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An Affine Combination of Two LMS Adaptive
Filters—Transient Mean-Square Analysis
Neil J. Bershad, Fellow, IEEE, José Carlos M. Bermudez, Senior Member, IEEE, and

Jean-Yves Tourneret, Member, IEEE

Abstract—This paper studies the statistical behavior of an
affine combination of the outputs of two least mean-square (LMS)
adaptive filters that simultaneously adapt using the same white
Gaussian inputs. The purpose of the combination is to obtain an
LMS adaptive filter with fast convergence and small steady-state
mean-square deviation (MSD). The linear combination studied is
a generalization of the convex combination, in which the combina-
tion factor ( ) is restricted to the interval (0,1). The viewpoint
is taken that each of the two filters produces dependent estimates
of the unknown channel. Thus, there exists a sequence of optimal
affine combining coefficients which minimizes the mean-square
error (MSE). First, the optimal unrealizable affine combiner is
studied and provides the best possible performance for this class.
Then two new schemes are proposed for practical applications.
The mean-square performances are analyzed and validated by
Monte Carlo simulations. With proper design, the two practical
schemes yield an overall MSD that is usually less than the MSDs
of either filter.

Index Terms—Adaptive filters, affine combination, anal-
ysis, convex combination, least mean square (LMS), stochastic
algorithms.

I. INTRODUCTION

THE design of many adaptive filters requires a tradeoff
between convergence speed and steady-state mean-square

error (MSE). A faster (slower) convergence speed yields a
larger (smaller) steady-state mean-square deviation (MSD) and
MSE. This property is usually independent of the type of adap-
tive algorithm, i.e., least mean-square (LMS), normalized least
mean-square (NLMS), recursive least squares (RLS), or affine
projection (AP). This design tradeoff is usually controlled by
some design parameter of the weight update, such as the step
size in LMS or AP, the step size or the regularization parameter
in NLMS or the forgetting factor in RLS. Variable step-size
modifications of the basic adaptive algorithms offer a possible 
solution to this design problem [1]–[5].
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Fig. 1. Adaptive combining of two transversal adaptive filters.

Recently, a novel scheme has been proposed in [6] which
uses a convex combination of two fixed step-size adaptive filters
as shown in Fig. 1, where adaptive filter uses a larger
step size than adaptive filter . The key to this scheme
is the selection of the scalar mixing parameter for com-
bining the two filter outputs. The mixing parameter is defined
in [7] as a sigmoid function whose free parameter is adaptively
optimized using a stochastic gradient search which minimizes
the quadratic error of the overall filter. The steady-state perfor-
mance of this adaptive scheme has been recently studied in [8].
The convex combination performed as well as the best of its
components in the MSE sense. These results indicate that a com-
bination of adaptive filters can lead to fast convergence rates and
good steady-state performance, an attribute that is usually ob-
tained only in variable step-size algorithms. Thus, there is great
interest in learning more about the properties of such adaptive
structures.

This paper provides new results for the performance of the
combined structure which supplement the work presently avail-
able in the literature. The achievable performance is studied
for an affine combination of two LMS adaptive filters using
the structure shown in Fig. 1 with stationary signals. Here, the
combination parameter is not restricted to the range (0,1).
Thus, Fig. 1 is interpreted from the viewpoint of a linear com-
biner. Each adaptive filter is estimating the unknown channel
impulse response using the same input data. Thus, and

are statistically dependent estimates of the unknown
channel. There exists a single combining parameter sequence

which minimizes the MSD. The parameter does not
necessarily lie within (0,1) for all . Thus, the output in
Fig. 1 is an affine (see footnote 1) combination of the individual
outputs and . The convex combination is a partic-
ular case.



The adaptive scheme is first studied from the viewpoint of an
optimal affine combiner. The value of that minimizes the
MSE for each (conditioned on the filter parameters at iteration

) is determined as a function of the unknown system response.
This leads to an optimal affine sequence . The statistical
properties of an optimal affine combiner are then studied. It is
shown that can be outside of the interval (0,1) for sev-
eral iterations. Most importantly, is usually negative in
steady-state. It is of interest to compare the performance of the
adaptive filter using a suboptimal but feasible adjustment algo-
rithm for with that of the optimal affine combiner. Al-
though the latter is unrealizable, its performance provides an
upper bound on the performance of any realizable affine com-
biner. Suppose a suboptimal (but realizable) algorithm leads to a
performance close to that of the optimal affine combiner. Then,
there is sufficient motivation for a more detailed study of the al-
gorithm with respect to analysis and implementation issues.

