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Abstract

Keiper [1] and Li [2] published independent investigations of the con-
nection between the Riemann hypothesis and the properties of sums over
powers of zeros of the Riemann zeta function. Here we comment on these
papers, and propose some extensions of their results. Key results are
obtained using generalised Lambert functions.

Acknowledgements

We would like to thank Bruno Salvy, Jacques Gelinas and Lindsay
Botten for their valuable communications.

1 Relevant equations from the literature

The function ξ(s) is even under s→ 1− s and is defined as

ξ(s) =
1

2
s(s− 1)

Γ(s/2)ζ(s)

πs/2
=

1

2
s(s− 1)ξ1(s). (1)

We will be interested in mappings which move the location of lines along
which zeros are located onto circles in the complex plane. For the case of
functions putatively satisfying the Riemann hypothesis, a convenient mapping
from the critical line ℜ(s) = σ = 1/2 onto the unit circle is

w = u+ iv = 1− 1

s
=
s− 1

s
. (2)
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The inverse transformation is

s =
1

1− w
. (3)

We commence with the expansion of ξ(s + 1/2), based on the work of
Pustyl’nikov [3, 4] and Hadamard [5]:

ξ

(
s+

1

2

)
=

∞∑
r=0

ξrs
2r, (4)

where the coefficients ξr can be obtained in integral form from

ξr =
2−(2r+2)

(2r)!
I2r, (5)

with

Ir =

∫ ∞

1

[log(x)r−2][16r(r − 1)− log(x)2]x−3/4ω(x)dx (6)

and ω(x) =
∑∞

n=1 exp(−πn2x) being related to the elliptic theta function ϑ3.
Pustyl’nikov [4] establishes in his Theorem 1 that all even order derivatives of
ξ(s) at s = 1/2 are strictly positive. His Theorem 2 is that Theorem 1 provides a
necessary condition for the Riemann hypothesis to hold. Asymptotic analysis of
the integral (4) may be found in Pustyl’nikov [3], and supplementary comments
with numeric results are available in [6] and in a valuable communication to the
author from Jacques Gélinas [7]. The latter reference contains extensions to the
asymptotics of Pustyl’nikov, which give an accurate exponent and first digit for
the ξr. Recent publications [8, 9] contain formulae which substantially improve
the asymptotic formulae, such that 16-18 decimal digits are given for r in the
range 2000-20000.

Keiper [1] considers two sets of sums over powers of zeros ρ of ξ(s) The first
set σk occurs in the expansion of log[ξ(s)/ξ(0)]:

log[2ξ(s)] =

∞∑
k=1

(−1)k+1σ
K
k

k
(s− 1)k. (7)

(The superscriptK here indicates sums as defined by Keiper; we will also discuss
similar sums in the work of Li, to be denoted σL

k , with σL
k = kσK

k .) The
derivative of (7) is

ξ′(s)

ξ(s)
=

∞∑
k=1

σK
k (1− s)k−1. (8)

The σK
k are given by:

σK
k =

∑ 1

ρk
. (9)

They are always real since every zero ρ can be paired with its conjugate, also
a zero. Their modulus displays a simple exponential decrease, governed by

2



the modulus of the first zero (around 14.1436). However the signs of the real
quantities σk vary in a complicated fashion when k becomes large, since the
first and second terms in the expansion (9) may become at times of comparable
magnitude.

The value of σK
1 is analytic:

σK
1 = 1 +

γ

2
− 1

2
log(4π) ≈ 0.023095709 . . . (10)

Keiper [1] gives numerical values for certain low order σK
k , with a more extensive

and more accurate tabulation having been constructed by Dr. Rick Kreminski
[10]. For σK

2 , we obtain

σK
2 = 1 + γ2 − π2

8
+ 2γ1 ≈ −0.0461543172 . . . . (11)

Another useful value is that of ∑
ρ

1

|ρ|2
= 2σK

1 , (12)

if the Riemann hypothesis holds.
Interconnecting relationships among the σk provided by Keiper [1] include

∞∑
k=1

1

k
σk = 0, σ1 = −

∞∑
k=1

σk. (13)

A more general result is

σj+1 = (−1)j+1
∞∑
k=1

(
k − 1

j

)
σk. (14)

We now turn to quantities λ, used by both Keiper [1] and Li [2] in discussions
relating to the Riemann hypothesis. The definition of these linked quantities
we now give comes from Li:

(n− 1)!λLn =
dn

dsn
[
sn−1 log(2ξ(s))

]
s=1

= n!λKn . (15)

The λKk are related to the σj , as shown by Keiper:

λ0 = 0, λ1 = σ1, λKk =

k∑
j=1

(−1)j−1

j

(
k − 1

j − 1

)
σj . (16)

The connection of the λKk with the Riemann hypothesis is discussed by
Keiper in connection with the relation:

λLm = mλKm =
∑
ρ

[
1−

(
ρ

ρ− 1

)m]
. (17)
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If the Riemann hypothesis holds, then all the zeros ρ lie on the critical line, with
|ρ| = |ρ−1|. The sum over zeros in (17) can not then be negative, so λm > 0 for
all m is a necessary condition for the Riemann hypothesis, as stated by Keiper.
He also provided the first two terms in a large m expansion of λKm, based on
assuming the Riemann hypothesis and ”very evenly distributed” zeros:

λKm ≈ 1

2
logm− 1

2
(log(2π) + 1− γ). (18)

100 200 300 400 500
n

0.5

1.0

1.5

2.0

λn
K

Figure 1: The values λKm as a function of m determined numerically (blue) are
compared with Keiper’s formula (18) (red).

Figure 1 shows the behaviour of the λKm up to m = 500. It consists of an
obvious logarithmic smooth trend [11], plus superimposed oscillations. (Note
that, as in all numerical cases studied in this paper, calculations were carried
out on a laptop using Mathematica.) Maślanka [11] and others such as M. W.
Coffey [12, 13] were inspired by a paper by Bombieri and Lagarias [14], which
introduced a splitting of λLn into trend and oscillation terms:

λLn = λ̄n + λ̃n, (19)

where the trend is

λ̄n = 1− (log(4π) + γ)
n

2
+

n∑
j=2

(−1)j
(
n

j

)
(1− 2−j)ζ(j), (20)

and the oscillation is

λ̃n = −
n∑

j=1

(
n

j

)
η(j − 1). (21)

Here the ηn can be defined [14] as the coefficients occurring in the expansion

log(sζ(s+ 1)) = −
∞∑

n=0

ηn
sn

n+ 1
. (22)
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Coffey [12] gives the ηn in terms of the σk and ζ(k):

(−1)nηn−1 = σn + (1− 2−n)ζ(k)− 1. (23)

The trend contains a sum over the poles of on the real axis ζ(s), while the
oscillation counteracts the poles with zeros on the real axis and adds in the sum
over zeros off the real axis σj .

Coffey [12, 13] bounds the sum in equation (20) to give:

n

2
lnn+ (γ − 1)

n

2
+

1

2
≤ S1(n) ≤

n

2
lnn+ (γ + 1)

n

2
− 1

2
. (24)

The leading term in (24) corresponds to the leading term in Keiper’s represen-
tation (18), with the former not being associated with the assumptions said to
lead to (18).

