
HAL Id: hal-03579585
https://hal.science/hal-03579585v1

Preprint submitted on 18 Feb 2022 (v1), last revised 18 Jul 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Iterates of the Frank-Wolfe Algorithm May Not
Converge

Jérôme Bolte, Cyrille W. Combettes, Edouard Pauwels

To cite this version:
Jérôme Bolte, Cyrille W. Combettes, Edouard Pauwels. The Iterates of the Frank-Wolfe Algorithm
May Not Converge. 2022. �hal-03579585v1�

https://hal.science/hal-03579585v1
https://hal.archives-ouvertes.fr

The Iterates of the Frank-Wolfe Algorithm May Not Converge

Jérôme Bolte 1 jerome.bolte@ut-capitole.fr

Cyrille W. Combettes 1 cyrille.combettes@tse-fr.eu

Édouard Pauwels 2 3 edouard.pauwels@irit.fr

1 Toulouse School of Economics, Université Toulouse 1 Capitole, Toulouse, France
2 Centre National de la Recherche Scientifique, France
3 Institut de Recherche en Informatique de Toulouse, Université Toulouse 3 Paul Sabatier, Toulouse, France

Abstract

The Frank-Wolfe algorithm is a popular method for minimizing a smooth convex function f

over a compact convex set C. While many convergence results have been derived in terms
of function values, hardly nothing is known about the convergence behavior of the sequence
of iterates (xt)t∈N. Under the usual assumptions, we design several counterexamples to the
convergence of (xt)t∈N, where f is d-time continuously differentiable, d > 2, and f(xt) →
minC f . Our counterexamples cover the cases of open-loop, closed-loop, and line-search
step-size strategies. We do not assume misspecification of the linear minimization oracle
and our results thus hold regardless of the points it returns, demonstrating the fundamental
pathologies in the convergence behavior of (xt)t∈N.

1 Introduction

The Frank-Wolfe algorithm [11], a.k.a. conditional gradient algorithm [23], addresses the opti-
mization problem

min
x∈C

f(x),

where C ⊂ Rn is a nonempty compact convex set, f : D → R is a convex function with Lipschitz-
continuous gradient, and D ⊂ Rn is an open convex set containing C. It does not require projec-
tions onto C to ensure the feasibility of its iterates and uses linear minimizations over C instead,
which can be significantly cheaper to compute [6]. Another advantage is that it may generate
iterates that are sparse with respect to the vertices of C [4]. Both properties have led to many
applications of the Frank-Wolfe algorithm [22, 15, 20, 17, 24, 7, 9].

With a suitable step-size strategy, the sequence of function values (f(xt))t∈N converges to
minC f at a rate O(1/t) [23, 10, 16], and this result has been extensively complemented: lower
bounds have been established [3, 16, 21], faster rates under additional assumptions have been de-
rived [23, 14, 12, 18], and variants speeding up the algorithm have been developed [19, 13, 2, 5].
However, it is not known whether the sequence of iterates (xt)t∈N converges or not, apart from the
trivial case where the solution set argminC f is a singleton [23, 10]. This is in contrast with other
popular convex optimization methods such as the gradient descent, coordinate descent, mirror de-
scent, proximal point, forward-backward, or Douglas-Rachford algorithm, for which convergence
results for the sequence of iterates have been proved [8] or disproved [1].

1

jerome.bolte@ut-capitole.fr
mailto:cyrille.combettes@tse-fr.eu
edouard.pauwels@irit.fr

Note that counterexamples to the convergence of (xt)t∈N could be designed trivially by as-
suming that the linear minimization oracle is misspecified (Definition 2.1), i.e., that it does not
necessarily return the same output each time the same input is entered. A simple illustration is
given by the minimization of f = 0 over C = [0, 1] using an open-loop strategy (i)–(i’). As mis-
specification allows to move towards 0 or towards 1 at each iteration, (xt)t∈N may follow any
arbitrary trajectory in [0, 1]. In R2, one can also easily build counterexamples where (xt)t∈N does
not converge while remaining out of argminC f , for any step-size strategy (i)–(iii): consider, e.g.,
minimizing f = dist(·, [(−1/2, 0), (1/2, 0)])2 over C = conv{(−2, 1/4), (−1, 0), (1, 0), (0, 1)}. These
counterexamples are artificial and somehow vain, as they rely on the misspecification assumption
and a very specific adversarial choice of the points returned by the oracle. Our work does not
assume misspecification of the oracle to demonstrate that (xt)t∈N may not converge and relies
instead on the joint geometry of C and f .

Contributions. We show that the sequence of iterates (xt)t∈N generated by the Frank-Wolfe
algorithm does not converge in general. We design several instances of C and f satisfying the usual
assumptions, i.e., C is compact and convex and f is convex with Lipschitz-continuous gradient, for
which the sequence (xt)t∈N does not converge, while f(xt) → minC f . We cover all step-size
strategies for which convergence results for the function values have been established, i.e., the so-
called open-loop, closed-loop, and line-search strategies. Furthermore, the functions f designed
are d-time continuously differentiable, where d > 2 is arbitrarily large. We use key results from
[1] and do not assume misspecification of the linear minimization oracle, thus demonstrating the
fundamental pathologies in the convergence behavior of (xt)t∈N.

