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Introduction

We consider a model for a microelectromechanical system (MEMS) featuring an elastic, electrostatically actuated plate with positive thickness as introduced in [START_REF] Laurenc | Heterogeneous dielectric properties in models for microelectromechanical systems[END_REF]. More precisely, given a finite interval D := (-L, L) with L > 0, let the function u ∈ C( D, [-H, ∞)) with u(±L) = 0 measure the deflection from rest of the lower part of an elastic plate with thickness d > 0, clamped at its boundaries and suspended above a fixed ground plate, the latter being represented by D and located at z = -H with H > 0 (see Figure 1.1). The deflected elastic plate is then Ω 2 (u) := {(x, z) ∈ D × R : u(x) < z < u(x) + d} , while the region between the ground plate and the deflected elastic plate is Ω 1 (u) := {(x, z) ∈ D × R : -H < z < u(x)} .

The two regions are separated by the interface Σ(u) := {(x, z) ∈ D × R : z = u(x) > -H} .

The deflection of the plate being triggered by electrostatic actuation, the total energy of the device is E(u) := E m (u) + E e (u) (1.1a) with mechanical energy E m (u) and electrostatic energy E e (u). The former is given by

E m (u) := β 2 ∂ 2 x u 2 L 2 (D) + τ 2 + a 4 ∂ x u 2 L 2 (D) ∂ x u 2 L 2 (D)
(1.1b) with β > 0 and a, τ ≥ 0, taking into account bending and external stretching effects of the elastic plate. The electrostatic energy

E e (u) := - 1 2 Ω(u) σ|∇ψ u | 2 d(x, z) (1.1c) u Ω 1 (u) Ω 2 (u) D Σ(u) z -H 0 d -L L Figure 1.1.
Geometry of Ω(u) for a state u ∈ S with empty coincidence set.

involves the electrostatic potential ψ u in the subdomain

Ω(u) := {(x, z) ∈ D × R : -H < z < u(x) + d} = Ω 1 (u) ∪ Ω 2 (u) ∪ Σ(u)
of D ×(-H, ∞). The electrostatic potential ψ u is the solution to the transmission problem div(σ∇ψ u ) = 0 in Ω(u) , (1.2a)

ψ u = σ∇ψ u • n Σ(u) = 0 on Σ(u) , (1.2b) 
ψ u = h u on ∂Ω(u) , (1.2c) 
where • denotes the (possible) jump across the interface Σ(u); that is,

f (x, u(x)) := f | Ω 1 (u) (x, u(x)) -f | Ω 2 (u) (x, u(x)) , x ∈ D ,
whenever meaningful for a function f : Ω(u) → R. Moreover,

σ := σ 1 1 Ω 1 (u) + σ 2 1 Ω 2 (u) (1.3)
involves the material dependent constant permittivities σ 2 , σ 1 > 0. The unit normal vector field to Σ(u) (pointing into Ω 2 (u)) is

n Σ(u) := (-∂ x u, 1) 1 + (∂ x u) 2 .
As for the boundary values in (1.2c) we assume the particular form

h u (x, z) := ζ(z -u(x) + 1) , (x, z) ∈ D × [-H, ∞) , (1.4a) 
where V > 0 and

ζ ∈ C 2 (R) , ζ| (-∞,1] ≡ 0 , ζ| [1+d,∞) ≡ V . (1.4b) For instance, ζ(r) := V min{1, (r -1) m /d m } for r > 1 and m > 2 and ζ ≡ 0 on (-∞, 1] is a possible choice. Note that h u (x, -H) = 0 , h u (x, u(x) + d) = V , x ∈ D ;
that is, the ground plate and the top of the elastic plate are kept at different constant potentials. Let us emphasize that we explicitly allow that the elastic plate touches upon the ground plate when u reaches the value -H somewhere, a situation corresponding to a nonempty coincidence set

u Ω 1 (u) Ω 2 (u) D Σ(u) z -H 0 d -L L C(u)
C(u) := {x ∈ D : u(x) = -H} , (1.5) 
as depicted in Figure 1.2. In this case, the region Ω 1 (u) is not connected and its boundary features cusps, so that its connected components are not Lipschitz domains.