2 Keiper’s sums τ and their generalisation

In recent years Keiper’s paper [1] on the sums over zeros λ has begun to receive
more attention. However, not as much attention has been paid to the second set
of sums (τ) he studied in the same work. (Keiper died in 1995, and so was not
able to continue his research on this topic). In order to introduce these sums,
we define the central difference operator Cm acting on a sequence f(m):

Cmf(m) = f(m+ 1)− 2f(m) + f(m− 1). (25)

We apply this to λLm:

τm = Cm
∑
ρ

[
1−

(
ρ

ρ− 1

)m]
, (26)

giving Keiper’s result:

τm = −
∑
ρ

(
ρ

ρ− 1

)m+1
1

ρ2
. (27)

This can also be expressed in terms of the σj :

τ0 = σ1, τk =

k∑
j=1

(
k − 1

j − 1

)
(−1)jσj+1 for k ≥ 1. (28)

Another expression for the τn comes from the application of the central
difference operator to the defining relationship (15). This is

τn =
1

(n− 1)!

dn−2

dsn−2

[
sn−1 d

2

ds2
ln(ξ(s))

]
s=1

. (29)
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The τm have been expressed in terms of the central differences of the λ’s.
We can go in the opposite direction using the fact that the central difference is
the difference of the first differences, to obtain two new expressions:

m∑
n=1

τn = λLm+1 − λLm − λL1 , (30)

and
m−1∑
n=1

nτn = mλLm+1 − (m+ 1)λLm. (31)

These may be combined to give

m−1∑
n=1

(m− n)τn =

m∑
n=1

(m− n)τn = λLm −mλL1 . (32)

Keiper [1] argues from (27) that the Riemann hypothesis implies that |ρ/(ρ−
1)| = 1 for all ρ, and so the values of |τk| must be bounded by 2σK

1 from (12).
Keiper’s expression analogous to (29) is used by him to argue the converse: that
if the |τk| are bounded, the Riemann hypothesis must hold.

The central difference operator applied to the leading term (24) gives 1/(2k).
Interestingly, terms linear in k or constant give zero for this operation. In Fig.
2 we compare this leading term estimate with numerical values of the τk. Unlike
the situation with the λ’s, this smooth trend line is no longer dominant over the
oscillations. However, numerical evidence is that the λk’s increase monotonically
with k, and this is of course a sufficient condition for the Riemann hypothesis. It
is also sufficient to show from (30) that λ1+

∑m
n=1 τn > 0 for all m, presumably

due to the influence of the trend term.

200 400 600 800 1000
k

-0.02

-0.01

0.01

0.02

0.03

0.04

0.05
τ[k]

Figure 2: The values τk as a function of k determined numerically (blue) are
compared with 1/2k) (red).

Motivated by these results, we define a general sum over the zeros ρ:

Sm,q = −
∑
ρ

1

ρ2q

(
ρ

ρ− 1

)m+q

= −
∑
ρ

ρm−q

(ρ− 1)m+q
. (33)
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We note that
τm = Sm,1 = λLm+1 − 2λLm + λLm−1. (34)

The Sm,q obey a recurrence relation in q:

Sm,q+1 = Sm+1,q − 2Sm,q + Sm−1,q. (35)

Putting q = 1, this enables us to conclude the elegant continuation of (34) and
(35):

Sm,2 = τm+1 − 2τm + τm−1. (36)

Keiper [1] in his equations (25) and (28) gives expressions for his τm as sums
over σK

m . The following expressions generalise these to the Sm,q:

Sm,q = −
∞∑

j=2q

(
j +m− q − 1

m+ q − 1

)
σj (37)

and, if m > q,

Sm,q = −
m+q−1∑
j=2q−1

(−1)j
(

m− q

j + 1− 2q

)
σj . (38)

Particular cases of Sm,q are of interest. We note that the correspondence
between zeros ρ and 1− ρ of ζ(s) implies the following symmetry relationship:

S−m,q = Sm,q. (39)

Putting m = 0 in (33), we have

S0,q = −
∑
ρ

1

ρq(ρ− 1)q
= (−1)q+1

∑
ρ

1

ρq(1− ρ)q
. (40)

If the Riemann hypothesis holds, the summand in (40) becomes 1/|ρ|2q, and
thus S0,q strictly alternates in sign as q increases. Of course S0,0 is undefined,
while S0,1 = 2σ1.

Another interesting case is:

Sm,m = −
∑
ρ

1

(1− ρ)2m
= −σ2m, (41)

which is absolutely convergent for m ≥ 1. We generalise this:

Sm,m+δq = −
∑
ρ

1

ρδq(1− ρ)2m+δq
, (42)

absolutely convergent for δq ≥ 0 if m ≥ 1.
The equivalent of (30) for the S’s is

m∑
p=m−l

Sp,q = Sm+1,q−1 − Sm,q−1 − Sm−l,q−1 + Sm−l−1,q−1. (43)

7



If l = m− 1 and q ≥ 2, (43) is

m∑
p=1

Sp,q = Sm+1,q−1 − Sm,q−1 − S1,q−1 + S0,q−1. (44)

We show the behaviour of low order sums Sm,q as a function of m in Figs.
3-5. Rapid convergence is evident as q increases towards a single term driven
by the first zero of ζ(s), ρ1 = 1/2 + it1. The complicated behaviour evident in
Fig. 2 for q = 1 rapidly becomes more simple, with slight deviations from the
ρ1 term explicable by the inclusion of a ρ2 term.

100 200 300 400 500
m

-0.00005

0.00005

S(m,2)

Figure 3: The values Sm,2 (blue) as a function of m, determined by summation
over the first 1000 zeros ρ are compared with the results of summation over the
first two zeros (red). The two black lines correspond to ±S0,2.

100 200 300 400 500
m

-3.×10-7

-2.×10-7

-1.×10-7

1.×10-7

2.×10-7

3.×10-7
S(m,3)

Figure 4: The values Sm,3 (blue) as a function of m, determined by summation
over the first 1000 zeros ρ are compared with the results of summation over the
first two zeros (red). The two black lines correspond to ±S0,3.

Note that Keiper’s argument in relation to Sm,1 = τm and the Riemann
hypothesis applies equally to the Sm,q for q > 1. In each case, the relevant
bounds on the Sm,q are given by ±S0,q.
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100 200 300 400 500
m

-1.×10-9

-5.×10-10

5.×10-10

1.×10-9

S(m,4)

Figure 5: The values Sm,4 (blue) as a function of m, determined by summation
over the first 1000 zeros ρ are compared with the results of summation over the
first two zeros (red). The two black lines correspond to ±S0,4.

3 Li’s necessary and sufficient condition for the
Riemann hypothesis

Li’s paper [2] was written after Keiper’s [1] and does not cite it. It is written
in the classical style of theorem and proof, while Keiper was providing an early
example of what has come to be known as experimental mathematics. Here we
will be interested in providing further details and understanding of the following
theorem:

Theorem 1. (Li) A necessary and sufficient condition for the nontrivial zeros
of the Riemann zeta function to lie on the critical line is that λLn is non-negative
for every positive integer n.

