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Comments on and Extensions to Criteria of Keiper and Li for the Riemann Hypothesis

 published independent investigations of the connection between the Riemann hypothesis and the properties of sums over powers of zeros of the Riemann zeta function. Here we comment on these papers, and propose some extensions of their results. Key results are obtained using generalised Lambert functions.

Relevant equations from the literature

The function ξ(s) is even under s → 1 -s and is defined as

ξ(s) = 1 2 s(s -1) Γ(s/2)ζ(s) π s/2 = 1 2 s(s -1)ξ 1 (s). (1) 
We will be interested in mappings which move the location of lines along which zeros are located onto circles in the complex plane. For the case of functions putatively satisfying the Riemann hypothesis, a convenient mapping from the critical line ℜ(s) = σ = 1/2 onto the unit circle is

w = u + iv = 1 - 1 s = s -1 s . (2) 
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The inverse transformation is

s = 1 1 -w . (3) 
We commence with the expansion of ξ(s + 1/2), based on the work of Pustyl'nikov [START_REF] Davidovich Pustyl'nikov | On a property of the classical zeta-function associated with the Riemann hypothesis[END_REF][START_REF] Pustyl'nikov | On the asymptotic behaviour of the Taylor series coefficients of ξ(s)[END_REF] and Hadamard [5]:

ξ s + 1 2 = ∞ r=0 ξ r s 2r , (4) 
where the coefficients ξ r can be obtained in integral form from

ξ r = 2 -(2r+2) (2r)! I 2r , (5) 
with

I r = ∞ 1 [log(x) r-2 ][16r(r -1) -log(x) 2 ]x -3/4 ω(x)dx (6) 
and ω(x) = ∞ n=1 exp(-πn 2 x) being related to the elliptic theta function ϑ 3 . Pustyl'nikov [START_REF] Pustyl'nikov | On the asymptotic behaviour of the Taylor series coefficients of ξ(s)[END_REF] establishes in his Theorem 1 that all even order derivatives of ξ(s) at s = 1/2 are strictly positive. His Theorem 2 is that Theorem 1 provides a necessary condition for the Riemann hypothesis to hold. Asymptotic analysis of the integral (4) may be found in Pustyl'nikov [START_REF] Davidovich Pustyl'nikov | On a property of the classical zeta-function associated with the Riemann hypothesis[END_REF], and supplementary comments with numeric results are available in [START_REF] Mcphedran | Arguments Related to the Riemann Hypothesis: New Methods and Results[END_REF] and in a valuable communication to the author from Jacques Gélinas [START_REF] Gélinas | [END_REF]. The latter reference contains extensions to the asymptotics of Pustyl'nikov, which give an accurate exponent and first digit for the ξ r . Recent publications [START_REF] Griffin | Jensen polynomials for the Riemann zeta function and other sequences[END_REF][START_REF] Cormac | Zeros of Jensen polynomials and asymptotics for the Riemann xi function[END_REF] contain formulae which substantially improve the asymptotic formulae, such that 16-18 decimal digits are given for r in the range 2000-20000.

Keiper [START_REF] Keiper | Power series expansions of Riemann's xi function[END_REF] considers two sets of sums over powers of zeros ρ of ξ(s) The first set σ k occurs in the expansion of log[ξ(s)/ξ(0)]:

log[2ξ(s)] = ∞ k=1 (-1) k+1 σ K k k (s -1) k . (7) 
(The superscript K here indicates sums as defined by Keiper; we will also discuss similar sums in the work of Li, to be denoted σ L k , with σ L k = kσ K k .) The derivative of [START_REF] Gélinas | [END_REF] is

ξ ′ (s) ξ(s) = ∞ k=1 σ K k (1 -s) k-1 . (8) 
The σ K k are given by:

σ K k = 1 ρ k . (9) 
They are always real since every zero ρ can be paired with its conjugate, also a zero. Their modulus displays a simple exponential decrease, governed by the modulus of the first zero (around 14.1436). However the signs of the real quantities σ k vary in a complicated fashion when k becomes large, since the first and second terms in the expansion ( 9) may become at times of comparable magnitude.

The value of σ K 1 is analytic:

σ K 1 = 1 + γ 2 - 1 2 log(4π) ≈ 0.023095709 . . . (10) 
Keiper [START_REF] Keiper | Power series expansions of Riemann's xi function[END_REF] gives numerical values for certain low order σ K k , with a more extensive and more accurate tabulation having been constructed by Dr. Rick Kreminski [10]. For σ K 2 , we obtain

σ K 2 = 1 + γ 2 - π 2 8 + 2γ 1 ≈ -0.0461543172 . . . . (11) 
Another useful value is that of

ρ 1 |ρ| 2 = 2σ K 1 , (12) 
if the Riemann hypothesis holds.

Interconnecting relationships among the σ k provided by Keiper [START_REF] Keiper | Power series expansions of Riemann's xi function[END_REF] include

∞ k=1 1 k σ k = 0, σ 1 = - ∞ k=1 σ k . (13) 
A more general result is

σ j+1 = (-1) j+1 ∞ k=1 k -1 j σ k . (14) 
We now turn to quantities λ, used by both Keiper [START_REF] Keiper | Power series expansions of Riemann's xi function[END_REF] and Li [START_REF] Li | The positivity of a sequence of numbers and the Riemann hypothesis[END_REF] in discussions relating to the Riemann hypothesis. The definition of these linked quantities we now give comes from Li:

(n -1)!λ L n = d n ds n s n-1 log(2ξ(s)) s=1 = n!λ K n . (15) 
The λ K k are related to the σ j , as shown by Keiper:

λ 0 = 0, λ 1 = σ 1 , λ K k = k j=1 (-1) j-1 j k -1 j -1 σ j . ( 16 
)
The connection of the λ K k with the Riemann hypothesis is discussed by Keiper in connection with the relation:

λ L m = mλ K m = ρ 1 - ρ ρ -1 m . ( 17 
)
If the Riemann hypothesis holds, then all the zeros ρ lie on the critical line, with |ρ| = |ρ -1|. The sum over zeros in [START_REF] Romik | Orthogonal polynomial expansions for the Riemann xi function[END_REF] can not then be negative, so λ m > 0 for all m is a necessary condition for the Riemann hypothesis, as stated by Keiper.