In this research we shall be interested in minimizers of the total energy E which correspond to stationary states of the MEMS device. More precisely, we shall show the existence of minimizers and derive the corresponding Euler-Lagrange equation they satisfy, which, due to the nature of the problem, is a variational inequality. Obviously, the main difficulty in this regard is related to the electrostatic energy E e and the associated transmission problem (1.2) for the electrostatic potential. The latter was investigated in [START_REF]H 2 -regularity for a two-dimensional transmission problem with geometric constraint[END_REF] for deflections belonging to the set S := {u ∈ H 2 (D) ∩ H 1 0 (D) : u ≥ -H in D and ± σ ∂ x u(±L) ≤ 0} with σ = σ 1 -σ 2 . More precisely, the following result is shown in [START_REF]H 2 -regularity for a two-dimensional transmission problem with geometric constraint[END_REF]. (a) For each u ∈ S, there is a unique variational solution

ψ u ∈ h u +H 1 0 (Ω(u)) to (1.2). Moreover, ψ u,1 := ψ u | Ω 1 (u) ∈ H 2 (Ω 1 (u)) and ψ u,2 := ψ u | Ω 2 (u) ∈ H 2 (Ω 2 (u))
, and ψ u is a strong solution to the transmission problem (1.2). (b) Given κ > 0, there is c(κ) > 0 such that, for every u ∈ S satisfying u H 2 (D) ≤ κ,

ψ u H 1 (Ω(u)) + ψ u,1 H 2 (Ω 1 (u)) + ψ u,2 H 2 (Ω 2 (u)) ≤ c(κ) .
The H 2 -regularity of the electrostatic potential ψ u provided by Theorem 1.1 is then the basis for deriving the existence of minimizers of the total energy E. We shall look for minimizers with clamped boundary conditions; that is, minimizers in the closed convex subset S0 :

= {u ∈ H 2 (D) ∩ H 1 0 (D) : u ≥ -H in D and ∂ x u(±L) = 0} of H 2 (D)
. We denote by ∂I S0 the subdifferential of the indicator function I S0 . Our main result then reads: Theorem 1.2. Assume a > 0 or σ < 0, and let (1.4) be satisfied. Then, the total energy E has at least one minimizer in S0 . Moreover, any minimizer

u * ∈ S0 of E in S0 with E(u * ) = min S0 E (1.6)
is an H 2 -weak solution to the variational inequality

β∂ 4 x u * -(τ + a ∂ x u * 2 L 2 (D) )∂ 2 x u * + ∂I S0 (u * ) ∋ -g(u * ) in D ; (1.7) that is, D β∂ 2 x u * ∂ 2 x (w -u * ) + τ + a ∂ x u * 2 L 2 (D) ∂ x u * ∂ x (w -u * ) dx ≥ - D g(u * )(w-u * ) dx for all w ∈ S0 . The function g(u) ∈ L 2 (D) is for u ∈ S given by g(u) := - σ 2(1 + (∂ x u(x)) 2 ) ∂ x ψ u,2 + ∂ x u∂ z ψ u,2 2 (x, u(x)) - σ σ 2 2σ 1 (1 + (∂ x u(x)) 2 ) ∂ x u∂ x ψ u,2 -∂ z ψ u,2 2 (x, u(x)) + σ 2 2 ∇ψ u,2 (x, u(x) + d) 2 .
(1.8)

Finally, if σ < 0, then u * ≤ 0 in D.
Even though the total energy E consists of two competing terms with different signs, it is not difficult to see that it is H 2 -coercive if a > 0 in (1.1b), see [START_REF]Shape derivative of the Dirichlet energy for a transmission problem[END_REF], and the existence of a minimizer for E on S0 follows directly. When a = 0, the coercivity of E is no longer obvious and one has to proceed differently. In this case, the coercivity of the functional can be enforced by adding a penalty term which vanishes when u is bounded, an idea that was used in [START_REF] Ph | Energy minimizers for an asymptotic MEMS model with heterogeneous dielectric properties[END_REF]. The minimizers of the penalized energy functional on S0 then satisfy the Euler-Lagrange equation (1.7) with an additional term. The assumption σ < 0 now guarantees that g(u) ≥ 0 in D according to (1.8) which, in turn, yields an a priori bound on the minimizers by a comparison argument. This then implies that the minimizers of the penalized energy actually minimize the total energy E. It is worth emphasizing that the non-negative sign of g(u) -read off from the explicit formula (1.8) when σ < 0 -is essential for this approach.