Finally, two realizable schemes for updating are pro-
posed. The first scheme is based on a stochastic gradient ap-
proximation to . The second scheme is based on the rela-
tive values of averaged estimates of the individual error powers.
Both schemes are briefly studied, and their performances are
compared to that of the optimal affine combiner. Numerical re-
sults support the theoretical findings and show that the analysis
closely predicts the probabilistic behavior of the algorithms as
observed in Monte Carlo simulations, especially in the neigh-
borhood of the intersection of the MSDs of the individual filters
when the hand-off from one filter to the other filter occurs.

II. THE OPTIMAL AFFINE COMBINER

A. The Affine Combiner

The system under investigation is shown in Fig. 1. Each filter
uses the LMS adaptation rule but with different step sizes ,

1, 2:
(1)

where
(2)

(3)

where , 1, 2 are the -dimensional adaptive coef-
ficient vectors, is assumed zero-mean, i.i.d. and statis-
tically independent of any other signal in the system, and the
input process is assumed wide-sense stationary.

is the input vector. It will be as-
sumed, without loss, that , so that will, in
general, converge faster than . Also, will con-
verge to the lowest individual steady-state weight misadjust-
ment. The weight vectors and are coupled both
deterministically and statistically through and . The
stochastic analysis of each individual adaptive filter behavior in
(1) is well-known [9]–[11].

The outputs of the two filters are combined as in Fig. 1:

(4)

where , 1, 2, can be any real
number1 and the overall system error is given by

(5)

The adaptive filter output combination (4) is an affine combi-
nation, as can assume any value on the real line. This setup
generalizes the combination of adaptive filter outputs, and can
be used to study the properties of the optimal combination.

B. The Optimal Mixing Parameter

Equation (4) can be written as

(6)

where .
Equation (6) shows that can be interpreted as a combi-

nation of and a weighted version of the difference filter
. It also shows that the combined adaptive filter has an

equivalent weight vector given by

(7)

Subtracting (1) for from (1) for yields a recursion
for :

(8)

Next, let us consider a rule for choosing that minimizes
the conditional MSE at time .
Writing in (5) as

(9)

where yields

(10)

Using (9), taking the expectation over and
defining the input conditional autocorrelation matrix

results in

(11)

1This case corresponds to an affine (as opposed to convex) combination. The
output in (4) can have any real value on the line containing y (n) and y (n).
y(n) is restricted to the points on the line between y (n) and y (n) in the
convex combination case. Two reviewers have noted that the optimal combiner
is of the form y(n) = a(n)y (n) + b(n)y (n) where a(n) + b(n) 6= 1 in
general. This paper studies the affine combiner.



Solving (11) for yields

(12)

which is the expression for the optimum2 , as a function of
the unknown weight vector . The behavior of the LMS al-
gorithm in the adaptive structure of Fig. 1 using
given by (12) can be used as a benchmark for evaluation of dif-
ferent schemes devised for online adjustment of .

III. STATISTICAL PROPERTIES OF THE

OPTIMAL AFFINE COMBINER

This section derives important properties of the optimal
adaptive affine combiner. These properties can be used as
design bounds or as benchmarks for evaluation of realizable
adaptive filtering combining schemes. In the analysis that
follows, will be assumed for simplicity to be white,
Gaussian, with zero mean and variance . Thus,

since the input at time is assumed statistically independent of
the weights at time (independence theory). The step sizes
and will be given by

(13)

(14)

where and . Parameter controls the departure
of from , which is approximately the LMS step size
for maximum convergence speed [10]. Parameter controls the
ratio . Equations (13) and (14) allow and to lie in
the algorithm’s stability range and yield . Thus, filter 1
is the faster adapting filter. The white Gaussian input signal as-
sumption is not necessarily representative of the signals used in
every application. However, the theoretical approach and results
obtained under this assumption are suggestive of fundamental
analysis and design issues [9], [12].

