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Abstract—This paper proposes a hierarchical Bayesian model
that can be used for semi-supervised hyperspectral image un-
mixing. The model assumes that the pixel reflectances result from
linear combinations of pure component spectra contaminated by
an additive Gaussian noise. The abundance parameters appearing
in this model satisfy positivity and additivity constraints. These
constraints are naturally expressed in a Bayesian context by using
appropriate abundance prior distributions. The posterior distribu-
tions of the unknown model parameters are then derived. A Gibbs
sampler allows one to draw samples distributed according to the
posteriors of interest and to estimate the unknown abundances.
An extension of the algorithm is finally studied for mixtures with
unknown numbers of spectral components belonging to a know
library. The performance of the different unmixing strategies is
evaluated via simulations conducted on synthetic and real data.

Index Terms—Gibbs sampler, hierarchical Bayesian analysis,
hyperspectral images, linear spectral unmixing, Markov chain
Monte Carlo (MCMC) methods, reversible jumps.

I. INTRODUCTION

SPECTRAL unmixing has been widely used in remote
sensing signal processing for data analysis [1]. Its un-

derlying assumption is based on the fact that all data sample
vectors are mixed by a number of so-called endmembers as-
sumed to be present in the data. By virtue of this assumption,
two models have been investigated in the past to model how
mixing activities take place. One is the macrospectral mixture
that describes a mixed pixel as a linear mixture of endmembers
opposed to the other model suggested by Hapke [2], referred
to as intimate mixture that models a mixed pixel as a nonlinear
mixture. Nonetheless, it has been shown in [3] that the intimate
model could be linearized to simplify analysis. Accordingly,
only linear spectral unmixing is considered in this paper. In
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order for linear spectral unmixing to be effective, three key
issues must be addressed. One is the number of endmembers
assumed to be in the data for linear mixing. Another is how to
estimate these endmembers once the number of endmembers is
determined. The third issue is algorithms designed for linear un-
mixing (also referred to as inversion algorithms). While much
work in linear spectral unmixing is devoted to the third issue,
the first and second issues have been largely ignored or avoided
by assuming availability of prior knowledge. Therefore, most
linear unmixing techniques currently being developed in the
literature are supervised, that is the knowledge of endmembers
is assumed to be given a priori. This paper considers a semi-su-
pervised linear spectral unmixing approach which determines
how many endmembers from a given spectral library should be
present in the data and uses the desired endmembers for linear
spectral unmixing. In some real applications, the endmembers
must be obtained directly from the data itself without prior
knowledge. In this case, the proposed algorithm has to be
combined with an endmember extraction algorithm such as
the well-known N-finder algorithm (N-FINDR) developed by
Winter [4] to find desired endmembers which will be used to
form a base of the linear mixing model (LMM).

As explained above, the inversion step of an unmixing algo-
rithm has already received much attention in the literature (see,
for example, [1] and references therein). The LMM is classically
used to model the spectrum of a pixel in the observed scene. This
model assumes that the spectrum of a given pixel is related to
endmember spectra via linear relations whose coefficients are
referred to as abundance coefficients or abundances. The inver-
sion problem then reduces to estimate the abundances from the
observed pixel spectrum. The abundances satisfy the constraints
of non-negativity and full additivity. Consequently, their esti-
mation requires to use a quadratic programming algorithm with
linear equalities and inequalities as constraints. Different esti-
mators including constrained least squares and minimum vari-
ance estimators were developed using these ideas [5], [6]. This
paper studies a hierarchical Bayesian estimator which allows
one to estimate the abundances in an LMM. The proposed al-
gorithm defines appropriate prior distributions for the unknown
signal parameters (here the abundance coefficients and the noise
variance) and estimates these unknown parameters from their
posterior distributions.1

1Note that the proposed unmixing strategy is univariate in the sense that it
is applied to each pixel of the image. Spatial correlation in the image could be
considered by using hidden Markov models. This approach was for instance
used in [7] for classification of hyperspectral images.



