepfel | Deepflow: Large displacement optical flow with deep matching[END_REF], photo management [START_REF] Chang | EXTENT: fusing context, content, and semantic ontology for photo annotation[END_REF][START_REF] Lee | Fotofiti: web service for photo management[END_REF][START_REF] Snavely | Photo tourism: exploring photo collections in 3D[END_REF][START_REF] Yanai | Image collector III: a web image-gathering system with bag-of-keypoints[END_REF], symmetry detection [START_REF] Loy | Detecting symmetry and symmetric constellations of features[END_REF] or even image forgeries detection [START_REF] Cozzolino | Efficient dense-field copymove forgery detection[END_REF].

State-of-the-art image matching algorithms usually consist of three parts: detector, descriptor and matching step. They first detect points of interest in the compared images and select a region around each point of interest, and then associate an invariant descriptor or feature to each region. Correspondences may thus be established by matching the descriptors. Detectors and descriptors should be as invariant as possible.

Local image detectors can be classified by their incremental invariance properties. All of them are translation invariant. The Harris point detector [START_REF] Harris | A combined corner and edge detector[END_REF] is also rotation invariant. The Harris-Laplace, Hessian-Laplace and the DoG (Difference-of-Gaussian) region detectors [START_REF] Février | A wide-baseline matching library for Zeno[END_REF][START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF][START_REF] Mikolajczyk | Indexing based on scale invariant interest points[END_REF][START_REF]Scale and Affine Invariant Interest Point Detectors[END_REF] are invariant to rotations and changes of scale. Based on the AGAST [START_REF] Mair | Adaptive and generic corner detection based on the accelerated segment test[END_REF] corner score, BRISK [START_REF] Leutenegger | BRISK: Binary Robust invariant scalable keypoints[END_REF] performs a 3D nonmaxima suppression and a series of quadratic interpolations to extract the BRISK keypoints;

both detections aim at quickly providing rotation and scale invariances. Some moment-based region detectors [START_REF] Baumberg | Reliable feature matching across widely separated views[END_REF][START_REF] Lindeberg | Shape-adapted smoothing in estimation of 3-D depth cues from affine distortions of local 2-D brightness structure[END_REF] including the Harris-Affine and Hessian-Affine region detectors [START_REF]An affine invariant interest point detector[END_REF][START_REF]Scale and Affine Invariant Interest Point Detectors[END_REF], an edge-based region detector [START_REF]Matching Widely Separated Views Based on Affine Invariant Regions[END_REF][START_REF] Tuytelaars | Content-based image retrieval based on local affinely invariant regions[END_REF], an intensity-based region detector [START_REF] Tuytelaars | Wide baseline stereo matching based on local, affinely invariant regions[END_REF][START_REF]Matching Widely Separated Views Based on Affine Invariant Regions[END_REF], an entropy-based region detector [START_REF] Kadir | An Affine Invariant Salient Region Detector[END_REF], and two level line-based region detectors MSER ("maximally stable extremal region") [START_REF] Matas | Robust wide-baseline stereo from maximally stable extremal regions[END_REF] and LLD ("level line descriptor") [START_REF] Cao | A Theory of Shape Identification[END_REF][START_REF] Musé | Unsupervised thresholds for shape matching[END_REF][START_REF] Musé | An A Contrario Decision Method for Shape Element Recognition[END_REF] are designed to be invariant to affine transforms. MSER, in particular, has been demonstrated to have often better performance than other affine invariant detectors, followed by Hessian-Affine and Harris-Affine [START_REF] Mikolajczyk | A Comparison of Affine Region Detectors[END_REF]. In his pivotal paper [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF], Lowe proposed a scale-invariant feature transform (SIFT) that is invariant to image scaling and rotation and partially invariant to illumination and viewpoint changes. The SIFT method combines the DoG region detector that is rotation, translation and scale invariant (a mathematical proof of its scale invariance is given in [START_REF] Morel | On the consistency of the SIFT Method[END_REF]) with a descriptor based on the gradient orientation distribution in the region, which is partially illumination and viewpoint invariant [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF]. These two stages of the SIFT method will be called respectively SIFT detector and SIFT descriptor. The SIFT detector is a priori less invariant to affine transforms than the Hessian-Affine and the Harris-Affine detectors [START_REF] Mikolajczyk | Indexing based on scale invariant interest points[END_REF][START_REF]Scale and Affine Invariant Interest Point Detectors[END_REF].

The apparent deformations of objects caused by changes of the camera position can be locally approximated by affine maps, which explains why robust affine invariant methods allow to capture strong homography deformations. A possible way to obtain affine invariance is through the recently proposed Affnet [START_REF] Mishkin | Repeatability is not enough: Learning affine regions via discriminability[END_REF]. Affnet is a Convolutional Neural Network (CNN) that was first conceived for improving the normalized representations of Hessian-Affine [START_REF]Scale and Affine Invariant Interest Point Detectors[END_REF]. As proposed in [START_REF] Mishkin | Repeatability is not enough: Learning affine regions via discriminability[END_REF], these normalized representations are then described and match by HardNet [START_REF] Mishchuk | Working hard to know your neighbor's margins: Local descriptor learning loss[END_REF]. More recently the AID descriptor [START_REF] Rodriguez | Sift-aid: boosting sift with an affine invariant descriptor based on convolutional neural networks[END_REF], a CNN-based patch descriptor trained to capture affine invariance, is able to cope directly with strong viewpoint deformations. Still, it seems that more classical Image Matching by Affine Simulation (IMAS) methods [START_REF] Mishkin | MODS: Fast and robust method for two-view matching[END_REF][START_REF] Morel | ASIFT: A new framework for fully affine invariant image comparison[END_REF][START_REF] Pang | Fully affine invariant SURF for image matching[END_REF][START_REF]Fast affine invariant image matching[END_REF][START_REF] Rodriguez | Affine invariant image comparison under repetitive structures[END_REF] provide the best affine invariances of them all [START_REF] Rodríguez | Cnn-assisted coverings in the space of tilts: best affine invariant performances with the speed of cnns[END_REF]. Therefore, IMAS methods might be more suited for very strong viewpoint differences, although the price to pay is a heavier computational load.