A. Properties of

This section derives approximate results for the initial and
steady-state behaviors of . The mathematical models pro-
vide important insights into the ideal behavior of the mixing pa-
rameter . The structure of Fig. 1 is used in practical sit-
uations where is large for fast initial convergence and is
small to reduce the steady-state misadjustment. After a brief ini-
tial transient (very difficult to model because of the fast changes
occurring in the two statistics of the weight vectors during this
period), filter 1 dominates the adaptive behavior of the
combined adaptive filter. Initially adapts more quickly
towards the optimum weight vector than . Thus, from (4),
the optimum is close to unity during this initial phase.
On the other hand, dominates the adaptive filter be-
havior near steady-state. Thus, is near zero for large .
The model should also accurately estimate the number of iter-
ations when filter 1 hands over the control of the adaptation to
filter 2. Thus, moves away from unity. The optimum be-

2� (n) is optimum in the sense that it yields the minimum conditional MSE
at each time instant.

havior of at the start and in steady-state, and an accurate
estimate of when transfers the combined weight from filter
1 to filter 2 are useful pieces of information. This information
should help in the design of effective practical algorithms for
adjusting of mixing parameter.

1) Steady-State Behavior: Consider an approximation3 of the
steady-state mean of (12) for the white input case

(15)

Since ,

(16)

Equation (16) requires the evaluation of
and . Using (1) and (2) with the appropriate
indexes and (3), neglecting the statistical correlations between
the input and the two weight vectors [9], [11] and using the
Gaussian moment factoring theorem [14], the following recur-
sion can be written for :

(17)

The steady-state solution of (17) is determined in Appendix I
for , yielding

(18)

and

(19)

Thus, (16) can be written as4

(20)

3There are two main justifications for the approximations such as in pro-
ceeding from (12) to (15). First, evaluating expectations of quotients of corre-
lated random variables is usually a very difficult undertaking. Approximations
are often made in order to make progress in the analysis. We have chosen the
approximation that the expectation of the ratio is approximately the ratio of the
expectations (see for instance [13] and reference [13] within). Second, the latter
simulation results support this approximation.

4Equation (20) is negative since 0 < � < 1. Thus, since the denominator of
(15) is positive, one can expect lim E[� (n)] < 0 as is given in (26).



Using the same results, the denominator of (15) is

(21)

Using (13) and (14), these expressions reduce to

(22)

and

(23)

For the practical case of , (22) and (23) yield5

(24)

and

(25)

Finally, using (24) and (25) in (15) yields the steady-state
value of :

(26)

Expression (26) shows two interesting properties of
for typical (large) values of . Its steady-state value is negative
(since ) and depends only on the ratio .

2) Initial Behavior: This section studies the behavior of
after has converged but is still in

transient mode. This operating region includes the period
during which the steady-state behavior of is still a
better estimate of than and the period during which
the convergence control is being handed from over to

.
In steady-state, can be written as

(27)

where is a zero-mean stationary white vector [9]. It is
also assumed that the fluctuations in at convergence are
statistically independent of in this phase (i.e., the inde-
pendence assumption is used in the transition phase to provide
mathematical tractability).

5Note that � = 1=(N� ) ' � =2 for 
 = 0, for � equal to the
LMS stability limit.

Using (12), the above assumptions and the approximation in
(15) for all ,

(28)

yields

(29)
where

From [9],

(30)

and thus

(31)

Equation (29) also requires the evaluation of and
. For the typical adaptive filter initialization

, these expressions can easily be obtained
from Appendix I ((53) for and (57) with replaced with

). After some algebraic manipulations, this procedure yields

(32)

where

(33)

with .

B. Mean-Square Deviation

The optimum MSD6 of the combined filter at time is

(34)

6The optimum MSD is defined here as the MSD obtained for �(n) = � (n).



Inserting (12) in (34) yields

(35)

The first term of (35) is , the MSD of the second
adaptive filter. Since the second expectation and the MSD are
both positive, (35) indicates that is always less than

. Equation (7) can also be written in terms of
and as

(36)

Also, it can be easily verified that

(37)

where . Then, substituting (36) for
in the first line of (34) and using (37), it can be easily

shown that

(38)

Equations (35) and (38) show the important result that the op-
timum linear combiner leads to a that is smaller than
both and for every . Thus, the optimum
linear combiner defined by in (12) always performs better
than any of the two individual adaptive filters. An approximate
evaluation of (35) will be performed in Section III-C. A similar
approximation could be derived using (38).

C. Behavior of the in the Transition Region

This section studies the behavior of the after
has converged but has not yet converged. This

operating region corresponds to the range of iterations during
which the convergence control is being handed from
to . This region will be denoted here as the transition
region. From (35) and using the same approximation used in
(28)

(39)

where

(40)

Now, assuming in steady-state as in Section III-A-2)
and using (27) in , the second term
of (39) can be written as (41), shown at the bottom of the page,
with . Equation
(41) assumes that the fluctuations in at convergence are
independent of (still in the transient mode). Now, using
(31) in (41) yields

(42)
Assume, in the transition region, that the fluctuations in

are still small in comparison to its mean. Then

(43)

Inserting (43) into (42) and then into (39) yields

(44)

where (44) assumes . Equation (44) agrees with phys-
ical intuition. The right-hand side of (44) is always less than ei-
ther or . When becomes small in
comparison to the steady-state of , then

. Using (38) and (44) leads to the conclusion that
is always smaller than or for

all .