Here of course we have used the notation λLn to avoid confusion with Keiper’s
use of the same Greek symbol. Li frames his proof of this theorem using the
same mapping as Keiper from the complex s plane to the unit circle, and writing
two key expansions:

ϕ(z) = 2ξ

(
1

1− z

)
= 1 +

∞∑
j=1

ajz
j , (45)

and
ϕ′(z)

ϕ(z)
=

∞∑
n=0

λLn+1z
n. (46)

These two equations are used by Li to connect the λLn and the an in the following
recurrence relation:

λLn = nan −
n−1∑
j=1

λLj an−j . (47)
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Li does not give any representation for the quantities an, but provides a
proof that they are positive. We can derive a convenient representation for
them using the expansion (4), re-expanding about s = 1 using the Binomial
Theorem, and then the following expansion in the variable w = 1/(1− s):(

1 + w

1− w

)r

= 1 +

∞∑
n=1

ar(n)w
n. (48)

Here the coefficients ar(n) are explicit:

ar(n) =

n∑
p=0

(
r + n− p− 1

r − 1

)(
r

p

)
. (49)

The ar(n) are polynomials in r of degree n. The result of this procedure is

an = 2

∞∑
r=1

ξr
22r

a2r(n), for n = 1, 2, 3, . . . , (50)

with n = 0 corresponding to the identity

2ξ0 + 2

∞∑
r=1

ξr
22r

= 1. (51)

Now, all the coefficients ξr are positive, as proved by Pustyl’nikov [3], a fact
known to Hurwitz and Jensen. (I am indebted to J. Gélinas for this comment.)
Given the positivity of the ar(n) from (49), this provides an alternative proof
to that of Li [2] that the an are all positive. It is also evident that they increase
monotonically with n.

The relationship (49) can be written in terms of the Pochhammer symbol
(x)n:

ar(n) =

n∑
p=0

1

(n− p)!p!
r(r − p+ 1)n−1, (52)

where

(x)n =
Γ(x+ n)

Γ(x)
= x(x+ 1)(x+ 2) . . . (x+ n− 1). (53)

The series expansion of the Pochhammer symbol is given in terms of Stirling
numbers of the first kind [15]. We will use the following result:

r(r−x)n =


r n = 0
r2 − xr n = 1∑n

k=0 S1(n, k)(−1)n−krk+1 n > 1, x = 0∑n
k=1 S1(n, k)(−1)n−k

∑k
l=0

(
k
l

)
rl+1(−1)k−lxk−l n > 1, x ̸= 0

(54)
Here the combination S1(n, k)(−1)n−k renders the Stirling number of the first
kind always positive. Using the relationship S1(n, 0) = δn,0 in (52) and (54), we
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obtain two particular cases of ar(n): ar(1) = 2r and ar(2) = 2r2. The general
expression is:

ar(n) =

n∑
p=0

1

(n− p)!p!

n−1∑
k=1

(−1)n−1−kS1(n− 1, k)[δp,1r
k+1 +

(1− δp,1)

k∑
l=0

(
k

l

)
rl+1(−1)k−l(p− 1)k−l]. (55)

Some properties of the ar(n) follow easily from the definition (48). Let

Fr(w) =

(
1 + w

1− w

)r

=
1

Fr(−w)
=

1

F−r(w)
= F−r(−w). (56)

It follows from this that a−r(n) = (−1)nar(n), so that ar(n) is an even function
of r if n is even, and an odd function if n is odd. Another interesting result
comes from expansion of the relationship Fr(w)F−r(w) = 1:

ar(n)(1 + (−1)n) +

n−1∑
p=1

(−1)n−par(p)ar(n− p) = 0. (57)

This yields 0 = 0 for n odd, but for n even expresses 2ar(2n) in terms of products
of two lower-index ar(n)’s.

We next rewrite equation (47) as:

λLn
an

= n−
n−1∑
j=1

λLj
an−j

an
. (58)

The left-hand side of this equation is plotted as a function of n in Fig. 6. It can
be seen from this figure that Li’s condition will become ever more ill-conditioned
as n increases. A reasonably accurate fit to the data in Fig. 6 is provided by
the following function:[

λLn
an

]
app

= 1.86537n exp(−0.06607n). (59)

This has the exponential factor optimized to fit the tail of the data in Fig. 6,
and the multiplying constant from a best fit to all the data. The exponential
decay towards zero in the graph and the fit function show that the sum on the
right-hand side is very close to n for large n. Li’s criterion requires us to prove
that the sum tends up to n from below, and the data here shows the sum will
be exponentially close to n, evincing the difficulty in providing a proof based on
the criterion.

To go further into the details of the equation (47), we consider additional
properties of the a2r(n). These satisfy the following recurrence relation for n
varying:

a2r(n) =
4r

n
a2r(n− 1) +

(n− 2)

n
a2r(n− 2). (60)
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20 40 60 80 100
n

2

4

6

8

10

λ[n]/a[n]

Figure 6: The first 100 values of λn/an (blue) as a function of n, compared with
the fit function (59) .

Considering the ratio of successive terms in (60):

ρn =
a2r(n)

a2r(n− 1)
(61)

the large n analysis of equation (60) leads to the asymptotic estimate

ρn = 1 +
(2r − 1)

n
+

(2r − 1)

n2
+ . . . (62)

For r = 1, equation (62) is exact.
The recurrence relation (60) can be used to calculate easily these polynomi-

als, starting from a2r(1) = 4r and a2r(2) = 8r2. The next two polynomials are
a2r(3) = 4r/3+32r3/3 and a2r(4) = 16r2/3+32r4/3, as seen in the expansion:(

1 + w

1− w

)2r

= 1 + 4rw + 8r2w2 +
4

3

(
8r3 + r

)
w3 +

16

3

(
2r4 + r2

)
w4 +O

(
w5
)
.

(63)
The remaining polynomials up to order n = 20 are specified in Table 3 by giving
the coefficients Cn,p of rp for p ranging up to p = n:

a2r(n) =

n∑
p=1

Cn,prp. (64)

It will be noted that the polynomials are of order n and comprise even order
terms if n is even, and odd order terms if n is odd. One further property of
interest is that the sum of all the coefficients in each polynomial is just 4n.
Given each coefficient is positive, this bounds the coefficients, or gives their
mean as 4.

From (60), the coefficients Cn,p satisfy the general recurrence relation:

Cn,p =
4

n
Cn−1,p−1 +

(n− 2)

n
Cn−2,p, for 1 ≤ p ≤ (n− 2), (65)
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with the special cases

C2n+1,1 =
(2n− 1)

2n+ 1
C2n−1,1, and Cn,n =

4

n
Cn−1,n−1. (66)

The first of these gives for all positive integers n:

C2n−1,1 =
4

2n− 1
, (67)

while the second gives:

Cn,n =
4n

n!
. (68)

In this second case, the coefficient has its maximum value at n = 3, 4 and then
falls away rapidly with increasing n. It falls below the mean coefficient (four)
for n between 6 and 7.

The first non-zero entry for n even satisfies the recurrence relation:

C2n,2 =
8

n(2n− 1)
+

(n− 1)

n
C2n−2,2, (69)

and commences with C2,2 = 8. The solution of this recurrence relation is

C2n,2 =
8

n

n∑
p=1

1

(2n− (2p− 1))
=

8

n

[
1

2
ψ

(
n+

1

2

)
+

1

2
γ + ln 2

]
, (70)

where the ψ function is the zeroth order polygamma function [15].
Another way of expressing the C2n,2 is in terms of harmonic numbers, where

the nth harmonic number Hn is defined by [16]:

Hn =

n∑
k=1

1

k
. (71)

We then have:

C2n,2 =
8

n

[
H2n − 1

2
Hn

]
. (72)

The asymptotic expansion of the harmonic numbers is given in an expression
involving the Bernoulli numbers B2k:

Hn ∼ log(n) + γ +
1

2n
−

∞∑
k=1

B2k

2kn2k
, (73)

leading to the asymptotic series for C2n,2:

C2n,2 ∼ 8

n

[
1

2
log(n) + log(2) +

1

2
γ +

∞∑
k=1

B2k

4kn2k

(
1− 1

2(2k−1)

)]
. (74)
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The asymptotic formula (74) has good accuracy for n as low as two. We also
have:

C2n+2,2

C2n,2
∼ 1− 1

n

(
1− 1

γ + log(4n)

)
+

−3 + 2γ + 2 log(4n)

2(γ + log(4n))n2
+O

(
1

n3

)
. (75)

The ratio of successive values of C2n,2 starts at 2/3 and, in keeping (75), increases
monotonically towards unity. C2n,2 itself decreases monotonically as n increases,
in keeping with (74).