First-order approximations of the local geometry, or simply affine approximations (see Figure 1), can be easily obtained from affine detectors like MSER [START_REF] Matas | Robust wide-baseline stereo from maximally stable extremal regions[END_REF], Harris-Affine [START_REF]An affine invariant interest point detector[END_REF] or Hessian-Affine [START_REF]Scale and Affine Invariant Interest Point Detectors[END_REF]. Similarly, the SIFT detector can also be armed with local affine approximations [START_REF] Rodriguez | Robust estimation of local affine maps and its applications to image matching[END_REF]. When estimating homographies from sets of correspondences with the RANSAC algorithm [START_REF] Fischler | Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[END_REF], the use of first-order approximations allows to increase the performance in homography estimation. This has already been proposed in [START_REF] Raposo | Theory and practice of structure-from-motion using affine correspondences[END_REF] by composing normalized affine maps provided by the Hessian Laplace detector. This information can be replaced with the one provided by Affnet [START_REF] Mishkin | Repeatability is not enough: Learning affine regions via discriminability[END_REF] or locate [START_REF] Rodriguez | Robust estimation of local affine maps and its applications to image matching[END_REF] since they have been shown to produce more accurate affine maps. In addition, a modification in the RANSAC consensus step has been proposed in [START_REF] Rodriguez | Robust estimation of local affine maps and its applications to image matching[END_REF], encouraging geometry consistency. Instead of defining inliers only through location agreement, the authors also consider the agreement in tilt, rotations and scale of the local affine maps.

A well established way of automatically estimating the 2D homography relating two images, see [START_REF] Hartley | Multiple view geometry in computer vision[END_REF] p.123, is:

1. Detection and description. Compute and describe interest points in each image.

2. Putative correspondences. Compute a set of interest point matches based on similarity between their descriptors.

3. RANSAC robust estimation. Choose the homography η with the largest number of inliers.

4. Optimal estimation. Re-estimate η from all correspondences classified as inliers, by minimizing the Maximum likelihood cost function, see [START_REF] Hartley | Multiple view geometry in computer vision[END_REF] p.95.

5. Guided matching. Further interest point correspondences can be determined using the estimated η or the affine approximation around each match. In this paper, we focus on some available improvements for the step 3. In particular, we highlight the advantages of three local affine approximations in improving the robustness of RANSAC homography estimations. They also enable RANSAC to reduce the amount of iterations by generating homography candidates with only two matching pairs instead of four. Furthermore, incorporating a a-contrario methodology [START_REF] Desolneux | From Gestalt Theory to Image Analysis[END_REF] will, as in ORSA [START_REF] Moisan | Automatic Homographic Registration of a Pair of Images, with A Contrario Elimination of Outliers[END_REF], result in: first, a threshold for inlier/outlier discrimination that is adaptive; second, a measure of the soundness of an estimation. In order to validate and measure the impact of these improvements, all modifications to RANSAC will be tested under several choices of detectors, descriptors and matchers which determine the first two steps).

The last two steps (optimal estimation and guided matching) could be seen as optional, and can be iterated until the number of correspondences is stable. Note that the local affine information could also be exploited in these steps. In the case of guided matching, the affine information have already been used to predict location and camera parameters from affine invariant detectors [START_REF] Farhan | Geometric expansion for local feature analysis and matching[END_REF][START_REF] Farhan | Local Region Expansion: a Method for Analyzing and Refining Image Matches[END_REF] and also from local geometry estimators [START_REF] Rodriguez | Robust estimation of local affine maps and its applications to image matching[END_REF].

The rest of this paper is organized as follows. Section 2 summarizes a formal methodology for approximating locally the viewpoint changes induced by motion of real cameras. Three methods for computing those local approximations are introduced in Section 3. Section 4 presents the modified RANSAC model. The proposed methods are illustrated with experiments in Section 5. Concluding remarks are presented in Section 6.

As stated in [START_REF] Morel | ASIFT: A new framework for fully affine invariant image comparison[END_REF][START_REF] Rodriguez | Covering the space of tilts. application to affine invariant image comparison[END_REF], a digital image u obtained by any camera at infinity is modeled as u = S 1 G 1 Au, where S 1 is the image sampling operator (on a unitary grid), A is an affine map, u is a continuous image and G δ denotes the convolution by a Gaussian kernel broad enough to ensure no aliasing is induced by the δ-sampling. This model takes into account the blur incurred when tilting or zooming a view. Note that G 1 and A generally do not commute.

Let A denote the set of affine maps and define Au(x) = u(Ax) for A ∈ A, where x is a 2D vector and Ax denotes function evaluation, A (x). We define the set of invertible orientation preserving affinities

A + = {L + v ∈ A| det(L) > 0}
where L is a linear map and v a translation vector. We call S the set of similarity transformations, which are any combination of translations, rotations and zooms. Lastly, we define the set

A + * = A + \ S,
where we exclude pure similarities. As it was pointed out in [START_REF] Morel | ASIFT: A new framework for fully affine invariant image comparison[END_REF], every A ∈ A + * is uniquely decomposed as

A = λR 1 (ψ)T t R 2 (φ), (1) 
where R 1 , R 2 are rotations, T t = t 0 0 1 with t > 1, λ > 0, φ ∈ [0, π) and ψ ∈ [0, 2π). Furthermore, the above decomposition comes with a geometric interpretation (see Figure 2) where the longitude φ and latitude θ = arccos 1 t characterize the camera's viewpoint angles (or tilt), ψ parameterizes the camera roll and λ corresponds to the camera zoom. The so-called optical affine maps involving a tilt t in the z-direction and zoom λ are formally simulated by:

u → S 1 AG z √ t 2 -1 G √ λ 2 -1 Iu,
where I is the Shannon-Whittaker interpolator and the superscript z indicates that the operator takes place only in the z-direction. We denote the corresponding operator by

A := S 1 AG z √ t 2 -1 G √ λ 2 -1 I .
The operator A is not always invertible and therefore its application might incur into a loss of information. We refer to [START_REF] Rodriguez | Sift-aid: boosting sift with an affine invariant descriptor based on convolutional neural networks[END_REF] for an example where no optical transformation A is found between two views.

Local affine approximation of homographies

Let H = (h ij ) i,j=1,...,3 be the 3 × 3 matrix associated to the homography η (•). Let x be the homogeneous coordinates vector associated to the image point x = (x 1 , x 2 ) around which we want to determine the local affine map. We denote by

y = (y 1 , y 2 ) = (Hx) 1 (Hx) 3 , (Hx) 2 (Hx) 3 = η (x)
the image of x by the homography η.