D. Simulation Results

This section presents some simulation results to verify the
accuracy of the theoretical model developed for the behavior of
the optimum adaptive filter affine combination. The unknown
system response is shown in Fig. 2.

Fig. 3 shows two representative simulation examples to verify
the accuracy of the model for given by (26) and (32).
The horizontal lines show the steady-state mean behavior of

as predicted by (26). Fig. 3(a) and (b) displays some prop-
erties of the model. There is excellent agreement between the
steady-state value predicted by (26) and the simulation results.
The negative steady-state value implies that a small portion of
the estimate of obtained using filter 1 should be subtracted

(41)



Fig. 2. Impulse response WWW of the unknown system.

for the estimate of using filter 2. This occurs because the
channel estimates from the two adaptive filters are correlated.
An excellent match is observed for the dynamical model (32)
at the beginning of operation, disregarding the initial transient
behavior. The model accuracy decreases as becomes
more correlated with as the algorithm approaches
steady-state. Nevertheless, the theoretical model provides
a good-to-moderately good prediction of during
the transfer.7 The MSD plots in Fig. 4(a) and (b) show that

is always less than either or .
This behavior is expected from an optimal combiner and
verified in (35) and (38). These curves represent the best per-
formance that could be obtained using two LMS adaptive filters
as in Fig. 1.

Fig. 5 shows the evolution of for two representative
examples. The theoretical curves were obtained from the expres-
sion for [9] for before the convergence of
and from (44) afterwards.8 Apart from a slightly slower conver-
gence of the theoretical model for small (error of the classical
LMS model), excellent agreement can be observed. This figure
confirms the accuracy of (44) to model the behavior of the com-
bined filter in the transition region.

IV. ITERATIVE ALGORITHMS TO ADJUST

The previous derivation of the optimal linear combiner
was based upon prior knowledge of the unknown system re-
sponse . Clearly, this is not the case in reality. However,
the theoretical model and its derived properties can be used
to upper bound the performance of practical algorithms for
adjusting without such knowledge. Algorithms that yield
close-to-optimal performance for typical unknown responses
can be considered as good candidates for practical applications.

7These simulation results imply that 1) disabling filter 1 by setting �(n) = 0,
and 2) transferring convergence control to filter 2 is not sufficient to minimize
the steady-state MSE. This is because of the effect of the cross-correlation be-
tween WWW (n) and WWW (n) for some values of � and � [see (16) and (20)].
Thus, it is necessary to increase the contribution of y (n) in (4) to greater than
unity and subtract a small part of y (n). This is done by making �(n) < 0 in
steady-state.

8The models were reversed when MSD (n) � 1:01� � N=[2 � (N +
2)� ]. However, the value of this reversal threshold is not critical.

Fig. 3. Ef� (n)g for � (n) = 10 and 
 = 2. Simulations averaging 50
Monte Carlo runs.

Performance close to the optimal suggests that further analyt-
ical study of a new algorithm would be worth the effort. This
is especially important for the adaptive combiner structure. A
detailed performance analysis of specific adaptation schemes is
a nontrivial task as demonstrated in [8], for example. This sec-
tion studies two algorithms for the adjustment of . The first
algorithm is based upon a stochastic gradient search for the op-
timal . The second is based on the ratio of the average error
powers from each individual adaptive filter. The performances
of these algorithms are then compared to the optimal perfor-
mance. The performance of other algorithms applicable to the
system in Fig. 1, such as the algorithm studied in [6]–[8], can
also be compared with the optimum performance.

A. Stochastic Gradient Search for

Consider a stochastic gradient search to estimate the optimum
instantaneous value of . From (10), the stochastic gradient
of the conditional MSE is proportional to .



Fig. 4. Mean-square deviations for � (n) = 10 and 
 = 2. Simula-
tions averaging 50 Monte Carlo runs. (��) MSD (n); (��) MSD (n);
(�) MSD (n). (a) � = 0:1; (b) � = 0:3.