Consider next C2n−1,3. The formula for this is

C2n−1,3 =
4

2n− 1

n−1∑
p=1

C2n−2p,2 =
4

2n− 1

n−1∑
p=1

C2p,2. (76)

Note that C3,3 = C5,3 = 32/3: thereafter, C2n−1,3 decreases as n increases. For
C2n,4 a similar relation applies:

C2n,4 =
4

2n

n∑
p=2

C2p−1,3. (77)

This quantity increases with n up until n = 4, and thereafter decreases mono-
tonically.

The pattern in the expressions for these sums is that even order terms are
expressed as a sum of odd order terms, with the second index lowered by one.
The sum over the first index runs from the term given in (68) to one less than
the first index on the left-hand side. A similar description applies to odd order
terms. The derivations rely on the following equations:

nC2n,2−(n−1)C2n−2,2 =
8

(2n− 1)
, (2n−1)C2n−1,3−(2n−3)C2n−3,3 = 4C2n−2,2.

(78)
Here first differences generate elements with an intervening first index and the
second index lowered by one. These properties are generic, as the recurrence
relations (65), (66) show.

The general expression for the C can be derived from equation (48). It is,
for n ≥ 3:

Cn,q =
2q

(n− 1)!
(−1)n−qS1(n− 1, q − 1) +

n∑
p=0

2q

(n− p)!p!

n−1∑
k=q−1

(−1)n−1−kS1(n− 1, k)

(
k

q − 1

)
(1− δp.1)(−1)k−q+1(p− 1)k−q+1.

(79)

We can rewrite the equation (47) as

λLk = 2


∞∑
r=1

ξr
22r

ka2r(k)− k−1∑
j=1

λLj a2r(k − j)

 . (80)
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To sum over the polynomials in r quoted above and in Table 3, we define the
following sums over a single term:

Σξ
p =

∞∑
r=1

ξr
22r

rp. (81)

Then we find

an = 2

n∑
p=1

Cn,pΣξ
p (82)

and

λLm = 2m

m∑
p=1

Cm,pΣ
ξ
p − 2

m−1∑
n=1

λLn

m−n∑
p=1

Cm−n,pΣ
ξ
p. (83)

We can compare (83) with equation (16):

λLm =

m∑
n=1

(−1)n−1

(
m

n

)
σn, (84)

and establish a connection between the σn and the Σξ
p, or (indirectly) the ξp.

The result of this procedure is analytic equations which increase rapidly in
complexity with increasing order, as seen below:.

σ1 = 8Σξ
1, σ2 = 16(Σξ

1 + 4(Σξ
1)

2 − 2Σξ
2), (85)

σ3 = 32[Σξ
1 + 6(Σξ

1)
2 + 16(Σξ

1)
3 − 3Σξ

2 − 12Σξ
1Σ

ξ
2 + 2Σξ

3], (86)

σ4 =
64

3
[3Σξ

1 + 22(Σξ
1)

2 + 96(Σξ
1)

3 + 192(Σξ
1)

4 − 11Σξ
2 − 72Σξ

1Σ
ξ
2

−192(Σξ
1)

2Σξ
2 + 24(Σξ

2)
2 + 12Σξ

3 + 12Σξ
3 + 32(Σξ

1)
2Σξ

3 − 4Σξ
4], (87)

and

σ5 =
64

3
[6Σξ

1 + 50(Σξ
1)

2 + 280(Σξ
1)

3 + 960(Σξ
1)

4 + 1536(Σξ
1)

5

−25Σξ
2 − 210Σξ

1Σ
ξ
2 − 960(Σξ

1)
2Σξ

2 − 1920(Σξ
1)

3Σξ
2 + 120(Σξ

2)
2 + 480Σξ

1(Σ
ξ
2)

2

+35Σξ
3 + 160Σξ

1Σ
ξ
3 + 320(Σξ

1)
2Σξ

3 − 80Σξ
2Σ

ξ
3 − 20Σξ

4 − 40Σξ
1Σ

ξ
4 + 4Σξ

5]. (88)

Of course, the same procedure may be used to construct more compact equations
with purely numeric coefficients, or to find particular terms in exact form for
equations of higher order.

The final three figures relate to the numerical evaluation of the Σξ
n. The

number of terms needed in the summand for accurate evaluation ( Fig. 7) is
governed by the value of r, rmax, for which the summand is maximised. This
value increases roughly as n/8, and the summand falls away rapidly as r moves

away from rmax. The values of Σ
ξ
n+1/Σ

ξ
n in Fig. 8 increase in a similar fashion as

n increases, again roughly as n/8. The data in Fig. 9 shows that the maximum
values in the summands for the Σξ

n are relatively slowly varying for n small, but
then increase at a faster than exponential rate.
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n Cn,p, p = 1, 2, 3, . . .
5 4/5, 0, 32/3, 0, 128/15
6 0, 184/45, 0, 128/9, 0 , 256/45
7 4/7, 0, 448/45, 0, 128/9, 0, 1024/315
8 0, 352/105, 0, 704/45, 0, 512/45, 0, 512/315
9 4/9, 0, 26176/2835, 0, 2432/135, 0, 1024/135, 0, 2048/2835
10 0, 4504/1575, 0, 45952/2835, 0, 11008/675, 0, 4096/945, 0, 4096/14175
11 4/11, 0, 1504/175, 0, 58496/2835, 0, 8192/675, 0, 2048/945, 0, 16384/155925

12
{
0, 2603210395 , 0,

696224
42525 , 0,

34816
1701 , 0,

108544
14175 , 0,

8192
8505 , 0,

16384
467775

}
13

{
4
13 , 0,

418016
51975 , 0,

956672
42525 , 0,

704512
42525 , 0,

59392
14175 , 0,

16384
42525 , 0,

65536
6081075

}
14

{
0, 704552315315 , 0,

363776
22275 , 0,

1019392
42525 , 0, 3362816297675 , 0,

4096
2025 , 0,

65536
467775 , 0,

131072
42567525

}
15

{
4
15 , 0,

536786048
70945875 , 0,

33472256
1403325 , 0,

13236224
637875 , 0, 5933056893025 , 0,

557056
637875 , 0,

65536
1403325 , 0,

524288
638512875

}
16

{
0, 9107245045 , 0,

1147994752
70945875 , 0, 378030081403325 , 0,

9614336
637875 , 0,

3063808
893025 , 0,

2392064
7016625 , 0,

262144
18243225 , 0,

131072
638512875

}
17

{
4
17 , 0,

33825664
4729725 , 0,

5289724672
212837625 , 0,

34588672
1403325 , 0,

42010624
4465125 , 0,

1409024
893025 , 0,

851968
7016625 ,

0, 524288
127702575 , 0,

524288
10854718875 , 0, 0, 0

}
18

{
0, 127461526891885 , 0,

10198727936
638512875 , 0, 1693412971525746615875 , 0, 39731609621049875 , 0,

68857856
13395375 ,

0, 288948224442047375 , 0,
10878976
273648375 , 0,

2097152
1915538625 , 0,

1048576
97692469875 , 0, 0

}
19

{
4
19 , 0,

148857952
21928725 , 0,

1485985024
58046625 , 0, 1623818731525746615875 , 0, 1825937408147349125 ,

0, 3340697613395375 , 0,
9895936
40186125 , 0,

2097152
174139875 , 0,

524288
1915538625 , 0,

4194304
1856156927625 , 0

}
20

{
0, 12415150472747675 , 0,

3513939808
223348125 , 0,

2244810752
70945875 , 0, 65048469708828733079375 , 0,

1046880256
147349125 ,

0, 800899072736745625 , 0,
488636416
5746615875 , 0,

32505856
9577693125 , 0,

2097152
32564156625 , 0,

4194304
9280784638125

}

Table 1: The polynomial coefficients Cn,p in the expansion (82), for n in the
range 5− 20.
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n an
1 8Σξ

