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Abstract

In this paper we study a Multi-Armed Restless Bandit Problem (MARBP) subject to time
fluctuations. This model has numerous applications in practice, like in cloud computing systems
or in wireless communications networks. Each bandit is formed by two processes: a controllable
process and an environment. The transition rates of the controllable process are determined
by the state of the environment, which is an exogenous Markov process. The decision maker
has full information on the state of every bandit, and the objective is to determine the optimal
policy that minimises the long-run average cost.

Given the complexity of the problem, we set out to characterise the Whittle index, which
is obtained by solving a relaxed version of the MARBP. As reported in the literature, this
heuristic performs extremely well for a wide variety of problems. Assuming that the optimal
policy of the relaxed problem is of threshold type, we provide an algorithm that finds Whittle’s
index. We then consider a multi-class queue with linear cost and impatient customers. For
this model, we show threshold optimality, prove indexability, and obtain Whittle’s index in
closed-form. We also study the limiting regimes in which the environment is relatively slower
and faster than the controllable process. By numerical simulations, we assess the suboptimality
of Whittle’s index policy in a wide variety of scenarios, and the general observation is that, as
in the case of standard MARBP, the suboptimality gap of Whittle’s index policy is small.

1 Introduction
The Multi-Armed Restless Bandit Problem (MARBP), introduced in [36], represents an important
class of Markov Decision Processes (MDPs) with numerous applications spanning resource alloca-
tion, machine maintenance, health-care systems, and others. In an MARBP, there are multiple
concurrent projects or bandits and the decision maker decides which R bandits to simultaneously
activate. The decision maker knows the states of all bandits and the cost in every state, and aims
at minimising the average cost. The state of a bandit evolves stochastically according to transi-
tion rates that depend on whether the bandit is active. In general, MARBPs cannot be solved
∗Corresponding author: sgduran91@gmail.com
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analytically, except for some toy examples. An MARBP can be solved numerically via dynamic
programming, however, this is a computationally intractable task for realistic model sizes.
Whittle [36] developed a methodology to obtain a heuristic by solving a relaxed version of the
MARBP in which R bandits are activated only on average. The obtained heuristic, nowadays
known as Whittle’s index policy, relies on calculating the Whittle index for each of the bandits,
and activating in every decision epoch the bandit with the highest Whittle index. It has been
reported on numerous instances that Whittle’s index policy provides strikingly good performance,
and it has been shown to be asymptotically optimal as the number of bandits grows large, see
[35, 34]. Fundamental questions regarding Whittle’s index policy concern their existence and their
complexity in computation. To prove existence, one needs to establish a technical property known
as indexability. Computing Whittle’s index might be involved, and in practice the indices are
computed on a problem-to-problem basis (see Section 2), either numerically or analytically.
In this paper we are interested in the case in which the state of the bandit is formed by two
distinct processes. The dynamics of the first process depends on whether the bandit is activated,
whereas the dynamics of the second process does not. The first process will be referred to as
controllable, whereas the second will be referred to as the environment. The transition rates of the
controllable process depend on the state of the environment. These so-called Markov-Modulated
Restless Multi-Armed Bandit Problems (MM-MARBP) arise naturally when there is an exogenous
phenomena that cannot be controlled. For example in the context of wireless communications, the
available download rate depends on the weather conditions, and in a cloud computing systems the
arrival rates of new jobs fluctuate over time. As considered in the original paper by Whittle, in
this paper we focus on the average performance criterion.
Adding an environment implies that the state of a bandit is no longer unidimensional. This renders
the calculation of Whittle’s index much more complex. In fact, as detailed in Section 2, most of the
papers in which the Whittle index is calculated assume that the state of a bandit is unidimensional.
In our main contribution, we consider an arbitrary bandit and under the assumption that the
optimal policy is of threshold type, we provide an algorithm that finds Whittle’s index in any
state. In the case the environment changes at a slower time scale than the controllable process, we
derive an analytical expression for Whittle’s index. We then consider the particular case of queues
with abandonments, where impatient customers can leave the system, regardless of whether they
are being served or not. The state of the queue is the controllable process, and the arrival rates,
service rates, and abandonment rates depend on the state of an exogenous environment process
that visits two states. We show that threshold policies are optimal, and in the case of linear
holding costs and assumptions on the parameters, we prove indexability and derive Whittle’s
index in closed form. The expression obtained for the index depends on which of the two states
the environment process is in. By numerical simulations we assess the suboptimality of Whittle’s
index policy in a wide variety of scenarios, and the general observation is that, as in the case of
standard MARBPs, the suboptimality gap of Whittle’s index policy in an MM-MARBP is small.
The paper is organised as follows. In Section 2 we give an overview of related work and in Section 3
we describe the model. In Section 4 we present the relaxation of the original problem and Whittle’s
index. In Section 5 we introduce the threshold policies and, assuming they are optimal, we provide
the algorithm to determine Whittle’s index. In addition, we characterise Whittle’s index when the
time-scale of the environment is much slower than that of the controllable process. In Section 6
we study the multi-class queue with abandonments. Optimality of threshold policies is proved in
Section 6.1. In Section 6.2 we prove indexability and obtain expressions for Whittle’s index. The
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proofs of the theorems are in Section 6.3. In Section 7 we derive Whittle’s index for a multi-class
queue without abandonments living in a Markov-modulated environment. Finally, in Section 8 we
numerically evaluate the performance of Whittle’s index policy. For ease of reading, many proofs
are presented in the appendix.

2 Related literature
A classical reference for MDPs is [30], and a comprehensive coverage for MABP and MARBP is
given in [16]. Even though Whittle’s seminal work introduced Whittle’s index within the context
of average cost criterion, a large body of work has focused on tackling an MARBP under the total
discounted cost criterion. For the discounted cost criterion and finite state space, [26] provides a
thorough analysis and efficient algorithms (based on linear programming) to establish indexability
and to give an expression for Whittle’s index. The same approach was undertaken to obtain the
Whittle index for a general MARBP in [25]. By letting the discounting factor tend to one, we
can retrieve the index for the average cost criterion, see for instance [18, 4]. Another approach
to calculate the index lies in sweeping the state space, by recursively identifying and calculating
the states with higher Whittle’s indices. This can be done by iterative schemes, see for example
[9, 10, 8], and in some particular cases analytically, see [6, 28, 23].
The references above consider unidimensional bandits, which is a critical assumption in order
to establish indexability, and in turn to calculate the index. On the other hand, literature on
multidimensional MARBPs, as is the case for MM-MARBP, is scarce. The main difficulty lies
in establishing indexability, i.e., ordering the states, in a multidimensional space. Important
exceptions are [1, 3], in which the authors derive Whittle’s index. These papers model the problem
of scheduling tasks in a wireless setting: the controllable process is the remaining service time of
tasks, which is a decreasing process, and the environment is given by the capacity of the channel,
which fluctuates over time in an uncontrollable manner.
The above references consider independent environments for each of the bandits. In [15] the authors
consider an MDP made of independent objects evolving in a common environment. It is shown
that as the number of objects tends to infinity, the optimal policy converges to the optimal policy
of a deterministic discrete time system.
In [14], MM-MARBP are studied when the environment is unobservable, that is, the decision
maker cannot observe the state of the environment, and it can take its decision only based on
the state of the controllable process. It is shown that as the number of bandits grow large and
the environment changes state relatively fast, a set of priority policies – that includes an averaged
version of Whittle’s index – is asymptotically optimal. In the numerical section, we will compare
the performance of the averaged Whittle’s index policy to that of the index policy in the observable
setting as studied in this paper. There are a few other papers that have investigated the optimal
control of particular queueing systems – in an asymptotic regime – operating in an unobservable
environment. In [12], the authors study a single-server multiclass queueing network in heavy traffic
with modulated arrival and service rates. In the main result, it is shown that an "averaged" version
of the classical cµ-rule is asymptotically optimal. In [5], the authors investigate optimal control of
a many-server system with modulated arrivals, service and abandonment rates in the Halfin-Whitt
regime.
In this work, we use the multi-class abandonment queue as a case study where customers may
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abandon before having their service finished. Abandonments is an undesirable effect as it induces
wasted resources. It has therefore been largely studied in recent literature, see for example the
Special Issue in Queuing Systems on queuing systems with abandonments [19] and the survey [13]
in the many-server settings. We further mention the work of [22], where the authors formulate the
abandonment queue as a MARBP and derive a closed-form expression for Whittle’s index. In this
paper, we extend this work by considering the abandonment queue with arrival rates, service rates
and abandonment rates that fluctuate over time.

3 Model description
We consider a multi-armed restless bandit problem in continuous time. There are N bandits in
the system, each bandit is composed by a controllable process and an environment process. The
controllable process lives in the state space X = {0, 1, . . .}. A bandit can be kept passive or made
active, with the constraint that at most R bandits can be made active at a time, R ∈ N and
R ≤ N . The transition rates of the controllable process of a bandit depend on whether it is made
active or kept passive and on the current state of the environment, as defined below.
The environments are exogenous Markov processes living in the state space Z = {1, 2, . . .}, whose
evolution is independent of the state of the controllable processes or the actions taken. Let Dk(t) =
d ∈ Z denote the state of the environment of bandit k at time t, k = 1, . . . , N , and r

(dd′)
k the

transition rate of Dk(t) from state d to d′. We assume the environments Dk(t) are positive
recurrent. We denote by φk(d) the stationary probability of environment Dk(t) to be in state d.
We note that no further assumptions are made on the correlation between different environments.
However, in the numerical examples, we focus on the following two special cases:

• Independent environments: The variables (Dk(t))Nk=1 are independently distributed. As
a consequence, given the action, the evolution of the two-dimensional state of a bandit,
(Mk(t), Dk(t)), is independent of the others. Hence, this setting falls within the classical
MARBP with a 2-dimensional state space.

• Common environment: There is only one environment affecting all bandits, that is, D1(t) =
. . . = DN (t) = D(t). When environment D(t) changes state from d to d′, it changes the
transition rates of all bandits at once. In this case there is a correlation between bandits,
which does not fit in the standard MARBP model.

Let ϕ denote the policy that determines the action taken for each bandit. We assume that policies
are Markovian, that is, they can base their decisions only on the current state of the bandits. In
particular, this implies that decisions can depend on the state the environments are in. That is,
the decision maker can observe the environments.
For a given policy ϕ, let Mϕ

k (t) ∈ X denote the state of the controllable process of bandit k at
time t, k = 1, . . . , N . Note that

(
Mϕ
k (t), Dk(t)

)
describes the two-dimensional state of bandit k.

The full description
(Mϕ

1 (t), D1(t), . . . ,Mϕ
N (t), DN (t)) ,

is then a Markov process. Throughout this paper, we assume this process to be ergodic. We note
that obtaining ergodicity conditions on the parameters is out of the scope of this paper.
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We denote the passive action by a = 0 and the active action by a = 1. We further denote by Aϕk (t) ∈
{0, 1} the action taken for bandit k at time t under policy ϕ, and ~Aϕ(t) := (Aϕ1 (t), . . . , AϕN (t)) the
actions taken for all the bandits. The constraint of making at most R bandits active can be
expressed as

N∑
k=1

Aϕk (t) ≤ R, ∀t ≥ 0. (1)

We define the set of feasible policies Φ, as the set of all Markovian policies that satisfy (1).
When action a is applied to bandit k and its environment is in state d, its controllable process
makes a transition from state m to state m′ at rate qk(m′|m, d, a). Let Ck(m, d, a) denote the cost
per unit of time for bandit k when the controllable process is in state m, the environment is in
state d and the action taken is a. For any k, we assume that Ck(m, d, a) is a convex non-decreasing
function in m for any d, a.
The objective of the optimisation problem is to find the policy ϕ that minimises the long-run
average holding cost under constraint (1), i.e., solve:

min
ϕ∈Φ

lim sup
T→∞

1
T
E
(∫ T

0

N∑
k=1

Ck(Mϕ
k (t), Dk(t), Aϕk (t))dt

)
. (2)

Finding a solution for the constrained problem (2) is PSPACE-hard, i.e., it can not be solved using
a polynomial amount of memory nor a polynomial amount of time, see [16, 24, 37]. However,
we refer to Whittle [36] where a Lagrangian relaxation method is introduced allowing to obtain
efficient index policies for the original problem. In Section 4 this is applied to the MARBP with
uncontrollable environments.