He also provided the first two terms in a large m expansion of λ K m , based on assuming the Riemann hypothesis and "very evenly distributed" zeros: Figure 1 shows the behaviour of the λ K m up to m = 500. It consists of an obvious logarithmic smooth trend [START_REF] Maslanka | Effective method of computing Li's coefficients and their properties[END_REF], plus superimposed oscillations. (Note that, as in all numerical cases studied in this paper, calculations were carried out on a laptop using Mathematica.) Maślanka [START_REF] Maslanka | Effective method of computing Li's coefficients and their properties[END_REF] and others such as M. W. Coffey [START_REF] Coffey | Toward Verification of the Riemann Hypothesis: Application of the Li Criterion[END_REF][START_REF] Coffey | New results concerning power series expansions of the Riemann xi function and the Li/Keiper constants[END_REF] were inspired by a paper by Bombieri and Lagarias [START_REF] Bombieri | Complements to Li's criterion for the Riemann hypothesis[END_REF], which introduced a splitting of λ L n into trend and oscillation terms:

λ K m ≈ 1 2 log m - 1 2 (log(2π) + 1 -γ). (18 
λ L n = λn + λn , (19) 
where the trend is

λn = 1 -(log(4π) + γ) n 2 + n j=2 (-1) j n j (1 -2 -j )ζ(j), (20) 
and the oscillation is λn = -

n j=1 n j η(j -1). ( 21 
)
Here the η n can be defined [START_REF] Bombieri | Complements to Li's criterion for the Riemann hypothesis[END_REF] as the coefficients occurring in the expansion

log(sζ(s + 1)) = - ∞ n=0 η n s n n + 1 . (22) 
Coffey [START_REF] Coffey | Toward Verification of the Riemann Hypothesis: Application of the Li Criterion[END_REF] gives the η n in terms of the σ k and ζ(k):

(-1) n η n-1 = σ n + (1 -2 -n )ζ(k) -1. ( 23 
)
The trend contains a sum over the poles of on the real axis ζ(s), while the oscillation counteracts the poles with zeros on the real axis and adds in the sum over zeros off the real axis σ j .

Coffey [START_REF] Coffey | Toward Verification of the Riemann Hypothesis: Application of the Li Criterion[END_REF][START_REF] Coffey | New results concerning power series expansions of the Riemann xi function and the Li/Keiper constants[END_REF] bounds the sum in equation ( 20) to give:

n 2 ln n + (γ -1) n 2 + 1 2 ≤ S 1 (n) ≤ n 2 ln n + (γ + 1) n 2 - 1 2 . ( 24 
)
The leading term in [START_REF] Scott | Asymptotic series of Generalized Lambert W Function[END_REF] corresponds to the leading term in Keiper's representation [START_REF] Robert M Corless | On the LambertW function[END_REF], with the former not being associated with the assumptions said to lead to [START_REF] Robert M Corless | On the LambertW function[END_REF].

Keiper's sums τ and their generalisation

In recent years Keiper's paper [START_REF] Keiper | Power series expansions of Riemann's xi function[END_REF] on the sums over zeros λ has begun to receive more attention. However, not as much attention has been paid to the second set of sums (τ ) he studied in the same work. (Keiper died in 1995, and so was not able to continue his research on this topic). In order to introduce these sums, we define the central difference operator C m acting on a sequence f (m):

C m f (m) = f (m + 1) -2f (m) + f (m -1). ( 25 
)
We apply this to λ L m :

τ m = C m ρ 1 - ρ ρ -1 m , (26) 
giving Keiper's result:

τ m = - ρ ρ ρ -1 m+1 1 ρ 2 . ( 27 
)
This can also be expressed in terms of the σ j :

τ 0 = σ 1 , τ k = k j=1 k -1 j -1 (-1) j σ j+1 for k ≥ 1. ( 28 
)
Another expression for the τ n comes from the application of the central difference operator to the defining relationship [START_REF] Frank Wj Olver | NIST Handbook of Mathematical Functions Hardback and CD-ROM[END_REF]. This is

τ n = 1 (n -1)! d n-2 ds n-2 s n-1 d 2 ds 2 ln(ξ(s)) s=1 . (29) 
The τ m have been expressed in terms of the central differences of the λ's. We can go in the opposite direction using the fact that the central difference is the difference of the first differences, to obtain two new expressions:

m n=1 τ n = λ L m+1 -λ L m -λ L 1 , (30) 
and

m-1 n=1 nτ n = mλ L m+1 -(m + 1)λ L m . (31) 
These may be combined to give

m-1 n=1 (m -n)τ n = m n=1 (m -n)τ n = λ L m -mλ L 1 . (32) 
Keiper [START_REF] Keiper | Power series expansions of Riemann's xi function[END_REF] argues from ( 27) that the Riemann hypothesis implies that |ρ/(ρ-1)| = 1 for all ρ, and so the values of |τ k | must be bounded by 2σ K 1 from ( 12). Keiper's expression analogous to [START_REF] Salvy | Fast computation of some asymptotic functional inverses[END_REF] is used by him to argue the converse: that if the |τ k | are bounded, the Riemann hypothesis must hold.

The central difference operator applied to the leading term [START_REF] Scott | Asymptotic series of Generalized Lambert W Function[END_REF] gives 1/(2k). Interestingly, terms linear in k or constant give zero for this operation. In Fig. 2 we compare this leading term estimate with numerical values of the τ k . Unlike the situation with the λ's, this smooth trend line is no longer dominant over the oscillations. However, numerical evidence is that the λ k 's increase monotonically with k, and this is of course a sufficient condition for the Riemann hypothesis. It is also sufficient to show from (30) that λ 1 + m n=1 τ n > 0 for all m, presumably due to the influence of the trend term. Motivated by these results, we define a general sum over the zeros ρ:

S m,q = - ρ 1 ρ 2q ρ ρ -1 m+q = - ρ ρ m-q (ρ -1) m+q . ( 33 
)
We note that

τ m = S m,1 = λ L m+1 -2λ L m + λ L m-1 . (34) 
The S m,q obey a recurrence relation in q:

S m,q+1 = S m+1,q -2S m,q + S m-1,q .