1

2 16Σξ
2

3 8
3Σ

ξ
1 +

64
3 Σξ

3

4 32
3 Σξ

2 +
64
3 Σξ

4

5 8
5Σ

ξ
1 +

64
3 Σξ

3 +
256
15 Σξ

5

6 368
45 Σξ

2 +
256
9 Σξ

4 +
512
45 Σξ

6

7 8
7Σ

ξ
1 +

896
45 Σξ

3 +
256
9 Σξ

5 +
2048
315 Σξ

7

8 704
105Σ

ξ
2 +

1408
45 Σξ

4 +
1024
45 Σξ

6 +
1024
315 Σξ

8

9 8
9Σ

ξ
1 +

52352
2835 Σξ

3 +
4864
135 Σξ

5 +
2048
135 Σξ

7 +
4096
2835Σ

ξ
9

10 9008
1575Σ

ξ
2 +

91904
2835 Σξ

4 +
22016
675 Σξ

6 +
8192
945 Σξ

8 +
8192
14175Σ

ξ
10

11 8
11Σ

ξ
1 +

3008
175 Σξ

3 +
116992
2835 Σξ

5 +
16384
675 Σξ

7 +
4096
945 Σξ

9 +
32768
155925Σ

ξ
11

12 52064
10395Σ

ξ
2 +

1392448
42525 Σξ

4 +
69632
1701 Σξ

6 +
217088
14175 Σξ

8 +
16384
8505 Σξ

10 +
32768
467775Σ

ξ
12

13 8
13Σ

ξ
1 +

836032
51975 Σξ

3 +
1913344
42525 Σξ

5 +
1409024
42525 Σξ

7 +
118784
14175 Σξ

9 +
32768
42525Σ

ξ
11 +

131072
6081075Σ

ξ
13

14 1409104
315315 Σξ

2 +
727552
22275 Σξ

4 +
2038784
42525 Σξ

6 +
6725632
297675 Σξ

8 +
8192
2025Σ

ξ
10 +

131072
467775Σ

ξ
12 +

262144
42567525Σ

ξ
14

15 8
15Σ

ξ
1 +

1073572096
70945875 Σξ

3 +
66944512
1403325 Σξ

5 +
26472448
637875 Σξ

7 +
11866112
893025 Σξ

9 +
1114112
637875 Σξ

11 +
131072
6081075Σ

ξ
13

+ 1048576
638512875Σ

ξ
15

16 182144
45045 Σξ

2 +
2295989504
70945875 Σξ

4 +
75606016
1403325 Σξ

6 +
19228672
637875 Σξ

8 +
6127616
893025 Σξ

10 +
4784128
7016625Σ

ξ
12 +

524288
18243225Σ

ξ
14

+ 262144
638512875Σ

ξ
16

17 8
17Σ

ξ
1 +

67651328
4729725 Σξ

3 +
10579449344
212837625 Σξ

5 +
69177344
1403325 Σξ

7 +
84021248
4465125 Σξ

9 +
2818048
893025 Σξ

11 +
1703936
7016625Σ

ξ
13

+ 1048576
127702575Σ

ξ
15 +

1048576
10854718875Σ

ξ
17

18 25492304
6891885 Σξ

2 +
20397455872
638512875 Σξ

4 +
338682594304
5746615875 Σξ

6 +
794632192
21049875 Σξ

8 +
137715712
13395375 Σξ

10 +
577896448
442047375Σ

ξ
12

+ 21757952
273648375Σ

ξ
14 +

4194304
1915538625Σ

ξ
16 +

2097152
97692469875Σ

ξ
18

19 4
19Σ

ξ
1 +

148857952
21928725 Σξ

3 +
1485985024
58046625 Σξ

5 +
162381873152
5746615875 Σξ

7 +
1825937408
147349125 Σξ

9 +
33406976
13395375Σ

ξ
11

+ 9895936
40186125Σ

ξ
13 +

2097152
174139875Σ

ξ
15 +

524288
1915538625Σ

ξ
17 +

4194304
1856156927625Σ

ξ
19

20 124151504
72747675 Σξ

2 +
3513939808
223348125 Σξ

4 +
2244810752
70945875 Σξ

6 +
650484697088
28733079375 Σξ

8 +
1046880256
147349125 Σξ

10 +
800899072
736745625Σ

ξ
12

+ 488636416
5746615875Σ

ξ
14 +

32505856
9577693125Σ

ξ
16 +

2097152
32564156625Σ

ξ
18 +

4194304
9280784638125Σ

ξ
20

Table 2: The coefficients an of Li expressed in terms of ξ sums for n in the range
1− 20.
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20 40 60 80 100
n

2

4

6

8

10

12

rmax(n)

Figure 7: The values of r, rmax, which maximise the summand in the evaluation
of Σξ

n (blue) as a function of n, showing an underlying linear relationship of rmax

with n when it is moderately large.The red line gives the asymptotic result (112).

20 40 60 80 100
n

2

4

6

8

10

12

Σ(n+1)/Σ(n)

Figure 8: The values Σξ
n+1/Σ

ξ
n (blue) as a function of n, showing an approxi-

mately linear relationship for n large.

4 Asymptotics of the Griffin, Ono, Rolen, Za-
gier Formula

We now consider the Griffin, Ono, Rolen and Zagier (GORZ) formula [8] for the
even-order derivatives of the ξ function at s = 1/2. The expansion is written in
terms of a parameter L, solution of the equation [7]

LeL =
n

π
− 3L

4π
. (89)

We wish to obtain analogous results to those of Romik [17] for the leading order
terms of the GORZ formula for n very large, and so we first establish the leading
order terms of the expansion of L. The leading term arises from the neglect of
the second term on the right-hand side, and is just the principal branch of
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20 40 60 80 100
n

50

100

150

log(maxval)

Figure 9: The maximum values of the summand in the evaluation of Σξ
n (blue)

as a function of n, showing a stronger than exponential dependence.

Lambert’s W function, which satisfies [18]:

W (z)eW (z) = z. (90)

We write

L(n) = L0(n) +
L1(n)

n
+
L2(n)

n2
+ . . . , (91)

and substitute into (89), solving in a self-consistent fashion. We find

L0(n) =W
(n
π

)
, (92)

L1(n) =

(
−3

4

)
L0(n)

2

1 + L0(n)
, (93)

and

L2(n) = − 9

32

(
−2L0(n)

3 + L0(n)
5

(1 + L0(n))3

)
. (94)

In what follows, we will use only the expressions for L0(n) and L1(n) and will
use chiefly the inverse powers of n to choose which terms may be discarded.

The GORZ formula [8, 7] is written in terms of a function F (n), where

F (n) ≈
√
2π

Ln+1√
(1 + L)n− 3L2/4

eL/4−n/L+3/4

(
1 +

b1(L)

n
+
b2(L)

n2
+ . . .

