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The Iterates of the Frank-Wolfe Algorithm May Not Converge

The Frank-Wolfe algorithm is a popular method for minimizing a smooth convex function f over a compact convex set C. While many convergence results have been derived in terms of function values, hardly nothing is known about the convergence behavior of the sequence of iterates (xt) t∈N . Under the usual assumptions, we design several counterexamples to the convergence of (xt) t∈N , where f is d-time continuously differentiable, d 2, and f (xt) → minC f . Our counterexamples cover the cases of open-loop, closed-loop, and line-search step-size strategies. We do not assume misspecification of the linear minimization oracle and our results thus hold regardless of the points it returns, demonstrating the fundamental pathologies in the convergence behavior of (xt) t∈N .

Introduction

The Frank-Wolfe algorithm [START_REF] Frank | An algorithm for quadratic programming[END_REF], a.k.a. conditional gradient algorithm [START_REF] Levitin | Constrained minimization methods[END_REF], addresses the optimization problem

min x∈C f (x),
where C ⊂ R n is a nonempty compact convex set, f : D → R is a convex function with Lipschitzcontinuous gradient, and D ⊂ R n is an open convex set containing C. It does not require projections onto C to ensure the feasibility of its iterates and uses linear minimizations over C instead, which can be significantly cheaper to compute [START_REF] Combettes | Complexity of linear minimization and projection on some sets[END_REF]. Another advantage is that it may generate iterates that are sparse with respect to the vertices of C [START_REF] Clarkson | Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm[END_REF]. Both properties have led to many applications of the Frank-Wolfe algorithm [START_REF] Leblanc | An efficient approach to solving the road network equilibrium traffic assignment problem[END_REF][START_REF] Hazan | Sparse approximate solutions to semidefinite programs[END_REF][START_REF] Lacoste-Julien | Block-coordinate Frank-Wolfe optimization for structural SVMs[END_REF][START_REF] Joulin | Efficient image and video co-localization with Frank-Wolfe algorithm[END_REF][START_REF] Luise | Sinkhorn barycenters with free support via Frank-Wolfe algorithm[END_REF][START_REF] Combettes | Revisiting the approximate Carathéodory problem via the Frank-Wolfe algorithm[END_REF][START_REF] Do | Two-sided fairness in rankings via Lorenz dominance[END_REF].

With a suitable step-size strategy, the sequence of function values (f (x t )) t∈N converges to min C f at a rate O(1/t) [START_REF] Levitin | Constrained minimization methods[END_REF][START_REF] Dunn | Conditional gradient algorithms with open loop step size rules[END_REF][START_REF] Jaggi | Revisiting Frank-Wolfe: Projection-free sparse convex optimization[END_REF], and this result has been extensively complemented: lower bounds have been established [START_REF] Canon | A tight upper bound on the rate of convergence of Frank-Wolfe algorithm[END_REF][START_REF] Jaggi | Revisiting Frank-Wolfe: Projection-free sparse convex optimization[END_REF][START_REF] Lan | The complexity of large-scale convex programming under a linear optimization oracle[END_REF], faster rates under additional assumptions have been derived [START_REF] Levitin | Constrained minimization methods[END_REF][START_REF] Guélat | Some comments on Wolfe's 'away step[END_REF][START_REF] Garber | Faster rates for the Frank-Wolfe method over strongly-convex sets[END_REF][START_REF] Kerdreux | Projection-free optimization on uniformly convex sets[END_REF], and variants speeding up the algorithm have been developed [START_REF] Lacoste-Julien | On the global linear convergence of Frank-Wolfe optimization variants[END_REF][START_REF] Garber | Linear-memory and decomposition-invariant linearly convergent conditional gradient algorithm for structured polytopes[END_REF][START_REF] Braun | Blended conditional gradients: the unconditioning of conditional gradients[END_REF][START_REF] Combettes | Boosting Frank-Wolfe by chasing gradients[END_REF]. However, it is not known whether the sequence of iterates (x t ) t∈N converges or not, apart from the trivial case where the solution set arg min C f is a singleton [START_REF] Levitin | Constrained minimization methods[END_REF][START_REF] Dunn | Conditional gradient algorithms with open loop step size rules[END_REF]. This is in contrast with other popular convex optimization methods such as the gradient descent, coordinate descent, mirror descent, proximal point, forward-backward, or Douglas-Rachford algorithm, for which convergence results for the sequence of iterates have been proved [START_REF] Combettes | Proximal splitting methods in signal processing[END_REF] or disproved [START_REF] Bolte | Curiosities and counterexamples in smooth convex optimization[END_REF].