Putting q = 1, this enables us to conclude the elegant continuation of (34) and (35):

S m,2 = τ m+1 -2τ m + τ m-1 . (36) 
Keiper [START_REF] Keiper | Power series expansions of Riemann's xi function[END_REF] in his equations ( 25) and [START_REF] Salvy | Symbolic asymptotics: Multiseries of inverse functions[END_REF] gives expressions for his τ m as sums over σ K m . The following expressions generalise these to the S m,q :

S m,q = - ∞ j=2q j + m -q -1 m + q -1 σ j (37) and, if m > q, S m,q = - m+q-1 j=2q-1 (-1) j m -q j + 1 -2q σ j . (38) 
Particular cases of S m,q are of interest. We note that the correspondence between zeros ρ and 1 -ρ of ζ(s) implies the following symmetry relationship:

S -m,q = S m,q . (39) 
Putting m = 0 in (33), we have

S 0,q = - ρ 1 ρ q (ρ -1) q = (-1) q+1 ρ 1 ρ q (1 -ρ) q . ( 40 
)
If the Riemann hypothesis holds, the summand in (40) becomes 1/|ρ| 2q , and thus S 0,q strictly alternates in sign as q increases. Of course S 0,0 is undefined, while S 0,1 = 2σ 1 . Another interesting case is:

S m,m = - ρ 1 (1 -ρ) 2m = -σ 2m , (41) 
which is absolutely convergent for m ≥ 1. We generalise this:

S m,m+δq = - ρ 1 ρ δq (1 -ρ) 2m+δq , (42) 
absolutely convergent for δq ≥ 0 if m ≥ 1.

The equivalent of (30) for the S's is m p=m-l S p,q = S m+1,q-1 -S m,q-1 -S m-l,q-1 + S m-l-1,q-1 .

If l = m -1 and q ≥ 2, (43) is m p=1 S p,q = S m+1,q-1 -S m,q-1 -S 1,q-1 + S 0,q-1 .

We show the behaviour of low order sums S m,q as a function of m in Figs. 345. Rapid convergence is evident as q increases towards a single term driven by the first zero of ζ(s), ρ 1 = 1/2 + it 1 . The complicated behaviour evident in Fig. 2 for q = 1 rapidly becomes more simple, with slight deviations from the ρ 1 term explicable by the inclusion of a ρ 2 term. -2. × 10 -7
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Figure 4: The values S m,3 (blue) as a function of m, determined by summation over the first 1000 zeros ρ are compared with the results of summation over the first two zeros (red). The two black lines correspond to ±S 0,3 .

Note that Keiper's argument in relation to S m,1 = τ m and the Riemann hypothesis applies equally to the S m,q for q > 1. In each case, the relevant bounds on the S m,q are given by ±S 0,q . S(m,4)

Figure 5: The values S m,4 (blue) as a function of m, determined by summation over the first 1000 zeros ρ are compared with the results of summation over the first two zeros (red). The two black lines correspond to ±S 0,4 .

Li's necessary and sufficient condition for the Riemann hypothesis

Li's paper [START_REF] Li | The positivity of a sequence of numbers and the Riemann hypothesis[END_REF] was written after Keiper's [START_REF] Keiper | Power series expansions of Riemann's xi function[END_REF] and does not cite it. It is written in the classical style of theorem and proof, while Keiper was providing an early example of what has come to be known as experimental mathematics. Here we will be interested in providing further details and understanding of the following theorem:

Theorem 1. (Li) A necessary and sufficient condition for the nontrivial zeros of the Riemann zeta function to lie on the critical line is that λ L n is non-negative for every positive integer n.

Here of course we have used the notation λ L n to avoid confusion with Keiper's use of the same Greek symbol. Li frames his proof of this theorem using the same mapping as Keiper from the complex s plane to the unit circle, and writing two key expansions:

ϕ(z) = 2ξ 1 1 -z = 1 + ∞ j=1 a j z j , (45) 
and

ϕ ′ (z) ϕ(z) = ∞ n=0 λ L n+1 z n . ( 46 
)
These two equations are used by Li to connect the λ L n and the a n in the following recurrence relation:

λ L n = na n - n-1 j=1 λ L j a n-j . (47) 
Li does not give any representation for the quantities a n , but provides a proof that they are positive. We can derive a convenient representation for them using the expansion (4), re-expanding about s = 1 using the Binomial Theorem, and then the following expansion in the variable w = 1/(1 -s):

1 + w 1 -w r = 1 + ∞ n=1 a r (n)w n . ( 48 
)
Here the coefficients a r (n) are explicit:

a r (n) = n p=0 r + n -p -1 r -1 r p . ( 49 
)
The a r (n) are polynomials in r of degree n. The result of this procedure is

a n = 2 ∞ r=1 ξ r 2 2r a 2r (n), for n = 1, 2, 3, . . . , (50) 
with n = 0 corresponding to the identity

2ξ 0 + 2 ∞ r=1 ξ r 2 2r = 1. (51) 
Now, all the coefficients ξ r are positive, as proved by Pustyl'nikov [START_REF] Davidovich Pustyl'nikov | On a property of the classical zeta-function associated with the Riemann hypothesis[END_REF], a fact known to Hurwitz and Jensen. (I am indebted to J. Gélinas for this comment.) Given the positivity of the a r (n) from ( 49), this provides an alternative proof to that of Li [START_REF] Li | The positivity of a sequence of numbers and the Riemann hypothesis[END_REF] that the a n are all positive. It is also evident that they increase monotonically with n.

The relationship (49) can be written in terms of the Pochhammer symbol (x) n :

a r (n) = n p=0 1 (n -p)!p! r(r -p + 1) n-1 , (52) 
where

(x) n = Γ(x + n) Γ(x) = x(x + 1)(x + 2) . . . (x + n -1). ( 53 
)
The series expansion of the Pochhammer symbol is given in terms of Stirling numbers of the first kind [START_REF] Frank Wj Olver | NIST Handbook of Mathematical Functions Hardback and CD-ROM[END_REF]. We will use the following result:

r(r -x) n =        r n = 0 r 2 -xr n = 1 n k=0 S 1 (n, k)(-1) n-k r k+1 n > 1, x = 0 n k=1 S 1 (n, k)(-1) n-k k l=0 k l r l+1 (-1) k-l x k-l n > 1,
x ̸ = 0 (54) Here the combination S 1 (n, k)(-1) n-k renders the Stirling number of the first kind always positive. Using the relationship S 1 (n, 0) = δ n,0 in (52) and (54), we obtain two particular cases of a r (n): a r (1) = 2r and a r (2) = 2r 2 . The general expression is:

a r (n) = n p=0 1 (n -p)!p! n-1 k=1 (-1) n-1-k S 1 (n -1, k)[δ p,1 r k+1 + (1 -δ p,1 ) k l=0 k l r l+1 (-1) k-l (p -1) k-l ]. ( 55 
)
Some properties of the a r (n) follow easily from the definition (48). Let

F r (w) = 1 + w 1 -w r = 1 F r (-w) = 1 F -r (w) = F -r (-w). ( 56 
)
It follows from this that a -r (n) = (-1) n a r (n), so that a r (n) is an even function of r if n is even, and an odd function if n is odd. Another interesting result comes from expansion of the relationship F r (w)F -r (w) = 1:

a r (n)(1 + (-1) n ) + n-1 p=1 (-1) n-p a r (p)a r (n -p) = 0. ( 57 
)
This yields 0 = 0 for n odd, but for n even expresses 2a r (2n) in terms of products of two lower-index a r (n)'s.