The first order Taylor approximation of η at x leads to

η (x + z) = v + L (x + z) + o ( z ) . (2) 
More specifically, if x = (0, 0), we know that

y i (z 1 , z 2 ) = (h i1 z 1 + h i2 z 2 + h i3 ) 1 h 33 -h 31 h 2 33 z 1 + -h 32 h 2 33 z 2 + o ( z ) , i = 1, 2.
Then, by polynomial identification in the Taylor formula If x = (0, 0), a simple change of variables z → z + x would lead us back to the case x = (0, 0). Notice that the resulting homography, η (z) = η (z + x) , has an associated matrix determined by columns,

v + L (z) =
H η =   H   1 0 0   H   0 1 0   H   x 1 x 2 1     .
This brief computation shows that the vector v and the matrix L are given by 

L =   h 11 -
v = y 1 y 2 -Lx. (3) 
This derivation allows us to compute the exact local affine approximation for a given homography. This will be useful for Section 4.2-4.3 and to assess the accuracy of our method when using annotated datasets.

Computing local affine approximations

A SIFT-like patch is simply the square crop at the origin of some similarity transformation (translation, rotation and zoom) of the original image. This also stands true for affine invariant image matching methods, for which a patch can be considered as the square crop at the origin of a tilted version of the original image followed by some similarity transformation. If two patches are a match (i.e. their descriptors are similar), then, through the assumption of locality and Taylor's formula, we can approximate the geometry transformation by an affine map.

Consider two square patches, P q and P t , coming, for example, from the Gaussian pyramid of the query and target images, respectively. Let c q and c t be their centers expressed in image coordinates. Let also A q be the affine map that converts from the query image domain to patch coordinates; likewise A t converts from target to patch coordinates. Note that, in the case of SIFT-like patches, the affinities A q and A t are pure similarities, combining just the translation, rotation and zoom corresponding to the location, orientation and scale associated to SIFT-like keypoints. Lastly, in order to locally approximate the transformation between query and target images (centered at c q and c t ), we only need the affine map relating P q and P t , denoted by A. differences between two patches and how the query is transformed into the target. All in all, around c q , the local affine map transforming the query into the target (in image coordinates) is written as

A q→t = A -1 t AA q . (5) 
The same procedure described above can be derived for Harris-Affine and Hessian-Affine region detectors [START_REF]An affine invariant interest point detector[END_REF][START_REF]Scale and Affine Invariant Interest Point Detectors[END_REF]. Only that A q , A t are not restrained to similarities but to affine maps in general.

Affine connections between patches

We now list different choices of methods for computing A, the affine map locally connecting the query patch to the target patch.

The naive method

If for some reason no strong tilt deformations are expected between query and target patches, then, a fair assumption would be for A to be the identity in all cases. Unfortunately, this is rarely the case for real life images. Nevertheless, it is a simplification worth trying because it entails no additional computational complexity. Formally, we set

A := Id. (6) 

The Affnet method

The Affnet [START_REF] Mishkin | Repeatability is not enough: Learning affine regions via discriminability[END_REF] method was conceived to predict normalizing ellipse shapes for single patches based on a 3-variable parametrization. Figure 4 depicts the passage from Affnet affine maps to the affine map transforming query into target (i.e. A). The connection provided by two Affnet-normalizing affine maps for the query and target patches is richer than each normalizing transformation. Indeed, for different choices of A 1 = T 1 R 1 and A 2 = T 2 R 2 one would need the four parameters (zoom, camera 1(namely zoom λ, camera rotation ψ, tilt t, tilt direction φ, and translation x, y), for the locate method, the Affnet method [START_REF] Mishkin | Repeatability is not enough: Learning affine regions via discriminability[END_REF] and the identity map method. The [START_REF] Rodriguez | Sift-aid: boosting sift with an affine invariant descriptor based on convolutional neural networks[END_REF] dataset is used; it contains 3352 patch pairs with corresponding ground truth. The sub-index GT means ground truth, conversely, no sub-index stands for estimated parameters.

λ -λ GT ψ -ψ GT t -t GT φ -φ GT x -x GT y -y GT
rotation, tilt and tilt direction) in Equation 1 in order to express A 2 A -1 1 . However, Affnet does not estimate translations. Formally, we set

A := A 2 A -1 1 x -A -1 1 c + c, (7) 
where c denotes the center of patch domain and A i are the estimated affine maps by Affnet.

The LOCATE method

The LOCal Affine Transform Estimator (locate) network presented in [START_REF] Rodriguez | Robust estimation of local affine maps and its applications to image matching[END_REF] directly estimates the affine transform A locate that maps the query patch into the target patch. locate simultaneously tracks the direct and inverse maps which significantly improves the network performance in predicting local approximating affine maps. This network was trained exclusively with simulated patches from an affine camera model. We expect it to generalize the affine world to all sorts of geometry as long as the Taylor approximation holds. locate is able to estimate all six parameters composing the affine map. Formally, we set

A := A locate . (8) 

Precision

In order to measure the precision in a realistic environment of these three methods (Naive, Affnet and locate) we used the viewpoint dataset presented in [START_REF] Rodriguez | Sift-aid: boosting sift with an affine invariant descriptor based on convolutional neural networks[END_REF], consisting of five pairs of images with their ground truth homographies and 3352 true matches. Notice that Equations 3-4 allow us to compute ground truth local affine maps around each match. Figure 5 shows the accuracy of Naive (Identity), Affnet [START_REF] Mishkin | Repeatability is not enough: Learning affine regions via discriminability[END_REF] and locate, represented by error density functions with respect to the affine decomposition appearing in Equation 1. Ideally, we expect a Dirac delta function centered at 0 for a perfect method. This is approximately true for the locate method. Note in Figure 5 that translations from the Affnet [START_REF] Mishkin | Repeatability is not enough: Learning affine regions via discriminability[END_REF] method do not quite match those from the Identity method; this difference can be explained by the connecting mapping itself (see Equation 7) which is different from

A 2 A -1 1 x.
As expected, locate is more precise than Affnet [START_REF] Mishkin | Repeatability is not enough: Learning affine regions via discriminability[END_REF]. Indeed, Affnet analyzes one patch at a time, whereas locate has access to both patches simultaneously. However, in practice, using Affnet involves fewer computations. This trade-off must be resolved depending on the application.