Note that counterexamples to the convergence of (x t ) t∈N could be designed trivially by assuming that the linear minimization oracle is misspecified (Definition 2.1), i.e., that it does not necessarily return the same output each time the same input is entered. A simple illustration is given by the minimization of f = 0 over C = [0, 1] using an open-loop strategy (i)-(i'). As misspecification allows to move towards 0 or towards 1 at each iteration, (x t ) t∈N may follow any arbitrary trajectory in [0, 1]. In R 2 , one can also easily build counterexamples where (x t ) t∈N does not converge while remaining out of arg min C f , for any step-size strategy (i)-(iii): consider, e.g., minimizing f = dist(•, [(-1/2, 0), (1/2, 0)]) 2 over C = conv{(-2, 1/4), (-1, 0), (1, 0), (0, 1)}. These counterexamples are artificial and somehow vain, as they rely on the misspecification assumption and a very specific adversarial choice of the points returned by the oracle. Our work does not assume misspecification of the oracle to demonstrate that (x t ) t∈N may not converge and relies instead on the joint geometry of C and f . Contributions. We show that the sequence of iterates (x t ) t∈N generated by the Frank-Wolfe algorithm does not converge in general. We design several instances of C and f satisfying the usual assumptions, i.e., C is compact and convex and f is convex with Lipschitz-continuous gradient, for which the sequence (x t ) t∈N does not converge, while f (x t ) → min C f . We cover all step-size strategies for which convergence results for the function values have been established, i.e., the socalled open-loop, closed-loop, and line-search strategies. Furthermore, the functions f designed are d-time continuously differentiable, where d 2 is arbitrarily large. We use key results from [START_REF] Bolte | Curiosities and counterexamples in smooth convex optimization[END_REF] and do not assume misspecification of the linear minimization oracle, thus demonstrating the fundamental pathologies in the convergence behavior of (x t ) t∈N .

Preliminaries

Notation and definitions

We consider the Euclidean space (R n , •, • ) equipped with the Euclidean norm • . Given a convex set C ⊂ R n and x ∈ C, the tangent cone to C at x is

T C x = cl{λ(y -x) | λ > 0, y ∈ C} and the normal cone to C at x is N C x = {u ∈ R n | ∀y ∈ C, y -x, u
0}. The diameter and the set of vertices of C are denoted by diam C and vert C respectively. The Hausdorff distance between two nonempty compact sets A, B ⊂ R n is denoted by dist(A, B). The canonical vectors in R 2 are e 1 = (1, 0) and e 2 = (0, 1). The unit sphere in R 2 is S = {x ∈ R 2 | x = 1}. Given three points A, B, C ∈ R 2 , the angle at B formed by the rays [BA) and [BC) is denoted by ABC.

The Frank-Wolfe algorithm

The Frank-Wolfe algorithm [START_REF] Frank | An algorithm for quadratic programming[END_REF] is presented in Algorithm 2. It assumes access to a linear minimization oracle (LMO, Oracle 1) solving linear minimization problems over the constraint set C.

Oracle 1 LMO

Input: Vector u ∈ R n . Output: Point v ∈ arg min v∈C v, u .
The linear minimization oracle does not ensure a priori that the same output is returned each time the same input is entered. When arg min v∈C v, u is not a singleton, it makes a choice on which element to return, based on, e.g., a proximity score, an ordering of vertices, or a random seed. This leads to the notion of misspecification for the oracle. v t ← LMO(∇f (x t ))

3: Since x t+1 is generated by convex combination of x t and v t (Line 3), it is feasible and there is no need for a projection step back onto C. Note that x t+1 = x t + γ t (v t -x t ) is obtained by moving from x t towards v t . Furthermore, assuming the linear minimization oracle returns only vertices of C, at most one new vertex is added to the convex decomposition of x t to obtain x t+1 , making the sequence (x t ) t∈N sparse with respect to the vertices of C.

x t+1 ← (1 -γ t )x t + γ t v
There are mainly four step-size strategies that have been considered and for which the rate at which f (x t ) → min C f has been established (Theorem 2.4). These are: 

(i) an open-loop strategy ∀t ∈ N, γ t = 1 t + 1 ; (i') another open-loop strategy ∀t ∈ N, γ t = 2 t + 2 ; (ii) the closed-loop strategy ∀t ∈ N, γ t = min x t -v t , ∇f (x t ) L x t -v t 2 , 1 ; (iii) the line-search strategy ∀t ∈ N, γ t ∈ arg min γ∈[0,1] f (x t + γ(v t -x t )).
f (x t ) -min C f          L(diam C) 2 (1 + ln t)/(2t) if (γ t ) t∈N follows (i); 2L(diam C) 2 /(t + 2) if (γ t ) t∈N follows (i'); 4L(diam C) 2 /(t + 2) if (γ t ) t∈N follows (ii); 4L(diam C) 2 /(t + 2) if (γ t ) t∈N follows (iii).