We next rewrite equation (47) as:

λ L n a n = n - n-1 j=1 λ L j a n-j a n . (58) 
The left-hand side of this equation is plotted as a function of n in Fig. 6. It can be seen from this figure that Li's condition will become ever more ill-conditioned as n increases. A reasonably accurate fit to the data in Fig. 6 is provided by the following function:

λ L n a n app = 1.86537n exp(-0.06607n). ( 59 
)
This has the exponential factor optimized to fit the tail of the data in Fig. 6, and the multiplying constant from a best fit to all the data. The exponential decay towards zero in the graph and the fit function show that the sum on the right-hand side is very close to n for large n. Li's criterion requires us to prove that the sum tends up to n from below, and the data here shows the sum will be exponentially close to n, evincing the difficulty in providing a proof based on the criterion.

To go further into the details of the equation (47), we consider additional properties of the a 2r (n). These satisfy the following recurrence relation for n varying: Considering the ratio of successive terms in (60):

a 2r (n) = 4r n a 2r (n -1) + (n -2) n a 2r (n -2). ( 60 
)
ρ n = a 2r (n) a 2r (n -1) (61) 
the large n analysis of equation ( 60) leads to the asymptotic estimate

ρ n = 1 + (2r -1) n + (2r -1) n 2 + . . . (62) 
For r = 1, equation ( 62) is exact. The recurrence relation (60) can be used to calculate easily these polynomials, starting from a 2r (1) = 4r and a 2r (2) = 8r 2 . The next two polynomials are a 2r (3) = 4r/3 + 32r 3 /3 and a 2r (4) = 16r 2 /3 + 32r 4 /3, as seen in the expansion:

1 + w 1 -w 2r = 1 + 4rw + 8r 2 w 2 + 4 3 8r 3 + r w 3 + 16 3 2r 4 + r 2 w 4 + O w 5 .
(63) The remaining polynomials up to order n = 20 are specified in Table 3 by giving the coefficients C n,p of r p for p ranging up to p = n:

a 2r (n) = n p=1 C n,p r p . ( 64 
)
It will be noted that the polynomials are of order n and comprise even order terms if n is even, and odd order terms if n is odd. One further property of interest is that the sum of all the coefficients in each polynomial is just 4n. Given each coefficient is positive, this bounds the coefficients, or gives their mean as 4. From (60), the coefficients C n,p satisfy the general recurrence relation:

C n,p = 4 n C n-1,p-1 + (n -2) n C n-2,p , for 1 ≤ p ≤ (n -2), (65) 
with the special cases

C 2n+1,1 = (2n -1) 2n + 1 C 2n-1,1 , and C n,n = 4 n C n-1,n-1 . (66) 
The first of these gives for all positive integers n:

C 2n-1,1 = 4 2n -1 , (67) 
while the second gives:

C n,n = 4 n n! . ( 68 
)
In this second case, the coefficient has its maximum value at n = 3, 4 and then falls away rapidly with increasing n. It falls below the mean coefficient (four) for n between 6 and 7.

The first non-zero entry for n even satisfies the recurrence relation:

C 2n,2 = 8 n(2n -1) + (n -1) n C 2n-2,2 , (69) 
and commences with C 2,2 = 8. The solution of this recurrence relation is

C 2n,2 = 8 n n p=1 1 (2n -(2p -1)) = 8 n 1 2 ψ n + 1 2 + 1 2 γ + ln 2 , (70) 
where the ψ function is the zeroth order polygamma function [START_REF] Frank Wj Olver | NIST Handbook of Mathematical Functions Hardback and CD-ROM[END_REF]. Another way of expressing the C 2n,2 is in terms of harmonic numbers, where the nth harmonic number H n is defined by [START_REF] Sondow | Harmonic Number. From MathWorld-A Wolfram Web Resource[END_REF]:

H n = n k=1 1 k . (71) 
We then have:

C 2n,2 = 8 n H 2n - 1 2 H n . (72) 
The asymptotic expansion of the harmonic numbers is given in an expression involving the Bernoulli numbers B 2k :

H n ∼ log(n) + γ + 1 2n - ∞ k=1 B 2k 2kn 2k , (73) 
leading to the asymptotic series for C 2n,2 :

C 2n,2 ∼ 8 n 1 2 log(n) + log(2) + 1 2 γ + ∞ k=1 B 2k 4kn 2k 1 - 1 2 (2k-1) . ( 74 
)
The asymptotic formula (74) has good accuracy for n as low as two. We also have:

C 2n+2,2 C 2n,2 ∼ 1 - 1 n 1 - 1 γ + log(4n) + -3 + 2γ + 2 log(4n) 2(γ + log(4n))n 2 + O 1 n 3 . ( 75 
)
The ratio of successive values of C 2n,2 starts at 2/3 and, in keeping (75), increases monotonically towards unity. C 2n,2 itself decreases monotonically as n increases, in keeping with (74). Consider next C 2n-1,3 . The formula for this is

C 2n-1,3 = 4 2n -1 n-1 p=1 C 2n-2p,2 = 4 2n -1 n-1 p=1 C 2p,2 .
(76)

Note that C 3,3 = C 5,3 = 32/3: thereafter, C 2n-1,3 decreases as n increases. For C 2n,4 a similar relation applies:

C 2n,4 = 4 2n n p=2 C 2p-1,3 . (77) 
This quantity increases with n up until n = 4, and thereafter decreases monotonically.

The pattern in the expressions for these sums is that even order terms are expressed as a sum of odd order terms, with the second index lowered by one. The sum over the first index runs from the term given in (68) to one less than the first index on the left-hand side. A similar description applies to odd order terms. The derivations rely on the following equations:

nC 2n,2 -(n-1)C 2n-2,2 = 8 (2n -1) , (2n-1)C 2n-1,3 -(2n-3)C 2n-3,3 = 4C 2n-2,2 .
(78) Here first differences generate elements with an intervening first index and the second index lowered by one. These properties are generic, as the recurrence relations (65), (66) show.