2 Preliminaries

2.1 Notation and definitions

We consider the Euclidean space (Rn, 〈·, ·〉) equipped with the Euclidean norm ‖·‖. Given a convex
set C ⊂ Rn and x ∈ C, the tangent cone to C at x is TCx = cl{λ(y − x) | λ > 0, y ∈ C} and the
normal cone to C at x is NCx = {u ∈ Rn | ∀y ∈ C, 〈y − x, u〉 6 0}. The diameter and the set
of vertices of C are denoted by diam C and vert C respectively. The Hausdorff distance between
two nonempty compact sets A,B ⊂ Rn is denoted by dist(A,B). The canonical vectors in R2 are
e1 = (1, 0) and e2 = (0, 1). The unit sphere in R2 is S = {x ∈ R2 | ‖x‖ = 1}. Given three points
A,B,C ∈ R2, the angle at B formed by the rays [BA) and [BC) is denoted by ÂBC.

2.2 The Frank-Wolfe algorithm

The Frank-Wolfe algorithm [11] is presented in Algorithm 2. It assumes access to a linear mini-
mization oracle (LMO, Oracle 1) solving linear minimization problems over the constraint set C.

Oracle 1 LMO

Input: Vector u ∈ Rn.
Output: Point v ∈ argminv∈C〈v, u〉.

The linear minimization oracle does not ensure a priori that the same output is returned each
time the same input is entered. When argminv∈C〈v, u〉 is not a singleton, it makes a choice on
which element to return, based on, e.g., a proximity score, an ordering of vertices, or a random
seed. This leads to the notion of misspecification for the oracle.

2

Definition 2.1. The linear minimization oracle LMO is specified if u ∈ Rn 7→ LMO(u) is a well-
defined function and satisfies LMO(u) = LMO(u′) for all positively colinear u, u′ ∈ Rn. Otherwise, it is
misspecified.

Algorithm 2 Frank-Wolfe

Input: Start point x0 ∈ C, step-size strategy (γt)t∈N ∈ [0, 1]
N.

Output: Sequence of iterates (xt)t∈N ∈ CN.
1: for t = 0 to T − 1 do
2: vt ← LMO(∇f(xt))
3: xt+1 ← (1− γt)xt + γtvt
4: end for

Remark 2.2. (i) The step-size strategy (γt)t∈N need not be numerically defined before running Algo-
rithm 2. More precisely, we may say that a sequence (xt)t∈N ∈ (Rn)N is generated by the Frank-Wolfe
algorithm if x0 ∈ C and for all t ∈ N, there exist vt ∈ argminv∈C〈v,∇f(xt)〉 and γt ∈ [0, 1] such
that xt+1 = (1− γt)xt+ γtvt. (ii) When argminv∈C〈v,∇f(xt)〉 is not a singleton, the choice for vt is
made by the linear minimization oracle. If the oracle is misspecified, then (vt)t∈N, and thus (xt)t∈N,
may not be uniquely determined by x0 and (γt)t∈N.

Since xt+1 is generated by convex combination of xt and vt (Line 3), it is feasible and there is
no need for a projection step back onto C. Note that xt+1 = xt+ γt(vt− xt) is obtained by moving
from xt towards vt. Furthermore, assuming the linear minimization oracle returns only vertices of
C, at most one new vertex is added to the convex decomposition of xt to obtain xt+1, making the
sequence (xt)t∈N sparse with respect to the vertices of C.

There are mainly four step-size strategies that have been considered and for which the rate at
which f(xt)→ minC f has been established (Theorem 2.4). These are:

(i) an open-loop strategy

∀t ∈ N, γt =
1

t+ 1
;

(i’) another open-loop strategy

∀t ∈ N, γt =
2

t+ 2
;

(ii) the closed-loop strategy

∀t ∈ N, γt = min

{
〈xt − vt,∇f(xt)〉
L‖xt − vt‖2

, 1

}
;

(iii) the line-search strategy

∀t ∈ N, γt ∈ argmin
γ∈[0,1]

f(xt + γ(vt − xt)).

Assumption 2.3 collects the general set of assumptions for the Frank-Wolfe algorithm.

Assumption 2.3. Let C ⊂ Rn be a nonempty compact convex set and f : D → R be a convex function
with L-Lipschitz-continuous gradient, where L > 0 and D ⊂ Rn is an open convex set containing C.

3

Theorem 2.4 ([23, 10, 16]). Consider Assumption 2.3. Then the Frank-Wolfe algorithm satisfies for
all t > 1,

f(xt)−min
C
f 6

L(diam C)2(1 + ln t)/(2t) if (γt)t∈N follows (i);
2L(diam C)2/(t+ 2) if (γt)t∈N follows (i’);
4L(diam C)2/(t+ 2) if (γt)t∈N follows (ii);
4L(diam C)2/(t+ 2) if (γt)t∈N follows (iii).

3 The Frank-Wolfe algorithm may not converge

We turn on to the main results of the paper. We design several instances of C and f satisfying
Assumption 2.3 and for which the sequence of iterates (xt)t∈N generated by the Frank-Wolfe al-
gorithm using a usual step-size strategy (i)–(iii) does not converge, while Theorem 2.4 still holds.
The strength of these counterexamples is to be valid against specified linear minimization oracles,
demonstrating that nonconvergence is intrinsic to the Frank-Wolfe algorithm in the smooth convex
optimization setting. We will use a key result from [1] which we restate in Theorem 3.1. It shows
that we can design a convex function, arbitrarily smooth, from polygonal sketches, and that we
can further choose its gradient directions at specific points from a set of directions described by
the geometry of the sketches.