)
.

(95)
As we are interested in the leading terms in (95) which do not tend to zero
as n → ∞, we will not use the correction terms involving b1(L), b2(L). Using
(91-93) in (95) we obtain:

F (n) ≈ Flo(n)Fzo(n), (96)
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n F (95) F (95)/Flo(n) F (95)/(Flo(n) ∗ Fz0(n))
10 0.000158915 0.766616 1.00369
30 0.203491 0.727793 0.998342
50 67530.7 0.692067 0.997971
100 9.70356× 1022 0.634681 0.99819
1000 3.571049805× 10532 0.4343107094 0.999500421
100000 2.825033093× 1086422 0.1695059281 0.999987430
1000000 1.101679602× 10972298 0.1019359097 0.999998337

Table 3: The values of the GORZ function (95) are compared with their leading
order approximations and their leading plus zeroth order approximations (using
ratios).

where Flo(n) contains simple leading order terms which contribute most strongly
to the result, and Fzo(n) contains the remaining terms which do not tend to
zero as n→ ∞. Here

Flo(n) = exp

[
n

(
log
(
W
(n
π

))
− 1

W (n/π)

)]
(97)

and

Fzo(n) = exp

[
1

2
log(n) +

1

2
log

(
2

π

)
− 1

2
log
(
1 +W

(n
π

))
− 3

4

(
1− 1

4n

)
W
(n
π

)
− 9

16n
+

3

8n(1 +W (n/π))2
+

3

16n(1 +W (n/π)

]
. (98)

In Table 4 we compare the values of the function F (n) of (95) with the
leading order term of (97) and the combined leading and zero order terms of
(97) and (98). The leading order term by itself is an overestimate, and drifts
slowly away from the correct value, while the combined terms are quite accurate
for n larger than 50 or 100, while also approaching the correct values from above.

Using the logarithm of (90), we can rewrite the leading order term as

Flo(n) = exp

[
n

(
log
(n
π

)
−W

(n
π

)
− 1

W (n/π)

)]
. (99)

We now evaluate some derivatives of this function, using the following results
for its component parts:

d

dn
W
(n
π

)
=

W (n/π)

n(1 +W (n/π))
,
d2

dn2
W
(n
π

)
=

−W (n/π)
2
(W (n/π) + 2)

n2(1 +W (n/π))3

(100)
and

d

dn

(
1

W (n/π)

)
=

1

nW (n/π) (1 +W (n/π))
. (101)
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Then

d

dn

[
n

(
log
(n
π

)
−W

(n
π

)
− 1

W (n/π)

)]
= log

(n
π

)
−W

(n
π

)
, (102)

and

d2

dn2

[
n

(
log
(n
π

)
−W

(n
π

)
− 1

W (n/π)

)]
=

1

n(1 +W (n/π))
. (103)

Combining these derivative values, we find

d

dn
logFlo(n) = log

(n
π

)
−W

(n
π

)
, (104)

and
d2

dn2
logFlo(n) =

1

n(1 +W (n/π))
. (105)

Hence the Taylor series for the logarithm of the leading order term Flo(n) is

logFlo(n+ x) =

[
n

(
log
(n
π

)
−W

(n
π

)
− 1

W (n/π)

)]
+ x

(
log
(n
π

)
−W

(n
π

))
+

x2

2n(1 +W (n/π))
+ . . . (106)

The result (106) is important in that it shows that logFlo(n− 2) and logFlo(n)
have the same leading term, and their difference is of order log log(n/π).

These asymptotic results for the function F (n) can now be used in the
expression [8] for the 2n-th derivative of the xi function:

ξ(2n)
(
1

2

)
=

1

22n+2
[16(2n)(2n− 1)F (2n− 2)− F (2n)]. (107)

We wish to find the leading two orders in the expression for these derivatives,
which, as we have just commented, in fact are contributed entirely by the first
term in square brackets in (107):

ξ(2n)
(
1

2

)
≈ 1

22n−2
(2n)(2n− 1)F (2n− 2). (108)

We can re-express (108) to deliver a leading-order approximation for the ξr
of Pustil’nikov:

ξr =
ξ(2r)

(
1
2

)
(2r)!

≈ 1

22r−2

(2r)(2r − 1)F (2r − 2)

(2r)!
=

F (2r − 2)

22r−2(2r − 2)!
. (109)

Another leading order approximation for the ξr is available in the literature,
due to D. Romik [17]:

ξn ≈ 2
π1/4

22n−5/2(2n)!

(
2n

log 2n

)7/4

exp [2n (log(2n/π)−W (2n/π)− 1/W (2n/π))] .

(110)
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n log ξr (107) log ξr (109) log ξr (110)
101 -55.8378 -55.83721474 -56.12211477
102 -835.9650723 -835.9637026 -836.0992830
103 -11823.58874 -11823.58844 -11823.58015
104 -156402.6563 -156402.6562 -156402.5434
105 -1.965649078 106 -1.965649078 106 -1.965648889 106

106 -2.379580712 107 -2.379580712 107 -2.379580688 107

Table 4: The values of ξr calculated from two terms of the GORZ equation
are compared with those from the first terms only, and with those from the
asymptotic formula of Romik.

Here the first factor of 2 is a correction due to J. Gélinas [7].
The best way to compare such leading–order approximations is through their

logarithms, as in Table 4. The Table shows that the neglect of the second F
term in the GORZ formula becomes increasingly accurate as r increases, while
the asymptotic formula of Romik delivers good accuracy for r beyond 104.

We can use either of the asymptotic expressions (109) or (110) to determine
the value of r, rm, for which the summand in the expression (81) for Σp is
maximal. We then require the derivative of

log ξr + p log(r)− 2r log(2) (111)

to be zero at r = rm. The leading term equation resulting from this procedure
is

p

2rm
− log(4π) =W

(
2rm
π

)
, (112)

where W denotes the W function of Lambert, which is positive for r > 0.
Hence, p/rm must be larger than 2 log(4π) ≈ 5.06204. The equation (112) may
be solved numerically to give rm as a function of p. As Fig. 7 shows, this works
well even for p only moderately large.

In order to provide asymptotic estimates for the sums Σξ
p in equation 81, we

need to be able to invert the expression 112 in order to obtain rm as a function
of p. This highly nontrivial task can be carried out using generalised Lambert
functions [19], [20], in a way discussed in the Appendix, kindly provided by T. C.
Scott and A. Maignan. The results presented in Table 6 show all the formulae
presented give highly accurate values for rm, which grow more accurate as p
increases. They all are utilisable without difficulty, even for p very large.

Let us take the logarithm of Romik’s asymptotic expression (110) and com-
bine it with the logarithm of the factor np/22n in (81), denoting the result by
S(n, p). Then we can break S(n, p) up into its terms of differing order:

S(n, p) = S1(n, p) + S2(n, p) + S3(n, p) + S4(n, p)−
1

24n
+O

(
1

n2

)
. (113)

The last element and order estimate on the right-hand side in (113) arise from
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the asymptotic expansion of the logarithm of the denominator term (2n)!, and
will be neglected in what follows.