The general expression for the C can be derived from equation (48). It is, for n ≥ 3:

C n,q = 2 q (n -1)! (-1) n-q S 1 (n -1, q -1) + n p=0 2 q (n -p)!p! n-1 k=q-1 (-1) n-1-k S 1 (n -1, k) k q -1 (1 -δ p.1 )(-1) k-q+1 (p -1) k-q+1 . ( 79 
)
We can rewrite the equation (47) as 4 Asymptotics of the Griffin, Ono, Rolen, Zagier Formula

λ L k = 2    ∞ r=1 ξ r 2 2r   ka 2r (k) - k-1 j=1 λ L j a 2r (k -j)      . ( 80 
We now consider the Griffin, Ono, Rolen and Zagier (GORZ) formula [START_REF] Griffin | Jensen polynomials for the Riemann zeta function and other sequences[END_REF] for the even-order derivatives of the ξ function at s = 1/2. The expansion is written in terms of a parameter L, solution of the equation [7]

Le L = n π - 3L 4π . ( 89 
)
We wish to obtain analogous results to those of Romik [START_REF] Romik | Orthogonal polynomial expansions for the Riemann xi function[END_REF] for the leading order terms of the GORZ formula for n very large, and so we first establish the leading order terms of the expansion of L. The leading term arises from the neglect of the second term on the right-hand side, and is just the principal branch of Lambert's W function, which satisfies [START_REF] Robert M Corless | On the LambertW function[END_REF]:

W (z)e W (z) = z. (90) 
We write

L(n) = L 0 (n) + L 1 (n) n + L 2 (n) n 2 + . . . , (91) 
and substitute into (89), solving in a self-consistent fashion. We find

L 0 (n) = W n π , (92) 
L 1 (n) = -3 4 
L 0 (n) 2 1 + L 0 (n) , (93) 
and

L 2 (n) = - 9 32 -2L 0 (n) 3 + L 0 (n) 5 (1 + L 0 (n)) 3 . (94) 
In what follows, we will use only the expressions for L 0 (n) and L 1 (n) and will use chiefly the inverse powers of n to choose which terms may be discarded.

The GORZ formula [START_REF] Griffin | Jensen polynomials for the Riemann zeta function and other sequences[END_REF][START_REF] Gélinas | [END_REF] is written in terms of a function F (n), where

(n) ≈ √ 2π L n+1 (1 + L)n -3L 2 /4 e L/4-n/L+3/4 1 + b 1 (L) n + b 2 (L) n 2 + . . . . (95 
) As we are interested in the leading terms in (95) which do not tend to zero as n → ∞, we will not use the correction terms involving b 1 (L), b 2 (L). Using (91-93) in (95) we obtain: 95) are compared with their leading order approximations and their leading plus zeroth order approximations (using ratios).

F (n) ≈ F lo (n)F zo (n), (96) n 
where F lo (n) contains simple leading order terms which contribute most strongly to the result, and F zo (n) contains the remaining terms which do not tend to zero as n → ∞. Here

F lo (n) = exp n log W n π - 1 W (n/π) (97) 
and

F zo (n) = exp 1 2 log(n) + 1 2 log 2 π - 1 2 log 1 + W n π - 3 4 1 - 1 4n W n π - 9 16n + 3 8n(1 + W (n/π)) 2 + 3 16n(1 + W (n/π) . ( 98 
)
In Table 4 we compare the values of the function F (n) of (95) with the leading order term of (97) and the combined leading and zero order terms of (97) and (98). The leading order term by itself is an overestimate, and drifts slowly away from the correct value, while the combined terms are quite accurate for n larger than 50 or 100, while also approaching the correct values from above.

Using the logarithm of (90), we can rewrite the leading order term as

F lo (n) = exp n log n π -W n π - 1 W (n/π) . ( 99 
)
We now evaluate some derivatives of this function, using the following results for its component parts:

d dn W n π = W (n/π) n(1 + W (n/π)) , d 2 dn 2 W n π = -W (n/π) 2 (W (n/π) + 2) n 2 (1 + W (n/π)) 3 (100) and d dn 1 W (n/π) = 1 nW (n/π) (1 + W (n/π)) . ( 101 
)
Then

d dn n log n π -W n π - 1 W (n/π) = log n π -W n π , (102) 
and

d 2 dn 2 n log n π -W n π - 1 W (n/π) = 1 n(1 + W (n/π)) . ( 103 
)
Combining these derivative values, we find

d dn log F lo (n) = log n π -W n π , (104) 
and

d 2 dn 2 log F lo (n) = 1 n(1 + W (n/π)) . ( 105 
)
Hence the Taylor series for the logarithm of the leading order term

F lo (n) is log F lo (n + x) = n log n π -W n π - 1 W (n/π) + x log n π -W n π + x 2 2n(1 + W (n/π)) + . . . (106) 
The result ( 106) is important in that it shows that log F lo (n -2) and log F lo (n) have the same leading term, and their difference is of order log log(n/π). These asymptotic results for the function F (n) can now be used in the expression [START_REF] Griffin | Jensen polynomials for the Riemann zeta function and other sequences[END_REF] for the 2n-th derivative of the xi function:

ξ (2n) 1 2 = 1 2 2n+2 [16(2n)(2n -1)F (2n -2) -F (2n)]. ( 107 
)
We wish to find the leading two orders in the expression for these derivatives, which, as we have just commented, in fact are contributed entirely by the first term in square brackets in (107):

ξ (2n) 1 2 ≈ 1 2 2n-2 (2n)(2n -1)F (2n -2). ( 108 
)
We can re-express (108) to deliver a leading-order approximation for the ξ r of Pustil'nikov:

ξ r = ξ (2r) 1 2 (2r)! ≈ 1 2 2r-2 (2r)(2r -1)F (2r -2) (2r)! = F (2r -2) 2 2r-2 (2r -2)! . ( 109 
)
Another leading order approximation for the ξ r is available in the literature, due to D. Romik [START_REF] Romik | Orthogonal polynomial expansions for the Riemann xi function[END_REF]: Table 4: The values of ξ r calculated from two terms of the GORZ equation are compared with those from the first terms only, and with those from the asymptotic formula of Romik.

ξ n ≈ 2 π 1/4 2 2n-5/2 (2n)! 2n log 2n 7/4 exp [2n (log(2n/π) -W (2n/π) -1/W (2n/π))] . ( 
Here the first factor of 2 is a correction due to J. Gélinas [START_REF] Gélinas | [END_REF].

The best way to compare such leading-order approximations is through their logarithms, as in Table 4. The Table shows that the neglect of the second F term in the GORZ formula becomes increasingly accurate as r increases, while the asymptotic formula of Romik delivers good accuracy for r beyond 10 4 .