Given a polytope P ⊂ R2 and a vertex V ∈ vertP, we denote by KPV = NPV ∩ (−TPV) the
cone of admissible directions at V for P.

Theorem 3.1 ([1]). In R2, let (P`)`∈N be a sequence of polytopes, (uk)k∈N ∈ SN be a sequence of unit
vectors, (Vk)k∈N ∈

(⋃
`∈N vertP`

)N be a sequence of vertices of the polytopes, and (δ`)`∈N ∈]0, 1[
N be

such that

(i) for all k ∈ N, there exists ` ∈ N such that uk ∈ KP`
Vk;

(ii) for all ` ∈ N and λ ∈ [1− δ`, 1 + δ`], λP`+1 ⊂ intP`;

(iii) for all ` ∈ N, 0 ∈ intP`.

Then for any open convex set D ⊂ R2 and d ∈ N such that P0 ⊂ D and d > 2 respectively, there exist
a d-time continuously differentiable convex function f : D → R and a sequence (η`)`∈N ∈ RN such
that for all k, ` ∈ N,

(iv) η`+1 < η`;

(v) P` ⊂ {x ∈ R2 | f(x) 6 η`};

(vi) f(V) = η` for all V ∈ vertP`;

(vii) dist(P`, {x ∈ R2 | f(x) 6 η`}) 6 δ`;

(viii) {x ∈ R2 | f(x) 6 η`} has positive curvature;

(ix) ∇f(Vk) is positively colinear to uk;

(x) ∇2f is positive definite outside of argminD f =
⋂
`∈N P`.

Remark 3.2. In Theorem 3.1, ∇f is Lipschitz-continuous on D by the mean value theorem, since
d > 2. Thus, f satisfies Assumption 2.3.

4

Lemma 3.3. Consider the function f and all other variables defined in Theorem 3.1. Let C ⊂ D
be a compact convex set and consider minimizing f over C using the Frank-Wolfe algorithm with the
line-search strategy (iii). Let t ∈ N and suppose that there exists k ∈ N such that Vk ∈ [xt, vt] and
〈vt − xt, uk〉 = 0. Then xt+1 = Vk.

Proof. We have xt+1 = (1 − γt)xt + γtvt where γt ∈ argminγ∈[0,1] f(xt + γ(vt − xt)), i.e., xt+1 ∈
[xt, vt] and 〈vt − xt,∇f(xt+1)〉 = 0. By Theorem 3.1(ix), uk and ∇f(Vk) are positively colinear
so 〈vt − xt,∇f(Vk)〉 = 0. By Theorem 3.1(viii), {x ∈ R2 | f(x) 6 f(Vk)} has positive curvature,
which yields xt+1 = Vk.

Lemma 3.4. Consider the function f and all other variables defined in Theorem 3.1. Let k1, k2, `1, `2 ∈
N, `1 > `2, and u ∈ S, and suppose that Vk1 ∈ P`1 and Vk2 ∈ P`2 are such that 0, Vk1 , Vk2 are aligned
and uk1 = uk2 = u. Then ∇f(x) is positively colinear to u for all x ∈ [Vk1 , Vk2].

Proof. Let L1 = {x ∈ R2 | f(x) 6 f(Vk1)} and L2 = {x ∈ R2 | f(x) 6 f(Vk2)}. By Theo-
rem 3.1(viii), they have positive curvature. Let n1 : bdL1 → S and n2 : bdL2 → S be their Gauss
maps respectively, which are diffeomorphisms that map a point on the boundary of the set to the
normal to the set at that point [25, Sec. 2.5]. By Theorem 3.1(ix), n1(Vk1) = u = n2(Vk2). Let
x′ ∈ [Vk1 , Vk2] and L = {x ∈ R2 | f(x) 6 f(x′)}. The construction from [1] leading to Theorem 3.1
gives L = αL1+βL2, where α, β > 0 and α+β > 0. Thus, by alignment with 0, x′ = αVk1 +βVk2 ,
and, by [1, Lem. 2], L has positive curvature. Let n : bdL → S be its Gauss map. By [1, Lem. 2]
again, n−1(u) = αn−11 (u) + βn−12 (u) = αVk1 + βVk2 = x′, i.e, n(x′) = u.

3.1 Counterexample 1: Line-search strategy

We start with a counterexample for the line-search strategy (iii).

Counterexample 3.5. There exist C and f , satisfying Assumption 2.3, and x0 ∈ C such that any
sequence (xt)t∈N generated by Frank-Wolfe algorithm using the line-search strategy (iii) does not
converge.

Let C = conv{(−1, 0), (0, 1), (1, 0)} and f be defined via Theorem 3.1 with A0 = (−1/2, 0),
B0 = (−1/4, 3/4), C0 = (1/4, 3/4), D0 = (1/2, 0), and, for all k ∈ N,

Ak+1 =

(
−1

4
+
〈Bk+1, e2〉
〈Bk, e2〉

(
〈Ak, e1〉+

1

4

)
, 0

)
,

Bk+1 =

(
−1

4
,
3

5
〈Ck, e2〉

)
,

Ck+1 =

(
1

4
,
3

5
〈Bk, e2〉

)
,

Dk+1 =

(
1

4
+
〈Ck+1, e2〉
〈Ck, e2〉

(
〈Dk, e1〉 −

1

4

)
, 0

)
,

and Pk = conv{Ak, Bk, Ck, Dk,−Dk,−Ck,−Bk,−Ak}. Then C and f satisfy Assumption 2.3
so Theorem 2.4 holds. The solution set is argminC f =

⋂
k∈N Pk = [(−1/4, 0), (1/4, 0)]. The

construction is such that for all k ∈ N, the points Bk, Ck+1, (1, 0), and the points Ck, Bk+1,
(−1, 0), are aligned, and ̂AkBkCk = Â0B0C0 and ̂BkCkDk = ̂B0C0D0. An illustration is presented
in Figure 1.