4 Relaxation and Whittle’s index policy
In this section, we introduce the relaxed version of the Markov-modulated multi-armed restless
bandit problem. The main idea of this methodology, as proposed by Whittle in [36], is to solve an
unconstrained problem obtained via a Lagrangian relaxation approach, instead of solving problem
(2) under constraint (1). This leads to a significant simplification of the problem: instead of
solving the problem for N bandits simultaneously, one solves the problem separately for each of
the N bandits. The solution for the relaxed problem can be described by the so-called Whittle
index, which forms the basis for a heuristic for the original problem, known as the Whittle index
policy, defined later on in this section. the Whittle index policy for the standard MARBP has been
proved to be well-performing in many important examples, see Niño-Mora [27], and asymptotically
optimal under certain circumstances, see Weber and Weiss [35], Ji et al. [20], Ouyang et al. [29]
and Verloop [34].
We now study the relaxed problem, that is, the constraint on the number of active bandits must
be satisfied on average, and not in every decision epoch:

lim sup
T→∞

1
T
E
(∫ T

0

N∑
k=1

Aϕk (t)dt
)
≤ R, (3)

or equivalently, lim supT→∞ 1
T E

(∫ T
0
∑N
k=1

(
1−Aϕk (t)dt

))
≥ N − R. We denote the set of policies

satisfying constraint (3) by ΦREL, and we note that Φ ⊆ ΦREL. We now consider the problem
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of finding a policy ϕ that minimises (2) under constraint (3). We use the Lagrangian multipliers
approach to rewrite the following unconstrained version of the relaxed problem: find a policy ϕ
that minimises

min
ϕ

lim sup
T→∞

1
T
E
(∫ T

0

(
N∑
k=1

Ck(Mϕ
k (t), Dk(t), Aϕk (t))−W (R−N +

N∑
k=0

(
1−Aϕk (t)

)
)
)

dt
)
. (4)

The Lagrange multiplier W can be viewed as a subsidy for making a bandit passive. The key
observation made by Whittle is that problem (4) can be decomposed into N subproblems, one for
each bandit, due to the fact that there is no longer a common constraint. Thus, the solution to
(4) is obtained by combining the solution to N separate optimisation problems, that is,

min
ϕ

lim sup
T→∞

1
T
E
(∫ T

0

(
Ck(Mϕ

k (t), Dk(t), Aϕk (t))−W (1−Aϕk (t))
)

dt
)
, (5)

for each bandit k. Under ergodicity conditions, we define gϕk (W ) as
gϕk (W ) := E

(
Ck(Mϕ

k , Dk, A
ϕ
k )
)
−WE(1Aϕ

k
=0), (6)

where Mϕ
k , Dk and Aϕk are the respective steady-state variables for a given bandit under policy ϕ.

Then, problem (5) is equivalent to the problem minϕ gϕk (W ).
We now introduce the indexability notion. Let Pk(W ) ⊂ X × Z denote the set of states (m, d) in
which it is optimal to be passive when the subsidy for passivity is W . A bandit is called indexable
if Pk(W ) increases in W .
Definition 1. Bandit k is indexable if W < W ′ implies Pk(W ) ⊆ Pk(W ′).
In other words, indexability implies that if for W = W0 it is optimal to be passive in state (m, d),
then it is also optimal to be passive for any value for the subsidy W ≥ W0. In [26] a survey on
indexability results can be found. In particular, in [26] an algorithmic method is provided in order
to determine if, for a given set of parameters, the problem is indexable. In [35], the authors run
statistical tests with random parameters to check indexability, obtaining that around 90% of the
cases are indexable. Examples where indexability has been proved for particular model instances
can be found in [23, 36]. In this work, we establish indexability for a multi-class queue with linear
cost and impatient customers under certain conditions, see Section 6.2.
Indexability guarantees the existence of Whittle’s index, which is defined as follows: it is the
smallest value for the subsidy such that it is optimal to be passive in that state.
Definition 2. When bandit k is indexable, Whittle’s index in state (m, d) is defined byWk(m, d) :=
inf {W : (m, d) ∈ Pk(W )}.
We can now give an optimal solution to the relaxed control problem (4) for a given W . At any
moment in time t, make active all bandits whose current Whittle’s index exceeds the subsidy for
passivity, i.e., Wk(Mk(t), Dk(t)) > W . A standard Lagrangian argument together with the fact
that the cost functions Ck are convex non-decreasing, gives that there exists a multiplier W such
that constraint (3) is satisfied.
Since the solution to the relaxed optimisation problem will in general not be feasible for the original
problem (2) with constraint (1), Whittle proposed a heuristic based on the Whittle index. We will
refer to this policy as Whittle’s index policy.
Definition 3 (Whittle’s index policy). At time t, the Whittle index policy prescribes to make
active the R bandits having currently the largest value for their Whittle’s index Wk(Mk(t), Dk(t)).
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5 Calculation of Whittle’s index
In this section, we present our main results for the general model. In Section 5.1, we provide an
algorithm to calculate the Whittle index, and in Section 5.2, we obtain Whittle’s index when the
environment changes very slowly compared to the state of the controllable process.
Since we focus on the relaxed problem for one bandit (5), we omit the dependence on k for ease
of notation throughout this section.

5.1 Threshold policies

We assume throughout the paper that there exists a threshold policy (defined below) that is an
optimal solution of (5). This is typically the case in many queueing models. For the case study of
an abandonment queue, we prove it to hold in Section 6.1. In this section, we further assume the
bandit is indexable, as defined in Definition 1.
Threshold policies are defined through a vector ~n = (nd : d ∈ Z), where nd ∈ {−1, 0, 1, . . .}∪{∞},
for all d. Threshold policy ~n activates the bandit if and only if the controllable process is above
the threshold nd when the state of the environment is d. In other words, A~n(m, d) = 1 if m > nd
and A~n(m, d) = 0 if m ≤ nd. We denote by π~n(m, d) the stationary probability of the process(
M~n(t), D(t)

)
to be in state (m, d).

Alternatively, for some problems, an appropriate definition of threshold policy is to activate the
bandit if and only if the controllable process is below a threshold. The analysis of both cases is
similar, and we choose the former case in our presentation. See [23, Section 3.2] for a case where
both types of threshold policies are considered.
Since we assume that threshold policies are optimal, in order to obtain Whittle’s index, one can
focus on finding the optimal threshold policies for any value of W . Below, we will present an
algorithm that allows us to determine those optimal threshold policies. A similar algorithm was
presented in [22], where an expression for Whittle’s index is obtained for the classical abandonment
queue. In [22], the state space of the bandits is one-dimensional, so that the threshold value is
one-dimensional as well. In this paper, we present a generalised version of that algorithm as we
will have multiple threshold values, one threshold per environment.
First recall that the average cost (see (6)) under a threshold policy ~n is given by

g~n(W ) :=
∑
d∈Z

∞∑
m=0

C (m, d, a)π~n(m, d)−W
∑
d∈Z

nd∑
m=0

π~n(m, d). (7)

Hence, the optimal average cost can be written as

g(W ) := min
~n
g~n(W ).

In Figure 1, the function g(W ) and the functions g~n(W ) are plotted. Note that for any ~n, g~n(W )
is a non-increasing linear function in W whose slope equals −

∑
d∈Z

∑nd
m=0 π

~n(m, d), and g(W ) is
a lower envelope of the functions g~n(W ). In particular, one observes that the horizontal axis can
be split in intervals, where in each interval a different threshold policy is optimal. To find these
intervals, note that for W = −∞ the threshold policy ~n−1 := (−1,−1, . . .) is optimal. This follows
because the slope under threshold policy (−1,−1, . . .) equals −

∑
d∈Z

∑−1
m=0 π

~n(m, d) = 0, while
the slope of all other threshold policies are strictly negative. Now one can look to the first value
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Ŵ0 Ŵ1 Ŵ2 Ŵ3

W

g
~ n
(W

)

 (− 1, − 1, . . )

 (n0
1 , n

0
2 , . . )

 (n1
1 , n

1
2 , . . )

 (n2
1 , n

2
2 , . . )

 (∞,∞, . . )

 g(W)

Figure 1: Lower envelop g(W ) := min~n g~n(W ).

of the subsidy, Ŵ0, where a linear function g~n(W ) crosses g(−1,−1,...)(W ), so that (−1,−1, . . .) is
optimal if and only if W ∈ (−∞, Ŵ0]. Let ~n0 be the corresponding threshold policy of this linear
function. Note that in case there are two threshold policies that turn optimal in the crossing
point Ŵ0, then the one having the steepest slope will be the one that minimises when the subsidy
increases slightly. Hence, we choose that one in case of a tie. In case there are more than one
minimisers with the same slope, one chooses the maximum value of nd in each component. Then,
one knows that Whittle’s index is given by W (m, d) = Ŵ0, for m = 0, . . . , n0

d for all d such
that n0

d ≥ 0, since Ŵ0 is the smallest value such that it is optimal to be passive in those states.
Similarly, one can now determine the first value of the subsidy W > Ŵ0, denoted by Ŵ1, where
a linear function g~n(W ) crosses g~n0(W ). Let ~n1 be the corresponding threshold policy. Now, the
Whittle index for states (m, d), with n0

d < m ≤ n1
d, is given by W (m, d) = Ŵ1. We can repeat this

procedure as long as a new crossing point occurs as W increases. In case in step j no new crossing
point occurs, this implies that there exists a ~nj−1 such that g(W ) = g~n

j−1(W ) for W ≥ Ŵj−1.
Hence, for states (m, d), with m > nj−1

d , it is optimal to be active for any value of W , that is, the
Whittle index is not defined for those states.
To formalize the above procedure, we introduce the following notation for the crossing points of
the linear functions g~n(W ). We denote by W (~n, ~n′) :=

{
W ∈ R

∣∣∣ g~n(W ) = g~n
′(W )

}
, the set of

multipliers W such that the expected cost under threshold policies ~n and ~n′ is equal. In case the
slopes are not equal, i.e.,

∑
d∈Z

∑nd
m=0 π

~n(m, d) 6=
∑
d∈Z

∑n′d
m=0 π

~n′(m, d), the set W (~n, ~n′) has a
unique element, which from (7) is given by:

W (~n, ~n′) =
∑
d∈Z

∑∞
m=0C (m, d, a)π~n(m, d)−

∑
d∈Z

∑∞
m=0C (m, d, a)π~n′(m, d)∑

d∈Z
∑nd
m=0 π

~n(m, d)−
∑
d∈Z

∑n′
d
m=0 π

~n′(m, d)
. (8)

In case the slopes are equal, the linear functions g~n(W ) and g~n
′(W ) are parallel to each other.

Then, W (~n, ~n′) is either the empty set, or the full state space.
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In Algorithm 1 we summarise the above. Under the assumption of threshold optimality and
indexability, the output of Algorithm 1 are the threshold policies ~n that optimize (5) for each W
and Whittle’s index. A mathematical proof of Algorithm 1 would follow according to similar steps
as in Glazebrook et al. [17], where an algorithm is developed for finding Whittle’s index in the
context of admission control and routing of impatient customers.

Algorithm 1. Define ~n−1 the vector equal to −1 in every coordinate, that is, under policy ~n−1

the bandit is active in all environments. Then, for j ≥ 0,

Step j Let

Ej = {~n :
∑
d∈Z

nd∑
m=0

π~n(m, d) 6=
∑
d∈Z

nj−1
d∑
m=0

π~n
j−1(m, d) and nd ≥ nj−1

d , ∀d}.

If Ej 6= ∅, compute
Ŵj = inf

~n∈Ej

W (~n, ~nj−1). (9)

Denote by ~nj the minimiser of (9) in case the latter is unique. In case of a tie, choose the min-
imisers of (9) (denoted by ~nj,i, i = 1, . . . , I) that have the steepest slope −

∑
d∈Z

∑nd
m=0 π

~n(m, d)
and set ~nj s.t. njd = maxi nj,id . Define W (m, d) := Ŵj for nj−1

d < m ≤ njd, for every d. Go
to step j+1.
If Ej = ∅, then for all states (m, d) with m > nj−1

d the Whittle index is not defined.

Remark 1. The numerical computation of this algorithm requires the set over which the min-
imisation is done to be finite. Hence, in case |X | = ∞ or |Z| = ∞, the results obtained are
an approximation. If, instead, |X | < ∞ and |Z| < ∞, and the steady state distribution of the
threshold policies is obtained beforehand, the complexity of the algorithm is O

((
|X ||Z|

)2
)
. This

can be seen as follows. (i) In each step, the algorithm calculates the crossing point W (~n, ~nj−1)
for all threshold policies ~n in Ej. This step has a complexity that corresponds to the number of
threshold policies, i.e., O

(
|X ||Z|

)
. (ii) Then, in the worst case, the algorithm repeats step (i) for

each threshold policy, resulting in a complexity of O
((
|X ||Z|

)2
)
.