The main motivation of this research is thus the explicit computation of the electrostatic force g(u) as the (directional) derivative of the electrostatic energy E e (u). A computation in the same spirit was performed in [START_REF]Shape derivative of the Dirichlet energy for a transmission problem[END_REF] for a related MEMS model but with a flat transmission interface. As we shall see in Section 2, the non-flat transmission interface Σ(u) in (1.2b) makes the computation noticeably more involved. We first establish in Section 2 differentiability properties of the electrostatic potential ψ u with respect to u which then ensure the Fréchet differentiability of the electrostatic energy E e on S. The subsequent identification of g(u) as the (directional) derivative of the electrostatic energy E e (u) is the main contribution of Section 2. Once this is achieved, the existence of minimizers follows along the lines of [START_REF] Ph | Energy minimizers for an asymptotic MEMS model with heterogeneous dielectric properties[END_REF] as described above.

As pointed out above the electrostatic force g(u) has a sign if one assumes that σ < 0; that is, if σ 2 > σ 1 . This is a natural assumption e.g. if the region between the two plates is vacuumed or filled with air. We also point out that this assumption implies the monotonicity of the electrostatic energy E e as stated explicitly in Corollary 2.5.

Remark 1.3. The total energy E can also be minimized in S leading then to weak solutions to (1.7) with I S instead of I S0 and pinned boundary conditions u(±L) = ∂ 2

x u(±L) = 0 instead of the clamped boundary conditions involved in S0 .

Shape Derivative of the Electrostatic Energy

The heart of the proof of Theorem 1.2 is the differentiability of the electrostatic energy E e and, in particular, the identification of g(u) as its derivative at u ∈ S. On a formal level, this derivative is computed in [START_REF] Laurenc | Heterogeneous dielectric properties in models for microelectromechanical systems[END_REF] (in a three-dimensional setting). Here we provide a rigorous proof. Actually, we shall show that the electrostatic energy E e is Fréchet differentiable on

S := {u ∈ H 2 (D) ∩ H 1 0 (D) : u > -H in D and ± σ ∂ x u(±L) ≤ 0} , i.e.
, for points with empty coincidence set, while it admits a directional derivative at u ∈ S in the directions -u + S. Here and in the following, S and S are endowed with the H 2 (D)-topology. The precise result reads as follows:

Theorem 2.1. Assume (1.4). The electrostatic energy E e : S → R is continuously Fréchet differentiable with

∂ u E e (u)[ϑ] = D g(u)(x) ϑ(x) dx for u ∈ S and ϑ ∈ H 2 (D) ∩ H 1 0 (D), where g(u) is defined in (1.8). Moreover, if u ∈ S and w ∈ S, then lim t→0 + 1 t E e (u + t(w -u)) -E e (u) = D g(u)(x) (w -u)(x) dx . The function g : S → L p (D) is continuous for each p ∈ [1, ∞).
The proof of Theorem 2.1 follows from Proposition 2.4 and Corollary 2.5 below. We will need the following result which is contained in [START_REF]H 2 -regularity for a two-dimensional transmission problem with geometric constraint[END_REF]. 