We can use either of the asymptotic expressions (109) or (110) to determine the value of r, r m , for which the summand in the expression (81) for Σ p is maximal. We then require the derivative of log ξ r + p log(r) -2r log [START_REF] Li | The positivity of a sequence of numbers and the Riemann hypothesis[END_REF] (

to be zero at r = r m . The leading term equation resulting from this procedure is

p 2r m -log(4π) = W 2r m π , (112) 
where W denotes the W function of Lambert, which is positive for r > 0.

Hence, p/r m must be larger than 2 log(4π) ≈ 5.06204. The equation (112) may be solved numerically to give r m as a function of p. As Fig. 7 shows, this works well even for p only moderately large. In order to provide asymptotic estimates for the sums Σ ξ p in equation 81, we need to be able to invert the expression 112 in order to obtain r m as a function of p. This highly nontrivial task can be carried out using generalised Lambert functions [START_REF] Maignan | Fleshing out the generalized Lambert W function[END_REF], [START_REF] Scott | General relativity and quantum mechanics: towards a generalization of the Lambert W function[END_REF], in a way discussed in the Appendix, kindly provided by T. C. Scott and A. Maignan. The results presented in Table 6 show all the formulae presented give highly accurate values for r m , which grow more accurate as p increases. They all are utilisable without difficulty, even for p very large.

Let us take the logarithm of Romik's asymptotic expression (110) and combine it with the logarithm of the factor n p /2 2n in (81), denoting the result by S(n, p). Then we can break S(n, p) up into its terms of differing order:

S(n, p) = S 1 (n, p) + S 2 (n, p) + S 3 (n, p) + S 4 (n, p) - 1 24n + O 1 n 2 . ( 113 
)
The last element and order estimate on the right-hand side in (113) arise from the asymptotic expansion of the logarithm of the denominator term (2n)!, and will be neglected in what follows.

The leading term is

S 1 (n, p) = p log(n) -2n log(4π) -1 + W 2n π , (114) 
and mixes terms of order p log(n), n log(n) and n. The term n log(n) comes from the Lambert W term. The equation (112) arises from the leading terms of the derivative of S 1 (n, p). The second term is of order n/ log(n), and has a single element:

S 2 (n, p) = -2n 1 W (2n/π) . (115) 
The third term combines elements of order log(n) and log(log(2n)):

S 3 (n, p) = 5 4 log(n) - 7 4 log(log(2n)). ( 116 
)
The fourth term is order unity:

S 4 (n, p) = -1 4 log(π) + 7 4 log (2). (117) 
4.1 Evaluation of the sums Σ ξ p for p large

The elements have now been assembled which are necessary for the evaluation of the sums Σ ξ p defined in equation (81). We wish to consider formulae appropriate for these sums when p is very large, a case relevant to their use in the investigation of the Li-Keiper criterion for the Riemann hypothesis. The key element is the knowledge of the range of the summand n which contributes most heavily to the sum-see equation (128) for the exact result relating to this. As shown in Table 6 of the Appendix, the formulae exhibited for determining this range work well even for p extremely large (O(10 40 )).

Here we will consider two related methods for evaluating the sums. The first of these is based on the expansion of the logarithm of the summand S(n, p)

around n = n m : S(n, p) = S(n m , p) + 1 2 S ′′ (n m , p)(n -n m ) 2 + . . . (118) 
where

S ′′ (n m , p) = - p n 2 m - 2W (2n m /π) n m (1 + W (2n m /π) + 7 + 7 log(2n m ) -5 log(2n m ) 2 4n 2 m log(2n m ) 2 , (119) 
manifestly negative. So, if we approximate the sum by an integral, this is an integral of (to leading order) Gaussian form. Thus the result of this simple treatment is analytic:

Σ ξ p ≈ exp(S(n m , p)) 2π S ′′ (n m , p) . ( 120 
)
To apply this numerically, the results given here have used the rapidly convergent, iterative method of the Appendix to find n m from p. This is used to evaluate S(n m , p) and the Gaussian integral. Another useful quantity is the standard deviation corresponding to the Gaussian:

σ(p) = -1 S ′′ (n m , p) . ( 121 
)
Note that it is convenient in avoiding exponential overflows numerically to keep the S(n m , p) as is, and if desired to add the logarithm of the integral to it, or to hold the exponent value at n m and the integral as separate values. As we will see, the exponent value greatly exceeds in magnitude the integral value. The values of S(n m , p) are dominated by those of S 1 (n, p) for p very large: log p >> 1. We use the approximations

p n m = 2[log p -2 log(log(p)) + log(4)] (122) 
and

W 2n m π = log p -2 log(log(p)) -log(π). (123) 
These are respectively accurate to 3.1% and 3.5% at p = 10 10 , 0.86% and 0.91% at p = 10 

The value of S 2 (n m , p) is smaller than this by a factor of order 1/ log(p) 3 . The value for S 1 (n, p) given by the approximation (124) is accurate to 2.5% at p = 10 10 , 0.9% at p = 10 20 and 0.1% at p = 10 100 . From (121), we find the leading terms in the expansion of σ(p) are:

σ(p) ≈ √ p 2 log p 1 + log(4) -2 log(log(p)) log p -1 . (125) 
Hence the ratio σ(p)/S 1 (n m , p) goes to zero as 1/(2 √ p log(p) 2 ) as p goes to infinity.

The expressions (122-125) are useful for analytic purposes, but previous expressions not relying on slowly converging logarithmic expansions are more useful for accurate numerics. However, an approach using direct summation based on the knowledge of an almost Gaussian summand can yield accurate numeric estimates. This approach uses direct summation of the summand divided by its value at n m , so keeping function values bounded by unity. The summation is carried out over a region symmetric about n m , of width five to seven times σ(p), to ensure good accuracy. The results shown in Table 4.1 show that the Gaussian approximation and the direct sum method agree very well, and increasingly well as p increases. loses digits of accuracy as p increases, since it involves summing over the difference between S(n, p) and S(n m , p), and the magnitude of both of these strongly increases with p, while their difference does not increase as rapidly. Note also that, in order to assess the relative significance of the prefactor term S(n m , p) and the sum/integral terms, the logarithm of the latter needs to be taken. Thus, for p = 10 13 , the sum/integral contribute 11.96, compared with 2.50610 14 from the prefactor. The integral expression is easily and quickly evaluated, while the sum expression becomes increasingly difficult and slow as p increases. Hence, for most purposes, the integral expression will provide sufficient asymptotic accuracy if it is necessary to go beyond S(n m , p).