Robust homography estimation

The standard RANSAC algorithm computes the parameters fitting a mathematical model from observed data in the presence of outliers. Numerous improvements have been proposed in the literature for RANSAC, see [START_REF] Moisan | Automatic Homographic Registration of a Pair of Images, with A Contrario Elimination of Outliers[END_REF][START_REF]Fundamental Matrix of a Stereo Pair, with A Contrario Elimination of Outliers[END_REF][START_REF] Raguram | USAC: a universal framework for random sample consensus[END_REF][START_REF] Rais | Accurate motion estimation through random sample aggregated consensus[END_REF], but the core idea remains the same.

In the case of homography estimation, the classic RANSAC algorithm returns the homography η j computed at iteration j having the largest consensus of inliers among all iterations. The j-iteration can be described in two steps:

1. (Fitting) Randomly select s matches (x i ↔ y i ) i=1,...,s from the set of all matches (M T ) and compute the homography η j that yields the best fit.

2. (Consensus) Determine, with respect to an error function ξ η j , the matches from M T in consensus with η j .

In this paper, two error functions ξ η are used. First, the symmetric transfer error,

ξ 4 η (x ↔ y) := η j (x) -y x -η -1 j (y) 4×1 l 2 . ( 9 
)
Note that the 4 dimensional vector inside the norm, corresponding to the concatenation of two vectors of dimension two. The second proposal is a function measuring the classic symmetric transfer error as well as the affine coherence,

ξ 8 η (x ↔ y) :=     η j (x) -y x -η -1 j (y) α A (x↔y) E , A (x↔y) H - 0 1 0 1     8×1 l 2 , ( 10 
)
where the α-vector was introduced in [START_REF] Rodriguez | Robust estimation of local affine maps and its applications to image matching[END_REF] and will be revisited here in the following sections. The vector inside the norm has eight dimensions, corresponding to the concatenation of two vectors of dimension two and a vector of dimension four. A classic way of determining inliers in step 2 of the RANSAC algorithm is by thresholding the function ξ η . Another way is through the Number of False Alarms (NFA), based on the a-contrario procedure [START_REF] Desolneux | From Gestalt Theory to Image Analysis[END_REF]. Let ε i = ξ η (m l i ) be the ordered errors of matches in M T with respect to the current testing homography η, i.e.,

ε 1 ≤ ε 2 ≤ • • • ≤ ε |M T | .
As explained in [START_REF] Moisan | Automatic Homographic Registration of a Pair of Images, with A Contrario Elimination of Outliers[END_REF], the NFA of the testing homography η and its k smallest error matches from M T is defined as,

N F A (η) = (|M T | -s) |M T | k k s P (ξ η (m) ≤ ε k ) (k-s) (11) 
where P (ξ η (m) ≤ ε k ) (k-s) corresponds to the probability of k matches to fall within an error threshold ε k with respect to ξ η . This probability expression is explained through independence among matches and the power k -s accounts for the fact that s matches (the ones used for estimating η) are automatically inliers with respect to η. 11. In practice, the errors (measured by ξ η ) of all data terms are collected and sorted: ε 1 to ε |M T | . For each possible k, we compute the NFA as in Equation 11, and keep only the minimum of them all, provided it is below some threshold, usually set to 1 in the a-contrario methodology.

The benchmark RANSAC

Usually the steps 1-2 only take into account point coordinates. If no further improvements are applied, this defines a base RANSAC, that we denote by RANSAC base . Since the homography matrix have eight degrees of freedom and each match defines two equations, then the number of matches must be at least s = 4. The a-contrario RANSAC base is equivalent to the ORSA Homography estimation method presented in [START_REF] Moisan | Automatic Homographic Registration of a Pair of Images, with A Contrario Elimination of Outliers[END_REF]. The probability term in Equation 11does not need to be exact for the NFA to work, and can be approximated by assuming a uniform distribution in R 4 ,

P ξ 4 η (m) ≤ ε ≈ ε 4 π 2 2 w q h q w t h t , (12) 
where we find in the numerator the volume of a sphere of radius ε in R 4 and in the denominator the volume of the set with all possible coordinates for the query (of size [w q , h q ]) and target (of size [w t , h t ]) images. Algorithm 1 details the operations taking place in RANSAC base .

Homography fitting from local affine maps in RANSAC

From Section 2.1 we know how to locally approximate a homography by an affine map. Conversely, the problem of determining a homography from a set of affine maps at different locations was addressed in [START_REF] Barath | Novel ways to estimate homography from local affine transformations[END_REF][START_REF] Raposo | Theory and practice of structure-from-motion using affine correspondences[END_REF]. Let x ↔ y be a match and L = (l ij ) i,j=1,2 the linear map in Equation 2. Then the unknown homography η must satisfy

E 6×9 • h = 0, ( 13 
)
where E 6×9 is the matrix

        1 -y 1 -l 11 x 1 -l 11 x 2 -l 11 1 -l 12 x 1 -y 1 -l 12 x 2 -l 12 1 -y 2 -l 21 x 1 -l 21 x 2 -l 21 1 -l 22 x 1 -y 2 -l 22 x 2 -l 22 x 1 x 2 1 -y 1 x 1 -y 1 x 2 -y 1 x 1 x 2 1 -y 2 x 1 -y 2 x 2 -y 2         , (14) 
and h = [h 

foreach j ∈ {1, • • • , N iters } do Randomly select m 1 = (x 1 ↔ y 1 ), • • • , m 4 = (x 4 ↔ y 4 ) from M T
// Homography fitting by the Direct Linear Transformation (DLT) algorithm see [START_REF] Hartley | Multiple view geometry in computer vision[END_REF] p.88

E i = x i 1 x i 2 1 -y i 1 x i 1 -y i 1 x i 2 -y i 1 x i 1 x i 2 1 -y i 2 x i 1 -y i 2 x i 2 -y i 2 2×9
, where

z i = (z i 1 , z i 2 ) E =    E 1 . . . E 4    8×9
h j is the unit singular vector corresponding to the smallest singular value of E. where h j is a vectorized version of the matrix H j associated to the homography η j .