The complexity of the posterior distributions for the unknown 
parameters requires to use appropriate simulation methods 
such as Markov chain Monte Carlo (MCMC) methods [8]. The 
prior distributions used in the present paper depend on hyper-
parameters which have to be determined. There are mainly two 
approaches which can be used to estimate these hyperparam-
eters. The first approach couples MCMCs with an expectation 
maximization (EM) algorithm which allows one to estimate 
the unknown hyperparameters [9]. However, as explained in 
[10, p. 259], the EM algorithm suffers from the initialization 
issue and can converge to local maxima or saddle points of the 
log-likelihood function. The second approach defines non-infor-
mative prior distributions for the hyperparameters introducing 
a second level of hierarchy within the Bayesian paradigm. The 
hyperparameters are then integrated out from the joint posterior 
distribution or estimated from the observed data [11]–[15]. This 
second strategy results in a hierarchical Bayesian estimator 
which will show interesting properties for unmixing hyperspec-
tral images. Another advantage of the hierarchical Bayesian 
estimator is that it allows one to estimate the full posterior dis-
tribution of the unknown parameters and hyperparameters. 
As a result, these posterior distributions can be used to derive 
confidence intervals for the unknown parameters, providing 
information on the significance of the estimations.

The proposed spectral unmixing problem is formulated as a 
constrained linear regression problem. Bayesian models are par-
ticularly appropriate for these problems since the constraints can 
be included in the prior distribution. The support of the posterior 
then reduces to the constrained parameter space. Examples of 
constraints recently studied in the literature include monotone 
constraints and positivity constraints. Monotony can be han-
dled efficiently by using truncated Gaussian priors [16]. Pos-
itivity constraints can be satisfied by choosing Gamma priors 
[17] or truncated Gaussian priors [18]. It is interesting to men-
tion here that similar ideas have also been recently exploited to 
handle linear sparse approximation models. For instance, spar-
sity can be ensured by defining factoring mixtures with modi-
fied Rayleigh priors [19] or Student priors [20]. This paper de-
fines a Bayesian model with priors satisfying positivity and ad-
ditivity2 constraints as required in hyperspectral imagery. To our 
knowledge, this is the first time a Bayesian model based on these 
constraints is proposed in the literature. The parameters of this 
model are estimated by an appropriate Gibbs sampler. Interest-
ingly, the proposed sampler can handle mixtures with unknown 
numbers of spectral components belonging to a known library.

The paper is organized as follows. Section II presents the 
usual LMM for hyperspectral images. Section III describes the 
different elements of the proposed hierarchical model for un-
mixing these hyperspectral images. Section IV studies a Gibbs 
sampler which allows one to generate samples distributed ac-
cording to the posteriors of the unknown parameters to be es-
timated. The sampler convergence is investigated in Section V. 
Some simulation results on synthetic and real data are presented 
in Sections VI and VII. Section VIII shows that the number of 
endmembers contained in the mixing model can be estimated 
by including a reversible jump MCMC algorithm. Conclusions 
are reported in Section IX.

2The term “additivity” comes from hyperspectral imagery [1] and corre-
sponds to a “norm-1” constraint.

II. LINEAR MIXING MODEL

This section defines the classical analytical model which will
be used to perform spectral unmixing. This paper concentrates
on the most commonly used linear unmixing problem which
constitutes a good approximation in the reflective domain
ranging from 0.4 to 2.5 m (see [1], [21], or more recently,
[22]). However, the proposed analysis might be extended to
nonlinear unmixing models, for instance, by using a basis
function representation approach as in [23, p. 134]. The LMM
assumes that the -spectrum of a mixed
pixel is a linear combination of spectra contaminated by
additive white noise

(1)

where denotes the spectrum of the
th material; is the fraction of the th material in the pixel;

is the number of pure materials (or endmembers) present in
all the observed scene; is the number of available spectral
bands for the image; is the additive white
noise sequence which is classically assumed to be an indepen-
dent and identically distributed (i.i.d.) zero-mean Gaussian se-
quence3 with variance , denoted as , where

is the identity matrix of dimension . Due to physical
considerations, the fraction vector satis-
fies the following positivity and additivity constraints

and (2)

The endmembers spectra are assumed to be known in the
first part of this paper. As a consequence, the proposed method-
ology has to be coupled with one of the many identification tech-
niques to estimate these endmember spectra. These techniques
include geometrical methods [4], [25] or statistical procedures
[26], [27]. The second part of the paper extends the algorithm to
mixtures containing an unknown number of spectra belonging
to a known library.