The Frank-Wolfe algorithm may not converge

We turn on to the main results of the paper. We design several instances of C and f satisfying Assumption 2.3 and for which the sequence of iterates (x t ) t∈N generated by the Frank-Wolfe algorithm using a usual step-size strategy (i)-(iii) does not converge, while Theorem 2.4 still holds. The strength of these counterexamples is to be valid against specified linear minimization oracles, demonstrating that nonconvergence is intrinsic to the Frank-Wolfe algorithm in the smooth convex optimization setting. We will use a key result from [START_REF] Bolte | Curiosities and counterexamples in smooth convex optimization[END_REF] which we restate in Theorem 3.1. It shows that we can design a convex function, arbitrarily smooth, from polygonal sketches, and that we can further choose its gradient directions at specific points from a set of directions described by the geometry of the sketches.

Given a polytope P ⊂ R 2 and a vertex V ∈ vert P, we denote by K P V = N P V ∩ (-T P V ) the cone of admissible directions at V for P.

Theorem 3.1 ([1]

). In R 2 , let (P ) ∈N be a sequence of polytopes, (u k ) k∈N ∈ S N be a sequence of unit vectors, (V k ) k∈N ∈ ∈N vert P N be a sequence of vertices of the polytopes, and (δ ) ∈N ∈ ]0, 1[ N be such that (i) for all k ∈ N, there exists ∈ N such that u k ∈ K P V k ;

(ii) for all ∈ N and λ ∈ [1 -δ , 1 + δ ], λP +1 ⊂ int P ;

(iii) for all ∈ N, 0 ∈ int P .

Then for any open convex set D ⊂ R 2 and d ∈ N such that P 0 ⊂ D and d 2 respectively, there exist a d-time continuously differentiable convex function f : D → R and a sequence (η ) ∈N ∈ R N such that for all k, ∈ N, 

(iv) η +1 < η ; (v) P ⊂ {x ∈ R 2 | f (x) η }; (vi) f (V ) = η for all V ∈ vert P ; (vii) dist(P , {x ∈ R 2 | f (x) η }) δ ; (viii) {x ∈ R 2 | f (x) η } has positive curvature; (ix) ∇f (V k ) is positively colinear to u k ; (x) ∇ 2 f is positive definite outside of arg min D f = ∈N P .
∈ N such that V k ∈ [x t , v t ] and v t -x t , u k = 0. Then x t+1 = V k . Proof. We have x t+1 = (1 -γ t )x t + γ t v t where γ t ∈ arg min γ∈[0,1] f (x t + γ(v t -x t )), i.e., x t+1 ∈ [x t , v t ] and v t -x t , ∇f (x t+1 ) = 0. By Theorem 3.1(ix), u k and ∇f (V k ) are positively colinear so v t -x t , ∇f (V k ) = 0. By Theorem 3.1(viii), {x ∈ R 2 | f (x) f (V k )} has positive curvature, which yields x t+1 = V k .

Lemma 3.4. Consider the function f and all other variables defined in Theorem

3.1. Let k 1 , k 2 , 1 , 2 ∈ N, 1 > 2 ,
and u ∈ S, and suppose that V k1 ∈ P 1 and V k2 ∈ P 2 are such that 0, V k1 , V k2 are aligned and

u k1 = u k2 = u. Then ∇f (x) is positively colinear to u for all x ∈ [V k1 , V k2 ]. Proof. Let L 1 = {x ∈ R 2 | f (x) f (V k1 )} and L 2 = {x ∈ R 2 | f (x) f (V k2 )}.
By Theorem 3.1(viii), they have positive curvature. Let n 1 : bd L 1 → S and n 2 : bd L 2 → S be their Gauss maps respectively, which are diffeomorphisms that map a point on the boundary of the set to the normal to the set at that point [START_REF] Schneider | Convex Bodies: The Brunn-Minkowski Theory[END_REF]Sec. 2.5]. By Theorem 3.