(u n ) n≥1 in S such that lim n→∞ u n -u H 1 (D) = 0 . Then, for any p ∈ [1, ∞), lim n→∞ ∇ψ un,2 (•, u n ) -∇ψ u,2 (•, u) Lp(D,R 2 ) = 0 , (2.1a) lim n→∞ ∇ψ un,2 (•, u n + d) -∇ψ u,2 (•, u + d) Lp(D,R 2 ) = 0 . (2.1b) Moreover, lim n→∞ E e (u n ) = E e (u) . (2.2)
Finally, setting

M := d + max u L∞(D) , sup n≥1 { u n L∞(D) } , one has lim n→∞ (ψ un -h un ) -(ψ u -h u ) H 1 0 (D×(-H,M )) = 0 . (2.
3)

The first step of the proof of Theorem 2.1 is to show that the electrostatic energy E e is Fréchet differentiable on S. The next lemma is adapted from [1, Theorem 5.3.2], see also [START_REF]Shape derivative of the Dirichlet energy for a transmission problem[END_REF]Lemma 4.1]. We include the proof for the reader's ease. Lemma 2.3. Assume (1.4). Let u ∈ S be fixed and define, for v ∈ S, the transformation

Θ u,v = (Θ u,v,1 , Θ u,v,2 ) : Ω(u) → Ω(v) by Θ u,v,1 (x, z) := x, z + v(x) -u(x) H + u(x) (z + H) , (x, z) ∈ Ω 1 (u) , (2.4a) Θ u,v,2 (x, z) := (x, z + v(x) -u(x)) , (x, z) ∈ Ω 2 (u) . (2.4b)
Then there exists a neighborhood U of u in S such that the mapping

U → H 1 0 (Ω(u)), v → ξ v := ψ v -h v • Θ u,v is 
continuously differentiable, recalling that S and thus also U are endowed with the H 2 (D)topology.

Proof. Set χ v := ψ v -h v for v ∈ S. Owing to Theorem 1.1, the function χ v belongs to H 1 0 (Ω(v)) and satisfies the integral identity

Ω(v) σ∇χ v • ∇θ d(x, z) = - Ω(v) σ∇h v • ∇θ d(x, z) , θ ∈ H 1 0 (Ω(v)) , (2.5) 
which we next shall write as integrals over Ω(u). To this end, we first note that

ξ u = χ u , ∇ξ v = DΘ T u,v ∇χ v • Θ u,v , (2.6) 
where

DΘ u,v,1 (x, z) =     1 0 (z + H)∂ x v -u H + u (x) H + v(x) H + u(x)     , (x, z) ∈ Ω 1 (u) ,
and

DΘ u,v,2 (x, z) =   1 0 ∂ x (v -u)(x) 1   , (x, z) ∈ Ω 2 (u) . For φ ∈ H 1 0 (Ω(u)) we set φ v := φ • Θ -1 u,v ∈ H 1 0 (Ω(v)) and note that ∇φ v = (DΘ T u,v ) -1 ∇φ • Θ -1 u,v .
Performing the change of variables (x, z) = Θ u,v (x, z) in (2.5) with θ = φ v and using (1.3) give

Ω(u) σ J v (DΘ u,v ) -1 (DΘ T u,v ) -1 ∇ξ v • ∇φ d(x, z) = - Ω(u) σ J v (DΘ u,v ) -1 ∇h v • Θ u,v • ∇φ d(x, z) , (2.7) 
where the Jacobian J v := |det(DΘ u,v )| is given by

J v,1 = H + v H + u in Ω 1 (u) , J v,2 = 1 in Ω 2 (u) . (2.8)
Introducing the notations

A(v) := σ J v (DΘ u,v ) -1 (DΘ T u,v ) -1 and B(v) := div σ J v (DΘ u,v ) -1 ∇h v • Θ u,v
, we define the function

F : S × H 1 0 (Ω(u)) → H -1 (Ω(u)) , (v, ξ) → -div A(v)∇ξ -B(v) and observe that (2.7) is equivalent to F (v, ξ v ) = 0 , v ∈ S .
(2.9)

We then shall use the implicit function theorem to show that ξ v depends smoothly on v.