Using (9) for , the stochastic gradient algorithm to estimate
is

(45)
with

(46)

Equation (45) is a linear first order stochastic time-varying re-
cursion in the scalar parameter . The stochastic behavior
of this recursion has been analyzed elsewhere but is not pre-
sented here for space reasons. The accuracy of the theoretical
analysis and the performance of the proposed algorithm for ad-
justing are evaluated here. Appropriate values of were
chosen so that the algorithm was able to track the adaptation

Fig. 5. Mean-square deviations 10 log MSD (n). Theory derived from
MSD (n) before convergence ofWWW (n) and from (44) after that. Simulations
averaged over 50 Monte Carlo runs. (a) 10 logfMSD (n)g for 
 = 2,
� = 0:1, � = 10 ; (b) 10 logfMSD (n)g for 
 = 4, � = 0:2,
� = 10 .

of and . Some difficulties were encountered re-
garding the tradeoff between stability of the recursion (45) and
the algorithm’s tracking capabilities in the initial phase of adap-
tation. Sufficiently small values of , , were found
so that (45) was stable. However, these values were not large
enough to track the adaptation of and . Larger
values of improved the tracking but led to insta-
bility during the early phase of the adaptation in (45). Consid-
ering the optimum desired behavior for , a satisfactory
solution was obtained by constraining in (45) to be less
than or equal to 1 for all . Larger (smaller) signal-to-noise ra-
tios require larger (smaller) , which in turn
requires the application of the constraint to for longer
(shorter) periods.

Fig. 6 displays the behaviors of Monte Carlo simulations (50
runs) and the theoretical model for for two distinct sets



Fig. 6. E[� (n)] for different parameter values. Simulations (average of 50
Monte Carlo runs) in red (ragged curve). Theory (derived elsewhere) in black.
(a) Ef� (n)g for 
 = 2, � = 0:1, � = 10 , � = 1; (b) E[f� (n)g for

 = 4, � = 0:3, � = 10 , � = 300.

of parameters. The large initial fluctuations in the simulations
indicate the application of the stability limitation imposed on

in (45). The theoretical model has also been limited so
that . Note the close agreement between the theory
and simulations, especially at convergence. Note also the wide
range of needed for effective performance for the two cases.
For , for example, values of around 5000 are
required. This is caused by the nonlinear behavior of (45). The
parameter must change very rapidly for large signal-to-
noise ratios [such as in Fig. 6(b)] in order to track the rapid
changes in and .

Fig. 7 compares the behavior of with the optimum
behavior of . It can be easily verified that the perfor-
mance of the stochastic gradient algorithm for is very
close to that of the optimum combiner. Fig. 8 displays the sim-
ulation results for obtained from Monte Carlo sim-
ulations (50 MCs) using (1)–(4) and (45), and the theoretical

Fig. 7. Behavior of E[� (n)] (in red, ragged curve) as compared to the op-
timum behavior of E[� (n)] (in black, smoother curve). All plots are simula-
tion results (average of 50 Monte Carlo runs). (a) Ef� (n)g and Ef� (n)g
for 
 = 2, � = 0:1, � = 10 and � = 1; (b) E[f� (n)g and Ef� (n)g
for 
 = 4, � = 0:3, � = 10 and � = 300.

predictions. A good-to-excellent agreement between the theory
and the simulations can be verified, especially convergence time
and the steady-state behavior. Again, the fluctuations in the ini-
tial transient phase indicate the action of the stability control.
Fig. 9 compares the behaviors of using and
the optimum . Again, it is clear that the updating of
using (45) leads to a performance that is very close to that of
the optimum combiner, especially in convergence speed and
steady-state MSD.

The stochastic gradient algorithm requires a good estimate
of the noise power to reasonably select and mildly con-
strain in recursion (45). The accuracy of this estimate
could limit the usefulness of the stochastic gradient algorithm
for some applications. The next section considers a different
scheme for choosing , based on the average error powers
of the two filters. This scheme is insensitive to and performs
nearly as well as the stochastic gradient approach.



Fig. 8. 10 log MSD . Simulations (average of 50 runs, in red, ragged curve)
using �(n) = � (n) from (45) for the same parameter values as in Fig. 6.
Theory derived elsewhere in black (smooth curve). (a) 10 log MSD for 
 =
2, � = 0:1, � = 10 , � = 1; (b) 10 log MSD , 
 = 4, � = 0:3,
� = 10 , � = 300.