1(ix), n 1 (V k1 ) = u = n 2 (V k2 ). Let x ∈ [V k1 , V k2 ] and L = {x ∈ R 2 | f (x) f (x )}.
The construction from [START_REF] Bolte | Curiosities and counterexamples in smooth convex optimization[END_REF] leading to Theorem 3.1 gives L = αL 1 + βL 2 , where α, β 0 and α + β > 0. Thus, by alignment with 0, x = αV k1 + βV k2 , and, by [1, Lem. 2], L has positive curvature. Let n : bd L → S be its Gauss map. By

[1, Lem. 2] again, n -1 (u) = αn -1 1 (u) + βn -1 2 (u) = αV k1 + βV k2 = x , i.e, n(x ) = u.

Counterexample 1: Line-search strategy

We start with a counterexample for the line-search strategy (iii).

Counterexample 3.5.

There exist C and f , satisfying Assumption 2.3, and x 0 ∈ C such that any sequence (x t ) t∈N generated by Frank-Wolfe algorithm using the line-search strategy (iii) does not converge.

Let C = conv{(-1, 0), (0, 1), (1, 0)} and f be defined via Theorem 3.1 with A 0 = (-1/2, 0), B 0 = (-1/4, 3/4), C 0 = (1/4, 3/4), D 0 = (1/2, 0), and, for all k ∈ N,

A k+1 = - 1 4 + B k+1 , e 2 B k , e 2 A k , e 1 + 1 4 , 0 , B k+1 = - 1 4 , 3 5 C k , e 2 , C k+1 = 1 4 , 3 5 B k , e 2 , D k+1 = 1 4 + C k+1 , e 2 C k , e 2 D k , e 1 - 1 4 
, 0 ,

and 

P k = conv{A k , B k , C k , D k , -D k , -C k , -B k , -A k }.
A k B k C k = A 0 B 0 C 0 and B k C k D k = B 0 C 0 D 0 .
An illustration is presented in Figure 1.

A 0 B 0 C 0 D 0 A 1 B 1 C 1 D 1 (-1, 0)
(1, 0) 

A k B k C k = A0B0C0 and B k C k D k = B0C0D0.
The construction allows to choose (u k ) k∈N such that u 0 ∈ K P0 C 0 and, for all k 1,

u k ∈ K P k C k and C k -B k-1 , u k = 0 if k is even; u k ∈ K P k B k and B k -C k-1 , u k = 0 if k is odd.
Let x 0 = C 0 . By induction and using Lemma 3.3, we obtain for all t ∈ N,

x t = C t if t is even; B t if t is odd.
Therefore, x t , e 1 = (-1) t /4 for all t ∈ N, so (x t ) t∈N does not converge. An illustration is presented in Figure 2.

x 0 

Counterexample 2: Line-search strategy and solution set in the interior

In our next counterexample, the solution set arg min C f lies in the interior of the constraint set.

Counterexample 3.6.

There exist C and f , satisfying Assumption 2.3 and arg min C f ⊂ int C, and x 0 ∈ C such that any sequence (x t ) t∈N generated by Frank-Wolfe algorithm using the line-search strategy (iii) does not converge.

Let C = conv{(-1, -1), (-1, 1), (1, 1), (1, -1)} and f be defined via Theorem 3.1 with A 0 = (-1/10, -1), B 0 = (-1, 1/10), C 0 = (1/10, 1), D 0 = (1, -1/10), λ 0 = 1, and, for all k ∈ N, λ k+1 = 110λ k /(90 + 101λ k ),

A k = λ k A 0 , B k = λ k B 0 , C k = λ k C 0 , D k = λ k D 0 , and P k = conv{λ k A 0 , λ k B 0 , λ k C 0 , λ k D 0 } = λ k P 0 .
Thus, (λ k ) k∈N is a decreasing sequence that converges to 1/5. Then C and f satisfy Assumption 2.3 so Theorem 2.4 holds. The solution set is arg min C f = k∈N P k = (1/5)P 0 . The construction is such that for all k ∈ N, the points A k , B k+1 , (-1, 1), the points B k , C k+1 , (1, 1), the points C k , D k+1 , (1, -1), and the points D k , A k+1 , (-1, -1), are aligned. An illustration is presented in Figure 3.