III. HIERARCHICAL BAYESIAN MODEL

This section introduces a hierarchical Bayesian model to
estimate the unknown parameter vector under the con-
straints specified in (2). This model is based on the likelihood
of the observations and on prior distributions for the unknown
parameters.

A. Likelihood

Equation (1) shows that , where
and . Conse-

quently, the likelihood function of can be expressed as

(3)

where is the standard norm.

3More complicated noise structures could be considered. As an example, an-
alyzing data contaminated by colored additive Gaussian noise has been studied
in [24]. Following the ideas developed in [15], the case of an additive noise mod-
eled as an AR process could also be handled. However, this would increase the
computational cost of the algorithm.



B. Parameter Priors

The abundance vector can be written as
with and . The LMM
constraints (2) impose that belongs to the simplex

(4)

A uniform distribution on is chosen for in order to reflect the
absence of prior knowledge regarding this unknown parameter
vector. Note that choosing this prior distribution for is equiv-
alent to choosing a prior Dirichlet distribution for

(see [23, p. 237] for the definition of the Dirichlet distribu-
tion ).

A conjugate inverse-gamma distribution (with parameters
and ) is chosen as prior distribution for

(5)

The hyperparameter will be fixed to (as in [13]) whereas
is an adjustable hyperparameter.

C. Hyperparameter Prior

The hyperparameter associated to the parameter priors
defined above is . Of course, the quality of the unmixing
procedure depends on the value of this hyperparameter. The
hierarchical Bayesian approach developed in this paper uses a
noninformative Jeffrey’s prior4 for the hyperparameter

(6)

where is the indicator function defined on .

D. Posterior Distribution of

The posterior distribution of the unknown parameter vector
can be computed from the following hierarchical

structure:

(7)

where means “proportional to” and and are de-
fined in (3) and (6), respectively. By assuming the prior inde-
pendence between and , i.e., , the
hyperparameter can be integrated out from the joint distribu-
tion , yielding

(8)

where is the indicator function defined on the simplex
. The next section shows that an appropriate Gibbs sampling

strategy allows one to generate samples distributed according to
the joint distribution .

4It is important to note that there is no difference between choosing a
noninformative Jeffrey’s prior as prior distribution for � and the hierar-
chical prior defined by ��� � �� �� and ���� proposed in the paper since
��� � � ��� ��� �������� � ���� �. However, the proposed hierar-
chical structure defined by ��� ��� �� and ���� is interesting since it can be
generalized to a colored Gaussian noise with a signal-to-noise ratio (SNR) that
may change from a spectral range to another (see [24] for more details).

IV. A GIBBS SAMPLER FOR ABUNDANCE ESTIMATION

Sampling according to can be achieved by a Gibbs
sampler whose steps are detailed in Sections IV-A and IV-B (see
also Algorithm 1).

A. Generation of Samples According to

By denoting , straightforward compu-
tations yield

(9)

where

(10)

with . As a consequence, is
distributed according to a truncated Gaussian distribution5

(11)

The generation of samples according to a truncated Gaussian
distribution can be achieved using a standard accept-reject pro-
cedure, when the number of endmembers is relatively small (as
in the examples studied in this paper). However, it is interesting
to mention here that a more efficient simulation technique based
on Gibbs moves can be used for high dimension problems (see
[28] or [29] for more details).