For that purpose, let us first show that F is Fréchet differentiable in S ×H 1 0 (Ω(u)). Indeed, by (1.4), it is readily checked that

∇h v • Θ u,v (x, z) = 1 Ω 2 (u) ζ ′ z -u(x) + 1 -∂ x v(x) 1 ,
so that its Fréchet derivative with respect to v is

∂ v ∇h v • Θ u,v [ϑ](x, z) = 1 Ω 2 (u) ζ ′ z -u(x) + 1 -∂ x ϑ(x) 0 (2.10) for ϑ ∈ H 2 (D) ∩ H 1 0 (D). Thus, v → ∇h v • Θ u,v ∈ C 1 S, L 2 (Ω(u), R 2 ) .
Moreover, v → J v and v → (DΘ u,v ) -1 are continuously differentiable from S to L ∞ (Ω(u)) and L ∞ (Ω(u), R 2×2 ), respectively, and we conclude that

v → σ J v (DΘ u,v ) -1 ∇h v • Θ u,v
is continuously differentiable from S to L 2 (Ω(u), R 2 ). Hence B ∈ C 1 (S, H -1 (Ω(u))). The C 1 -smoothness of (v, ξ) → div(A(v)∇ξ) is proven as in [1, Theorem 5.3.2] and we have thus established that F ∈ C 1 S × H 1 0 (Ω(u)), H -1 (Ω(u)) . The Lax-Milgram theorem and the open mapping theorem imply that the mapping

ω → ∂ ξ F (u, ξ u )[ω] = -div(σ∇ω)
is an isomorphism from H 1 0 (Ω(u)) to H -1 (Ω(u)). Consequently, the implicit function theorem ensures the existence of a neighborhood U of u in S and a function Ξ

∈ C 1 (U , H 1 0 (Ω(u)) such that Ξ(u) = ξ u and F (v, Ξ(v)) = 0 for v ∈ U . By (2.3), ξ v ∈ Ξ(U ) for v -u H 2 (D)
sufficiently small and we infer from (2.9) and the uniqueness provided by the implicit function theorem that ξ v = Ξ(v) for v ∈ U .

We next compute the Fréchet derivative of the electrostatic energy on S and thus provide a proof for the first part of Theorem 2.1.

Proposition 2.4. Assume (1.4). The electrostatic energy E e : S → R is continuously Fréchet differentiable with

∂ u E e (u)[ϑ] = D g(u)(x) ϑ(x) dx for u ∈ S and ϑ ∈ H 2 (D) ∩ H 1 0 (D)
, where g(u) is defined in (1.8). Proof. We fix u ∈ S and use the notation introduced in Lemma 2.3. Recall that, according to Lemma 2.3, there is a neighborhood U of u in S such that the mapping

v → ξ v = ψ v -h v • Θ u,v belongs to C 1 (U , H 1 0 (Ω(u))
), the transformation Θ u,v : Ω(u) → Ω(v) being defined in (2.4). Now, for v ∈ U , we use (2.6), the relation χ v = ψ v -h v , and the change of variable (x, z) = Θ u,v (x, z) in the integral defining E e (v) to obtain

E e (v) = - 1 2 Ω(v) σ|∇ψ v | 2 d(x, z) = - 1 2 Ω(u) σ|j(v)| 2 J v d(x, z) , where j(v) := (DΘ T u,v ) -1 ∇ξ v + ∇h v • Θ u,v . Owing to the differentiability of v → ξ v in U , we deduce that the Fréchet derivative of E e at u applied to some ϑ ∈ H 2 (D) ∩ H 1 0 (D) is given by ∂ u E e (u)[ϑ] = ∂ v E e (v)[ϑ] v=u = - Ω(u) σj(u) • (∂ v j(v))[ϑ] v=u J u d(x, z) - 1 2 Ω(u) σ|j(u)| 2 (∂ v J v )[ϑ] v=u d(x, z) .
Taking the identity j(u) = ∇χ u + ∇h u = ∇ψ u into account, we infer from (2.8) that

∂ u E e (u)[ϑ] = - Ω(u) σ∇ψ u • ∂ v j(v)[ϑ] v=u d(x, z) - 1 2 Ω 1 (u) σ 1 |∇ψ u,1 | 2 ϑ H + u d(x, z) .
(2.11)

We next use that Θ u,u is the identity on Ω(u) and that ξ u = χ u to compute from the definition of j(v) that

∂ v j(v)[ϑ] v=u = -∂ v (DΘ T u,v )[ϑ] v=u ∇χ u + ∂ v (∇ξ v )[ϑ] v=u + ∂ v (∇h v • Θ u,v )[ϑ] v=u .
(2.12)