B 0 C 0 D 0 A 0 A 1 B 1 C 1 D 1 (-1, -1) (-1, 1)
(1, 1)

(1, -1) The construction allows to choose (u k ) k∈N such that u 0 ∈ K P0 A 0 and, for all k 1,

         u k ∈ K P k A k and A k -D k-1 , u k = 0 if k ≡ 0 (mod 4); u k ∈ K P k B k and B k -A k-1 , u k = 0 if k ≡ 1 (mod 4); u k ∈ K P k C k and C k -B k-1 , u k = 0 if k ≡ 2 (mod 4); u k ∈ K P k D k and D k -C k-1 , u k = 0 if k ≡ 3 (mod 4).
Let x 0 = A 0 . By induction and using Lemma 3.3, we obtain for all t ∈ N,

x t =          A t if t ≡ 0 (mod 4); B t if t ≡ 1 (mod 4); C t if t ≡ 2 (mod 4); D t if t ≡ 3 (mod 4).
Therefore, x t+1 -x t √ 2/5 for all t ∈ N, where √ 2/5 is the side length of the square arg min C f = (1/5)P 0 , so (x t ) t∈N does not converge. An illustration is presented in Figure 4. 

Counterexample 3: Closed-loop strategy

Our next counterexample involves the closed-loop strategy (ii).

Counterexample 3.7.

There exist C and f , satisfying Assumption 2.3, and x 0 ∈ C such that any sequence (x t ) t∈N generated by Frank-Wolfe algorithm using the closed-loop strategy (ii) does not converge.

Let C = [-1, 1] × [0, 2 K ],
where K ∈ N, and f be defined via Theorem 3.1 with, for all k ∈ N,

A k = (-1) k+1 61 35 , 9 8 
61 35

1 2 k+1-K , B k = (-1) k 61 35 , 17 16 
61 35 1 2 k+1-K , D k = (-1) k+1 , 9 8 
1 2 k+1-K , C k = (-1) k , 17 16 
1 2 k+1-K , D k = (-1) k+1 , 1 2 k+1-K , C k = (-1) k 61 35 , 1 2 k+1-K , Y k =        - 61 35 1 + 1 2 k , 0 if k is even; - 61 35 1 + 17 16 8 9 1 2 k , 0 if k is odd, Y k = - 61 35 - 8 9 1 2 k , 0 , Z k =        61 35 1 + 1 2 k , 0 if k is even; 61 35 1 + 9 8 16 17 1 2 k , 0 if k is odd, Z k = 61 35 + 16 17 
1 2 k , 0 ,
and

P 2k = conv{Y k , A k , B k , Z k , X 2k } and P 2k+1 = conv{Y k , D k , D k , C k , C k , Z k , X 2k+1 }, where X k = (0, -1 -1/(k + 1)
). Then C and f satisfy Assumption 2.3 so Theorem 2.4 holds. The solution set is arg min

C f = k∈N P k ∩ C = [(-1, 0), (1, 0)].
The construction is such that for all k ∈ N, the lines (A k B k ) and (C k D k ) are parallel, B k , e 2 < A k , e 2 and C k , e 2 < D k , e 2 , and the points 0, D k , A k , and the points 0, C k , B k , are aligned. An illustration is presented in Figure 5.

0 A 0 B 0 C 0 D 0 C 0 D 0 Y 0 Y 0 Z 0 Z 0 A 1 B 1 C 1 D 1 C 1 D 1 Y 1 Y 1 Z 1 Z 1 A 2 B 2 C 2 D 2 C 2 D 2 Y 2 Z 2 Y 2 Z 2
Figure 5: The constraint set (in black), polygonal sketches of the objective function (in orange and dark orange), and the solution set (in red). The polygonal sketches are studied by pairs, corresponding to the color tone, i.e., to the direction in which they lean (see Figure 6). For all k ∈ N, the lines

(A k B k ) and (C k D k ) are parallel, B k , e2 A k , e2 and C k , e2 D k , e2
, and the points 0, D k , A k , and the points 0, C k , B k , are aligned.

By properties of the construction, for all k ∈ N,

K P 2k+1 D k ⊂ K P 2k A k , K P 2k+1 C k ⊂ K P 2k B k , K P 4k+1 D 2k ∩ (R * + ) 2 = ∅, K P 4k+1 C 2k ∩ (R * + ) 2 = ∅, K P 4k+3 D 2k+1 ∩ (R * -× R * + ) = ∅, K P 4k+3 C 2k+1 ∩ (R * -× R * + ) = ∅.
Thus, we can choose (u k ) k∈N such that for all k ∈ N, (ii) e 2 , ∇f (x) > 0 and (-1

) k e 1 , ∇f (x) > 0 for all x ∈ {A k , B k , C k , D k }.
Then, for all k ∈ N, let

E k = (-1) k+1 , 7 4 
1 2 k+1-K , F k = (-1) k , 7 4 
1 2 k+1-K , I k = (-1) k+1 , 13 8 
1 2 k+1-K , J k = (-1) k , 13 8 
1 2 k+1-K , H k = (-1) k+1 , 5 4 
1 2 k+1-K , G k = (-1) k , 5 4 
1 2 k+1-K .
An illustration is presented in Figure 6.