5.2 Slowly changing environment

In this section, we give an analytical solution of Whittle’s index when the environment changes at
a much slower time scale than the dynamics of the controllable process of the bandit. We show
that in the limit, the Whittle index in state (m, d) coincides with the Whittle index of a bandit
that only sees environment d.
Before giving the results, we introduce some notation for a bandit that always sees environment d.
That is, the bandit lives in the state space X = {0, 1, . . .} and its transition rates are q(m′|m, a) :=
q(m′|m, d, a) for m,m′ ∈ X and a = 0, 1. Let (pnd,(d)(m)) denote the corresponding steady-state
probability under threshold policy nd. We further let W (d)(m) be Whittle’s index in state m of a
bandit that always sees environment d.

9



The different time scales are obtained by scaling the transition rates of the environment by β:
βr(dd′), and taking the limit β → 0. In order to obtain an analytical expression for Whittle’s index
in the slow regime, we will assume the environment can be in a finite set of states, i.e., |Z| <∞.
When the environment changes state at a much slower time scale than the controllable process, the
conditional (on the environment) steady-state behavior of the bandit is that of a bandit whose en-
vironment never changes. This is stated formally below. The proof can be found in Appendix 10.1.

Lemma 1. Assume |Z| = Z < ∞ and let the transitions of the environment be scaled by β, i.e.,
βr(dd′). Then it holds that

lim
β→0

π~n(m, d) = φ(d)pnd,(d)(m), ∀m ∈ N0. (10)

The following lemma states that in the slow regime, the index value given by Algorithm 1 can be
found by changing the threshold value in only one of the environments. The proof can be found
in Appendix 10.1. For a given β, we denote by ~nj(β) = (nj1(β), . . . , njZ(β)), Z = |Z| the values of
~nj as defined in Algorithm 1.

Lemma 2. Let |Z| <∞ and the transitions of the environment be scaled by β, βr(dd′). Assume
(n̂j1, . . . , n̂

j
Z) := limβ→0(nj1(β), . . . , njZ(β)) exists, for all j, and that the family {M~n, β} is uniform

integrable, for any threshold policy ~n. Furthermore, assume
∑n
m=0 p

n,(d)(m)−
∑n′
m=0 p

n′,(d)(m) ≥ 0
for any d and any pair n > n′. Then,

lim
β→0

inf
~n∈Ej

∑Z
d=1

∑∞
m=0C (m, d, a)π~n(m, d)−

∑Z
d=1

∑∞
m=0C (m, d, a)π~nj−1(β)(m, d)∑Z

d=1
∑nd
m=0 π

~n(m, d)−
∑Z
d=1

∑nj−1
d

(β)
m=0 π~nj−1(β)(m, d)

(11)

= min
d=1,...,Z

inf
n>n̂j−1

d

∑∞
m=0C (m, d, a) pn,(d)(m)−

∑∞
m=0C (m, d, a) pn̂

j−1
d

,(d)(m)∑n
m=0 p

n,(d)(m)−
∑n̂j−1

d
m=0 p

n̂j−1
d

,(d)(m)
(12)

=
∑∞
m=0C (m, d0, a) pn̂

j
d0
,(d0)(m)−

∑∞
m=0C (m, d0, a) pn̂

j−1
d0

,(d0)(m)∑n̂j
d0
m=0 p

n̂j
d0
,(d0)(m)−

∑n̂j−1
d0
m=0 p

n̂j−1
d0

,(d0)(m)
, (13)

where d0 is such that n̂jd0
6= n̂j−1

d0
(there is at least one such d0).

The following proposition states that in the slow regime the index W (m, d) converges to the index
for a fixed environment d, W (d)(m).

Proposition 1. Let |Z| <∞ and the transitions of the environment be scaled by β, βr(dd′). Under
the assumptions of Lemma 2, we have that for any m, d,

lim
β→0

W (m, d) = W (d)(m).

The uniform integrability property needs to be checked case by case. For the abandonment queue,
as studied in Section 6, we give an alternative proof for the above, which does not require to verify
uniform integrability, see Proposition 3.

Proof of Proposition 1: The index W (m0, d0) is as obtained from the Algorithm 1, through the
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values njd(β). Since we assume that the limit of njd(β) exists and lives on N, we have njd(β) = n̂jd
for β small enough. Hence, we can choose j such that nj−1

d0
(β) < m0 ≤ njd0

(β) and we have

lim
β→0

W (m0, d0)

= lim
β→0

inf
~n∈Ej

∑Z
d=1

∑∞
m=0C (m, d, a)π~n(m, d)−

∑Z
d=1

∑∞
m=0C (m, d, a)π~nj−1(β)(m, d)∑Z

d=1
∑nd
m=0 π

~n(m, d)−
∑Z
d=1

∑nj−1
d

(β)
m=0 π~nj−1(β)(m, d)

.

For d0 it holds that n̂jd0
6= n̂j−1

d0
. Hence, by Lemma 2, the latter is equal to

lim
β→0

W (m0, d0) = inf
n>n̂j−1

d0

∑∞
m=0C (m, d0, a) pn,(d0)(m)−

∑∞
m=0C (m, d0, a) pn̂

j−1
d0

,(d0)(m)∑n
m=0 p

n,(d0)(m)−
∑n̂j−1

d0
m=0 p

n̂j−1
d0

,(d0)(m)
. (14)

The latter is the Whittle index of a bandit that always sees environment d0, W (d0)(m0). This
follows by applying Algorithm 1 to the bandit that always sees environment d0. This concludes
the proof. �

5.3 Asymptotic optimality of Whittle’s index policy

In [35], the authors considered the standard MARBP model (i.e., no environments) and proved that
Whittle’s index policy is optimal as the number of bandits and the number of active bandits, R,
scale proportionally. This result holds for the standard MARBP setting and requires a so-called
global attractor property to be satisfied for the corresponding deterministic set of differential
equations.
In the case of independently distributed environments, the state (m, d) is a two-dimensional state
of a classical bandit. Hence, the asymptotic optimality result of [35] directly applies. When the
environments are correlated on the other hand, no asymptotic result is known. We leave this as
future research.

6 Abandonment queue in a Markovian environment
In this section we study a multi-class queue with abandonments living in an observable environ-
ment. There are N classes of jobs. Each class is associated an environment process Dk(t) that can
be either in state 1 or state 2. We restrict to two states, as this will allow to obtain a closed-form
expression for Whittle index. For ease of notation, we define r(d)

k := r
(d,3−d)
k for d = 1, 2. When the

class-k environment is in state d, new class-k jobs arrive according to a Poisson process with rate
λ

(d)
k . They require an exponentially distributed amount of service with parameter µ(d)

k . A class-k
job abandons the system after an exponentially distributed amount of time with parameter θ(d)

k .
Let Ck(m, d, a) denote the cost per unit of time for holding m class-k jobs in the system when the
environment is in state d and action a is taken. We assume that the cost function satisfies

Ck(m, d, 0)−Ck((m−1)+, d, 0) ≤ Ck(m+1, d, 1)−Ck(m, d, 1) ≤ Ck(m+1, d, 0)−Ck(m, d, 0), (15)

for allm, d, such thatm ≥ 0. This property is directly implied, for example, when (i) Ck(m, d, a) =
Ck(m, d), or when (ii) Ck(m, d, a) = Ck((m − a)+, d). Here, (i) represents holding cost of jobs in
the system and case (ii) represents holding costs of jobs waiting for service in the queue.
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The objective is to minimise the time-average holding cost, see (2).
Similar to [21], we can cast this abandonment model into a Markov-modulated MARBP. There
are N bandits, where each bandit represents a class of jobs. The state of bandit k is simply the
number of class-k jobs in the system. We then have the following transition rates for bandit k:

qk(m+ 1|m, d, a) = λ
(d)
k and qk((m− 1)+|m, d, a) = mθ

(d)
k + aµ(d),

for m ∈ N0, d = 1, 2 and a = 0, 1. Activating a bandit is equivalent to serving this class. At most
R < N classes can be served at a time.
In the remainder of this section, we calculate Whittle’s index for one class/bandit. In order to
use Algorithm 1, we first show in Section 6.1 that an optimal solution of the relaxed problem is
of threshold type. Then, in Section 6.2, we obtain a closed-form expression for Whittle’s index in
the case of linear holding cost.

6.1 Threshold policies

In this section, we prove that an optimal solution of the relaxed problem (5) for the abandonment
model is of threshold type. We henceforth focus on one bandit. For ease of exposition, we remove
the subscript k.

Proposition 2. For each W , there exists an ~n(W ) = (n1(W ), n2(W )) such that the threshold
policy ~n(W ) is an optimal solution of the relaxed problem (5).

Proof: The value function V (m, d) satisfies the Bellman’s optimality equation for average costs
[30], which in this case is

(µ(d) +mθ(d) + λ(d) + r(d))V (m, d) + g =
λ(d)V (m+ 1, d) +mθ(d)V ((m− 1)+, d) + r(d)V (m, 3− d) (16)
+ min

{
C(m, d, 0)−W + µ(d)V (m, d), C(m, d, 1) + µ(d)V ((m− 1)+, d)

}
,

where g is the averaged cost incurred under the optimal policy. Proving optimality of a threshold
policy is equivalent to proving that if in state m + 1 (with m ≥ 0) it is optimal to be passive, it
is also optimal to be passive in state m. Regarding (16), we have to show that C(m + 1, d, 0) −
W + µ(d)V (m+ 1, d) ≤ C(m+ 1, d, 1) + µ(d)V (m, d) implies that C(m, d, 0)−W + µ(d)V (m, d) ≤
C(m, d, 1) +µ(d)V ((m−1)+, d). A sufficient condition to prove this is Property (15) together with
convexity of the value function for each d,m, so 2V (m, d) ≤ V (m+ 1, d) + V ((m− 1)+, d), which
we prove next.
In order to prove the convexity of V (m, d), we use the value iteration method. However, this
technique needs uniformly bounded transition rates. We therefore consider a truncated space at
L and smooth the arrival transitions. We define the value function for the truncated system with
parameter L as V L(m, d). In Appendix 10.2.1 we show that V L(m, d) is a convex function, and
in Appendix 10.2.2 that sufficient conditions hold in order to apply [7, Theorem 3.1], to state
convergence of V L → V as L→∞. With these two results, convexity of V is concluded. �

Below we prove properties on π~n(m, d), the steady-state probability of having m jobs in the system
and being in environment d under threshold policy ~n. The proofs can be found in Appendix 10.3
and Appendix 10.4.
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The first property can be seen as a rate-conservation law and is based on the fact that, for any
given policy, the long-run number of arrivals into a given environment must be the same as the
long-run number of departures out of that environment. We state this result in Lemma 3 in the
context of threshold policies.

Lemma 3. Under threshold policy ~n it holds that

λ(d)φ(d) + r(3−d)E
(
M~n1(D=3−d)

)
=
(
θ(d) + r(d)

)
E
(
M~n1(D=d)

)
+ µ(d)

∞∑
m=nd+1

π~n(m, d),(17)

for d = 1, 2, where M~n denotes the random variable with distribution π~n.

Lemma 4 proves monotonicity properties on
∑nd
m=0 π

~n(m, d). This quantity represents the proba-
bility of observing environment d and not serving the class.

Lemma 4.

1. The function
∑nd
m=0 π

~n(m, d) is non-decreasing in nd, for d = 1, 2.

2. The function
∑nd
m=0 π

~n(m, d) is non-increasing in n3−d, for d = 1, 2.

The first property follows naturally, as increasing the threshold nd implies that this class is kept
passive in more states in environment d. Hence, the probability of being passive in environment d
increases. If instead n3−d increases, the number of states where the class is passive in environ-
ment d are the same. However, in environment 3− d the class is being served in less states, hence
this diminishes the death rates in certain states. This allows us to prove that the probability of
being passive in environment d decreases, i.e., the second property.

6.2 Whittle’s index for linear cost

In this section, we assume linear holding cost, that is, C(m, d, a) = cm, with c ∈ R6=0. We first
prove that the abandonment problem is indexable, and then give an expression for Whittle’s index.
For ease of reading, the proofs of the theorems are in Section 6.3.
We introduce the following values:

W (d) := cµ(d) θ(3−d) + r(1) + r(2)

θ(1)θ(2) + r(1)θ(2) + r(2)θ(1) , (18)

for d = 1, 2. The valueW (d) has the following interpretation (which will be proved in Lemma 6): If
the subsidy W equals W (d), and the class is kept passive in environment 3− d, then any threshold
value for environment d gives the same performance. Throughout Sections 6.2 and 6.3, we assume
w.l.o.g. that W (1) ≤ W (2), or equivalently µ(1)

θ(1)+r(1)+r(2) ≤ µ(2)

θ(2)+r(1)+r(2) . The parameters W (1) and
W (2) will play a key role in the characterisation of the optimal solution of the relaxed problem, see
Figure 2, and hence in proving indexability and Whittle’s index. The results presented in Figure 2
are proved in Section 6.3.
Given W (1) ≤W (2), we make the following two technical conditions, which are needed in order to
prove indexability. Numerical simulations however suggest that indexability holds for any set of
parameters.
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Figure 2: Optimal threshold policies for the abandonment queue.