B. Generation of Samples According to

Looking carefully at the joint distribution , the
conditional distribution of is clearly the following in-
verse gamma distribution:

(12)

V. CONVERGENCE DIAGNOSIS

The Gibbs sampler allows one to draw sample
asymptotically distributed according to . The abun-

5From a practical point of view, the component of ��� to be discarded are
randomly chosen at each iteration of the Gibbs sampler.



dance vector can then be estimated by the empirical average fol-
lowing the minimum mean square error (MMSE) principle

(13)

where and are the numbers of burn-in and computa-
tion iterations, respectively. However, two important questions
have to be addressed: 1) When can we decide that the samples

are actually distributed according to the target dis-
tribution ? 2) How many samples are necessary to
obtain an accurate estimate of when using (13)? This section
surveys some works allowing to determine appropriate values
for parameters and .

A. Determination of the Burn-in Period

Running multiple chains with different initializations allows
to define various convergence measures for MCMC methods
[30]. The popular between-within variance criterion has shown
interesting properties for diagnosing convergence of MCMC
methods. This criterion was initially studied by Gelman and
Rubin in [31] and has been used in many studies including [30,
p. 33], [32], and [33]. The main idea is to run parallel chains
of length for each data set with different starting
values and to evaluate the dispersion of the estimates obtained
from the different chains. The between-sequence variance
and within-sequence variance for the Markov chains are
defined by

(14)

(15)

with

(16)

where is the parameter of interest and is its estimate at the
th run of the th chain. The convergence of the chain can then

be monitored by the so-called potential scale reduction factor
defined as [34, p. 332]

(17)

A value of close to 1 indicates that a number of burn-in iter-
ations is sufficient to obtain samples

, distributed according to the target distribution.

B. Determination of the Number of Computation Iterations

Once the number of burn-in iterations has been ad-
justed, it is important to determine the appropriate number
of iterations to obtain an accurate estimate of when
using (13). An ad hoc approach consists of assessing conver-
gence via appropriate graphical evaluations [30, p. 28]. This

Fig. 1. Top: Endmember spectra: construction concrete (solid line), green grass
(dashed line), dark yellowish brown micaceous loam (dotted line). Bottom: Re-
sulting spectrum of the mixed pixel.

paper proposes to compute a reference estimate denoted as
from a large number of iterations to ensure convergence of
the sampler and good accuracy of the approximation in (13)
( in our simulations). The
mean square error (MSE) between this reference estimate
and the estimate obtained after iterations is then computed as

The number of iterations is finally determined as the value
of ensuring the MSE is below a predefined threshold.

VI. SIMULATION RESULTS ON SYNTHETIC DATA

A. Abundance Estimation

The accuracy of the proposed abundance estimation proce-
dure is first illustrated by unmixing a synthetic pixel resulting
from the combination of three pure components. These com-
ponents have been extracted from the spectral libraries that are
distributed with the ENVI software [35, p. 1035] and are rep-
resentative of an urban or suburban environment: construction
concrete, green grass, and dark yellowish brown micaceous
loam. The proportions of these components are defined by

and . The observations have
been corrupted by an additive Gaussian noise with variance

, i.e., the SNR is about dB, where
. The endmember spectra

and the noisy spectrum of the mixed pixel are plotted in Fig. 1.
Fig. 2 shows the posterior distributions of the abundance co-

efficients obtained for itera-
tions (including burn-in iterations). These distri-
butions are in good agreement with the actual values of abun-
dances, i.e., . For comparison, the fully
constrained least-squares (FCLS) algorithm detailed in [5], [36]
has been run times for signals similar to Fig. 1(bottom) ob-
tained with different noise sequences. Note that running

times the FCLS algorithm on a pixel requires 6.23 s for



Fig. 2. Posterior distributions of the estimated abundances �� � � � � � (con-
tinuous lines) and histograms of FCLS estimates (dotted lines).

a MATLAB implementation on a 1.67-GHz Intel Core Duo.
The histograms of the FCLS abundance estimates are de-
picted in Fig. 2 (dotted lines). These histograms are clearly in
good agreement with the corresponding posterior distributions
obtained from the proposed hierarchical Bayesian algorithm.
However, it is important to point out that the abundance pos-
teriors shown in Fig. 2 (continuous lines) have been obtained
from a given pixel spectrum, whereas the FCLS algorithm has
to be run times to compute the abundance histograms.