A k B k C k D k C k D k E k F k G k H k I k J k
Figure 6: A pair of polygonal sketches (in orange) and gradient directions (in green). Here, k ∈ N is even. Using the gradient directions, we show that the linear minimization oracle always returns (-1, 0) in conv{E k , F k , G k , H k } here (Lemma 3.9(iv)). Then, we show that, if k is large enough, there exists an iterate xt ∈ conv{E k , F k , J k , I k } (Lemma 3.9(v)). Put together and using Thales' theorem, we can measure the minimum horizontal displacement of the iterates when they cross (vertically) the rectangle conv{I k , J k , G k , H k }. This turns out to be a constant number, showing that (xt) t∈N does not converge (Lemma 3.9(vi)).

Lemma 3.8. Let k ∈ N and x ∈ C.

(i) If x, e 2 > 0, then e 2 , ∇f (x) > 0.

(ii) If x ∈ conv{E k , F k , G k , H k }, then (-1) k e 1 , ∇f (x) > 0.
Proof. (i) Let x * = x -x, e 2 e 2 ∈ [(-1, 0), (1, 0)] = arg min C f . By convexity of f , x *x, ∇f (x) < 0, i.e., x, e 2 e 2 , ∇f (x) > 0. Since x, e 2 > 0, we obtain e 2 , ∇f (x) > 0. (ii) For all t ∈ N, v t ∈ [(-1, 0), (1, 0)] and γ t < 1;

(iii) γ t → 0;

(iv) For all t, k ∈ N, if x t ∈ conv{E k , F k , G k , H k }, then v t = ((-1) k+1 , 0); (v) There exists k 0 ∈ N such that for all k k 0 , {x t | t ∈ N} ∩ conv{E k , F k , J k , I k } = ∅;
(vi) (x t ) t∈N does not converge.

Proof. Let x t = (α t , β t ) for all t ∈ N and recall that arg min C f = [(-1, 0), (1, 0)].

(i) We proceed by induction. The base case is satisfied. Let t ∈ N be such that x t / ∈ arg min C f . Then β t > 0 and, by Lemma 3.8(i), v t ∈ [(-1, 0), (1, 0)], so ∇f (v t ) = 0. By the Cauchy-Schwarz inequality,

γ t x t -v t , ∇f (x t ) L x t -v t 2 ∇f (x t ) L x t -v t = ∇f (x t ) -∇f (v t ) L x t -v t L * C L < 1. (1) 
Therefore,

x t+1 ∈ [x t , v t [ ⊂ C \ arg min C f .
(ii) See the proof of Lemma 3.9(i).

(iii) By Theorem 3.1, f is d-time continuously differentiable, where d 2. By (1) and the mean value theorem,

γ t ∇f (x t ) -∇f (v t ) L x t -v t 1 L sup x∈[xt,vt] ∇ 2 f (x) op , (2) 
where (iv) This follows from Lemma 3.8(ii).

(v) By Lemma 3.9(ii), v t ∈ [(-1, 0), (1, 0)] for all t ∈ N. Thus,

β t =   t -1 =t (1 -γ )   β t , (3) 
for all t, t ∈ N such that t t+1. Let c = 1-13/14 > 0. By Theorem 2.4, f (x t ) → min C f , so β t → 0. By Lemma 3.9(iii), γ t → 0, so there exists t 0 ∈ N such that β t β t0 and γ t c for all t t 0 . Let k 0 ∈ N be such that β t0 (7/4)(1/2) k0+1-K = E k0 , e 2 . Let k k 0 , t t 0 , and t t + 1 be such that β t (7/4)(1/2) k+1-K = E k , e 2 and β t (13/8)(1/2) k+1-K = I k , e 2 . By (3), Therefore, there exists t ∈ t + 1, t -1 such that x t ∈ conv{E k , F k , J k , I k }.

(vi) Let t, k ∈ N be such that x t ∈ conv{E k , F k , J k , I k }. With no loss of generality, we can assume that k is even.

• If α t -1/2, let t = min{ ∈ N | β < (5/4)(1/2) k+1-K = H k , e 2 , t}. By Lemma 3.9(iv), v = (-1, 0) for every ∈ t, t -1 . By Thales' theorem, 1/4} = +∞. Since γ t < 1 for all t 1, x t , e 2 > 0 for all t ∈ N, so (x t ) t∈N does not converge.