Condition 1.
µ(1) ≤ µ(2) and θ(1) ≥ θ(2).

Condition 2.
W (2) ≤ cµ(2)

θ(2) + r(2) .

Theorem 1. Assume Conditions 1 and 2 hold. Then all bandits are indexable.

A closed-form expression for the Whittle index W (m, d) can now be given.

Theorem 2. Assume the bandit is indexable, and µ(1)

θ(1) + r(1) + r(2) <
µ(2)

θ(2) + r(1) + r(2) . We define
the subsequence (nj)j≥−1 as follows: n−1 = −1, n0 = 0, and for j ≥ 1 let

nj := arg min
n>nj−1

W ((nj−1, 0), (n, 0)), (19)

where W ((nj−1, 0), (n, 0)) is given by (8). In case there is more than one minimiser in (19), choose
the one that minimises −

∑2
d=1

∑nd
m=0 π

(n,0)(m, d).
Whittle’s index W (m, d) is given by

W (m, d) =


0 for m = 0
W ((nj−1, 0), (nj , 0)) for nj−1 < m ≤ nj , and d = 1
W (2) for m ≥ 1 and d = 2,

(20)
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where W ((nj−1, 0), (n, 0)) is given by (8). Moreover, W (m, 1) ≤W (1) ≤W (2) for all m.

If µ(1)

θ(1) + r(1) + r(2) = µ(2)

θ(2) + r(1) + r(2) , then W (m, 1) = W (1) = W (2) for all m.

Remark 2. If µ(1)−µ(2) < θ(2), then the slope of the linear function g(n,0), −
∑2
d=1

∑nd
m=0 π

(n,0)(m, d),
is a non-increasing sequence in n, as it will be stated in Proposition 5. As a consequence, in that
case, for each step j in Theorem 2, the minimiser nj with the steepest slope is the largest minimiser
n.

In the following corollary we consider the particular case where nj = j for all j ≥ −1, or equiva-
lently, the sequence W ((n− 1, 0), (n, 0)) is strictly increasing in n.

Corollary 1. If µ(1)

θ(1) + r(1) + r(2) <
µ(2)

θ(2) + r(1) + r(2) and the sequence (W ((n − 1, 0), (n, 0)))n∈N
is strictly increasing in n, then Whittle’s index W (m, d) is given by

W (m, d) =


0 for m = 0
W ((m− 1, 0), (m, 0)) for d = 1
W (2) for d = 2 and m ≥ 1.

(21)

Although we could not prove the strict-increasing property for the crossing pointsW ((n−1, 0), (n, 0)),
based on numerical observations we believe this holds whenever W (1) 6= W (2) .

Remark 3. The queuing model with abandonments without an environment has been studied in
[22]. That is, λ(1) = λ(2) = λ, µ(1) = µ(2) = µ and θ(1) = θ(2) = θ. Then, Whittle’s index as in
Theorem 2 equals cµ/θ, which is in agreement with [22, Section 6.1].

We now scale the transition rates of the environments, to further characterise Whittle’s index in
the two extreme cases of very slow changing or very fast changing environments. As in Section 5.2,
β is the scaling parameter and βr(d) is the transition rate of the environment. The proof can be
found in Appendix 10.5.

Proposition 3. Assume the transition rates of the environment are scaled as βr(d).
As β → 0, it holds that

lim
β→0

W (m, d) = c
µ(d)

θ(d) , ∀m, d.

Assume the limit limβ→∞W ((nj−1, 0), (nj , 0)) exists. As β →∞, it holds that

lim
β→∞

W (m, d) =


0 for m = 0
limβ→∞W ((nj−1, 0), (nj , 0)) for nj−1 < m ≤ nj , and d = 1

c
µ(2)

θ
for d = 2,

where θ :=
∑2
d=1 φ(d)θ(d).
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For the slow regime, we observe that the Whittle IndexW (m, d) coincides with that of the Whittle
index when the bandit always sees environment d, given by cµ(d)

θ(d) , see [21].
When the environment changes fast compared to the controllable state of the bandit, the Whittle
index remains state dependent. In environment 2, the index simplifies to cµ

(2)

θ
. This index is very

similar to

(i) cµθ , which is Whittle’s index when there are no environments.

(ii) cµ
θ
, an index that was proved to be asymptotically optimal in case the environments are

unobservable [14].

Hence, we see that when the environment is observable and changes very fast, the Whittle index
depends on the departure rate of the current environment and the averaged abandonment rate. In
case the environment is unobservable, the averaged value is taken both for the departure rate and
for the abandonment rate.

6.3 Proof of Theorems 1 and 2

In this section, we present the proofs of Theorems 1 and 2. These proofs are based on the char-
acterisation of the optimal solution of the relaxed optimisation problem. This characterisation
can be found in Propositions 4 and 6. For the lemmas and propositions stated in the section, the
proofs can be found in Appendix 10.6.
We start by rewriting W (~n, ~n′), the subsidy such that the expected cost under both threshold
policies ~n and ~n′ are equal. From (8), we obtain

W (~n, ~n′) = c ·
∑2
d=1

∑∞
m=0mπ

~n(m, d)−
∑2
d=1

∑∞
m=0mπ

~n′(m, d)∑2
d=1

∑nd
m=0 π

~n(m, d)−
∑2
d=1

∑n′
d
m=0 π

~n′(m, d)
, (22)

given that the denominator in (22) is not equal to 0.
The rate conservation property of Lemma 3 allows us to give an alternative expression forW (~n, ~n′).
For that, we define

sd(~n, ~n′) :=
nd∑
m=0

π~n(m, d)−
n′d∑
m=0

π~n
′(m, d),

as the difference between the probability of being passive under threshold policies ~n and ~n′, while
the environment is in state d.

Lemma 5. In case s1(~n, ~n′) + s2(~n, ~n′) 6= 0, it holds that

W (~n, ~n′) = tW (1) + (1− t)W (2), (23)

where t := s1(~n, ~n′)
s1(~n, ~n′) + s2(~n, ~n′) .

Consider two policies that are always passive in environment d = 1, i.e., ~n = (∞, n2) and ~n′ =
(∞, n′2), for any pair n2, n

′
2. We have that

∑∞
m=0 π

(∞,n2)(m, 1) = φ(1), where φ(1) is the stationary
measure of the environment for being in state d = 1. Hence, s1(~n, ~n′) =

∑∞
m=0 π

(∞,n2)(m, 1) −
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∑∞
m=0 π

(∞,n′2)(m, 1) = 0, and if s2(~n, ~n′) =
∑n2
m=0 π

(∞,n2)(m, 2) −
∑n′2
m=0 π

(∞,n′2)(m, 2) 6= 0, then
from Lemma 5 we have

W ((∞, n2), (∞, n′2)) = W (2). (24)

Similarly, we have W ((n1,∞), (n′1,∞)) = W (1). Following similar reasonings, we derive properties
for the policy that never serves the bandit, i.e., (∞,∞).

Lemma 6. We consider the threshold policy that never serves the bandit, (∞,∞). For any policy
~n = (n1, n2) it holds that W ((∞,∞), ~n) ∈ [W (1),W (2)]. Furthermore, W ((∞,∞), ~n) = W (2) if
and only if n1 =∞ and W ((∞,∞), ~n) = W (1) if and only if n2 =∞.

In the following proposition, we characterise optimal threshold policies of the relaxed optimisation
problem (7) as a function of the subsidy W . For a visual representation of the optimal policies,
we refer to Figure 2, where the optimal threshold policies are indicated as W varies.

Proposition 4. 1. The threshold policy (−1,−1) is an optimal solution of (7) when W ≤ 0.
When W < 0, it is the unique optimal threshold policy. When W = 0, the optimal threshold
policies are (−1,−1), (−1, 0), (0,−1) and (0, 0).

2. Assume Conditions 1 and 2 hold. For W ∈
[
0,W (2)

)
the optimal threshold solutions of (7)

are of the form (n, 0) with n ≥ −1.

3. The threshold policy (∞,∞) is an optimal solution of (7) whenW ≥W (2). WhenW > W (2),
it is the unique optimal threshold policy. When W = W (2), the optimal threshold policies are
of the form (∞, n) with n ≥ 0.

Proposition 5. Assume Condition 1 holds. Then the sequence
(
−
∑2
d=1

∑nd
m=0 π

(n,0)(m, d)
)
n∈N

,
which represents the slope of the linear functions (g(n,0))n∈N, is a non-increasing sequence.

We can now prove Theorem 1.
Proof of Theorem 1: By Proposition 2, an optimal solution of (7) is of threshold form. For a
given subsidy W , let nd(W ) denote the minimum value for a threshold in environment d such that
the threshold policy (nd(W ), ñ3−d), for some ñ3−d, is optimal.
If

n1(W ) ≤ n1(W + ∆) and n2(W ) ≤ n2(W + ∆), (25)

with ∆ > 0, then, the bandit is indexable. Equation (25) will be proved below.
First assume W < 0. Then, by Proposition 4, the optimal threshold policy is (−1,−1). In W = 0
it turns to (0, 0), and for W > 0 it is of the form (n, 0). Hence, for W ≤ 0, (25) holds.
Now assume 0 ≤ W < W (2). If W + ∆ > W (2), then the inequality (25) is trivially true. Now
assumeW+∆ < W (2). By Proposition 4, it follows that there are n and n′ such that ~n(W ) = (n, 0)
and ~n(W +∆) = (n′, 0). Since the function g(W ) is a lower envelope, the linear function g(n′,0)(W )
has a steeper slope than the linear function g(n,0)(W ), as it can be seen in Figure 1. Furthermore,
in Proposition 5 we proved that the slope of the linear functions g(n,0)(W ) is non-increasing in n.
Therefore, n ≤ n′, and (25) holds.
Finally, forW ≥W (2), the optimal threshold policy is (∞,∞), hence nd(W ) =∞ for both d = 1, 2,
and (25) is trivially true. �
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In order to prove Theorem 2, we first show that threshold policy (∞, 0) is an optimal solution of
(7) when W ∈

[
W (1),W (2)

]
. Again, we refer to Figure 2 for a visual representation.

Proposition 6. The threshold policy (∞, 0) is an optimal solution of (7) when W ∈
[
W (1),W (2)

]
.

If W ∈ (W (1),W (2)), then it is the unique optimal threshold policy. If W = W (2), then any
threshold policy (∞, n) with n ≥ 0 is optimal, and no other threshold policy is.

Proof of Theorem 2: Recall that the Whittle index of a state (m, d) is the smallest value for
the subsidy W such that the optimal threshold policy makes that state passive.
First consider states (0, d). From Proposition 4, we have that in state 0 it is optimal to be active
when W < 0 and passive if W = 0. Hence, we have that W (0, d) = 0, for both d = 1, 2.
Now consider states (m, 2), with m > 0. From Proposition 6, we have that for W ∈ (W (1),W (2))
the unique optimal threshold policy is (∞, 0). For W ≥ W (2), the optimal threshold policy is
(∞,∞), since it is the steepest one. Hence, W (2) is the smallest value for the subsidy W such that
in state (m, 2) the optimal action is to be passive, that is, W (m, 2) = W (2) for every m ≥ 0.
Now consider states of the form (m, 1), with m > 0. Note that for W = 0, in state 0 it is optimal
to be passive, and for W ∈ (W (1),W (2)) the optimal threshold policy is (∞, 0). As a consequence,
and since the bandit is indexable, when 0 ≤W < W (2), an optimal threshold policy is of the form
(n, 0). Algorithm 1 characterises Whittle’s index by iteratively defining Ŵj . From Proposition 4,
we have that for W < 0 the unique optimal threshold policy is ~n−1 = (−1,−1), and for W = 0 the
optimal threshold policies are (−1,−1), (−1, 0), (0,−1) and (0, 0). Hence, Ŵ0 = 0. Furthermore,
since the bandit is indexable, for W ≥ 0 it is optimal to be passive in state 0. Therefore, among
those four threshold policies, the optimal threshold policy in the interval [0, Ŵ1] is ~n0 = (0, 0).
Then, in W = Ŵ1 the linear function of the following optimal threshold policy (n1, 0) crosses the
linear function g(0,0). Inductively, the increasing sequence (nj)j≥0, provides the set of minimising
policies inside the set {(n, 0)}n≥0. As a consequence, in order to determine the smallest value of
W such that the optimal threshold policy makes a state (m, 1) passive, it is enough to determine
the value j such that nj−1 < m ≤ nj . In other words, W (m, 1) = W ((nj−1, 0), (nj , 0)) for any j
and nj−1 < m ≤ nj .
We are left to prove that W ((nj , 0), (nj−1, 0)) ≤ W (1) for every j. To do so, note that from the
definition of the crossing points nj , the linear functions g(nj−1,0) and g(nj ,0) are not parallel, hence
s1((nj , 0), (nj−1, 0)) + s2((nj , 0), (nj−1, 0)) 6= 0. Then, from (23) we have that

W ((nj , 0), (nj−1, 0)) = W (1) + (1− t)
(
W (2) −W (1)

)
,

with 1− t := s2((nj , 0), (nj−1, 0))
s1((nj , 0), (nj−1, 0)) + s2((nj , 0), (nj−1, 0)) . From Property 2) in Lemma 4 it follows

that s2((nj , 0), (nj−1, 0)) < 0. We state the following property between arbitrary linear functions
in R: if two linear functions cross each other in a given W , the one that minimises for W ≥ W
is steeper than the one that minmises for W ≤ W . In this case, since g(nj−1,0)(W ) minimises
for W ≤ W ((nj , 0), (nj−1, 0)) and g(nj ,0)(W ) minimises for W ≥ W ((nj , 0), (nj−1, 0)), g(nj ,0) is
steeper than g(nj−1,0), i.e., s1((nj , 0), (nj−1, 0)) + s2((nj , 0), (nj−1, 0)) > 0. Then 1− t ≤ 0, and as
a consequence, W ((nj , 0), (nj−1, 0)) ≤W (1) for every j. �
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7 Multi-class queue in a Markovian environment
In this section we study a queueing model without abandonments with an observable random
environment and general holding cost. That is, we consider the model as described in Section 6
where now the abandonment rates are set equal to zero. First, we present the maximum stability
conditions. Secondly, we derive an index policy, based on the results obtained in the previous
section for an abandonment queue (by letting θ → 0).