// Selection of inliers with respect to the symmetric transfer error

I j = (x ↔ y) ∈ M T | ξ 4 η ((x ↔ y)) < κ if useNFA then ε j,• = Sort ξ 4 η ((x ↔ y)) (x↔y)∈I j foreach k ∈ {3, • • • , |I j |} do N F A j k = (|M T | -4) |M T | k k 4 ε 4 j,k π 2 2 wqhqwtht k-4 if useNFA then j , k = arg min j,k N F A j k if N F A j k < 1 then M I is the subset of I j achieving the first k smaller values in ε j ,• else M I = ∅ else j = arg max j |I j | M I = I j if |I j | > 2 else ∅ return M j , η j
Clearly, two matches with their corresponding local affine maps already over-determine the homography matrix. Indeed, putting those equations together provides us with 12 equations

E 1 E 2 12×9 • h = 0,
where E i denotes the matrix E appearing in Equation 13for each match. To avoid the solution h = 0 we look for a unitary vector h minimizing

E 1 E 2 • h ,
see [START_REF] Hartley | Multiple view geometry in computer vision[END_REF] (algorithm 4.1, p.91) for computational details.

We call RANSAC 2pts a RANSAC base version in which the classic homography fitting of step 1 is replaced by the homography fitting of this section. Note that RANSAC 2pts only needs two samples at each iteration (s = 2). These samples carrying additional information consisting in affine approximations of local geometry deformations around them. The affine approximations can be provided by one of the methods introduced in Section 3.

The a-contrario RANSAC 2pts differs little from the a-contrario RANSAC base . Indeed, the only difference being s = 2 in Equation 11. Algorithm 2 details all operations taking place in RANSAC 2pts .

Affine consensus for RANSAC homography

When matching two image patches, the transformation that relates them may not be consistent with the global transformation of the scene. This can be due to the presence of symmetric objects or even to failures in the matching process. For instance, suppose that two patches centered at the same scene location but with incoherent rotations are identified by a matching method. The symmetry issue is easy to address as usually we should have encountered as many keypoints as degrees of symmetry around the center; so at least two rotations will correspond. However, aberrant matches are not treated by the matching method nor by RANSAC. This problem can be circumvented by imposing consistency between the local approximating affine maps and the testing homography proposed by RANSAC.

To impose local geometry consistency, most existing works [START_REF] Mishkin | MODS: Fast and robust method for two-view matching[END_REF][START_REF] Zheng | Robust point matching for nonrigid shapes by preserving local neighborhood structures[END_REF] propose to measure the incurred error in mapping keypoints of a match x ↔ y, e.g. y -A(x) + x -A -1 (y) . Unlike them, [START_REF] Rodriguez | Robust estimation of local affine maps and its applications to image matching[END_REF] proposes to enforce geometry consistency directly on the transformations parameters given by Equation 1. Finally, we redefine the consensus set of the RANSAC model by imposing geometry consistency as in [START_REF] Rodriguez | Robust estimation of local affine maps and its applications to image matching[END_REF].

Inliers are now defined as follows. Let A E and A H be, respectively, the estimated affine map by one of the methods introduced in Section 3 and the testing affine map computed from the testing homography (using Equation ( 3)). Let also [λ E , ψ E , t E , φ E ] and [λ H , ψ H , t H , φ H ] be, respectively, the affine parameters of A E and A H . We define the α-vector between A E and A H as:

α (A E , A H ) = max λ E λ H , λ H λ E , ∠ (ψ E , ψ H ) , max t E t H t H t E , ∠ (φ E , φ H ) , (15) 
where ∠(•, •) denotes the angular difference. To test consistency between A E and A H we add to the classic threshold on the Euclidean distance, four more thresholds on the α-vector. A perfect match would result in an α-vector equal to [1, 0, 

foreach j ∈ {1, • • • , N iters } do Randomly select m 1 = (x 1 ↔ y 1 ) and m 2 = (x 2 ↔ y 2 ) from M T . Let also L 1 + v 1 , L 2 + v 2 ∈ A T
be their associated affine maps.

// Homography fitting by the Direct Linear Transformation (DLT) algorithm see [START_REF] Hartley | Multiple view geometry in computer vision[END_REF] p.88

E i =         1 -y i 1 -l i 11 x i 1 -l i 11 x i 2 -l i 11 1 -l i 12 x i 1 -y i 1 -l i 12 x i 2 -l i 12 1 -y i 2 -l i 21 x i 1 -l i 21 x i 2 -l i 21 1 -l i 22 x i 1 -y i 2 -l i 22 x i 2 -l i 22 x i 1 x i 2 1 -y i 1 x i 1 -y i 1 x i 2 -y i 1 x i 1 x i 2 1 -y i 2 x i 1 -y i 2 x i 2 -y i 2         6×9
,

where z i = (z i 1 , z i 2 ) , L i = (l i lk ) l,k=1,2 . E = E 1 E 2 12×9
h j is the unit singular vector corresponding to the smallest singular value of E. where h j is a vectorized version of the matrix H j associated to the homography η j .

// Selection of inliers with respect to the symmetric transfer error

I j = (x ↔ y) ∈ M T | ξ 4 η ((x ↔ y)) < κ if useNFA then ε j,• = Sort ξ 4 η ((x ↔ y)) (x↔y)∈I j foreach k ∈ {3, • • • , |I j |} do N F A j k = (|M T | -2) |M T | k k 2 ε 4 j,k π 2 2 wqhqwtht k-2 if useNFA then j , k = arg min j,k N F A j k if N F A j k < 1 then M I is the subset of I j achieving the first k smaller values in ε j ,• else M I = ∅ else j = arg max j |I j | M I = I j if |I j | > 2 else ∅ return M j , η j
there is no need to optimize them. Thus, we propose to further refine inliers by accepting only those matches also satisfying

α (A E , A H ) < 2, π 4 , 2, π 8 , (16) 
where the above logical operation is true if and only if it holds true for each dimension.

We call RANSAC affine the version of RANSAC 2pts that includes the affine consensus presented in this section. The NFA (Equation 11) for the a-contrario RANSAC affine is determined by: two samples to fit the testing homography, s = 2; and a probability term that is approximated by a uniform random variable in a hyperrectangle of R 8 ,

P ξ 8 η (m) ≤ ε ≈ ε 8 π 4 4! w q h q w t h t 12 2 π 2 , ( 17 
)
where on top we find the volume of a sphere of radius ε in R 8 and at the bottom the volume of the hyperrectangle [0,

w q -1] × [0, h q -1] × [0, w t -1] × [0, h t -1] × [0, 11] 2 × [0, π] 2 .
Algorithm 3 details all operations taking place in RANSAC affine .