Fig. 3 shows the abundance MAP estimates of and the
corresponding standard-deviations (computed from the pro-
posed Bayesian algorithm) as a function of the SNR. These
figures allow us to evaluate the estimation performance for a
given SNR. Note that the SNRs of the actual spectrometers like
AVIRIS are not below 30 dB when the water absorption bands
have been removed [37]. As a consequence, the results on
Fig. 3 indicate that the proposed Bayesian algorithm performs
satisfactorily for these SNRs. Fig. 3 also indicates that the
proposed estimates of converge (in the mean square sense)
to the actual values of when the SNR tends towards infinity.

B. Acceptance Rate of the Sampler

The computational efficiency of the proposed Gibbs sampler
is governed by the acceptation rate of the accept-reject proce-
dure for simulating according to a truncated Gaussian distri-
bution. The probability of accepting a sample distributed ac-
cording to a truncated Gaussian distribution is denoted

, where and and have been defined in (10).
Straightforward computations allow us to obtain

(18)

Fig. 3. MAP estimates (cross) and standard deviations (vertical bars) of
� �� � �� � � � � �� versus SNR.

Fig. 4. Theoretical (solid) and experimental (dotted) acceptation rates of the
accept-reject test versus SNR.

where is the probability density function (pdf) of
a multivariate Gaussian distribution with mean and covari-
ance matrix . Fig. 4 compares the theoretical acceptation rate

resulting from a rectangle integration method which
is compared with the experimental one estimated from the gen-
eration of 5000 Gaussian variables. These results have been ob-
tained for a given value of as a function
of the SNR. However, these results do not change significantly
for other values of . Fig. 4 shows that the acceptation rate

is an increasing function of SNR, as expected. It also
shows that the acceptation rate is very satisfactory for typical
SNRs encountered in hyperspectral imagery ( dB).
It is interesting to mention here that we did not experience any
problem in our simulations regarding the time required for sim-
ulating according to the truncated Gaussian distribution, since
the number of endmembers present in the image is relatively
small.



Fig. 5. MSE between the reference and estimated a posteriori change-point
probabilities versus � (solid line). Averaged MSE computed from 10 chains
(dashed line) �� � ����.

C. Sampler Convergence

The sampler convergence is monitored by computing the po-
tential scale reduction factor introduced in Section V-A for an
appropriate parameter of interest. Different choices for the pa-
rameter could be considered for the proposed unmixing pro-
cedure. This paper proposes to monitor the convergence of the
Gibbs sampler by checking the noise variance (see [32] for
a similar choice). The potential scale reduction factor for pa-
rameter computed from Markov chains is equal
to 0.9996. This value of confirms the good convergence of
the sampler (a recommendation for convergence assessment is
a value of [34, p. 332]).

The number of iterations necessary to compute an accu-
rate estimate of according to the MMSE principle in (13) is
determined by monitoring the MSE between a reference esti-
mate (obtained with ) and the estimate obtained
after iterations. Fig. 5 shows this MSE as a function
of the number of iterations (the number of burn-in iterations
is ). This figure indicates that a number of iterations
equal to is sufficient to ensure an accurate estima-
tion of the empirical average in (13) for this example. Note that,
for such values of and , unmixing this pixel takes ap-
proximately 0.3 s for a MATLAB implementation on a 2.8-GHz
Pentium IV.

VII. SPECTRAL UNMIXING OF AN AVIRIS IMAGE

To evaluate the performance of the proposed algorithm for ac-
tual data, this section presents the analysis of an hyperspectral
image that has received much attention in the remote sensing
and image processing communities [38]–[41]. The image de-
picted in Fig. 6 has 224 spectral bands, a nominal bandwidth of
10 nm, and was acquired in 1997 by the Airborne Visible In-
frared Imaging Spectrometer (AVIRIS) over Moffett Field, at
the southern end of the San Francisco Bay, CA (see [42] for
more details). It consists of a large water point (a part of a lake
that appears in dark pixel at the top of the image) and a coastal
area composed of vegetation and soil.