7.1 Maximum stability conditions

We first provide the maximum stability conditions, that is the conditions on the parameters such
that there exists a policy that makes the system stable. This stability result follows from [31].

Proposition 7 (Proposition 1, Section 4, in [31]). Let φ(~d) be the probability that bandit k sees
environment dk, k = 1, . . . , N . Recall that φk(dk) denotes the marginal distribution.
If there exists a policy such that the multi-class queue with environments is stable, then there exists
a vector ~γ = (γ

k~d
: 1 ≤ k ≤ N, ~d ∈ ZN ), such that

γ
k~d
≥ 0 and

N∑
k=1

γ
k~d
≤ φ(~d), for all k, ~d, (26)

and ∑
d∈Z

λ
(d)
k φk(d) ≤

∑
~d∈ZN

µ
(dk)
k γ

k~d
, ∀1 ≤ k ≤ N. (27)

If there exists a vector ~γ such that (26) and∑
d∈Z

λ
(d)
k φk(d) <

∑
~d∈ZN

µ
(dk)
k γ

k~d
, ∀1 ≤ k ≤ N, (28)

then there exists a policy that makes the system stable.

Proof: For the sake of readability we present a sketch of the proof.
If the system is stable under some policy ϕ, then we consider the process under this policy in a
stationary regime, and let γϕ

k~d
be the average fraction of time that the environment is ~d and bandit

k is active. The obtained vector ~γϕ satisfies (26) by definition. It also satisfies Equation (27),
which can be seen by contradiction. Assume it did not hold, then at least one bandit would grow
indeterminately towards infinite with probability 1.
If (26) and (28) hold for a certain ~γ, we define the policy ϕ as the policy that, under environment

~d, makes bandit k active with probability γ
k~d
/φ(~d) and with probability 1 −

∑N
k=1 γk~d
φ(~d)

does not

make active any bandit. Then policy ϕ allocates to bandit k on average a service rate equal to∑
~d∈ZN µ

(dk)
k γ

k~d
, which by (28) is larger than its arrival rate. This implies stability. �
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m θ 1 0.8 0.6 0.4 0.2 0.1 0.08 0.06 0.04 0.02 0.01 0.005 0.001
1 1.63 1.7 1.78 1.87 1.97 2.02 2.03 2.04 2.06 2.07 2.07 2.08 2.08
5 3.67 4.06 4.55 5.19 6.03 6.57 6.69 6.81 6.94 7.08 7.15 7.18 7.21
10 4.93 5.64 6.61 7.99 10.10 11.65 12.02 12.42 12.84 13.29 13.53 13.65 13.75
15 5.62 6.57 7.89 9.90 13.31 16.08 16.78 17.55 18.39 19.32 19.82 20.08 20.29
20 5.99 7.17 8.76 11.29 15.89 19.97 21.06 22.27 23.62 25.16 26 26.45 26.82

Table 1: Whittle’s index convergence as θ tends to 0.

7.2 Whittle’s index policy

In this section we assume that the environment of each bandit can be either in state 1 or state
2. For the multi-class queue without abandonments, one cannot directly apply Algorithm 1 in
order to get Whittle’s index. The reason for this is that the value of the threshold does not always
impact the average obtained subsidy for passivity, and hence does not provide a Whittle index.
For example, assume µ(1) < µ(2). Then, as the subsidy grows from −∞ to ∞, threshold policies of
the form (n, 0), n = 1, 2, . . ., will be optimal, and for large enough W , the threshold policy (∞, 0)
is optimal. However, once in environment 1 it is optimal to be passive in all states, when now
comparing different threshold values for environment 2, each such threshold will have the same
steady-state probability of being passive. Hence, there is no difference in the average obtained
subsidy for passivity between threshold policies of the form (∞, n) and (∞, n + n′). This means
that no index can be defined for states (m, 2). A similar observation was made for the classical
multi-class queue without environments, see [22, Section 7]. In order to obtain Whittle’s index for
the multi-class queue with environments, we therefore assume there are abandonments, and then
let the abandonment rate scale to zero.
We assume linear holding cost. LetW θ(m, d) be the Whittle index in the presence of abandonments
(as derived in Section 6.2), with θ1 = θ2 = θ, with θ > 0. It is direct from Theorem 2 that if
µ(1) < µ(2), then

lim
θ→0

θW θ(m, 2) = cµ(2), for all m ≥ 1. (29)

That is, in environment 2, one needs to consider the scaled index. For environment 1, no scaling
is needed. In fact, we believe the following to be true:

Conjecture 1.
lim
θ→0

W θ(m, 1) <∞.

This conjecture is based on our numerical observations. In Table 1 we show the Whittle index
as the abandonment rate approaches zero. We consider a multi-class queue with the following
parameters: λ(d) = 4, for d = 1, 2, and µ

(1)
1 = 5, µ(2)

1 = 8, hence µ(1) < µ(2). The rates for the
environment are r(1) = 17 and r(2) = 15. We set the abandonment rate as θ(d) = θ for d = 1, 2. In
Table 1, we show the index for different states m. It can be seen that, as θ tends to 0, the index
W θ(m, 1) seems to converge.
In order to prove this conjecture, one needs to study W ((nj−1, 0), (nj , 0)), which by (23) depends
on the steady-state distributions. A perturbation approach as presented in [2, Theorem 2], would
allow to write the steady state as an expansion in θ. However, the results of [2] do not directly
apply since there the transition rates are assumed to be uniformly bounded.
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We can now define a heuristic for the multi-class queue with a random environment. Let us assume
there are N bandits and R can be made active. Define for each bandit k, 1 ≤ k ≤ N , dk such
that µ(3−dk) ≤ µ(dk). In every decision epoch make active the bandits that are currently in their
state dk. If there are more than R, choose the R ones having the largest value for ckµ(dk). If there
are less than R, make also active the bandits currently in state 3− dk having the largest value for
limθ→0W

θ
k (m, 3− dk).

We extend the previous example to numerically illustrate the performance of the heuristics. We
consider a model with two classes of users k = 1, 2, and two states for the environment, Z = {1, 2} .
At each decision epoch the decision maker chooses which user to serve, that is, R = 1. We simulate
our heuristic and compare its average cost to that of an optimal policy obtained via value iteration.
More details on the models used for the simulations can be found in Section 8.2.
We choose the following parameters: the arrival rates are λ(d)

k = 4, for k = 1, 2, d = 1, 2. The
departure rates are µ(1)

1 = 5, µ(2)
1 = 8, µ(1)

2 = 21, µ(2)
2 = 27, hence µ(1)

k < µ
(2)
k for k = 1, 2. We

consider three models for the environment: a model with independent and identically distributed
environments, a model with independent environments with different distributions, and a model
with common environments for both classes of users, i.e., they see the same state of the environment
at each moment in time. The parameters for the environments are as follows:

• In the first case, both environments D1(t), D2(t) are independent and identically distributed
and their transition rates are given by r(1)

k = 15 and r(2)
k = 17, k = 1, 2.

• In the second case, the environments are independent and their transition rates are given by
r

(1)
1 = 15, r(2)

1 = 17, r(1)
2 = 10 and r(2)

2 = 2.

• In the third case, the environments are common with r(1) = 15 and r(2) = 17, k = 1, 2.

The obtained performances are, for each case:

• In the first case, the performance of our heuristic is gHEUR = 1.13 and for the optimal policy
is gOPT = 1.11. In other words, our heuristic presents a suboptimality gap of 1.82%.

• In the second case, the performance of our heuristic is gHEUR = 0.8042 and for the optimal
policy is gOPT = 0.8044. In other words, our heuristic presents a suboptimality gap of 0.02%.

• In the third case, the performance of our heuristic is gHEUR = 1.41 and for the optimal
policy is gOPT = 1.36. In other words, our heuristic presents a suboptimality gap of 4.3%.

8 Numerical evaluation
In this section the performance under Whittle’s index policy is compared to the performance of an
optimal policy obtained via value iteration. We consider the abandonment model with two classes
of users and two states for the environment(s), Z = {1, 2}. The decision epochs occur when there
is a change of state, either in the queue length or in the environment. At each decision epoch the
decision maker chooses which user to serve, that is, R = 1. We assume linear holding costs that
do not depend on the environment or action taken, i.e., Ck (m, d, k) = m.
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Figure 3: Suboptimality gap with (left) random parameters and (right) constrained parameters.

We plot the relative suboptimality gap in percentage for the different policies. We denote by gϕ
the performance under policy ϕ. Then, the suboptimality gap for policy ϕ is given by 100 ∗ (gϕ −
gOPT )/gOPT , where gOPT is the average cost under an optimal policy.
In Section 8.1, we generate a large number of parameters and using boxplots we show the subop-
timality gaps under different policies. In Section 8.2 we focus on one particular set of parameters.
In Section 8.3, we discuss how much one can gain by observing the state of the environments.

8.1 Boxplots

In this section we consider two different models for the environments. The first model is that of one
common environment, and the second model is that of independent identically distributed envi-
ronments. Numerically we calculate the suboptimality gap under Whittle’s index policy W (m, d),
Whittle’s index policy for a fixed environment W (d)(m), and the policy that for each set of pa-
rameters chooses uniformly at random which bandit to serve in each state (1/2 of probability of
serving each class, in each state). We do this for 200 sets of randomly generated parameters in
order to obtain a boxplot. This allows us to plot for each policy the 25th and 75th percentiles, the
median value with an horizontal line and the outliers with “+”.
Figure 3 (left) considers random sets of parameters chosen as follows: The parameters are chosen
uniformly at random such that λ(d)

k = λ ∈ [1, 10], µ(d)
k ∈ [1, 20], r(d)

k = r(d) ∈ [1, 20], and
θ

(d)
k = θ ∈ [0.1, 0.5], for k = 1, 2 and d = 1, 2. We observe that the suboptimality gap of policies
W (m, d) and W (d)(m) is very small, both for independent environments as well as for a common
environment. The random policy shows worse performance having a median of the suboptimality
gap in 18%.
The fact that the policy W (d)(m) performs similar to Whittle’s index policy W (m, d) is surprising.
The former does not take into account that the environment changes dynamically over time. To
show that W (d)(m) is not an efficient policy, we narrow our set of randomly generated parameters.
As before, we chose the parameters λ(d)

k , r(d), r(d)
k , and θ

(d)
k . However, the departure rates are

chosen differently. In environment d = 2, the departure rates are equal for both classes, i.e.,
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µ
(2)
1 = µ

(2)
2 = µ, where the value µ is chosen uniformly at random in the interval [1, 20]. In

environment d = 1, we take µ(1)
1 = µ− a and µ(1)

2 = µ+ a, where a ∈ [0, µ] is chosen uniformly at
random. Now, the fixed policyW (d)(m) will give equal priority to classes 1 and 2 in environment 2.
However, since the environment will change later to state d = 1, it could have been better to
prioritize class 1 in environment 2, because in environment 1 it will have a lower departure rate,
while class 2 has a higher departure rate. This effect of changing environments is taken into account
in the Whittle index policy W (m, d).
Figure 3 (right) plots the result for 200 samples. As expected, Whittle’s index policy has an
suboptimality gap close to 0, as in the previous example, while this is not the case for Whittle’s
index policy for a fixed environment, W (d)

k (m). For the latter policy, the median is 4% and the
75th percentile is 15% for the common environment setting and the median is 3% and the 75th
percentile is 9% for the independent environments setting.