5

A0

B0 C0

D0A1

B1 C1

D1(−1, 0) (1, 0)

Figure 1: The constraint set (in black), polygonal sketches of the objective function (in orange), and the
solution set (in red). For all k ∈ N, the points Bk, Ck+1, (1, 0), and the points Ck, Bk+1, (−1, 0), are aligned,
and ̂AkBkCk = ̂A0B0C0 and ̂BkCkDk = ̂B0C0D0.

The construction allows to choose (uk)k∈N such that u0 ∈ KP0
C0 and, for all k > 1,{

uk ∈ KPk
Ck and 〈Ck −Bk−1, uk〉 = 0 if k is even;

uk ∈ KPk
Bk and 〈Bk − Ck−1, uk〉 = 0 if k is odd.

Let x0 = C0. By induction and using Lemma 3.3, we obtain for all t ∈ N,

xt =

{
Ct if t is even;
Bt if t is odd.

Therefore, 〈xt, e1〉 = (−1)t/4 for all t ∈ N, so (xt)t∈N does not converge. An illustration is
presented in Figure 2.

x0

Figure 2: The constraint set (in black), polygonal sketches of the objective function (in orange), the solution
set (in red), gradient directions (in green), and the trajectory (in blue) of the sequence (xt)t∈N generated by
the Frank-Wolfe algorithm with the line-search strategy (iii) starting from x0. The abscisse of xt is (−1)t/4
for all t ∈ N, so (xt)t∈N does not converge.

3.2 Counterexample 2: Line-search strategy and solution set in the interior

In our next counterexample, the solution set argminC f lies in the interior of the constraint set.

Counterexample 3.6. There exist C and f , satisfying Assumption 2.3 and argminC f ⊂ int C, and
x0 ∈ C such that any sequence (xt)t∈N generated by Frank-Wolfe algorithm using the line-search
strategy (iii) does not converge.

6

Let C = conv{(−1,−1), (−1, 1), (1, 1), (1,−1)} and f be defined via Theorem 3.1 with A0 =
(−1/10,−1), B0 = (−1, 1/10), C0 = (1/10, 1), D0 = (1,−1/10), λ0 = 1, and, for all k ∈ N,
λk+1 = 110λk/(90 + 101λk),

Ak = λkA0, Bk = λkB0, Ck = λkC0, Dk = λkD0,

and Pk = conv{λkA0, λkB0, λkC0, λkD0} = λkP0. Thus, (λk)k∈N is a decreasing sequence that
converges to 1/5. Then C and f satisfy Assumption 2.3 so Theorem 2.4 holds. The solution set
is argminC f =

⋂
k∈N Pk = (1/5)P0. The construction is such that for all k ∈ N, the points

Ak, Bk+1, (−1, 1), the points Bk, Ck+1, (1, 1), the points Ck, Dk+1, (1,−1), and the points Dk,
Ak+1, (−1,−1), are aligned. An illustration is presented in Figure 3.

B0

C0

D0

A0

A1

B1

C1

D1

(−1,−1)

(−1, 1) (1, 1)

(1,−1)

Figure 3: The constraint set (in black), polygonal sketches of the objective function (in orange), and the
solution set (in red). For all k ∈ N, the points Ak, Bk+1, (−1, 1), the points Bk, Ck+1, (1, 1), the points
Ck, Dk+1, (1,−1), and the points Dk, Ak+1, (−1,−1), are aligned.

The construction allows to choose (uk)k∈N such that u0 ∈ KP0A0 and, for all k > 1,
uk ∈ KPk

Ak and 〈Ak −Dk−1, uk〉 = 0 if k ≡ 0 (mod 4);

uk ∈ KPk
Bk and 〈Bk −Ak−1, uk〉 = 0 if k ≡ 1 (mod 4);

uk ∈ KPk
Ck and 〈Ck −Bk−1, uk〉 = 0 if k ≡ 2 (mod 4);

uk ∈ KPk
Dk and 〈Dk − Ck−1, uk〉 = 0 if k ≡ 3 (mod 4).

Let x0 = A0. By induction and using Lemma 3.3, we obtain for all t ∈ N,

xt =

At if t ≡ 0 (mod 4);

Bt if t ≡ 1 (mod 4);

Ct if t ≡ 2 (mod 4);

Dt if t ≡ 3 (mod 4).

Therefore, ‖xt+1 − xt‖ >
√
2/5 for all t ∈ N, where

√
2/5 is the side length of the square

argminC f = (1/5)P0, so (xt)t∈N does not converge. An illustration is presented in Figure 4.