Fig. 6. Real hyperspectral data: Moffett Field acquired by AVIRIS in 1997
(left) and the region of interest at wavelength � � ���� �m shown in gray
scale (right).

The data set has been reduced from the original 224 bands
to bands by removing water absorption bands. Sub-
images of size 50 50 observed in spectral bands have been
processed by the proposed unmixing algorithm. This portion
of the image is represented in gray scale at wavelength

m (band 30) in Fig. 6.

A. Endmember Determination

The first step of the analysis identifies the pure materials that
are present in the scene. Note that a preliminary knowledge
of the ground geology would allow us to use a supervised
method for endmember extraction (e.g., by averaging the
pixel spectra on appropriate regions of interest). Such data
being not available, a fully automatic procedure has been
implemented. This procedure includes a principal component
analysis (PCA) which allows one to reduce the dimensionality
of the data and to know the number of endmembers present
in the scene as explained in [1]. After computing the cumu-
lative normalized eigenvalues, the data have been projected
on the first two principal axes (associated to the two larger
eigenvalues) which contain more than 95% of the information
(i.e., ). The vertices of the simplex
defined by the centered-whitened data in the new 2–D space
are determined by the N-FINDR algorithm [4]. The re-
sulting endmember spectra corresponding to vegetation, water
and soil are plotted in Fig. 7. It is interesting to note that other
endmember extraction algorithms have been recently studied
in [22] and [43]. The reader is invited to consult [44] for other
simulation examples obtained with one of these algorithms.

B. Abundance Estimation

The Bayesian unmixing algorithm defined in Sections III and
IV has been applied on each pixel of the hyperspectral image
(using the endmember spectra resulting from VII-A). Various
convergence diagnosis have shown that a short burn-in is suf-
ficient for this example. This is confirmed in Fig. 8 (bottom)
which shows a typical Markov chain output for the three abun-
dance coefficients. Consequently, the burn-in period has been
fixed to for all results presented in this section. The
posterior distributions of the abundances are
represented in Fig. 8 (top) for the pixel #(43,35). These pos-
terior distributions indicate that the pixel is composed of soil
essentially, reflecting that the pixel is located on a coast area
containing very few vegetation.



Fig. 7. The � � � endmember spectra obtained by the N-FINDR algorithm.

Fig. 8. Top: posteriors of the abundances � �� � �� � � � � �� for the pixel
#(43,35). Bottom: 150 first outputs of the sampler.

The image fraction maps estimated by the proposed algorithm
for the pure materials are represented in Fig. 9 (top).
Note that a white (respectively, black) pixel in the map indi-
cates a large (respectively, small) value of the abundance coef-
ficient. Note also that the estimates have been obtained by av-
eraging the last simulated samples for each pixel,
according to the MMSE principle. The lake area (represented
by white pixels in the water fraction map and by black pixels in
the other maps) can be clearly recovered. Note that the analysis
of this image takes approximately 18 min for a MATLAB imple-
mentation on a 2.8–GHz Pentium IV. The results obtained with
the deterministic fraction mapping routine of the ENVI software
[35, p. 739] are represented in Fig. 9 (bottom) for comparison.
These figures obtained with a constrained least-squares algo-
rithm (satisfying the additivity and positivity constraints) are
clearly in good agreement with Fig. 9 (top). However, the pro-
posed Bayesian algorithm allows one to estimate the full poste-
rior of the abundance coefficients and the noise variance. This
posterior can be used to compute measures of confidence re-
garding the estimates.

C. Convergence of the Sampler

As explained in Section V, the convergence of the sampler
can be checked by monitoring some key parameters such as the
parameter . The potential scalar reduction factor associated

Fig. 9. Top: the fraction maps estimated by the proposed algorithm (black
(respectively, white) means absence (respectively, presence) of the material).
Bottom: the fraction maps recovered by the ENVI software.