8.2 Particular example

From the above boxplots, we conclude that even in a common environment, Whittle’s index per-
forms rather well. Below we show that this is not always the case. We obtain a set of parameters
such that Whittle’s index policy has a good performance when the environments are independent,
but it performs bad when the environments are common for both bandits.
We choose the following parameters: the arrival rates are λ(d)

k = 4γ, γ > 0, for k = 1, 2, d = 1, 2,
and hence independent of the environment. The departure rates are µ(1)

1 = 8, µ(2)
1 = 5, µ(1)

2 =
27, µ(2)

2 = 21, hence µ(d)
1 < µ

(d)
2 , for each environment d. The abandonment rates are θ(1)

1 =
0.1, θ(2)

1 = 0.1, θ(1)
2 = 0.4, θ(2)

2 = 0.3, hence θ(d)
1 < θ

(d)
2 , for each environment d. These parameters

satisfy the following inequalities:

1) W
(1)
2 << W

(1)
1 and 2) W

(2)
1 < W

(1)
2 .

As such, when the environment is in state (D1(t), D2(t)) = (1, 1), the indices (relation 1) indicate
that preference is leaning towards serving class 1. This is surprising, since the departure rate for
class 1, µ(1)

1 = 8 is much smaller than the departure rate for class 2 in environment 1, µ(1)
2 = 27.

However, when (D1(t), D2(t)) = (2, 1), then from relation 2, one sees that preference leans towards
serving class 2 at its high departure rate 27. When the two environments are independent, one visits
this state a positive fraction of time and hence profits from the highest departure rate for class 2.
If instead the environment for both classes is common, one is never in state (D1(t), D2(t)) = (2, 1),
explaining why Whittle’s index policy can have a large suboptimality gap.
We consider three cases for the environment parameters:

• in the first set, both environments D1(t), D2(t) are identically distributed and their transition
rates are given by r(1)

k = 15β and r(2)
k = 17β, k = 1, 2, with β > 0. Thus, φ(1)

k = 17/32 and
φ

(2)
k = 15/32. Indicated in the plot by “i.i.d.”.

• In the second set, the environments are non-identical and their transition rates are given
by r

(1)
1 = 15β, r(2)

1 = 17β, r(1)
2 = 10β and r

(2)
2 = 2β, where β > 0. Thus, φ(1)

1 = 17/32,
φ

(2)
1 = 15/32, φ(1)

2 = 1/6 and φ(2)
2 = 5/6. Indicated in the plot by “non-identical”.
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Figure 4: Suboptimality gap of Whittle’s index policy and the index W (d)(m) as a function of
(left) the scaling parameter of arrival rates (γ) and (right) the scaling parameter of the transition
rates for the environment (β).

• In the third set, the environments are common with r(1) = 15β and r(2) = 17β, k = 1, 2,
with β > 0. Thus, φ(1) = 17/32 and φ(2) = 15/32. Indicated in the plot by “common”.

Note that Condition 1 and Condition 2, which were needed in order to prove indexability, are
not satisfied for the above parameters. However, numerically we observed that for this parameter
setting, the system is indexable.

8.2.1 Scaling arrivals

We first study the suboptimality gap as the load in the system changes. We set β = 1. In Figure 4
(left) the relative suboptimality gap under Whittle’s index policy (denoted by W (m, d)) is plotted
as a function of γ. For the independent environment settings, the gap is not larger than 7%, and
is 1% when in overload. However, in a common environment, the gap can be around 25%.

8.2.2 Scaling speed of the environments

We now study the suboptimality gap as the speed of the environments changes.
In Figure 4, (right) the suboptimality gap for both policies W (m, d) and W (d)(m) is plotted as a
function of the speed of the transitions of the environment (and γ = 1). For the two independent
environment settings, we observe that for β around 10−2, the performance under Whittle’s index
policyW (m, d) and the policyW (d)(m) are very similar. Their suboptimality gap is less than 12%.
On the other hand, for the common environment, the suboptimality gap under Whittle’s index
policy is around 23% when the transition rates of the environments are not scaled. Surprisingly,
the fixed Whittle index performs rather well for any choice of β.
Recall from Proposition 1 that Whittle’s index W (m, d) converges as β → 0 to W (d)(m). This
explains why in Figure 4, (right) the performance of Whittle’s index policy converges towards the
fixed Whittle index policy.
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Figure 5: Whittle’s index as a function of the scaling parameter of the transition rates for the
environment. (left) state m = 1, (right) state m = 10. The horizontal lines represent the values
cµ

(d)
k /θ

(d)
k , d = 1, 2 and k = 1, 2.

Under linear cost, W (d)(m) is equal to cµ(d)
k /θ

(d)
k , for k = 1, 2 and d = 1, 2. In Figure 5, we plot

Whittle’s index in state m = 1 and m = 10, respectively, as well as the values cµ(d)
k /θ

(d)
k . We see

in both cases the convergence as β → 0.

8.3 Unobservable environments

In practice, the environment might not be observable due to technical constraints. In this section,
we assess the performance degradation in case information on the environment is not available.
In [14] it was shown that so-called averaged Whittle index policy are asymptotically optimal when
the state of environments is unobservable, as the number of bandits grows large together with the
speed of the environment. In particular, from [14] together with [22], one obtains that for the
abandonment multi-class queue with linear cost, the averaged Whittle index W k(m), is given by

W k(m) = ck
θk
µk
,

with θk :=
∑
d∈Z φk(d)θ(d)

k and µk :=
∑
d∈Z φk(d)µ(d)

k .
We present here boxplots that compare the performance of the averaged Whittle index policy,
W (m), to the Whittle index policy, W (m, d), obtained for the observable model. We further
include the policy that for each set of parameters chooses at random which bandit to serve in each
state. We consider two models for the environment: (i) one common environment for both classes,
(ii) independent identically distributed environments.
We first consider 200 sets of randomly generated parameters. In Figure 6 (left) the parameters
are chosen uniformly at random such that λ(d)

k = λ ∈ [1, 10], µ(d)
k ∈ [1, 20], r(d)

k = r(d) ∈ [1, 20],
and θ(d)

k ∈ [0.1, 0.5], for k = 1, 2 and d = 1, 2. We observe that the suboptimality gap of policy
W (m, d) is very small, with a median of 0% for both the common environment and the independent
environments setting. The suboptimality gaps of policy W (m) are larger, with a median of 7% for
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Figure 6: Suboptimality gap for unobservable policies with (left) random parameters and (right)
constrained parameters.

the common environment setting and 10% for the independent environments setting. The random
policy shows worse performance, where the median of the suboptimality gap is above 20% in both
cases.
For Figure 6 (right), we narrow our set of randomly generated parameters. In particular, we choose
parameters such that the optimal action depends on the state of the environment. The averaged
index policy will not be able to mimic this, since it is a static policy. We fix the parameters such
that W (1)

1 >> W
(1)
2 and W

(2)
1 << W

(2)
2 . Hence, in environment 1 it will be optimal to serve

bandit 1 with high probability, and in environment 2 it will be optimal to serve bandit 2 with high
probability. In the boxplot of Figure 6 (right), we still observe that the median of the suboptimality
gap of policy W (m, d) is 0% in both cases, while the median of the suboptimality gap of policy
W (m) is 29% for the common environment setting and 22% for the independent environments
setting.
In Figure 6, we considered that the environment has transition rates of the same order as the main
process. In a separate analysis we consider environments whose transition rates are 100 times
larger than the transitions rates of the controllable process. We recall that the averaged Whittle’s
index policy W (m) was proved to be optimal in a rapidly varying unobservable environment [14].
In the boxplots of Figure 7 the parameters are chosen as in Figure 6, except for the rates of the
environment, where we take r(d)

k = r(d) ∈ [100, 2000]. We consider 200 sets of parameters for
each boxplot. In this case we observe that the suboptimality gap of policy W (m, d) is still small,
below 1% in both boxplots and in both settings. The median of the suboptimality gap of policy
W (m) for the random parameters (left) is 9% for the common environment setting, and 12% for
the independent environments setting, and for the constrained parameters (right) is 24% for the
common environment setting, and 20% for the independent environments setting.
We conclude that in both regimes, with normal speed and with fast speed, there is an important
loss in performance if we consider an unobservable policy.
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Figure 7: Suboptimality gap for unobservable policies with a fast environment, with (left) random
parameters and (right) constrained parameters.

9 Conclusions and further work
In this paper we have introduced and studied a stochastic control problem with environments. The
transition rates of the controllable processes depended on the state of the environments, which
were assumed to be exogenous processes. Given the complexity of the problem, we focused on the
approximate approach pioneered by Whittle, which is known to yield extremely good performing
heuristics.
We took as a case study a multi-class queue with abandonments, for which we obtained a closed-
form expression for Whittle’s index. These results are restricted to having only two environment
states. They crucially rely on the rate-conservation law stated in Lemma 3, which allowed us to
simplify the formula for Whittle’s index, see Lemma 5. We did not succeed in generalizing this
approach to an arbitrary number of environment states. As a first step in future research, it would
be worthwhile to consider more than two environment states, but with a specific structure for the
transition of the environment state such as birth-and-death, cyclic, etc.
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10 Appendix

10.1 Proof of Lemmas of Section 5.2.

10.1.1 Proof of Lemma 1:

The measure pnd,(d)(m) is the stationary distribution of the one-dimensional process with the
following rates for m ≥ 0: q(m + 1|m) = λ(d), and q((m − 1)+|m) = mθ(d) + 1(m>nd)µ

(d), Let
pnd,(d)(m) be the stationary measure of this process, which satisfies the following balance equations:(

λ(d) +mθ(d) + 1(m>nd)µ
(d)
)
pnd,(d)(m) (30)

= 1(m>0)λ
(d)pnd,(d)(m− 1) +

[
(m+ 1)θ(d) + 1(m+1>nd)µ

(d)
]
pnd,(d)(m+ 1),

for all m ≥ 0, d.
The balance equations for π~n(m, d) are

(λ(d) +mθ(d) + 1(m>nd)µ
(d) + βr(d))π~n(m, d) (31)

= 1(m>0)λ
(d)π~n(m− 1, 1) +

[
(m+ 1)θ(d) + 1(m+1>nd)µ

(d)
]
π~n(m+ 1, d)

+
∑
d′ 6=d

βr(dd′)π~n(m, d′),

for all m ≥ 0, d. The stationary probability measure that satisfies the balance equations is unique.
As β → 0, (31) is equal to (30) with pnd,(d)(m) replaced by limβ→0 π

~n(m, d). After normalisation,
we hence have that limβ→0 π

~n(m, d) = φ(d)pnd,(d)(m), for all m ≥ 0. �

10.1.2 Proof of Lemma 2:

Recall that for a given β, ~nj(β), j = 0, . . . , is the minimisation vector obtained in (9), and
~̂nj = limβ→0 ~n

j(β).
For n ≥ n̂jd, define

Âjd(n) :=
∞∑
m=0

C (m, d, a) pn,(d)(m)−
∞∑
m=0

C (m, d, a) pn̂
j
d
,(d)(m)

B̂j
d(n) :=

n∑
m=0

pn,(d)(m)−
n̂j

d∑
m=0

pn̂
j
d
,(d)(m).

We define the function

f j(~n) := lim
β→0

∑Z
d=1

∑∞
m=0C (m, d, a)π~n(m, d)−

∑Z
d=1

∑∞
m=0C (m, d, a)π~nj(β)(m, d)∑Z

d=1
∑nd
m=0 π

~n(m, d)−
∑Z
d=1

∑nj
d
(β)

m=0 π
~nj(β)(m, d)

, (32)

for ~n ∈ Ej . By Lemma 1 and since ~M~n(β) is uniform integrable, we have that f j(~n) is equal to

∑Z
d=1

∑∞
m=0C (m, d, a)φ(d)pnd,(d)(m)−

∑Z
d=1

∑∞
m=0C (m, d, a)φ(d)pn̂

j
d
,(d)∑Z

d=1
∑nd
m=0 φ(d)pnd,(d) −

∑Z
d=1

∑n̂j
d
m=0 φ(d)pn̂

j
d
,(d)

.
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Hence, equivalently, we can write f j(~n) = φ(1)Âj1(n1) + . . .+ φ(Z)ÂjZ(nZ)
φ(1)B̂j

1(n1) + . . .+ φ(Z)B̂j
Z(nZ)

.