Experiments

In order to quantify the benefits of the local affine approximations for the homography estimation problem, we will compare RANSAC 2pts and RANSAC affine to RANSAC base . The three variants of RANSAC presented in this work are based on the original RANSAC algorithm and do not include recent modifications proposed in the literature (e.g. RANSAC USAC [START_REF] Raguram | USAC: a universal framework for random sample consensus[END_REF], etc). Even if they are not entirely comparable to ORSA [START_REF] Moisan | Automatic Homographic Registration of a Pair of Images, with A Contrario Elimination of Outliers[END_REF] nor RANSAC USAC [START_REF] Raguram | USAC: a universal framework for random sample consensus[END_REF], a line on each experiment will be added for ORSA or USAC as benchmark to compare against the state-of-the-art. The reader should keep in mind that most improvements proposed in RANSAC USAC [START_REF] Raguram | USAC: a universal framework for random sample consensus[END_REF] can also be applied to RANSAC 2pts and RANSAC affine . All experiments in this section were conducted on four well known datasets for homography estimation. Those datasets are: EF [START_REF] Zitnick | Edge foci interest points[END_REF], EVD [START_REF] Mishkin | MODS: Fast and robust method for two-view matching[END_REF], OxAff [START_REF] Mikolajczyk | A Comparison of Affine Region Detectors[END_REF] and SymB [START_REF] Hauagge | Image matching using local symmetry features[END_REF]. The EF dataset presents challenging non-linear lighting variations and occlusions. Both EVD and OxAff datasets present several pairs incurring in strong viewpoint differences. In particular, viewpoint differences between pairs in the EVD dataset are extreme and most matching methods will struggle to find correct matches. Lastly, the SymB dataset consists of painting-to-photo pairs, which will be challenging for detectors, descriptors and local geometry estimators that where not intended to be used under this circumstances. All datasets include ground truth homographies that were used to verify the accuracy.

Four combinations of state-of-the-art detectors and descriptors were used as starting point for all RANSACs. These choices are: SIFT [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] + AID [START_REF] Rodriguez | Sift-aid: boosting sift with an affine invariant descriptor based on convolutional neural networks[END_REF]; SIFT [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] + HardNet [START_REF] Mishchuk | Working hard to know your neighbor's margins: Local descriptor learning loss[END_REF]; HessianAffine [START_REF]Scale and Affine Invariant Interest Point Detectors[END_REF] + AID [START_REF] Rodriguez | Sift-aid: boosting sift with an affine invariant descriptor based on convolutional neural networks[END_REF]; HessianAffine [START_REF]Scale and Affine Invariant Interest Point Detectors[END_REF] + HardNet [START_REF] Mishchuk | Working hard to know your neighbor's margins: Local descriptor learning loss[END_REF]. Once local features were detected and matched, then each homography estimation method was applied and we declared a success if at least 80% of inliers (in consensus with the estimated homography) were in consensus with the ground truth homography. Four metrics are reported: the number of successes; the number of correctly matched image pairs; the average number of correct inliers; and the average pixel error. Notice that all these metric indicators are computed by first thresholding the symmetric transfer error (ξ 4 ηgt (•) ≤ κ) with respect to the ground truth homography η gt of all matches in consensus with the estimated homography. These last two elements are nothing more than the output: M I , η j . The two steps of RANSAC (fitting and consensus) are iterated a 1000 times for each of the RANSAC variants, except for ORSA that is iterated a 10000 times and USAC that adapts the number of iterations at each execution.

Algorithm 3 RANSAC affine input: M T -set of all matches.

A T -Local affine approximations associated to each match in M T . parameters: N iters -Number of iterations. κ -Spatial inliers threshold. α max -Affine inliers thresholds (a 4-sized vector). useNFA -A bool stating if NFA measure should be used. start:

foreach j ∈ {1, • • • , N iters } do Randomly select m 1 = (x 1 ↔ y 1 ) and m 2 = (x 2 ↔ y 2 ) from M T . Let also L 1 + v 1 , L 2 + v 2 ∈ A T
be their associated affine maps.

// Homography fitting by the Direct Linear Transformation (DLT) algorithm see [START_REF] Hartley | Multiple view geometry in computer vision[END_REF] p.88

E i =         1 -y i 1 -l i 11 x i 1 -l i 11 x i 2 -l i 11 1 -l i 12 x i 1 -y i 1 -l i 12 x i 2 -l i 12 1 -y i 2 -l i 21 x i 1 -l i 21 x i 2 -l i 21 1 -l i 22 x i 1 -y i 2 -l i 22 x i 2 -l i 22 x i 1 x i 2 1 -y i 1 x i 1 -y i 1 x i 2 -y i 1 x i 1 x i 2 1 -y i 2 x i 1 -y i 2 x i 2 -y i 2         6×9 , where z i = (z i 1 , z i 2 ) , L i = (l i lk ) l,k=1,2 . E = E 1 E 2 12×9
h j is the unit singular vector corresponding to the smallest singular value of E. where h j is a vectorized version of the matrix H j associated to the homography η j .

// Selection of inliers with respect to the symmetric transfer error and the affine information

S j = (x ↔ y) ∈ M T | ξ 4 η ((x ↔ y)) < κ T j = (x ↔ y) ∈ M T | α A (x↔y) E , A (x↔y) H < α max A (x↔y) E
is the associated affine map to (x ↔ y) in A T ; and A (x↔y) H is the best approximating affine map at (x ↔ y) computed from the testing homography η j using Equation 3.