Fig. 10. Potential scale reduction factors computed for each pixel.

with the noise variance is computed from Markov
chains for each pixel. The values of computed for each pixel
are represented in Fig. 10. All these values are below 1.0028
(the value obtained for the pixel #(10,26)) which indicate a good
convergence of the sampler for each pixel.

VIII. ESTIMATING THE NUMBER OF ENDMEMBERS USING A

REVERSIBLE JUMP SAMPLER

This section generalizes the previous hierarchical Bayesian
sampler to linear mixtures with an unknown number of com-
ponents . We assume here that the endmember spectra be-
long to a known library (where denotes



the -spectrum of the endmember # ). How-
ever, the number of components as well as the corresponding
spectra belonging to are unknown.

A. Extended Bayesian Model

The posterior distribution of the unknown parameter vector
can be written

(19)

where

(20)

and the dimensions of and depend on the un-
known parameter . The priors and have been
defined in Section III-B. A discrete uniform distribution on

is chosen for the prior associated to the number
of mixture components

(21)

Moreover, all combinations of spectra belonging to the library
are assumed to be equiprobable conditional upon

(22)

with .

B. Hybrid Metropolis-Within-Gibbs Algorithm

This section studies an hybrid Metropolis-within-Gibbs algo-
rithm to sample according to . The vectors
to be sampled belong to a space whose dimension depends on

, requiring to use a dimension matching strategy as in [11],
[45]. More precisely, the proposed algorithm referred to as Al-
gorithm 2 consists of three moves:

1) updating the endmember spectra ;
2) updating the abundance vector ;
3) updating the noise variance .

The three moves are scanned systematically as in [11] and are
detailed here.

1) Updating the Endmember Spectra : The endmember
spectra involved in the mixing model are updated by using three
types of move, referred to as “BIRTH”, “DEATH” and “SWITCH”
moves, as in [23, p. 53]. The first two of these moves consist of
increasing or decreasing the number of pure components by
1. Therefore, they require the use of the reversible jump MCMC
method introduced by Green [46] and then widely used in the
signal processing literature (see [12], [13], or more recently,
[47]). Conversely, the dimension of is not changed in the third
move, requiring the use of a standard Metropolis-Hastings ac-
ceptance procedure. Assume that at iteration , the current model
is defined by . The “BIRTH”, “DEATH”
and “SWITCH” moves are defined as follows.

• BIRTH: A birth move is proposed with the
probability as explained in Algorithm 3. A new spec-
trum is randomly chosen among the available endmem-
bers of the library to build . A new
abundance coefficient vector is proposed according to
a rule inspired by [11]:



— draw a new abundance coefficient from the Beta dis-
tribution ;

— rescale the existing weights so that all weights sum to 1,
using ;

— build .
• DEATH: A death move is proposed with the

probability as explained in Algorithm 4. One of the
spectra of is removed, as well as the corresponding
abundance coefficient. The remaining abundances coeffi-
cients are rescaled to sum to 1.

• SWITCH: A switch move6 is proposed with the probability
(see Algorithm 5). A spectrum randomly chosen in

is replaced by another spectrum randomly chosen
in the library .

At each iteration, one of the moves “BIRTH,” “DEATH,” and
“SWITCH” is randomly chosen with probabilities
and with . Of course, the
death move is not allowed for and the birth move
is impossible for (i.e., ). As
a consequence, and

for . The
acceptance probabilities for the “birth” and “death” moves are

and where is given in
Appendix I.

The acceptance probability for the “switch” move is the stan-
dard Metropolis Hastings ratio with

(23)

Note that the proposal ratio associated to this switch move is 1,
since in each direction the probability of selecting one spectrum
from the library is .

2) Generating Samples According to :
As in the initial model, the following posterior is obtained:

(24)

6The “switch” move allows one to speed up the algorithm and to improve
the mixing properties of the sampler. Assume the reversible jump algorithm
has accepted the model � � �� � � � whereas the correct model is � �
�� � � �. In order to move from �� � � � to �� � � �, the algorithm can certainly
choose a new pure spectrum � (birth move) leading to �� � � � � � and delete the
component � . However, the “switch” move allows one to move from �� � � �
to �� � � � in a single step.