By definition of ~̂n(j+1) and since ~nj+1(β) = ~̂nj+1 for β small enough, f j(~n) is minimised in ~̂nj+1,
that is,

f j(~̂nj+1) = inf
~n∈Ej

f j(~n). (33)

In particular, this implies, f j(~̂nj+1) ≤ min(f j(n̂j+1
1 , n̂j2, . . . , n̂

j
Z), . . . , f j(n̂j1, n̂

j
2 . . . , n̂

j+1
Z )), that is,

φ(1)Âj1(n̂j+1
1 ) + . . .+ φ(Z)ÂjZ(n̂j+1

Z )
φ(1)B̂j

1(n̂j+1
1 ) + . . .+ φ(Z)B̂j

Z(n̂j+1
Z )

≤ min
(
Âj1(n̂j+1

1 )
B̂j

1(n̂j+1
1 )

, . . . ,
ÂjZ(n̂j+1

Z )
B̂j
Z(n̂j+1

Z )

)
. (34)

Now, assume there is a strict inequality in (34), and assume Â
j
1(n̂j+1

1 )
B̂j

1(n̂j+1
1 )

≤ Âj2(n̂j+1
2 )

B̂j
2(n̂j+1

2 )
, . . . ,

ÂjZ(n̂j+1
Z )

B̂j
Z(n̂j+1

Z )
.

The strict inequality in (34) implies

B̂j
1(n̂j+1

1 )
(
φ(1)Âj1(n̂j+1

1 ) + . . .+ φ(Z)ÂjZ(n̂j+1
Z )

)
< Âj1(n̂j+1

1 )
(
φ(1)B̂j

1(n̂j+1
1 ) + . . .+ φ(Z)B̂j

Z(n̂j+1
Z )

)
,

that is, φ(2)Âj2(n̂j+1
2 ) + . . .+ φ(Z)ÂjZ(n̂j+1

Z )
φ(2)B̂j

2(n̂j+1
2 ) + . . .+ φ(Z)B̂j

Z(n̂j+1
Z )

<
Âj1(n̂j+1

1 )
B̂j

1(n̂j+1
1 )

. (35)

The LHS in (35) can be rewritten as the following convex combination,

Z∑
i=2

αi
Âji (n̂

j+1
i )

B̂j
i (n̂

j+1
i )

,

with αi = φ(i)B̂j
i (n̂

j+1
i )

φ(2)B̂j
2(n̂j+1

2 ) + . . .+ φ(Z)B̂j
Z(n̂j+1

Z )
for i = 2, . . . , N , αi ≥ 0 (since ~n ∈ Ej and by as-

sumption in Lemma 2), and
∑Z
i=2 αi = 1. Together with (35), this gives that

∑Z
i=2 αi

Âji (n̂
j+1
i )

B̂j
i (n̂

j+1
i )

<

Âj1(n̂j+1
1 )

B̂j
1(n̂j+1

1 )
. The latter gives contradiction with the assumption that Â

j
1(n̂j+1

1 )
B̂j

1(n̂j+1
1 )

≤ Âj2(n̂j+1
2 )

B̂j
2(n̂j+1

2 )
, . . . ,

ÂjZ(n̂j+1
Z )

B̂j
Z(n̂j+1

Z )
.

Hence, by contradiction we proved that the inequality in (34) is an equality, that is,

f j(~̂nj+1) = min(f j(n̂j+1
1 , n̂j2, . . . , n̂

j
Z), . . . , f j(n̂j1, n̂

j
2 . . . , n̂

j+1
Z )). (36)

Assume without loss of generality that f j(n̂j+1
1 , n̂j2, . . . , n̂

j
Z) ≤ f j(n̂j1, n̂

j+1
2 , . . . , n̂jZ), . . . , f j(n̂j1, n̂

j
2 . . . , n̂

j+1
Z ).

We are left to prove that

f j(n̂j+1
1 , n̂j2, . . . , n̂

j
Z) = inf

n>n̂j
1

∑∞
m=0C (m, 1, a) pn,(1)(m)−

∑∞
m=0C (m, 1, a) pn̂

j
1,(1)(m)∑n

m=0 p
n,(1)(m)−

∑n̂j
1
m=0 p

n̂j
1,(1)(m)

.(37)

Let n∗1 be the n such that the infimum is taken on the RHS. Hence, the RHS can equivalently be
written as f j(n∗1, n̂

j
2, . . . , n̂

j
Z). We prove (37) by contradiction. That is, assume f j(n̂j+1

1 , n̂j2, . . . , n̂
j
Z) >

f j(n∗1, n̂
j
2, . . . , n̂

j
Z). Since f j(~̂nj+1) = f j(n̂j+1

1 , n̂j2, . . . , n̂
j
Z) > f j(n∗1, n̂

j
2, . . . , n̂

j
Z), we have contradic-

tion with the fact that f j is minimised in ~̂nj+1.
Combining (33), (36), and (37), we conclude the proof. �
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10.2 Proof of Proposition 2:

For a given L� 1, we truncate the state space at L and we smooth the arrival transitions by

qL(m+ 1|m, d, a) := λ(d)
(

1− m

L

)+
, (38)

for m = 0, 1, . . . , L.

10.2.1 Convexity of V L

We assume 1 = λ(1) +λ(2) +µ(1) +µ(2) + r(1) + r(2) +Lθ(1) +Lθ(2) for the uniformization constant,
without loss of generality. For any d and m = 0, . . . , L, we initialize by defining V L

0 (m, d) = 0 and

V L
t+1(m, d) =

(
1− m

L

)
λ(d)V L

t (min{m+ 1, L}, d)

+ r(d)V L
t (m, 3− d) +mθ(d)V L

t ((m− 1)+, d)
+ min{−W + C(m, d, 0) + µ(2)V L

t (m, d), C(m, d, 1) + µ(2)V L
t ((m− 1)+, d)}

+ m

L
λ(d)V L

t (m, d) + (L−m)θ(d)V L
t (m, d)

+
(
λ(3−d) + µ(3−d) + r(3−d) + Lθ(3−d)

)
V L
t (m, d).

We will prove that

2V L
t (m, d) ≤ V L

t ((m− 1)+, d) + V L
t (m+ 1, d), for 0 ≤ m ≤ L− 1, (39)

for any t, i.e. the convexity of V L.
We first prove by induction in t that V L

t (m, d) is non-decreasing in m. Note that V L
0 (m, d) = 0 is

non-decreasing by definition, so we assume V L
t (m, d) is non-decreasing and we prove that

V L
t+1(m+ 1, d)− V L

t+1(m, d) ≥ 0 for 0 ≤ m ≤ L− 1. (40)

We study the inequality splitting in terms according to the parameter that is multiplying. Firstly,
we look to the terms multiplied by λ(d) in V L

t+1(m+ 1, d)− V L
t+1(m, d), so we have

λ(d)
(

1− m+ 1
L

)
V L
t (min{m+ 2, L}, d) + λ(d)m+ 1

L
V L
t (min{m+ 1, L}, d)

− λ(d)
(

1− m

L

)
V L
t (min{m+ 1, L}, d)− m

L
λ(d)V L

t (m, d)

= λ(d)
(

1− m+ 1
L

)
V L
t (min{m+ 2, L}, d) + m

L
λ(d)V L

t (min{m+ 1, L}, d)

− λ(d)
(

1− m+ 1
L

)
V L
t (min{m+ 1, L}, d)− m

L
λ(d)V L

t (m, d)

= λ(d)
(

1− m+ 1
L

)
(V L
t (min{m+ 2, L}, d)− V L

t (min{m+ 1, L}, d))

+ m

L
λ(d)(V L

t (min{m+ 1, L}, d)− V L
t (m, d)) ≥ 0.
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The last inequality is due to the inductive hypothesis for V L
t (m, d). Let us consider now the terms

multiplied by θ(d):

(m+ 1)θ(d)V L
t (m, d) + (L−m− 1)θ(d)V L

t (min{m+ 1, L}, d)
−mθ(d)V L

t ((m− 1)+, d)− (L−m)θ(d)V L
t (m, d)

= mθ(d)V L
t (m, d) + (L−m− 1)θ(d)V L

t (min{m+ 1, L}, d)
−mθ(d)V L

t ((m− 1)+, d)− (L−m− 1)θ(d)V L
t (m, d)

≥ mθ(d)(V L
t (m, d)− V L

t ((m− 1)+, d))
+ (L−m− 1)θ(d)(V L

t (min{m+ 1, L}, d)− V L
t (m, d)) ≥ 0.

The last inequality holds because of the non-decreasing hypothesis for V L
t (m, d). For the terms

multiplied by r(d) it is straightforward that

r(d)V L
t (m+ 1, 3− d)− r(d)V L

t (m, 3− d) ≥ 0,

because of the inductive hypothesis as well. Equivalently for the dummy transition terms,

(λ(3−d) + µ(3−d) + r(3−d) + Lθ(3−d)) (V L
t (m+ 1, d)− V L

t (m, d)) ≥ 0.

Finally, we consider the minimisation terms in V L
t+1(m+ 1, d)−V L

t+1(m, d), where the inequality is
a consequence of the non-decreasing property of V L

t (m, d) and C, and the fact that if A ≥ B and
A′ ≥ B′, then min{A,A′} ≥ min{B,B′}:

min{−W + C(min{m+ 1, L}, d, 0) + µ(2)V L
t (min{m+ 1, L}, d),

C(min{m+ 1, L}, d, 1) + µ(2)V L
t (m, d)}

≥ min{−W + C(m, d, 0) + µ(2)V L
t (m, d),

C(m, d, 1) + µ(2)V L
t ((m− 1)+, d)}.

This concludes the proof of (40), i.e., V L
t is non-decreasing.

We consider now equation (39). Note that for m = 0 the equation reduces to V L
t (0, d) ≤ V L

t (1, d),
which is true for every t and every d, because V L

t is non-decreasing in m. Then for 1 ≤ m ≤ L−1,
we make an analogous reasoning: we prove it by induction in t and we split the inequalities
according to the multiplying parameters. For the initial step V L

0 (m) = 0 the inequality holds, so
we assume it holds for V L

t (m, d) and we study the inequality (39) for t+ 1. Note that

2V L
t+1(m, d) =2

(
1− m

L

)
λ(d)V L

t (m+ 1, d) + 2m
L
λ(d)V L

t (m, d) (41)

+ 2r(d)V L
t (m, 3− d)

+ 2mθ(d)V L
t (m− 1, d) + 2(L−m)θ(d)V L

t (m, d)
+ 2 min{−W + C(m, d, 0) + µ(2)V L

t (m, d), C(m, d, 1) + µ(2)V L
t (m− 1, d)}

+ 2
(
λ(3−d) + µ(3−d) + r(3−d) + Lθ(3−d)

)
V L
t (m, d)
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The term V L
t+1(m− 1, d) + V L

t+1(m+ 1, d) equals

λ(d)
(

1− m− 1
L

)
V L
t (m, d) + λ(d)

(
1− m+ 1

L

)
V L
t (min {m+ 2, L} , d)

+ λ(d)m− 1
L

V L
t (m− 1, d) + λ(d)m+ 1

L
V L
t (m+ 1, d)

+ r(d)V L
t (m− 1, 3− d) + r(3−d)V L

t (m− 1, d) + r(d)V L
t (m+ 1, 3− d) + r(3−d)V L

t (m+ 1, d)
+ (m− 1)θ(d)V L

t ((m− 2)+, d) + (m+ 1)θ(d)V L
t (m, d)

+ (L−m+ 1)θ(d)V L
t (m− 1, d) + (L−m− 1)θ(d)V L

t (m+ 1, d)
+ min{−W + C(m− 1, d, 0) + µ(2)V L

t (m− 1, d), C(m− 1, d, 1) + µ(2)V L
t ((m− 2)+, d)}

+ min{−W + C(m+ 1, d, 0) + µ(2)V L
t (m+ 1, d), C(m+ 1, d, 1) + µ(2)V L

t (m, d)} (42)

+
(
λ(3−d) + µ(3−d) + r(3−d) + Lθ(3−d)

)
V L
t (m− 1, d)

+
(
λ(3−d) + µ(3−d) + r(3−d) + Lθ(3−d)

)
V L
t (m+ 1, d).