Now, χ u,1 = ψ u,1 in Ω 1 (u) due to (1.4), so that -∂ v (DΘ T u,v )[ϑ] v=u ∇χ u = -∂ z ψ u ∇ ϑ(z + H) H + u in Ω 1 (u) , (2.13) 
while

-∂ v (DΘ T u,v )[ϑ] v=u ∇χ u = - ∂ z χ u ∂ x ϑ 0 in Ω 2 (u) . (2.14) Also note that ∂ v (∇ξ v )[ϑ] v=u = ∇ ∂ v ξ v [ϑ] v=u in Ω(u) . (2.15) 
Consequently, gathering (2.11)-(2.15) and recalling (2.10) lead us to

∂ u E e (u)[ϑ] = I 0 (u)[ϑ] + I 1 (u)[ϑ] + I 2 (u)[ϑ] , (2.16) 
where

I 0 (u)[ϑ] := - Ω(u) σ ∇ψ u • ∇ ∂ v ξ v [ϑ] v=u d(x, z) , I 1 (u)[ϑ] := Ω 1 (u) σ 1 ∂ z ψ u,1 ∇ψ u,1 • ∇ ϑ(z + H) H + u d(x, z) - 1 2 Ω 1 (u) σ 1 |∇ψ u,1 | 2 ϑ H + u d(x, z) ,
and

I 2 (u)[ϑ] := Ω 2 (u) σ 2 ∂ x ψ u,2 ζ ′ z -u + 1 ∂ x ϑ d(x, z) + Ω 2 (u) σ 2 ∂ x ψ u,2 ∂ z χ u,2 ∂ x ϑ d(x, z) .
We are left with simplifying these three integrals and begin with I 0 (u) [ϑ]. We use Gauß' theorem and (1.2a) to get

I 0 (u)[ϑ] = - ∂Ω(u) ∂ v ξ v [ϑ] v=u σ∇ψ u • n ∂Ω(u) dS - Σ(u) ∂ v ξ v [ϑ] v=u σ∇ψ u • n Σ(u) dS . Now, recall that ∂ v ξ v [ϑ]
v=u belongs to H 1 0 (Ω(u)) according to Lemma 2.3. On the one hand, this entails that ∂ v ξ v [ϑ] v=u vanishes on ∂Ω(u), so that the first integral on the right-hand side of the above identity is zero. On the other hand, the H 1 -regularity of

∂ v ξ v [ϑ] v=u also implies that ∂ v ξ v [ϑ] v=u = 0 on Σ(u), so that ∂ v ξ v [ϑ] v=u σ∇ψ u • n ∂Σ(u) = ∂ v ξ v [ϑ] v=u σ∇ψ u • n Σ(u) = 0 on Σ(u)
due to (1.2b). Therefore,

I 0 (u)[ϑ] = 0 .
(2.17)

We next deal with I 1 (u) [ϑ]. Since σ 1 ∆ψ u,1 = div(σ∇ψ u ) = 0 in Ω 1 (u) by (1.2a), it follows from Gauß' theorem that

I 1 (u)[ϑ] = Ω 1 (u) σ 1 ∂ z ψ u,1 div ϑ(z + H) H + u ∇ψ u,1 d(x, z) - 1 2 Ω 1 (u) σ 1 |∇ψ u,1 | 2 ϑ H + u d(x, z) = ∂Ω 1 (u) σ 1 ϑ(z + H) H + u ∂ z ψ u,1 ∇ψ u,1 • n ∂Ω 1 (u) dS - Ω 1 (u) σ 1 ∇ψ u,1 • ∇ (∂ z ψ u,1 ) ϑ(z + H) H + u d(x, z) - 1 2 Ω 1 (u) σ 1 |∇ψ u,1 | 2 ϑ H + u d(x, z) .
Recalling that ϑ ∈ H 1 0 (D) and noticing that ∇ψ u,1 • ∇ (∂ z ψ u,1 ) = ∂ z |∇ψ u,1 | 2 )/2, we further obtain