The leading term is

S1(n, p) = p log(n)− 2n

[
log(4π)− 1 +W

(
2n

π

)]
, (114)

and mixes terms of order p log(n), n log(n) and n. The term n log(n) comes
from the Lambert W term. The equation (112) arises from the leading terms
of the derivative of S1(n, p). The second term is of order n/ log(n), and has a
single element:

S2(n, p) = −2n

[
1

W (2n/π)

]
. (115)

The third term combines elements of order log(n) and log(log(2n)):

S3(n, p) =
5

4
log(n)− 7

4
log(log(2n)). (116)

The fourth term is order unity:

S4(n, p) =
−1

4
log(π) +

7

4
log(2). (117)

4.1 Evaluation of the sums Σξ
p for p large

The elements have now been assembled which are necessary for the evaluation
of the sums Σξ

p defined in equation (81). We wish to consider formulae appro-
priate for these sums when p is very large, a case relevant to their use in the
investigation of the Li-Keiper criterion for the Riemann hypothesis. The key
element is the knowledge of the range of the summand n which contributes most
heavily to the sum- see equation (128) for the exact result relating to this. As
shown in Table 6 of the Appendix, the formulae exhibited for determining this
range work well even for p extremely large (O(1040)).

Here we will consider two related methods for evaluating the sums. The
first of these is based on the expansion of the logarithm of the summand S(n, p)
around n = nm:

S(n, p) = S(nm, p) +
1

2
S ′′(nm, p)(n− nm)2 + . . . (118)

where

S ′′(nm, p) = − p

n2m
− 2W (2nm/π)

nm(1 +W (2nm/π)
+
7 + 7 log(2nm)− 5 log(2nm)2

4n2m log(2nm)2
, (119)

manifestly negative. So, if we approximate the sum by an integral, this is an
integral of (to leading order) Gaussian form. Thus the result of this simple
treatment is analytic:

Σξ
p ≈ exp(S(nm, p))

√
2π

S ′′(nm, p)
. (120)
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To apply this numerically, the results given here have used the rapidly con-
vergent, iterative method of the Appendix to find nm from p. This is used to
evaluate S(nm, p) and the Gaussian integral. Another useful quantity is the
standard deviation corresponding to the Gaussian:

σ(p) =

√
−1

S ′′(nm, p)
. (121)

Note that it is convenient in avoiding exponential overflows numerically to keep
the S(nm, p) as is, and if desired to add the logarithm of the integral to it, or to
hold the exponent value at nm and the integral as separate values. As we will
see, the exponent value greatly exceeds in magnitude the integral value.

The values of S(nm, p) are dominated by those of S1(n, p) for p very large:
log p >> 1. We use the approximations

p

nm
= 2[log p− 2 log(log(p)) + log(4)] (122)

and

W

(
2nm
π

)
= log p− 2 log(log(p))− log(π). (123)

These are respectively accurate to 3.1% and 3.5% at p = 1010, 0.86% and 0.91%
at p = 1020, and (both) 0.04% at p = 10100. Using them we find

S1(nm, p) ≈ p

[
log p− log(log(p))− 2 +

2 log(log(p))

log p
− log(4π2

log p

]
. (124)

The value of S2(nm, p) is smaller than this by a factor of order 1/ log(p)3. The
value for S1(n, p) given by the approximation (124) is accurate to 2.5% at p =
1010, 0.9% at p = 1020 and 0.1% at p = 10100.

From (121), we find the leading terms in the expansion of σ(p) are:

σ(p) ≈
√
p

2 log p

(
1 +

log(4)− 2 log(log(p))

log p

)−1

. (125)

Hence the ratio σ(p)/S1(nm, p) goes to zero as 1/(2
√
p log(p)2) as p goes to

infinity.
The expressions (122-125) are useful for analytic purposes, but previous

expressions not relying on slowly converging logarithmic expansions are more
useful for accurate numerics. However, an approach using direct summation
based on the knowledge of an almost Gaussian summand can yield accurate
numeric estimates. This approach uses direct summation of the summand di-
vided by its value at nm, so keeping function values bounded by unity. The
summation is carried out over a region symmetric about nm, of width five to
seven times σ(p), to ensure good accuracy. The results shown in Table 4.1 show
that the Gaussian approximation and the direct sum method agree very well,
and increasingly well as p increases. Note that the direct sum method slowly
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p S(nm, p)
√

(2π)/(S ′′(nm, p)) Direct Sum
105 773216.454845247262645 42.6542750759677 42.6549100287186
106 9.83159041621098805554 106 112.279823862816957037 112.280001637404
107 1.195836652616223797330 108 302.564643162281697308 302.56469321694
108 1.410711383470056930638 109 830.810395365553885241 830.810409565
109 1.627353529697758035010 1010 2316.34932127632390101 2316.34799775
1010 1.845432238547395356783 1011 6539.40520716042875530 6539.4014688
1011 2.064693729563438373551 1012 18654.74614331614399149 18654.74614
1012 2.2849417700654827485508 1013 53683.7690078777092085 53683.7690
1013 2.5060227704112369541113 1014 155644.6861258488856880 155644.69

Table 5: The values of p, of S(nm, p), and those given by the two methods
(integral and direct sum, seven standard deviations) for the contribution to Σξ

p

from summing over n.

loses digits of accuracy as p increases, since it involves summing over the differ-
ence between S(n, p) and S(nm, p), and the magnitude of both of these strongly
increases with p, while their difference does not increase as rapidly. Note also
that, in order to assess the relative significance of the prefactor term S(nm, p)
and the sum/integral terms, the logarithm of the latter needs to be taken. Thus,
for p = 1013, the sum/integral contribute 11.96, compared with 2.5061014 from
the prefactor. The integral expression is easily and quickly evaluated, while the
sum expression becomes increasingly difficult and slow as p increases. Hence,
for most purposes, the integral expression will provide sufficient asymptotic ac-
curacy if it is necessary to go beyond S(nm, p).

5 Appendix: Comments on the solution of Equa-
tion (112)

Eq. (112) can be rewritten as:

p = 2rm

(
ln(4π) +W

(
2rm
π

))
,

whereW is the standard Lambert W function[21, 18]. We want to invert this to
get rm in terms of p. The solver of the Maple Symbolic Computation System[22,
23] tells us that:

rm =
p

2(ln(4π) +RootOf(πz exp(z) (ln(4π) + z)− p))
, (126)

where Maple’s RootOf facility is a means of telling us that this part of the
denominator is z such that:

πz exp(z) (ln(4π) + z)− p = 0 ,
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which is exactly equal to:

e−z =
πz (ln(4π) + z)

p
. (127)

This is an implicit equation in z governed by an exponential polynomial. If
the RHS of Eq. (127) had been a polynomial in z of first order, the solution
would be a standard Lambert W function. However, since the RHS is instead
a quadratic in z, the solution of Eq. (127) is a generalized Lambert W function
[20, 24, 25, 26]. The roots of this quadratic in z are {0,− ln(4π)} and thus
the asymptotic series for when the quadratic in z has near equal roots[24] is not
applicable here. Denoting the generalized LambertW function according to [20,
eq.28] as Ω2(0,− ln(4π)) which is understood as the solution for z in Eq. (??),
the solution of rm of Eq. (??) is exactly:

rm =
p

2(ln(4π) + Ω2(0,− ln(4π)))
. (128)

Dividing both sides of Eq. (127) by πz and treating the z inside the brackets as
a constant, we find that (127) is equivalent to:

z = W

(
p

π(ln(4π) + z)

)
. (129)

Eq. (129) can provide numerical solutions for z by repeated iterations starting
with a guess value for z, in a process known as tetration[27]. It also gives a hint
of the lead asymptotic term. As p gets larger, so does z and it dominates the
ln(4π) in Eq. (??). Solving z/p = exp(−z)/(zπ) yields

2 W

(
±

√
p

2
√
π

)
Since z > 0, we retain the solution with positive argument. Thus,

z ≈ 2 W

( √
p

2
√
π

)
+ u (130)

where u denotes the remaining terms in the asymptotic expansion. By plugging
Eq. (130) into Eq. (129) (after dividing both sides by πz) and neglecting the
terms in u and u2, we obtain for u:

u ≈ ln

 2W
( √

p

2
√
π

)
2W

( √
p

2
√
π

)
+ ln(4π)

 . (131)

Thus after simplifications (and resulting cancellations), the lead asymptotic
terms for z are:

Ω2(0,− ln(4π)) = z ≈W

( √
p

2
√
π

)
+ ln

 √
p

2
√
π
(
ln(2

√
π) +W

( √
p

2
√
π

))
 (132)
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The reader might think the coefficient of 2 in the lead term of Eq. (130) is
missing in Eq. (132). This is not the case: as a consequence of the identity:
ln(W (x)) = ln(x) −W (x), Eq. (132) is exactly equal to Eqs. (130) and (131)
together.