B. Error Power Based Scheme for Updating

A function of time averaged error powers could be a good
candidate for an estimator of the optimum for each . The
individual adaptive error powers are good indicators of the con-
tribution of each adaptive output to the quality of the present es-
timation of . These errors are readily available and do not
need an estimate of the additive noise power.

Consider a uniform sliding time average of the instantaneous
errors

(47)

(48)

Fig. 9. Comparison between 10 log MSD using �(n) = � (n)
from (45) (ragged curve) and using � (n) for the same parameter values
as in Fig. 6 (smooth curve). Monte Carlo simulations averaged over 50
runs. (a) 10 log MSD for 
 = 2, � = 0:1, � = 10 , � = 1;
(b) 10 log MSD , 
 = 4, � = 0:3, � = 10 , � = 300.

where is the averaging window. Then, consider the instanta-
neous value of determined as

(49)

where

(50)

Equation (49) allows to vary smoothly over .
The value of can be selected so that

(51)



Fig. 10. Simulation results (average of 50 MCs) onEf� (n)g andEf� (n)g
for K = 100. Curves in black (more ragged) for �(n) = � (n). Curves in red
(smoother) for �(n) = � (n). (a) Ef� (n)g and Ef� (n)g for 
 = 1,
� = 0:1, � = 10 , � = 1; (b) Ef� (n)g and Ef� (n)g for 
 = 2,
� = 0:4, � = 10 , � = 1.

Using (26) in (51) and assuming
yields

(52)

Note that (49) and (52) do not require any a priori infor-
mation about the noise power nor an additional memory pa-
rameter as in the stochastic gradient scheme. Fig. 10 shows
two typical examples of the behavior of , as compared
to . It is clear from these figures that the use of (49)
and (52) leads to a behavior for the weighting factor that is rea-
sonably close to the optimum. Fig. 11 shows the behaviors of

using (red curves) and
(black curves). These results clearly show that the proposed al-
gorithm leads to a very good practical implementation of the

Fig. 11. Mean-square deviation 10 log MSD (n) using the error power
based scheme. Curves in black (slightly below) for �(n) = � (n). Curves in
red (slightly above) for �(n) = � (n). (a) 10 log MSD (n) for 
 = 1,
� = 0:1, � = 10 , � = 1; (b) 10 log MSD (n) for 
 = 2, � = 0:4,
� = 10 , � = 1.

linear combiner. Note that a stochastic analysis of the transient
behavior is quite complicated for this algorithm because of the
erf nonlinearity. Nevertheless, the theoretical analysis of the
optimum case provided useful insights for the design and eval-
uation of the algorithm.

V. CONCLUSION

This paper has studied the statistical behavior of an affine
combination of the outputs of two LMS adaptive filters that si-
multaneously adapt using the same inputs. The purpose of the
affine combination is to obtain an LMS adaptive filter with fast
convergence and small steady-state MSD. The affine combina-
tion studied is a generalization of the convex combination where
the combination factor is restricted to the interval (0,1).
Here the viewpoint was taken that the two filters each produce
dependent estimates of the unknown channel. Thus, there ex-
ists a sequence of optimal affine combining coefficients which



minimizes the MSE. First, the optimal unrealizable affine com-
biner was studied and provided the best possible performance. 
Then, two new schemes were proposed for practical applica-
tions. The first scheme used an unconstrained linear stochastic 
scalar gradient algorithm for estimating the optimal affine com-
biner coefficient. This first new scheme performed nearly as well 
as the optimal unrealizable combiner, providing the same con-
vergence time and steady-state behavior. A second new scheme 
was investigated that depended upon the time-averaged instanta-
neous squared error of each adaptive filter. This new scheme was 
designed using the design information from the optimal affine 
combiner. With proper design, its performance was also very 
close to that of the optimum affine combiner for many cases of 
interest. The theoretical approximations used in the analytical 
models were validated by Monte Carlo simulations which were 
in close agreement with the predictions of the analytical models.

APPENDIX I
SOLUTION TO EQUATION (17)

Let . Then, using the closed form
solutions of (1) for

(53)

it can be easily verified that (17) can be written in the form

(54)

where

Equation (54) is a first-order linear constant-coefficient dif-
ference equation with initial condition . Taking the

-transform of both sides and solving for
yields

(55)

Making a partial fraction expansion of each term on the right
and combining like terms yields

(56)

Finally, inverse transforming (56), yields

(57)

which is the solution to (17).
For , and , the steady-state value of

(57) reduces to , or

(58)

Using the same calculation, only for
and , leads to the steady-state expression for

:

(59)
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