I 1 (u)[ϑ] = D σ 1 ∂ z ψ u,1 (x, u(x)) -∂ x u∂ x ψ u,1 + ∂ z ψ u,1 (x, u(x))ϑ(x) dx - 1 2 D σ 1 |∇ψ u,1 (x, u(x))| 2 ϑ(x) dx .
Hence,

I 1 (u)[ϑ] = - 1 2 D σ 1 |∂ x ψ u,1 | 2 -|∂ z ψ u,1 | 2 (x, u(x))ϑ(x) dx - D σ 1 ∂ x u(x) ∂ x ψ u,1 ∂ z ψ u,1 (x, u(x))ϑ(x) dx .
(2.18)

Finally, using (1.4a), χ u = ψ u -h u and ϑ ∈ H 1 0 (D), it follows from Green's formula that

I 2 (u)[ϑ] = Ω 2 (u) σ 2 ∂ x ψ u,2 ∂ z ψ u,2 ∂ x ϑ d(x, z) = - D σ 2 ∂ x ψ u,2 ∂ z ψ u,2 (x, u(x) + d)∂ x u(x) dx + D σ 2 ∂ x ψ u,2 ∂ z ψ u,2 (x, u(x))∂ x u(x) dx - Ω 2 (u) σ 2 ∂ x ∂ x ψ u,2 ∂ z ψ u,2 ϑ d(x, z) .
Owing to (1.2a), we have

σ 2 ∂ 2 x ψ u,2 = -σ 2 ∂ 2 z ψ u,2 in Ω 2 (u) from which we deduce that Ω 2 (u) σ 2 ∂ x ∂ x ψ u,2 ∂ z ψ u,2 ϑ d(x, z) = Ω 2 (u) σ 2 ∂ 2 x ψ u,2 ∂ z ψ u,2 + ∂ x ψ u,2 ∂ x ∂ z ψ u,2 ϑ d(x, z) = Ω 2 (u) σ 2 -∂ z ψ u,2 ∂ 2 z ψ u,2 + ∂ x ψ u,2 ∂ x ∂ z ψ u,2 ϑ d(x, z) = 1 2 Ω 2 (u) σ 2 ∂ z |∂ x ψ u,2 | 2 -|∂ z ψ u,2 | 2 ϑ d(x, z) = 1 2 D σ 2 |∂ x ψ u,2 | 2 -|∂ z ψ u,2 | 2 (x, u(x) + d)ϑ(x) dx - 1 2 D σ |∂ x ψ u,2 | 2 -|∂ z ψ u,2 | 2 (x, u(x))ϑ(x) dx .
Consequently,

I 2 (u)[ϑ] = - D σ 2 ∂ x ψ u,2 ∂ z ψ u,2 (x, u(x) + d)∂ x u(x) dx + D σ 2 ∂ x ψ u,2 ∂ z ψ u,2 (x, u(x))∂ x u(x) dx - 1 2 D σ 2 |∂ x ψ u,2 | 2 -|∂ z ψ u,2 | 2 (x, u(x) + d)ϑ(x) dx + 1 2 D σ 2 |∂ x ψ u,2 | 2 -|∂ z ψ u,2 | 2 (x, u(x))ϑ(x) dx .
We finally note that

∂ x ψ u,2 (x, u(x) + d)) = -∂ x u(x)∂ z ψ u,2 (x, u(x) + d) ,
since ψ u,2 (x, u(x) + d) = V owing to (1.2c) and (1.4b). This identity allows us to simplify further the formula for I 2 (u)[ϑ], so that we end up with 

I 2 (u)[ϑ] = 1 2 D σ 2 |∇ψ u,2 (x, u(x) + d)| 2 dx + D σ 2 ∂ x ψ u,2 ∂ z ψ u,2 (x, u(x))∂ x u(x) dx + 1 2 D σ 2 |∂ x ψ u,2 | 2 -|∂ z ψ u,2 | 2 (x, u(x))ϑ(x) dx . ( 2 
∂ u E e (u)[ϑ] = - 1 2 D σ(∂ x ψ u ) 2 -σ(∂ z ψ u ) 2 (x, u(x)) ϑ(x) dx - D ∂ x u(x) σ∂ x ψ u ∂ z ψ u (x, u(x)) ϑ(x) dx + 1 2 D σ 2 ∇ψ u,2 (x, u(x) + d) 2 ϑ(x) dx .
(2.20)