α t -α t α t -(-1) = β t -β t β t -0 , A 0 A 1 A 2 C 0 C 1 C 2 B 0 B 1 = V 0 B 2 B 3 B 4 B 5 V 1 = V 2 = V 5 V 3 = V 4

Assumption 2 .Assumption 2 . 3 .

 223 3 collects the general set of assumptions for the Frank-Wolfe algorithm. Let C ⊂ R n be a nonempty compact convex set and f : D → R be a convex function with L-Lipschitz-continuous gradient, where L > 0 and D ⊂ R n is an open convex set containing C.

Theorem 2 . 4 (

 24 [START_REF] Levitin | Constrained minimization methods[END_REF][START_REF] Dunn | Conditional gradient algorithms with open loop step size rules[END_REF][START_REF] Jaggi | Revisiting Frank-Wolfe: Projection-free sparse convex optimization[END_REF]). Consider Assumption 2.3. Then the Frank-Wolfe algorithm satisfies for all t 1,

Remark 3 . 2 .Lemma 3 . 3 .

 3233 In Theorem 3.1, ∇f is Lipschitz-continuous on D by the mean value theorem, since d 2. Thus, f satisfies Assumption 2.3. Consider the function f and all other variables defined in Theorem 3.1. Let C ⊂ D be a compact convex set and consider minimizing f over C using the Frank-Wolfe algorithm with the line-search strategy (iii). Let t ∈ N and suppose that there exists k

  Then C and f satisfy Assumption 2.3 so Theorem 2.4 holds. The solution set is arg min C f = k∈N P k = [(-1/4, 0), (1/4, 0)]. The construction is such that for all k ∈ N, the points B k , C k+1 , (1, 0), and the points C k , B k+1 , (-1, 0), are aligned, and

Figure 1 :

 1 Figure 1: The constraint set (in black), polygonal sketches of the objective function (in orange), and the solution set (in red). For all k ∈ N, the points B k , C k+1 , (1, 0), and the points C k , B k+1 , (-1, 0), are aligned, and A k B k C k = A0B0C0 and B k C k D k = B0C0D0.

Figure 2 :

 2 Figure 2: The constraint set (in black), polygonal sketches of the objective function (in orange), the solution set (in red), gradient directions (in green), and the trajectory (in blue) of the sequence (xt) t∈N generated by the Frank-Wolfe algorithm with the line-search strategy (iii) starting from x0. The abscisse of xt is (-1) t /4 for all t ∈ N, so (xt) t∈N does not converge.

Figure 3 :

 3 Figure3: The constraint set (in black), polygonal sketches of the objective function (in orange), and the solution set (in red). For all k ∈ N, the points A k , B k+1 , (-1, 1), the points B k , C k+1 , (1, 1), the points C k , D k+1 , (1, -1), and the points D k , A k+1 , (-1, -1), are aligned.

x 0 Figure 4 :

 04 Figure 4: The constraint set (in black), polygonal sketches of the objective function (in orange), the solution set (in red), gradient directions (in green), and the trajectory (in blue) of the sequence (xt) t∈N generated by the Frank-Wolfe algorithm with the line-search strategy (iii) starting from x0. The sequence (xt) t∈N circles around the solution set and does not converge.

(

  i) ∇f (A k ) and ∇f (D k ), and ∇f (B k ) and ∇f (C k ), are positively colinear;

(Lemma 3 . 9 .

 39 ii) By Lemma 3.4 and items (i)-(ii) above, (-1) k e 1 , ∇f (y) > 0 for all y ∈[A k , D k ] ∪ [B k , C k ]. There exist y 1 ∈ [A k , D k ], y 2 ∈ [B k , C k ], and γ ∈ [0, 1] such that y 2 -y 1 = y 2 -y 1 e 1 and x = (1 -γ )y 1 + γ y 2 . Let ϕ : γ ∈ [0, 1] → f ((1 -γ)y 1 + γy 2 ), which is convex. Then ϕ (γ) = y 2 -y 1 , ∇f ((1 -γ)y 1 + γy 2 ) = y 2 -y 1 e 1 , ∇f ((1 -γ)y 1 + γy 2 ) for all γ ∈ [0, 1]. Thus, (-1) k ϕ (0) = (-1) k y 2 -y 1 e 1 , ∇f (y 1 ) > 0 and (-1) k ϕ (1) = (-1) k y 2y 1 e 1 , ∇f (y 2 ) > 0, so, by monotonicity of ϕ , (-1) k ϕ (γ) > 0 for all γ ∈ [0, 1]. Therefore, (-1) k e 1 , ∇f (x) > 0. Lemma 3.9 completes our counterexample. Note that L > L * C def = sup x,y∈C,x =y ∇f (y) -∇f (x) / y -x is most likely in practice, because the optimal value L * C is very hard to estimate precisely in general. Consider the Frank-Wolfe algorithm starting from x 0 ∈ C \ arg min C f with the closedloop strategy (ii). If L > L * C , then: (i) For all t ∈ N, x t / ∈ arg min C f ;

( 1

 1 -γ ) (1 -c) t -t , so t -t ln(14/13) ln(1/(1 -c)) = 2.