7

x0

Figure 4: The constraint set (in black), polygonal sketches of the objective function (in orange), the solution
set (in red), gradient directions (in green), and the trajectory (in blue) of the sequence (xt)t∈N generated by
the Frank-Wolfe algorithm with the line-search strategy (iii) starting from x0. The sequence (xt)t∈N circles
around the solution set and does not converge.

3.3 Counterexample 3: Closed-loop strategy

Our next counterexample involves the closed-loop strategy (ii).

Counterexample 3.7. There exist C and f , satisfying Assumption 2.3, and x0 ∈ C such that any
sequence (xt)t∈N generated by Frank-Wolfe algorithm using the closed-loop strategy (ii) does not
converge.

Let C = [−1, 1]× [0, 2K], where K ∈ N, and f be defined via Theorem 3.1 with, for all k ∈ N,

Ak =

(
(−1)k+1 61

35
,
9

8

61

35

1

2k+1−K

)
, Bk =

(
(−1)k 61

35
,
17

16

61

35

1

2k+1−K

)
,

Dk =

(
(−1)k+1,

9

8

1

2k+1−K

)
, Ck =

(
(−1)k, 17

16

1

2k+1−K

)
,

D′k =

(
(−1)k+1,

1

2k+1−K

)
, C ′k =

(
(−1)k 61

35
,

1

2k+1−K

)
,

Yk =

(
−61

35

(
1 +

1

2k

)
, 0

)
if k is even;(

−61

35

(
1 +

17

16

8

9

1

2k

)
, 0

)
if k is odd,

Y ′k =

(
−61

35
− 8

9

1

2k
, 0

)
,

Zk =

(
61

35

(
1 +

1

2k

)
, 0

)
if k is even;(

61

35

(
1 +

9

8

16

17

1

2k

)
, 0

)
if k is odd,

Z ′k =

(
61

35
+

16

17

1

2k
, 0

)
,

and P2k = conv{Yk, Ak, Bk, Zk, X2k} and P2k+1 = conv{Y ′k, D′k, Dk, Ck, C
′
k, Z

′
k, X2k+1}, where

Xk = (0,−1−1/(k+1)). Then C and f satisfy Assumption 2.3 so Theorem 2.4 holds. The solution
set is argminC f =

⋂
k∈N Pk ∩ C = [(−1, 0), (1, 0)]. The construction is such that for all k ∈ N, the

lines (AkBk) and (CkDk) are parallel, 〈Bk, e2〉 < 〈Ak, e2〉 and 〈Ck, e2〉 < 〈Dk, e2〉, and the points
0, Dk, Ak, and the points 0, Ck, Bk, are aligned. An illustration is presented in Figure 5.

8

0

A0

B0

C0
D0

C ′0D′0

Y0 Y ′0 Z0Z ′0

A1B1

C1
D1C ′1 D′1

Y1

Y ′1

Z1

Z ′1

A2 B2
C2D2

C ′2D′2

Y2 Z2

Y ′2 Z ′2

Figure 5: The constraint set (in black), polygonal sketches of the objective function (in orange and dark
orange), and the solution set (in red). The polygonal sketches are studied by pairs, corresponding to the
color tone, i.e., to the direction in which they lean (see Figure 6). For all k ∈ N, the lines (AkBk) and
(CkDk) are parallel, 〈Bk, e2〉 6 〈Ak, e2〉 and 〈Ck, e2〉 6 〈Dk, e2〉, and the points 0, Dk, Ak, and the points 0,
Ck, Bk, are aligned.

By properties of the construction, for all k ∈ N,

KP2k+1
Dk ⊂ KP2k

Ak, KP2k+1
Ck ⊂ KP2k

Bk,

KP4k+1
D2k ∩ (R∗+)2 6= ∅, KP4k+1

C2k ∩ (R∗+)2 6= ∅,
KP4k+3

D2k+1 ∩ (R∗− × R∗+) 6= ∅, KP4k+3
C2k+1 ∩ (R∗− × R∗+) 6= ∅.

Thus, we can choose (uk)k∈N such that for all k ∈ N,

(i) ∇f(Ak) and ∇f(Dk), and ∇f(Bk) and ∇f(Ck), are positively colinear;

(ii) 〈e2,∇f(x)〉 > 0 and (−1)k〈e1,∇f(x)〉 > 0 for all x ∈ {Ak, Bk, Ck, Dk}.

Then, for all k ∈ N, let

Ek =

(
(−1)k+1,

7

4

1

2k+1−K

)
, Fk =

(
(−1)k, 7

4

1

2k+1−K

)
,

Ik =

(
(−1)k+1,

13

8

1

2k+1−K

)
, Jk =

(
(−1)k, 13

8

1

2k+1−K

)
,

Hk =

(
(−1)k+1,

5

4

1

2k+1−K

)
, Gk =

(
(−1)k, 5

4

1

2k+1−K

)
.

An illustration is presented in Figure 6.

9

Ak
Bk

Ck
Dk

C ′kD′k

Ek Fk

GkHk

Ik Jk

Figure 6: A pair of polygonal sketches (in orange) and gradient directions (in green). Here, k ∈ N is
even. Using the gradient directions, we show that the linear minimization oracle always returns (−1, 0) in
conv{Ek, Fk, Gk, Hk} here (Lemma 3.9(iv)). Then, we show that, if k is large enough, there exists an iterate
xt ∈ conv{Ek, Fk, Jk, Ik} (Lemma 3.9(v)). Put together and using Thales’ theorem, we can measure the min-
imum horizontal displacement of the iterates when they cross (vertically) the rectangle conv{Ik, Jk, Gk, Hk}.
This turns out to be a constant number, showing that (xt)t∈N does not converge (Lemma 3.9(vi)).