Corollary 2.5. Assume (1.4). Let u 0 ∈ S and u 1 ∈ S. Then

lim t→0 + 1 t E e (u 0 + t(u 1 -u 0 )) -E e (u 0 ) = D g(u 0 )(x) (u 1 -u 0 )(x) dx .
Moreover, the function g : S → L p (D) is continuous for each p ∈ [1, ∞).

Proof. The stated continuity of g is a straightforward consequence of (2.1). Next, given u 0 ∈ S and u 1 ∈ S, we set If σ < 0, then an obvious consequence of (1.8) is that g is non-negative on S. This yields the monotonicity of the electrostatic energy E e .

u s := u 0 + s(u 1 -u 0 ) = (1 -s)u 0 + su 1 ∈ S , s ∈ (0,
Corollary 2.6. Assume σ < 0 and let (1.4) be satisfied. If u 0 ∈ S and u 1 ∈ S are such that u 0 ≤ u 1 in D, then E e (u 0 ) ≤ E e (u 1 ).

Proof. The assumption σ < 0 implies that g(u s ) ≥ 0 for s ∈ (0, 1] according to (1.8), where u s = (1 -s)u 0 + su 1 as in the proof of Corollary 2.5. Hence, (2.23) and (2.25) with t = 1 imply the assertion.

Proof of Theorem 1.2

The proof of Theorem 1.2 now follows from Theorem 2.1 as in [START_REF] Ph | Energy minimizers for an asymptotic MEMS model with heterogeneous dielectric properties[END_REF]. Indeed, Theorem 2.1 guarantees that any minimizer of the total energy E on S0 satisfies the Euler-Lagrange equation (1.7). In case that a > 0, the total energy E is coercive and thus the existence of a minimizer of E on S0 can be shown as in [START_REF] Ph | Energy minimizers for an asymptotic MEMS model with heterogeneous dielectric properties[END_REF]Section 7]. In the more complex case a = 0, the total energy E need not be coercive. But, as pointed out in the introduction, one may enforce its coercivity by adding a penalizing term and proceed along the lines of [2, Section 6], recalling that the assumption σ < 0 guarantees that g(u) ≥ 0 in D which is essential in this case (see, in particular, [2, Equation (6.4)]).

Figure 1 . 2 .

 12 Figure 1.2. Geometry of Ω(u) for a state u ∈ S with non-empty coincidence set.
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  u s ) ds = D g(u 0 )(x) (u 1 -u 0 )(x) dx as claimed.

  1] . Since u s ∈ S for s ∈ (0, 1], we deduce from Proposition 2.4 that d ds E e (u s ) =

				g(u s )(x) (u 1 -u 0 )(x) dx ,	s ∈ (0, 1] .	(2.23)
				D
	Therefore, letting s → 0, the continuity of g entails
			lim s→0 +	d ds	E e (u s ) =
				(2.25)
	and we conclude from (2.24) that
	lim t→0 +	1 t	E

D g(u 0 )(x) (u 1 -u 0 )(x) dx .

(2.24) Now (2.2) guarantees that E e (u s ) → E e (u 0 ) as s → 0, so that

E e (u t ) -E e (u 0 ) = t 0 d ds E e (u s ) ds , t ∈ (0, 1] , e (u t ) -E e (u 0 ) = lim
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Finally, we shall write (2.20) only in terms of ψ u,2 . To this end, we set

and observe that differentiating the transmission condition ψ u = 0 on Σ(u), along with the second transmission condition in (1.2b), ensures that

These properties in turn imply that

Guided by (2.22), we next express the jump terms in (2.20) using F u and G u . Since

Consequently, plugging this formula into (2.20) and recalling (2.21) yield

that is,

The final step for the proof of Theorem 2.1 is to show that the electrostatic energy E e admits directional derivatives in the directions -u + S.