5.1 Asymptotic expansion of B. Salvy and J. Shackell

The approach used here is very similar to the steps in the algorithms developed
by B. Salvy and J. Shackell[28, 29]. Eq. (132) has been vindicated numerically.
To get the asymptotic expansion in terms of elementary functions, one could
use the asymptotic expansion for W itself[18], namely

W (x) ≈ ln(x)− ln(ln(x))) + . . . .

However this creates unwieldy arguments within logarithms. It is best to use
Eq. (129) directly with B. Salvy’s methods to approximate the Generalized
Lambert W function. The first few terms of Ω2(0,− ln(4π)) = z are given by:

z = ln(p/π)− 2 ln(ln(p)) +
(4 ln(ln(p)) + ln(π/4))

ln(p)
(133)

+

(
ln(π)2 − 8 ln(ln(p))(ln(2/

√
π) + 2) + 4 ln(2)2 + 8 ln(ln(p))2) + ln(256/π4)

)
2 ln(p)2

+ O

(
1

ln(p)3

)
Higher-order terms in 1/ ln(p)k where k = 3, 4, 5 . . . can be readily generated
with a computer algebra system like Maple[23]. However, for larger p, new
techniques can improve the formal approximation of Ω2(0,− ln(4π)).

5.2 Mean approximation

For z > 0, z2 < (ln(4π) + z)z < (ln(4π) + z)2 and the solution of Eq. (129) is
included in the interval ]z1, z2[ where z1 is the positive solution of ez(ln(4π) +
z)2 = p

π and z2 is the positive solution of ez(ln(4π) + z2 = p
π . We obtain

z1 = 2W (
√
p)− ln(4π), z2 = 2W

( √
p

2
√
π

)
.

A first approximation of Ω2(0,− ln(4π)) can be

z1 + z2
2

=W (
√
p) +W

( √
p

2
√
π

)
− ln(4π)

2

Now let set z = z1+z2
2 +u, after inserting this equation in Eq. (129) and neglected

the u and u2 value we obtain:

u = ln

 16W (
√
p)W

( √
p

2
√
π

)
4
(
W (

√
p) +W

( √
p

2
√
π

))2
− ln(4π)2

 (134)
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Finally,

z ≈ ln

 p

π

((
W (

√
p) +W

( √
p

2
√
π

))2
− ln(2

√
π)2
)
 (135)

5.3 Iterative approximation of Ω2(0,− ln(4π))

A first approximation of Ω2(0,− ln(4π)) can be obtained by approximating the

polynomial (ln(4π) + z)z by its closest square polynomial (z+ ln(4π)
2 )2. Indeed,

Eq. (129) is equivalent to

ez
(
(z +

ln(4π)

2
)2 − (

ln(4π)

2
)2
)

=
p

π

and, after neglecting the constant ( ln(4π)2 )2, we obtain as first approximation

2W

( √
p

π1/4
√
2

)
− ln(4π)

2

Now for all z > 0, there exists a positive value a such that (z + 1
a ln(4π))2 =

z(z + ln(4π)). Eq. (129) is then equivalent to{
ez(z + 1

a ln(4π))2 = p
π

(z + 1
a ln(4π))2 = z(z + ln(4π))

which is equivalent to

 z = 2W
(

21/aπ1/2a√p

2
√
π

)
− 1

a ln(4π)

a = 1 +

√
ln(4π)z+z2

z
Starting from a = 2, we can iteratively compute the values of z and a. After

two steps of iteration, we obtain:

z ≈ 2W

(
21/aπ1/2a√p

2
√
π

)
− 1

a
ln(4π) where a = 1+

√√√√1 +
ln(4π)

2W
( √

p

π1/4
√
2

)
− ln(4π)

2

(136)

5.4 Comparison

The Table 6 gives for various values of p the quality of the approximation of
Ω2(0,− ln(4π)) by computing |Ω2(0,− ln(4π))−z| where z is the approximation
following respectively the formula (133) (including the 1/ ln(p)3 term), (132),
(135) and (136).
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p Solution (133) Solution (132) Solution (135) Solution (136)
102 0.0295201968 0.3552749979 0.0772180220 0.0068826104
103 0.0057831067 0.1859192761 0.0181580288 0.0010208989
104 0.0001735300 0.1078609703 0.0057913129 0.0002264369
105 0.0008878914 0.0682012259 0.0022678410 0.0000663985
106 0.0009195722 0.0461466918 0.0010300563 0.0000238040
107 0.0007505178 0.0329200004 0.0005228858 0.0000099079
108 0.0005758608 0.0244840646 0.0002892049 0.0000046227
109 0.0004347967 0.0188273390 0.0001711726 0.0000023588
1010 0.0003282835 0.0148751824 0.0001070032 0.0000012931
1011 0.0002494168 0.0120183075 0.0000699590 0.0000007517
1012 0.0001911372 0.0098933524 0.0000474827 0.0000004588
1015 0.0000908777 0.0060163620 0.0000176361 0.0000001303
1020 0.0000306477 0.0031858748 0.0000049720 0.0000000262
1025 0.0000116710 0.0019559139 0.0000018809 0.0000000077
1030 0.0000046713 0.0013176093 0.0000008558 0.0000000029
1035 0.0000018059 0.0009458036 0.0000004418 0.0000000012
1040 0.0000005554 0.0007109412 0.0000002500 0.0000000006

Table 6: Comparison of several asymptotic values for z against the exact values.

5.5 Eq. (89) and the r-Lambert function

Equation (89) is rewritten here as:

LeL +
3

4π
L =

n

π
, (137)

which can be solved thanks to a specific generalization of the Lambert-W func-
tion named the r-Lambert function. In [30], Mezo at al. define the r-Lambert
function as the inverse of the function xex + rx. It is denoted by Wr.

In ([30], Theorem 4), a classification of Wr is given. In the case of the
GORZ formula, r = 3

4π satisfies r > 1
e2 and Theorem [4,[30]] stipulates that

Wr(y) : R → R is a strictly increasing, everywhere differentiable function such
that sgn(Wr(y)) = sgn(y). In other words, L = W 3

4π
(nπ ) is the unique real

solution of Eq. (137) (See Figure 10 for the graphical representation of W 3
4π
(nπ )

for n from 0 to 1000).
The numerical calculation of the real r-Lambert function is given in [31].
The first and second derivatives of the r-Lambert function are

W ′
r(y) =

1

eWr(y)(1 +Wr(y)) + r

and
d2Wr(y)

d2y
=W ′′

r (y) = − eWr(y)(2 +Wr(y))

(eWr(y)(1 +Wr(y)) + r)3
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Figure 10: The r-Lambert function W 3
4π
(nπ )
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