Fig. 11. Endmember spectra of the library.

3) Generating According to : This is
achieved as follows:

(25)

C. Simulations

The accuracy of the Metropolis-within-Gibbs sampler is
studied by considering the synthetic pixel spectrum used in
Section VI. Recall here that this pixel results from the combina-
tion of three endmembers (construction concrete, green grass,
micaceous loam) with the abundance vector .
The observation is corrupted by an additive Gaussian noise with

dB. The results are obtained for iter-
ations, including burn-in iterations. This simulation
uses a spectrum library containing six elements: construction
concrete, green grass, micaceous loam, olive green paint, bare
red brick, and galvanized steel metal. The spectra of these pure
components are depicted in Fig. 11.

The first step of the analysis estimates the model order
(i.e., the number of endmembers used for the mixture) using
the maximum a posteriori (MAP) estimator. The posterior dis-
tribution of depicted in Fig. 12 is clearly in good agreement
with the actual value of since its maximum is obtained for

. The second step of the analysis estimates the poste-
rior probabilities of all endmember combinations, conditioned
to . For this experiment, only two matrices were generated

and with the probabilities
and . The maximum probability corresponds to
the actual spectra involved in the mixture. The posterior distri-
butions of the corresponding abundance coefficients are finally
estimated and depicted in Fig. 13. These posteriors are clearly
in good agreement with the actual values of the abundances

. Note that unmixing this pixel with the
values of and defined above takes approximatively 50 s
for a MATLAB implementation on a 2.8-GHz Pentium IV.



Fig. 12. Posterior distribution of the estimated model order �.

Fig. 13. Posterior distribution of the estimated abundances ��� �
�� � � � � � conditioned upon � � � and� � �� � � � � �.

IX. CONCLUSION

This paper studied a hierarchical Bayesian model for hyper-
spectral image unmixing. The relationships between the dif-
ferent image spectra were naturally expressed in a Bayesian con-
text by the prior distributions adopted for the model and their
parameters. The posterior distributions of the unknown param-
eters related to this model were estimated by a Gibbs sampling
strategy. These posterior distributions provided estimates of the
unknown parameters but also information about their uncertain-
ties such as standard deviations or confidence intervals. Two al-
gorithms were developed depending whether the endmembers
belonging to the mixture are known or belong to a known li-
brary. Simulation results conducted on synthetic and real images
illustrated the performance of the proposed methodologies.

The hierarchical Bayesian algorithm developed in this paper
could be modified to handle more complicated models. For in-
stance, it would be interesting to extend the proposed algorithm
to unmix hyperspectral images composed of homogenous re-
gions surrounded by sharp boundaries by introducing spatial
correlation via hidden Markov models. Estimating the compo-
nents of a mixture of endmembers embedded in other noise
structures is also under investigation.

APPENDIX I
ACCEPTANCE PROBABILITIES FOR THE

“BIRTH” AND “DEATH” MOVES

This section derives the acceptance probabilities for the
“birth” and “death” moves introduced in Section VIII. At
iteration index , consider the birth move from the state

to the new state with

and . The acceptance ratio associated to this
“birth” move is

(26)

where refers to the proposal distribution, is the
Jacobian of the transformation and denotes the transition
probability, i.e., and . Ac-
cording to the moves of Section VIII, the proposal ratio is

(27)

where denotes the pdf of a Beta distribution .
Indeed, the probability of choosing a new element in the library
(“birth” move) is and the probability of re-
moving an element (“death” move) is .

The posterior ratio appearing in (26) can be rewritten as

(28)

Since the abundance coefficient vector has a Dirichlet prior
, the prior ratio can be expressed as

(29)



By choosing a priori equiprobable configurations for
conditional upon , the prior ratio for the spectrum matrix is

(30)

The prior ratio related to the number of mixtures associated
to the uniform distribution specified in (21) reduces to 1.

Finally, the acceptance ratio for the BIRTH move is

(31)

Note that (31) is very similar to the equation given in [45] and
that when has a uniform prior on the simplex .
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