5 Appendix: Comments on the solution of Equation (112)

Eq. ( 112) can be rewritten as:

p = 2r m ln(4π) + W 2r m π ,
where W is the standard Lambert W function [START_REF] Corless | Lambert's W Function in Maple[END_REF][START_REF] Robert M Corless | On the LambertW function[END_REF]. We want to invert this to get r m in terms of p. The solver of the Maple Symbolic Computation System [START_REF] Bernardin | Maple programming guide[END_REF][START_REF] Maplesoft | [END_REF] tells us that:

r m = p 2(ln(4π) + RootOf (πz exp(z) (ln(4π) + z) -p)) , (126) 
where Maple's RootOf facility is a means of telling us that this part of the denominator is z such that:

πz exp(z) (ln(4π) + z) -p = 0 , which is exactly equal to:

e -z = πz (ln(4π) + z) p . (127) 
This is an implicit equation in z governed by an exponential polynomial. If the RHS of Eq. ( 127) had been a polynomial in z of first order, the solution would be a standard Lambert W function. However, since the RHS is instead a quadratic in z, the solution of Eq. ( 127) is a generalized Lambert W function [START_REF] Scott | General relativity and quantum mechanics: towards a generalization of the Lambert W function[END_REF][START_REF] Scott | Asymptotic series of Generalized Lambert W Function[END_REF][START_REF] Scott | Numerics of the generalized lambert w function[END_REF][START_REF] Maignan | Fleshing out the generalized lambert w function[END_REF]. The roots of this quadratic in z are {0, -ln(4π)} and thus the asymptotic series for when the quadratic in z has near equal roots [START_REF] Scott | Asymptotic series of Generalized Lambert W Function[END_REF] is not applicable here. Denoting the generalized Lambert W function according to [20, eq.28] as Ω 2 (0, -ln(4π)) which is understood as the solution for z in Eq. (??), the solution of r m of Eq. (??) is exactly:

r m = p 2(ln(4π) + Ω 2 (0, -ln(4π))) . (128) 
Dividing both sides of Eq. ( 127) by πz and treating the z inside the brackets as a constant, we find that (127) is equivalent to:

z = W p π(ln(4π) + z) . (129) 
Eq. ( 129) can provide numerical solutions for z by repeated iterations starting with a guess value for z, in a process known as tetration [START_REF] Scott | General Relativity and Quantum Mechanics: Towards a Generalization of the Lambert W Function[END_REF]. It also gives a hint of the lead asymptotic term. As p gets larger, so does z and it dominates the ln(4π) in Eq. (??). Solving z/p = exp(-z)/(zπ) yields 2 W ± √ p

√ π

Since z > 0, we retain the solution with positive argument. Thus,

z ≈ 2 W √ p 2 √ π + u (130) 
where u denotes the remaining terms in the asymptotic expansion. By plugging Eq. (130) into Eq. (129) (after dividing both sides by πz) and neglecting the terms in u and u 2 , we obtain for u:

u ≈ ln   2W √ p 2 √ π 2W √ p 2 √ π + ln(4π)   . (131) 
Thus after simplifications (and resulting cancellations), the lead asymptotic terms for z are:

Ω 2 (0, -ln(4π)) = z ≈ W √ p 2 √ π + ln   √ p 2 √ π ln(2 √ π) + W √ p 2 √ π   (132) 
The reader might think the coefficient of 2 in the lead term of Eq. ( 130) is missing in Eq. (132). This is not the case: as a consequence of the identity: ln(W (x)) = ln(x) -W (x), Eq. ( 132) is exactly equal to Eqs. ( 130) and (131) together.

Asymptotic expansion of B. Salvy and J. Shackell

The approach used here is very similar to the steps in the algorithms developed by B. Salvy and J. Shackell [START_REF] Salvy | Symbolic asymptotics: Multiseries of inverse functions[END_REF][START_REF] Salvy | Fast computation of some asymptotic functional inverses[END_REF]. Eq. ( 132) has been vindicated numerically.

To get the asymptotic expansion in terms of elementary functions, one could use the asymptotic expansion for W itself [START_REF] Robert M Corless | On the LambertW function[END_REF], namely Higher-order terms in 1/ ln(p) k where k = 3, 4, 5 . . . can be readily generated with a computer algebra system like Maple [START_REF] Maplesoft | [END_REF]. However, for larger p, new techniques can improve the formal approximation of Ω 2 (0, -ln(4π)).

Mean approximation

For z > 0, z 2 < (ln(4π) + z)z < (ln(4π) + z) 2 and the solution of Eq. ( 129) is included in the interval ]z 1 , z 2 [ where z 1 is the positive solution of e z (ln(4π) + z) 2 = p π and z 2 is the positive solution of e z (ln(4π) + z 2 = p π . We obtain

z 1 = 2W ( √ p) -ln(4π), z 2 = 2W √ p 2 √ π .
A first approximation of Ω 2 (0, -ln(4π)) can be A first approximation of Ω 2 (0, -ln(4π)) can be obtained by approximating the polynomial (ln(4π) + z)z by its closest square polynomial (z + ln(4π) 2 ) 2 . Indeed, Eq. ( 129 Now for all z > 0, there exists a positive value a such that (z + 1 a ln(4π)) 2 = z(z + ln(4π)). Eq. ( 129) is then equivalent to e z (z + 1 a ln(4π)) 2 = p π (z + 1 a ln(4π)) 2 = z(z + ln(4π))

z 1 + z 2 2 = W ( √ p) + W √ p 2 √ π - ln ( 
which is equivalent to Starting from a = 2, we can iteratively compute the values of z and a. After two steps of iteration, we obtain: 

   z = 2W
z ≈ 2W 2 1/a π

Comparison

The Table 6 gives for various values of p the quality of the approximation of Ω 2 (0, -ln(4π)) by computing |Ω 2 (0, -ln(4π)) -z| where z is the approximation following respectively the formula (133) (including the 1/ ln(p) 5.5 Eq. ( 89) and the r-Lambert function Equation (89) is rewritten here as:

Le L + 3 4π L = n π , (137) 
which can be solved thanks to a specific generalization of the Lambert-W function named the r-Lambert function. In [START_REF] Mezö | On the generalization of the Lambert W function[END_REF], Mezo at al. define the r-Lambert function as the inverse of the function xe x + rx. It is denoted by W r .

In ( [START_REF] Mezö | On the generalization of the Lambert W function[END_REF], Theorem 4), a classification of W r is given. In the case of the GORZ formula, r = 3 4π satisfies r > 1 e 2 and Theorem [4, [START_REF] Mezö | On the generalization of the Lambert W function[END_REF]] stipulates that W r (y) : R → R is a strictly increasing, everywhere differentiable function such that sgn(W r (y)) = sgn(y). In other words, L = W 3 4π ( n π ) is the unique real solution of Eq. (137) (See Figure 10 for the graphical representation of W 3 4π ( n π ) for n from 0 to 1000).