if useNFA then ε j,• = Sort ξ 8 η ((x ↔ y)) (x↔y)∈S j foreach k ∈ {3, • • • , |S j |} do N F A j k = (|M T | -2) |M T | k k 2 ε 8 j,k π 4 4! wqhqwtht12 2 π 2 k-2 if useNFA then j , k = arg min j,k N F A j k if N F A j k < 1 then M I is the subset of S j achieving the first k smaller values in ε j ,• else M I = ∅ else j = arg max j |S j T j | M I = S j T j if |S j T j | > 2 else ∅ return M I , η j
Table 1 Homography estimation performances for RANSAC USAC [START_REF] Raguram | USAC: a universal framework for random sample consensus[END_REF], RANSAC base , RANSAC 2pts and RANSAC affine . Four combinations of detectors and descriptors are used: SIFT [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] + AID [START_REF] Rodriguez | Sift-aid: boosting sift with an affine invariant descriptor based on convolutional neural networks[END_REF]; SIFT [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] + HardNet [START_REF] Mishchuk | Working hard to know your neighbor's margins: Local descriptor learning loss[END_REF]; HessianAffine [START_REF]Scale and Affine Invariant Interest Point Detectors[END_REF] + AID [START_REF] Rodriguez | Sift-aid: boosting sift with an affine invariant descriptor based on convolutional neural networks[END_REF]; HessianAffine [START_REF]Scale and Affine Invariant Interest Point Detectors[END_REF] + HardNet [START_REF] Mishchuk | Working hard to know your neighbor's margins: Local descriptor learning loss[END_REF]. Affine approximations are provided by each method presented in Section 3.1; 'None' states that no affine information is provided. Each RANSAC runs for 1000 internal iterations, except for USAC that adapts the number of iterations at each execution. To measure probability of success, all RANSACs were run 20 times on resulting matches from each pair of images. Legend: S -the number of successes (bounded by 20× number ); the number of correctly matched image pairs; inl. -the average number of correct inliers; AvE -the average pixel error. All these metric indicators are computed by first thresholding the symmetric transfer error with respect to the ground truth homography of all matches in consensus with the estimated homography. The numbers of image pairs in a dataset are boxed.

Detector + Descriptor

EF dataset [START_REF] Zitnick | Edge foci interest points[END_REF] EVD dataset [START_REF] Mishkin | MODS: Fast and robust method for two-view matching[END_REF] OxAff dataset [START_REF] Mikolajczyk | A Comparison of Affine Region Detectors[END_REF] SymB dataset [START_REF] Hauagge | Image matching using local symmetry features[END_REF] Affine A-contrario homography estimation performances for ORSA [START_REF] Moisan | Automatic Homographic Registration of a Pair of Images, with A Contrario Elimination of Outliers[END_REF], RANSAC base , RANSAC 2pts and RANSAC affine . Four combinations of detectors and descriptors are used: SIFT [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] + AID [START_REF] Rodriguez | Sift-aid: boosting sift with an affine invariant descriptor based on convolutional neural networks[END_REF]; SIFT [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] + HardNet [START_REF] Mishchuk | Working hard to know your neighbor's margins: Local descriptor learning loss[END_REF]; HessianAffine [START_REF]Scale and Affine Invariant Interest Point Detectors[END_REF] + AID [START_REF] Rodriguez | Sift-aid: boosting sift with an affine invariant descriptor based on convolutional neural networks[END_REF]; HessianAffine [START_REF]Scale and Affine Invariant Interest Point Detectors[END_REF] + Hard-Net [START_REF] Mishchuk | Working hard to know your neighbor's margins: Local descriptor learning loss[END_REF]. Affine approximations are provided by the locate method presented in Section 3.1; 'None' states that no affine information is provided. Each RANSAC runs for 1000 internal iterations, except for ORSA that runs for 10000 iterations. To measure probability of success, all RANSACs were run 20 times on resulting matches from each pair of images. Legend: S -the number of successes (bounded by 20× number ); the number of correctly matched image pairs; inl. -the average number of correct inliers; AvE -the average pixel error. All these metric indicators are computed by first thresholding the symmetric transfer error with respect to the ground truth homography of all matches in consensus with the estimated homography. The numbers of image pairs in a dataset are boxed.

Detector + Descriptor

EF dataset [START_REF] Zitnick | Edge foci interest points[END_REF] EVD dataset [START_REF] Mishkin | MODS: Fast and robust method for two-view matching[END_REF] OxAff dataset [START_REF] Mikolajczyk | A Comparison of Affine Region Detectors[END_REF] SymB dataset [START_REF] Hauagge | Image matching using local symmetry features[END_REF] Affine In Section 4 we have introduced, for the proposed RANSACs, a procedure allowing to order and validate estimations with respect to a measure of statistical significance, the NFA. However, the typical thresholding for determining inliers is less costly and might be a preferred option depending on the application. With this in mind, experiments are separated in two (Subsection 5.1 and Subsection 5.2) and are presented in form of tables. Each table should be analyzed by blocks. Each block consists of a fixed matching method and dataset. The reader should pay special attention to the first two columns: total number of successes and total number of image pairs identified at least once. The best method should have these two indicators as high as possible, for most choices of matching method and dataset (i.e. blocks). In all cases, the gap between RANSAC base and RANSAC 2pts /RANSAC affine will give a measure of the improvement provided by the local affine approximations.

Fixed thresholds for inlier discrimination

Table 1 shows a comparison of homography estimation methods using fixed thresholds for inlier/outlier discrimination. The performance of each RANSAC (combined with the affine approxi-mations of Section 3.1) is tested on the four aforementioned datasets for the four choices of detectors and descriptors presented above. The RANSAC USAC [START_REF] Raguram | USAC: a universal framework for random sample consensus[END_REF] method is added to Table 1 in order to compare the proposed RANSACs against a well established state-of-the-art method.

The USAC [START_REF] Raguram | USAC: a universal framework for random sample consensus[END_REF] method shows better performances than RANSAC base when equipped with the HardNet [START_REF] Mishchuk | Working hard to know your neighbor's margins: Local descriptor learning loss[END_REF] descriptor. This situation is inverted for the AID [START_REF] Rodriguez | Sift-aid: boosting sift with an affine invariant descriptor based on convolutional neural networks[END_REF] descriptor. A plausible explanation is the higher rate of false positive matches for the AID [START_REF] Rodriguez | Sift-aid: boosting sift with an affine invariant descriptor based on convolutional neural networks[END_REF] descriptor with respect to the HardNet [START_REF] Mishchuk | Working hard to know your neighbor's margins: Local descriptor learning loss[END_REF] descriptor, which might be harming the performance of some steps (like the T d,d and Bail-Out tests, among others) present in USAC [START_REF] Raguram | USAC: a universal framework for random sample consensus[END_REF].