Lemma 3.8. Let k ∈ N and x ∈ C.

(i) If 〈x, e2〉 > 0, then 〈e2,∇f(x)〉 > 0.

(ii) If x ∈ conv{Ek, Fk, Gk, Hk}, then (−1)k〈e1,∇f(x)〉 > 0.

Proof. (i) Let x∗ = x − 〈x, e2〉e2 ∈ [(−1, 0), (1, 0)] = argminC f . By convexity of f , 〈x∗ −
x,∇f(x)〉 < 0, i.e., 〈x, e2〉〈e2,∇f(x)〉 > 0. Since 〈x, e2〉 > 0, we obtain 〈e2,∇f(x)〉 > 0.

(ii) By Lemma 3.4 and items (i)–(ii) above, (−1)k〈e1,∇f(y)〉 > 0 for all y ∈ [Ak, Dk] ∪ [Bk, Ck].
There exist y1 ∈ [Ak, Dk], y2 ∈ [Bk, Ck], and γ′ ∈ [0, 1] such that y2 − y1 = ‖y2 − y1‖e1
and x = (1 − γ′)y1 + γ′y2. Let ϕ : γ ∈ [0, 1] 7→ f((1 − γ)y1 + γy2), which is convex. Then
ϕ′(γ) = 〈y2 − y1,∇f((1 − γ)y1 + γy2)〉 = ‖y2 − y1‖〈e1,∇f((1 − γ)y1 + γy2)〉 for all γ ∈
[0, 1]. Thus, (−1)kϕ′(0) = (−1)k‖y2 − y1‖〈e1,∇f(y1)〉 > 0 and (−1)kϕ′(1) = (−1)k‖y2 −
y1‖〈e1,∇f(y2)〉 > 0, so, by monotonicity of ϕ′, (−1)kϕ′(γ) > 0 for all γ ∈ [0, 1]. Therefore,
(−1)k〈e1,∇f(x)〉 > 0.

Lemma 3.9 completes our counterexample. Note that L > L∗C
def
= supx,y∈C,x 6=y ‖∇f(y) −

∇f(x)‖/‖y − x‖ is most likely in practice, because the optimal value L∗C is very hard to estimate
precisely in general.

Lemma 3.9. Consider the Frank-Wolfe algorithm starting from x0 ∈ C \ argminC f with the closed-
loop strategy (ii). If L > L∗C , then:

(i) For all t ∈ N, xt /∈ argminC f ;

(ii) For all t ∈ N, vt ∈ [(−1, 0), (1, 0)] and γt < 1;

(iii) γt → 0;

(iv) For all t, k ∈ N, if xt ∈ conv{Ek, Fk, Gk, Hk}, then vt = ((−1)k+1, 0);

(v) There exists k0 ∈ N such that for all k > k0, {xt | t ∈ N} ∩ conv{Ek, Fk, Jk, Ik} 6= ∅;

(vi) (xt)t∈N does not converge.

10

Proof. Let xt = (αt, βt) for all t ∈ N and recall that argminC f = [(−1, 0), (1, 0)].

(i) We proceed by induction. The base case is satisfied. Let t ∈ N be such that xt /∈ argminC f .
Then βt > 0 and, by Lemma 3.8(i), vt ∈ [(−1, 0), (1, 0)], so ∇f(vt) = 0. By the Cauchy-
Schwarz inequality,

γt 6
〈xt − vt,∇f(xt)〉
L‖xt − vt‖2

6
‖∇f(xt)‖
L‖xt − vt‖

=
‖∇f(xt)−∇f(vt)‖

L‖xt − vt‖
6
L∗C
L

< 1. (1)

Therefore, xt+1 ∈ [xt, vt[⊂ C \ argminC f .

(ii) See the proof of Lemma 3.9(i).

(iii) By Theorem 3.1, f is d-time continuously differentiable, where d > 2. By (1) and the mean
value theorem,

γt 6
‖∇f(xt)−∇f(vt)‖

L‖xt − vt‖
6

1

L
sup

x∈[xt,vt]

‖∇2f(x)‖op, (2)

where ‖·‖op denotes the operator norm. Since argminD f =
⋂
k∈N Pk has nonempty interior,

∇2f(x) = 0 for all x ∈ argminD f ⊃ argminC f . By Theorem 2.4, f(xt) → minC f , so
dist(xt, argminC f) → 0, and, by Lemma 3.9(ii), vt ∈ argminC f for all t ∈ N. By continuity
of ∇2f , it follows that supx∈[xt,vt] ‖∇

2f(x)‖op → 0. By (2), γt → 0.

(iv) This follows from Lemma 3.8(ii).