The numerical calculation of the real r-Lambert function is given in [START_REF] Roberto B Corcino | Numerical Calculation of the real r-Lambert Function[END_REF].

The first and second derivatives of the r-Lambert function are 

Figure 1 :

 1 Figure 1: The values λ K m as a function of m determined numerically (blue) are compared with Keiper's formula (18) (red).

Figure 2 :

 2 Figure 2: The values τ k as a function of k determined numerically (blue) are compared with 1/2k) (red).

Figure 3 :

 3 Figure 3: The values S m,2 (blue) as a function of m, determined by summation over the first 1000 zeros ρ are compared with the results of summation over the first two zeros (red). The two black lines correspond to ±S 0,2 .
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 6 Figure 6: The first 100 values of λ n /a n (blue) as a function of n, compared with the fit function (59) .

Figure 7 :

 7 Figure 7: The values of r, r max , which maximise the summand in the evaluation of Σ ξ n (blue) as a function of n, showing an underlying linear relationship of r max with n when it is moderately large.The red line gives the asymptotic result (112).

Figure 8 :

 8 Figure 8: The values Σ ξ n+1 /Σ ξ n (blue) as a function of n, showing an approximately linear relationship for n large.

Figure 9 :

 9 Figure 9: The maximum values of the summand in the evaluation of Σ ξ n (blue) as a function of n, showing a stronger than exponential dependence.
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 253 Now let set z = z1+z2 2 +u, after inserting this equation in Eq. (129) and neglected the u and u 2 value we obtain: Iterative approximation of Ω 2 (0, -ln(4π))
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 12910 Figure 10: The r-Lambert function W 3 4π ( n π )

Table 1 :

 1 The polynomial coefficients C n,p in the expansion (82), for n in the range 5 -20.

	)

Table 2 :

 2 The coefficients a n of Li expressed in terms of ξ sums for n in the range 1 -20.

Table 3 :

 3 The values of the GORZ function (

		F (95)	F (95)/F lo (n) F (95)/(F lo (n) * F z0 (n))
	10	0.000158915	0.766616	1.00369
	30	0.203491	0.727793	0.998342
	50	67530.7	0.692067	0.997971
	100	9.70356 × 10 22	0.634681	0.99819
	1000	3.571049805 × 10 532	0.4343107094	0.999500421
	100000	2.825033093 × 10 86422 0.1695059281	0.999987430
	1000000 1.101679602 × 10 972298 0.1019359097	0.999998337

  -1.965649078 10 6 -1.965649078 10 6 -1.965648889 10 6 10 6 -2.379580712 10 7 -2.379580712 10 7 -2.379580688 10 7

	n	log ξ r (107)	log ξ r (109)	log ξ r (110)
	10 1	-55.8378	-55.83721474	-56.12211477
	10 2	-835.9650723	-835.9637026	-836.0992830
	10 3	-11823.58874	-11823.58844	-11823.58015
	10 4	-156402.6563	-156402.6562	-156402.5434
	10 5			
				110)

  20 , and (both) 0.04% at p = 10 100 . Using them we find

	S 1 (n m , p) ≈ p log p -log(log(p)) -2 +	2 log(log(p)) log p	-	log(4π 2 log p	.

Table 5 :

 5 Note that the direct sum method slowly The values of p, of S(n m , p), and those given by the two methods (integral and direct sum, seven standard deviations) for the contribution to Σ ξ

	p	S(n m , p)	(2π)/(S ′′ (n m , p))	Direct Sum
	10 5	773216.454845247262645	42.6542750759677	42.6549100287186
	10 6	9.83159041621098805554 10 6	112.279823862816957037 112.280001637404
	10 7	1.195836652616223797330 10 8	302.564643162281697308	302.56469321694
	10 8	1.410711383470056930638 10 9	830.810395365553885241	830.810409565
	10 9	1.627353529697758035010 10 10	2316.34932127632390101	2316.34799775
	10 10 1.845432238547395356783 10 11	6539.40520716042875530	6539.4014688
	10 11 2.064693729563438373551 10 12 18654.74614331614399149	18654.74614
	10 12 2.2849417700654827485508 10 13 53683.7690078777092085	53683.7690
	10 13 2.5060227704112369541113 10 14 155644.6861258488856880	155644.69

p from summing over n.

  However this creates unwieldy arguments within logarithms. It is best to use Eq. (129) directly with B. Salvy's methods to approximate the Generalized Lambert W function. The first few terms of Ω 2 (0, -ln(4π)) = z are given by:

	z = ln(p/π) -2 ln(ln(p)) + ln(π) 2 -8 ln(ln(p))(ln(2/ (4 ln(ln(p)) + ln(π/4)) ln(p) √ π) + 2) + 4 ln(2) 2 + 8 ln(ln(p)) 2 ) + ln(256/π 4 ) (133) + 2 ln(p) 2
	+ O	1 ln(p) 3

W (x) ≈ ln(x) -ln(ln(x))) + . . . .

  ) is equivalent to

	e z (z +	ln(4π) 2	) 2 -(	ln(4π) 2	) 2 =	p π
	and, after neglecting the constant ( ln(4π) 2 ) 2 , we obtain as first approximation
	2W	√ p π 1/4 √	2	-	ln(4π) 2

Table 6 :

 6 Comparison of several asymptotic values for z against the exact values.

	3 term), (132),
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To sum over the polynomials in r quoted above and in Table 3, we define the following sums over a single term:

Then we find

and

We can compare (83) with equation ( 16):

and establish a connection between the σ n and the Σ ξ p , or (indirectly) the ξ p . The result of this procedure is analytic equations which increase rapidly in complexity with increasing order, as seen below:.

, (87) and

) Of course, the same procedure may be used to construct more compact equations with purely numeric coefficients, or to find particular terms in exact form for equations of higher order.

The final three figures relate to the numerical evaluation of the Σ ξ n . The number of terms needed in the summand for accurate evaluation ( Fig. 7) is governed by the value of r, r max , for which the summand is maximised. This value increases roughly as n/8, and the summand falls away rapidly as r moves away from r max . The values of Σ ξ n+1 /Σ ξ n in Fig. 8 increase in a similar fashion as n increases, again roughly as n/8. The data in Fig. 9 shows that the maximum values in the summands for the Σ ξ n are relatively slowly varying for n small, but then increase at a faster than exponential rate.