Figure 7 :

 7 Figure 7: Stretched for visualization purposes. The constraint set (in black), polygonal sketches of the objective function (in orange) built using the open-loop strategy (i'), the solution set (in red), gradient directions (in green), and the trajectory (in blue) of (B k ) k∈N . For all k 1, B k+1 ∈ [B k , V k ] where V k = V k-1 or V k = -V k-1, depending on whether (B k ) k∈N has just crossed the vertical band delimited by the dashed lines or not.

Definition 2.1. The

  linear minimization oracle LMO is specified if u ∈ R n → LMO(u) is a welldefined function and satisfies LMO(u) = LMO(u ) for all positively colinear u, u ∈ R n . Otherwise, it is misspecified.

	Algorithm 2 Frank-Wolfe	
	Input: Start point x 0 ∈ C, step-size strategy (γ t ) t∈N ∈ [0, 1]	N .
	Output: Sequence of iterates (x t ) t∈N ∈ C N .	
	1: for t = 0 to T -1 do	
	2:	

t 4: end for Remark 2.2. (

  i) The step-size strategy (γ t ) t∈N need not be numerically defined before running Algorithm 2. More precisely, we may say that a sequence (x t ) t∈N ∈ (R n ) N is generated by the Frank-Wolfe algorithm if x 0 ∈ C and for all t ∈ N, there exist v t ∈ arg min v∈C v, ∇f (x t ) and γ t ∈ [0, 1] such that x t+1 = (1 -γ t )x t + γ t v t . (ii) When arg min v∈C v, ∇f (x t ) is not a singleton, the choice for v t is made by the linear minimization oracle. If the oracle is misspecified, then (v t ) t∈N , and thus (x t ) t∈N , may not be uniquely determined by x 0 and (γ t ) t∈N .

  • op denotes the operator norm. Since arg min D f = k∈N P k has nonempty interior, ∇ 2 f (x) = 0 for all x ∈ arg min D f ⊃ arg min C f . By Theorem 2.4, f (x t ) → min C f , so dist(x t , arg min C f ) → 0, and, by Lemma 3.9(ii), v t ∈ arg min C f for all t ∈ N. By continuity of ∇ 2 f , it follows that sup x∈[xt,vt] ∇ 2 f (x) op → 0. By (2), γ t → 0.
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where α t -1/2, (13/8)(1/2) k+1-K = I k , e 2 β t (7/4)(1/2) k+1-K = E k , e 2 , and β t (5/4)(1/2) k+1-K = H k , e 2 . Thus, α t -α t 13/8 -5/4 7/4 1 2 = 3 28 .

• Else, α t < -1/2. There exists t ∈ N such that Thus, together with Lemma 3.9(v), we conclude that card{t ∈ N | ∃t t : |α t -α t | 3/28} = +∞. Therefore, (α t ) t∈N is not a Cauchy sequence, so (x t ) t∈N does not converge.

Counterexample 4: Open-loop strategies

Our last counterexample involves the open-loop strategies (i)-(i'). It is similar in design to the one in Section 3.1. Note that the counterexample from Section 3.3 would be valid here as well if we had γ 0 < 1.

Counterexample 3.10.

There exist C and f , satisfying Assumption 2.3, and x 0 ∈ C such that any sequence (x t ) t∈N generated by Frank

-Wolfe algorithm using an open-loop strategy (i)-(i') does not converge.

Let (γ t ) t∈N be an open-loop strategy, C = conv{(-2, 1/4), (-1, 0), (0, 1), (1, 0)}, and f be defined via Theorem 3.1 with, for all k ∈ N,

, and, for all k 1,

Then C and f satisfy Assumption 2.3 so Theorem 2.4 holds. The solution set is arg min

The construction is such that the trajectory of (B k ) k∈N is headed by (V k ) k∈N , whose terms change value each time (B k ) k∈N crosses the vertical band {x ∈ C | | x, e 1 | 1/4}. An illustration is presented in Figure 7.

By construction, for all k ∈ N,