(v) By Lemma 3.9(ii), vt ∈ [(−1, 0), (1, 0)] for all t ∈ N. Thus,

βt′ =

t′−1∏
`=t

(1− γ`)

βt, (3)

for all t, t′ ∈ N such that t′ > t+1. Let c = 1−
√
13/14 > 0. By Theorem 2.4, f(xt)→ minC f ,

so βt → 0. By Lemma 3.9(iii), γt → 0, so there exists t0 ∈ N such that βt 6 βt0 and γt 6 c for
all t > t0. Let k0 ∈ N be such that βt0 > (7/4)(1/2)k0+1−K = 〈Ek0 , e2〉. Let k > k0, t > t0,
and t′ > t+ 1 be such that βt > (7/4)(1/2)k+1−K = 〈Ek, e2〉 and βt′ 6 (13/8)(1/2)k+1−K =
〈Ik, e2〉. By (3),

13/8

7/4
>
t′−1∏
`=t

(1− γ`) > (1− c)t
′−t,

so

t′ − t > ln(14/13)

ln(1/(1− c))
= 2.

Therefore, there exists t′′ ∈ Jt+ 1, t′ − 1K such that xt′′ ∈ conv{Ek, Fk, Jk, Ik}.

(vi) Let t, k ∈ N be such that xt ∈ conv{Ek, Fk, Jk, Ik}. With no loss of generality, we can assume
that k is even.

• If αt > −1/2, let t′ = min{` ∈ N | β` < (5/4)(1/2)k+1−K = 〈Hk, e2〉, ` > t}. By
Lemma 3.9(iv), v` = (−1, 0) for every ` ∈ Jt, t′ − 1K. By Thales’ theorem,

αt − αt′
αt − (−1)

=
βt − βt′
βt − 0

,

11

where αt > −1/2, (13/8)(1/2)k+1−K = 〈Ik, e2〉 6 βt 6 (7/4)(1/2)k+1−K = 〈Ek, e2〉,
and βt′ 6 (5/4)(1/2)k+1−K = 〈Hk, e2〉. Thus,

αt − αt′ >
13/8− 5/4

7/4

1

2
=

3

28
.

• Else, αt < −1/2. There exists t′ ∈ N such that xt′ ∈ conv{Ek+1, Fk+1, Jk+1, Ik+1}. Let
t′′ = min{` ∈ N | β` < (5/4)(1/2)k+2−K = 〈Hk+1, e2〉, ` > t′}. If αt′ 6 1/2, we can
reproduce the same argument as above and conclude that

αt′′ − αt′ >
3

28
.

Else, αt′ > 1/2, so

αt′ − αt > 1 >
3

28
.

Thus, together with Lemma 3.9(v), we conclude that card{t ∈ N | ∃t′ > t : |αt′ − αt| >
3/28} = +∞. Therefore, (αt)t∈N is not a Cauchy sequence, so (xt)t∈N does not converge.

3.4 Counterexample 4: Open-loop strategies

Our last counterexample involves the open-loop strategies (i)–(i’). It is similar in design to the one
in Section 3.1. Note that the counterexample from Section 3.3 would be valid here as well if we
had γ0 < 1.

Counterexample 3.10. There exist C and f , satisfying Assumption 2.3, and x0 ∈ C such that any
sequence (xt)t∈N generated by Frank-Wolfe algorithm using an open-loop strategy (i)–(i’) does not
converge.

Let (γt)t∈N be an open-loop strategy, C = conv{(−2, 1/4), (−1, 0), (0, 1), (1, 0)}, and f be de-
fined via Theorem 3.1 with, for all k ∈ N, Pk = conv{Ak, Bk, Ck,−Bk} where

Ak =

(
−2− 1

k + 1
, 0

)
, Ck =

(
1 +

1

k + 1
, 0

)
,

B0 = (0, 1), B1 = V0 = (−2, 1/4), V1 = (1, 0), and, for all k > 1,

Bk+1 = (1− γk)Bk + γkVk,

Vk+1 =

{
−Vk if |〈Bk+1, e1〉| > 1/4 and |〈Bk, e1〉| 6 1/4;

Vk else.

Then C and f satisfy Assumption 2.3 so Theorem 2.4 holds. The solution set is argminC f =⋂
k∈N Pk∩C = [(−1, 0), (1, 0)]. The construction is such that the trajectory of (Bk)k∈N is headed by

(Vk)k∈N, whose terms change value each time (Bk)k∈N crosses the vertical band {x ∈ C | |〈x, e1〉| 6
1/4}. An illustration is presented in Figure 7.

By construction, for all k ∈ N,

KPk
Bk ∩ (R∗− × R∗+) 6= ∅ and KPk

Bk ∩ (R∗+)2 6= ∅.

12

A0 A1 A2 C0

C1C2

B0

B1 = V0

B2

B3
B4

B5

V1 = V2
= V5

V3 = V4

Figure 7: Stretched for visualization purposes. The constraint set (in black), polygonal sketches of the objective
function (in orange) built using the open-loop strategy (i’), the solution set (in red), gradient directions (in
green), and the trajectory (in blue) of (Bk)k∈N. For all k > 1, Bk+1 ∈ [Bk, Vk] where Vk = Vk−1 or
Vk = −Vk−1, depending on whether (Bk)k∈N has just crossed the vertical band delimited by the dashed lines
or not.

Thus, we can choose (uk)k∈N such that for all k ∈ N,

uk ∈ KPk
Bk and Vk ∈ argmin

v∈C
〈v, uk〉.

Let x0 = B0. By induction, xt = Bt for all t ∈ N. Therefore, (xt)t∈N crosses the vertical band
{x ∈ C | |〈x, e1〉| 6 1/4} indefinitely, i.e., card{t ∈ N | 〈xt, e1〉 6 −1/4} = +∞ and card{t ∈ N |
〈xt, e1〉 > 1/4} = +∞. Since γt < 1 for all t > 1, 〈xt, e2〉 > 0 for all t ∈ N, so (xt)t∈N does not
converge.