The reader will also note the performance drop of the locate method in estimating affine approximations between image pairs in the case of the SymB [START_REF] Hauagge | Image matching using local symmetry features[END_REF] dataset. Indeed, locate misreads the information when analyzing the painting-to-photo patch pairs, an invariance for which locate was not trained. The Affnet [START_REF] Mishkin | Repeatability is not enough: Learning affine regions via discriminability[END_REF] method is less affected by these painting-to-photo image pairs as it analyzes separately each patch, so it is the structure that provides the invariance. However, the Affnet and Naive methods show similar performances under the SymB [START_REF] Hauagge | Image matching using local symmetry features[END_REF] dataset.

Incorporating the affine information to the homography fitting step allowed to boost the total number of successes in retrieving ground truth homographies for almost any configuration of detector and descriptor. Indeed, having decreased the sample size (from 4 to 2) has increased the probability that at least one of the 1000 random samples that were drawn while iterating is free from outliers. This implies that the homography fitting step is more likely to capture the true homography in fewer iterations. Therefore, the processing time spent in computing local approximating affine maps could be compensated later on by decreasing the number of internal iterations. Furthermore, we have observed that, in general, even if RANSAC affine produces less apparent inliers, the quality of those matches yields a higher probability of success for the same number of internal iterations. Moreover, the affine approximations provided by all methods presented in Section 3.1 often resulted in an added value.

Adaptive thresholds for inlier discrimination

A comparison of the proposed a-contrario RANSACs is provided in Table 2. ORSA [START_REF] Moisan | Automatic Homographic Registration of a Pair of Images, with A Contrario Elimination of Outliers[END_REF] is used for benchmarking. Note that ORSA runs for 10000 iterations whereas the proposed methods runs for 1000 iterations. Nevertheless, RANSAC 2pts and RANSAC affine attain comparable (sometimes better) results with respect to ORSA [START_REF] Moisan | Automatic Homographic Registration of a Pair of Images, with A Contrario Elimination of Outliers[END_REF]. This points out that the affine information is making up for the 9000 never-done iterations in the proposed a-contrario RANSACs.

The reader will notice in Table 1 that HessianAffine [START_REF]Scale and Affine Invariant Interest Point Detectors[END_REF] + HardNet [START_REF] Mishchuk | Working hard to know your neighbor's margins: Local descriptor learning loss[END_REF] combined with two of the proposed methods have systematically exhibit 2 correct matches out of 3 inliers of the estimated homography; whereas in Table 2 the a-contrario methods did not validate those 3 matches to be of statistical significance.

Conclusions

In this paper we reviewed three methods for estimating local affine maps between images. They provide first-order approximations of local geometry. This information is proved to be beneficial for homography estimation, for which we presented several RANSAC versions that systematically improved results in four well known datasets [START_REF] Hauagge | Image matching using local symmetry features[END_REF][START_REF] Mikolajczyk | A Comparison of Affine Region Detectors[END_REF][START_REF] Mishkin | MODS: Fast and robust method for two-view matching[END_REF][START_REF] Zitnick | Edge foci interest points[END_REF]. The proposed RANSACs regularly improved the number of successes in retrieving the ground truth homographies with respect to a baseline RANSAC, and, in a minor degree, with respect to well-established homography estimation methods like USAC [START_REF] Raguram | USAC: a universal framework for random sample consensus[END_REF] and ORSA [START_REF] Moisan | Automatic Homographic Registration of a Pair of Images, with A Contrario Elimination of Outliers[END_REF]. The Number of False Alarms (NFA) from the a-contrario procedure [START_REF] Desolneux | From Gestalt Theory to Image Analysis[END_REF] helps us measure the soundness of estimated homographies and allows for adaptive thresholds of inlier/outlier discrimination. The computations needed for estimating local affine maps around each match can be compensated later on by reducing the number of internal iterations of these RANSAC algorithms.

Figure 1 :

 1 Figure 1: Some correspondences together with local affine approximations of local geometry. Patches on the target are warped versions of their corresponding query patch.

Figure 2 :

 2 Figure 2: Geometric interpretation of Equation (1).

Figure 3 :

 3 Figure 3: Two pairs of patches used as query and target input patches (columns 1-2). Each pair differs only by an affine map. Blue and green channels in the 3rd column correspond to the target patch and a warped version of the query patch (the red line delimits its borders); the red channel is filled with zeros.

Figure 4 :

 4 Figure 4: Passage from Affnet affine maps (A 1 , A 2 ) to the connecting mapping A 1→2 . The center of the normalized patch (on top) corresponds to the origin in normalized coordinates.

Figure 5 :

 5 Figure 5: Affine error prediction in terms of the affine decomposition of Equation1(namely zoom λ, camera rotation ψ, tilt t, tilt direction φ, and translation x, y), for the locate method, the Affnet method[START_REF] Mishkin | Repeatability is not enough: Learning affine regions via discriminability[END_REF] and the identity map method. The[START_REF] Rodriguez | Sift-aid: boosting sift with an affine invariant descriptor based on convolutional neural networks[END_REF] dataset is used; it contains 3352 patch pairs with corresponding ground truth. The sub-index GT means ground truth, conversely, no sub-index stands for estimated parameters.

  (a) Resulting matches from the SIFT-AID [62] method. (b) Transforming query into target with the best scoring homography found by the a-contrario RANSAC affine equipped with the locate method. (c) Matches in consensus with the above homography. (d) 10 random matches from (c) with their estimated affine approximations.
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 6 Figure 6: Visual results associated with this demo.
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  If there are k inliers, potentially all s out of them yield the with k elements. The number k of inliers is usually not known in advance, so all values of k are tested (from s + 1 to |M T |), which explains the factor (|M T | -s) in Equation

	correct configuration; explaining the term	k s	. Also, there are	|M T | k	possible subsets of M T

  RANSAC 2pts input: M T -set of all matches.A T -Local affine approximations associated to each match in M T .

	parameters:
	N iters -Number of iterations.
	κ -Spatial inliers threshold.
	useNFA -A bool stating if NFA measure should be used.
	start:

[START_REF] Agarwal | Building rome in a day[END_REF] 0]

. If we assume independence on each dimension, the resulting probability of a match passing all thresholds is the multiplication of individual probabilities. With this in mind, we claim that rough thresholds are enough to obtain good performances and that Algorithm 2

Table 2

 2