13

Acknowledgment

The authors acknowledge the support of the AI Interdisciplinary Institute ANITI funding, through
the French “Investments for the Future – PIA3” program under the grant agreement ANR-19-
PI3A0004, Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant
numbers FA9550-19-1-7026, and ANR MaSDOL 19-CE23-0017-0. Jérôme Bolte also acknowledges
the support of ANR Chess, grant ANR-17-EURE-0010, and TSE-P.

References

[1] J. Bolte and E. Pauwels. Curiosities and counterexamples in smooth convex optimization. Mathematical
Programming, to appear.

[2] G. Braun, S. Pokutta, D. Tu, and S. Wright. Blended conditional gradients: the unconditioning of
conditional gradients. In Proceedings of the 36th International Conference on Machine Learning, pages
735–743, 2019.

[3] M. D. Canon and C. D. Cullum. A tight upper bound on the rate of convergence of Frank-Wolfe algo-
rithm. SIAM Journal on Control, 6(4):509–516, 1968.

[4] K. L. Clarkson. Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm. ACM Transac-
tions on Algorithms, 6(4):1–30, 2010.

[5] C. W. Combettes and S. Pokutta. Boosting Frank-Wolfe by chasing gradients. In Proceedings of the 37th
International Conference on Machine Learning, pages 2111–2121, 2020.

[6] C. W. Combettes and S. Pokutta. Complexity of linear minimization and projection on some sets.
Operations Research Letters, 49(4):565–571, 2021.

[7] C. W. Combettes and S. Pokutta. Revisiting the approximate Carathéodory problem via the Frank-Wolfe
algorithm. Mathematical Programming, to appear.

[8] P. L. Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing. In Fixed-Point
Algorithms for Inverse Problems in Science and Engineering, pages 185–212. Springer, 2011.

[9] V. Do, S. Corbett-Davies, J. Atif, and N. Usunier. Two-sided fairness in rankings via Lorenz dominance.
In Advances in Neural Information Processing Systems, volume 34, 2021. To appear.

[10] J. C. Dunn and S. Harshbarger. Conditional gradient algorithms with open loop step size rules. Journal
of Mathematical Analysis and Applications, 62(2):432–444, 1978.

[11] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logistics Quarterly,
3(1–2):95–110, 1956.

[12] D. Garber and E. Hazan. Faster rates for the Frank-Wolfe method over strongly-convex sets. In Proceed-
ings of the 32nd International Conference on Machine Learning, pages 541–549, 2015.

[13] D. Garber and O. Meshi. Linear-memory and decomposition-invariant linearly convergent conditional
gradient algorithm for structured polytopes. In Advances in Neural Information Processing Systems,
volume 29, pages 1001–1009, 2016.

[14] J. Guélat and P. Marcotte. Some comments on Wolfe’s ‘away step’. Mathematical Programming,
35(1):110–119, 1986.

[15] E. Hazan. Sparse approximate solutions to semidefinite programs. In Proceedings of the 8th Latin
American Symposium on Theoretical Informatics, pages 306–316, 2008.

[16] M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Proceedings of the 30th
International Conference on Machine Learning, pages 427–435, 2013.

14

[17] A. Joulin, K. Tang, and L. Fei-Fei. Efficient image and video co-localization with Frank-Wolfe algorithm.
In European Conference on Computer Vision, pages 253–268, 2014.

[18] T. Kerdreux, A. d’Aspremont, and S. Pokutta. Projection-free optimization on uniformly convex sets.
In Proceedings of the 24th International Conference on Artificial Intelligence and Statistics, pages 19–27,
2021.

[19] S. Lacoste-Julien and M. Jaggi. On the global linear convergence of Frank-Wolfe optimization variants.
In Advances in Neural Information Processing Systems, volume 28, pages 496–504, 2015.

[20] S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher. Block-coordinate Frank-Wolfe optimization
for structural SVMs. In Proceedings of the 30th International Conference on Machine Learning, pages
53–61, 2013.

[21] G. Lan. The complexity of large-scale convex programming under a linear optimization oracle. Technical
report, Department of Industrial and Systems Engineering, University of Florida, 2013.

[22] L. J. LeBlanc, E. K. Morlok, and W. P. Pierskalla. An efficient approach to solving the road network
equilibrium traffic assignment problem. Transportation Research, 9(5):309–318, 1975.

[23] E. S. Levitin and B. T. Polyak. Constrained minimization methods. USSR Computational Mathematics
and Mathematical Physics, 6(5):1–50, 1966.

[24] G. Luise, S. Salzo, M. Pontil, and C. Ciliberto. Sinkhorn barycenters with free support via Frank-Wolfe
algorithm. In Advances in Neural Information Processing Systems, volume 32, pages 9322–9333, 2019.

[25] R. Schneider. Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, 2nd edition,
2013.

15

	1 Introduction
	2 Preliminaries
	2.1 Notation and definitions
	2.2 The Frank-Wolfe algorithm

	3 The Frank-Wolfe algorithm may not converge
	3.1 Counterexample 1: Line-search strategy
	3.2 Counterexample 2: Line-search strategy and solution set in the interior
	3.3 Counterexample 3: Closed-loop strategy
	3.4 Counterexample 4: Open-loop strategies