We first compare the two terms multiplied by λ(d) in (41) to check they are smaller than or equal
to the ones multiplied by λ(d) in (42). First assume 1 ≤ m ≤ L− 2. The terms multiplied by λ(d)

in (41) are

2
(

1− m

L

)
V L
t (m+ 1, d) + 2m

L
V L
t (m, d)

= 2
(

1− m+ 1
L

)
V L
t (m+ 1, d) + 2m

L
V L
t (m, d) + 2

L
V L
t (m, d)

≤
(

1− m+ 1
L

)
V L
t (m, d) +

(
1− m+ 1

L

)
V L
t (m+ 2, d) + 2m

L
V L
t (m, d) + 2

L
V L
t (m+ 1, d)

=
(

1− m− 1
L

)
V L
t (m, d)− 2

L
V L
t (m, d) +

(
1− m+ 1

L

)
V L
t (m+ 2, d)

+ 2m
L
V L
t (m, d) + 2

L
V L
t (m+ 1, d)

=
(

1− m− 1
L

)
V L
t (m, d) +

(
1− m+ 1

L

)
V L
t (m+ 2, d)

+ 2m− 1
L

V L
t (m, d) + 2

L
V L
t (m+ 1, d) (43)

Because of convexity, we know that 2m−1
L V L

t (m, d) ≤ m−1
L (V L

t (m − 1, d) + V L
t (m + 1, d)), hence
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the third term in (43) can be bounded, and we obtain:

2
(

1− m

L

)
V L
t (m+ 1, d) + 2m

L
V L
t (m, d)

≤
(

1− m− 1
L

)
V L
t (m, d) +

(
1− m+ 1

L

)
V L
t (m+ 2, d)

+ m− 1
L

(
V L
t (m− 1, d) + V L

t (m+ 1, d)
)

+ 2
L
V L
t (m+ 1, d)

≤
(

1− m− 1
L

)
V L
t (m, d) +

(
1− m+ 1

L

)
V L
t (m+ 2, d)

+ m− 1
L

V L
t (m− 1, d) + m+ 1

L
V L
t (m+ 1, d), (44)

which is the same as the terms multiplied by λ(d) in (42). Now assume m = L− 1, then inequality
(39) reduces to 2(1− 2/L)V L

t (L− 1, d) ≤ (1− 2/L)(V L
t (L− 2, d) +V L

t (L, d)), which holds because
of convexity of V L

t .
We consider now the terms multiplied by θ(d). We need to prove

2mV L
t (m− 1, d) + 2(L−m)V L

t (m, d)
≤ (m− 1)V L

t ((m− 2)+, d) + (m+ 1)V L
t (m, d) + (L−m+ 1)V L

t (m− 1, d)
+ 2V L

t (m− 1, d) + (L−m− 1)V L
t (m+ 1, d),

or, equivalently,

2(m− 1)V L
t (m− 1, d) + 2(L−m− 1)V L

t (m, d)
≤ (m− 1)V L

t ((m− 2)+, d) + (m− 1)V L
t (m, d) + (L−m− 1)V L

t (m− 1, d)
+ (L−m− 1)V L

t (m+ 1, d).

This last inequality is obtained from the convexity property for 2V L
t (m− 1, d) and 2V L

t (m, d) on
the lhs.
For the terms multiplied by r(d), and the dummy transitions (λ(3−d) + µ(3−d) + r(3−d) + Lθ(3−d)),
the inequalities to prove are

2r(d)V L
t (m, 3− d) ≤ r(d)V L

t (m− 1, 3− d) + r(d)V L
t (m+ 1, 3− d) and

2(λ(3−d) + µ(3−d) + r(3−d) + Lθ(3−d))V L
t (m, d)

≤ (λ(3−d) + µ(3−d) + r(3−d) + Lθ(3−d)) (V L
t (m− 1, d) + V L

t (m+ 1, d)),

which are a direct consequence of convexity of V L
t .

We lastly consider the minimisation terms, for which we analyse each possible combination of
optimal actions in states m − 1 and m + 1. Since at time t, V L

t is convex, the optimal actions
satisfy the optimality of threshold policies. Denote by a∗m ∈ {0, 1} the optimal action in state
m, where action 0 (1) is passive (active). Then, since the threshold policy is optimal at time t,
(a∗m−1, a

∗
m+1) equals (0, 0), (0, 1) or (1, 1). We also use Property (15), regarding the cost function.

For a∗ = (0, 1) and 1 ≤ m ≤ L− 1 we have
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2 min{−W + C(m, d, 0) + µ(2)V L
t (m, d), C(m, d, 1) + µ(2)V L

t (m− 1, d)}
≤ −W + C(m, d, 0) + µ(2)V L

t (m, d) + C(m, d, 1) + µ(2)V L
t (m− 1, d)

≤ −W + C(m− 1, d, 0) + µ(2)V L
t (m, d) + C(m+ 1, d, 1) + µ(2)V L

t (m− 1, d)
= min{−W + C(m− 1, d, 0) + µ(2)V L

t (m− 1, d), C(m− 1, d, 1) + µ(2)V L
t ((m− 2)+, d)}

+ min{−W + C(m+ 1, d, 0) + µ(2)V L
t (m+ 1, d), C(m+ 1, d, 1) + µ(2)V L

t (m, d)},

where in the last equality the value for the minimums are given by the optimal action a∗ = (0, 1).
For a∗ = (0, 0), we use convexity of C and V L

t :

2 min{−W + C(m, d, 0) + µ(2)V L
t (m, d), C(m, d, 1) + µ(2)V L

t (m− 1, d)}
= −2W + 2C(m, d, 0) + 2µ(2)V L

t (m, d)
≤ −2W + C(m− 1, d, 0) + C(m+ 1, d, 0) + µ(2)V L

t (m− 1, d) + µ(2)V L
t (m+ 1, d)

= min{−W + C(m− 1, d, 0) + µ(2)V L
t (m− 1, d), C(m− 1, d, 1) + µ(2)V L

t ((m− 2)+, d)}
min{−W + C(m+ 1, d, 0) + µ(2)V L

t (m+ 1, d), C(m+ 1, d, 1) + µ(2)V L
t (m, d)}.

Equivalently for a∗ = (1, 1), we make use of convexity properties:

2 min{−W + C(m, d, 0) + µ(2)V L
t (m, d), C(m, d, 1) + µ(2)V L

t (m− 1, d)}
= 2C(m, d, 1) + 2µ(2)V L

t (m− 1, d)
≤ C(m− 1, d, 1) + C(m+ 1, d, 1) + µ(2)V L

t ((m− 2)+, d) + µ(2)V L
t (m, d)

= min{−W + C(m− 1, d, 0) + µ(2)V L
t (m− 1, d), C(m− 1, d, 1) + µ(2)V L

t ((m− 2)+, d)}
min{−W + C(m+ 1, d, 0) + µ(2)V L

t (m+ 1, d), C(m+ 1, d, 1) + µ(2)V L
t (m, d)}.

This finishes the proof of (39) for t + 1, hence function V L
t is convex. By [30, Chapter 9.4] it

follows that V L
t (·)− tg → V L as t→∞, where g is the averaged cost incurred under the optimal

policy. Hence, convexity of V L
t implies convexity of V L. �

10.2.2 Hypothesis needed for [7, Theorem 3.1]

In this section, we verify that V L → V as L → ∞. In particular, we verify that the sufficient
conditions as stated in [7, Theorem 3.1] hold.
For ease of notation, we introduce qL((m′, d′)|(m, d), a) as the transition rate of the truncated pro-
cess from state (m, d) to state (m′, d′), when action a is applied. That is, qL((m+1, d)|(m, d), a) =

λ(d)
(

1− m

L

)+
, qL(((m− 1)+, d)|(m, d), a) = mθ(d) +aµ(d), and qL((m, 3−d)|(m, d), a) = r(d), for

m ∈ N0, d = 1, 2 and a = 0, 1.
In order to state the sufficient conditions of [7, Theorem 3.1], we need the following definition.

Definition 4. A function f : X ×Z → R+ is a moment function if there exists an increasing se-
quence of finite sets (En)n∈N ⊂ X×Z such that limn→∞En = X×Z and inf {f(m, d) : (m, d) /∈ En} →
∞ as n→∞.
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The conditions, as stated in [7, Theorem 3.1], are:

1. There exists a function f : X × Z → R+, constants α, β > 0 and M > 0 such that∑
(m′,d′)∈X×Z

qL((m′, d′)|(m, d), a) f(m′, d′) ≤ −αf(m, d) + β1{m<M}(m, d), for all m, d, ϕ, L.

2. (a, L) → qL((m′, d′)|(m, d), a) and (a, L) →
∑

(m′,d′)∈X×Z q
L((m′, d′)|(m, d), a)f(m′, d′) are

continuous functions in a and L for all (m, d) and (m′, d′).

We take the function f(m, d) = eεm with ε > 0. We define the setsEn = {(0, 1), (0, 2), . . . , (n, 1), (n, 2)}
for each n, which are finite, limn→∞En = X ×Z and inf {f(m, d) : (m, d) /∈ En} → ∞ as n→∞.
Condition 1 can be reduced to show that there exists ε > 0, M > 0 and a constant α > 0 such
that ∑

(m′,d′)∈X×Z
qL((m′, d′)|(m, d), a) f(m′, d′) ≤ −αf(m, d),

for d = 1, 2 and m > M , that is,

λ(d)
(

1− m

L

)+
eε(m+1) + (mθ(d) + aµ(d))eε(m−1) + r(d)eεm(

λ(d)
(

1− m

L

)+
+mθ(d) + aµ(d) + r(d)

)
eεm ≤ −αeεm,

for d = 1, 2 and m > M , where a is the action taken in state (m, d) under policy ϕ. The inequality
can be rewritten as

λ(d)
(

1− m

L

)+
(eε − 1) + (mθ(d) + aµ(d))(e−ε − 1) ≤ −α, (45)

Note that, since
(

1− m

L

)+
is decreasing inm, there exists a constant C such that λ(d)

(
1− m

L

)+
(eε−

1) < C. For the other term, since (e−ε − 1) < 0, there exists an M such that for m > M ,
(mθ(d) + aµ(d))(e−ε − 1) < −C. Then there exists α > 0 such that inequality (45) holds for
d = 1, 2 and m > M and Condition 1 is proved. For Condition 2, the continuity of the functions
(a, L)→ qL((m′, d′)|(m, d), a) and (a, L)→

∑
(m′,d′)∈X×Z q

L((m′, d′)|(m, d), a)f(m′, d′) in a and L
holds by definition of the transition rates. �

10.3 Proof of Lemma 3

Since each class-k job abandons with a rate θ(d)
k > 0 when in environment d, it is certain that the

system is stable and existence of the steady-state distribution is guaranteed. Stability implies that
the long-run number of job arrivals will be the same as the long-run number of departures. The
same applies to a subsystem corresponding to one state of the environment. That is, for environ-
ment d, we consider the process M~n(t)1(D(t)=d) and refer to it as the process of the subsystem d.
Hence, when the environment is in state D(t) = d, the subsystem d has all the jobs, and the
subsystem in environment 3 − d is empty. Accordingly, when the environment changes its state,
all jobs “move” from one subsystem to the other subsystem.
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Since the Markov chain is unichain, stability also implies that the long-run number of arrivals
and departures in each of these subsystems will be equal. This is precisely what Equation (17)
captures. To see this, we note that the long-run number of arrivals of new customers to subsystem d
is λ(d)φ(d). Arrivals to subsystem d might also come from subsystem 3− d when the environment
changes from state 3 − d to state d. This happens with rate r(3−d) and gives an average increase
in the number of jobs in subsystem d by E

(
M~n1(D=3−d)

)
.

Regarding the departures, the long-run number of departures due to service completions in sub-
system d equals µ(d)∑∞

m=nd+1 π
~n(m, d). The long-run number of departures due to abandonments

in subsystem d equals θ(d)E
(
M~n1(D=d)

)
. All customers leave subsystem d in a batch in case the

environment changes from state d to state 3− d. This happens with rate r(d) and gives an average
decrease of E

(
M~n1(D=d)

)
. Equation (17) now follows by equating the long-run number of arrivals

and the long-run number of departures. �

10.4 Proof of Lemma 4

10.4.1 Proof of Property 1) in Lemma 4:

Without loss of generality, we assume that the increasing term is n1. Then, for a given (n1, n2),
we will show that

n1∑
m=0

π(n1,n2)(m, 1) ≤
n1+1∑
m=0

π(n1+1,n2)(m, 1).

The idea of the proof relies on using the comparison result 9.3.2 in [11, Chapter 9], for both
processes given by the threshold policies (n1, n2) and (n1 +1, n2). For that, we define the following
cost function:

C~n(m, d, a) :=
{

1 if d = 1 and m ≤ n1

0 otherwise.

In other words, C~n(m, d, a) = 1 if and only if the state of the environment is 1 and the process is
in a passive state for policy ~n. We also define the resulting expected reward per unit time,

G~n :=
n1∑
m=0

π~n(m, 1).

The remainder of the proof consists in showing

G(n1,n2) ≤ G(n1+1,n2). (46)

Since the result 9.3.2 in [11, Chapter 9] requires a uniformizable process and our abandonment
rates grow linearly in n in an infinite state space, we consider a truncated version. Let L be the
limited capacity for the truncated version of the process, with L > max {n1 + 1, n2}. We denote
by q~n,L((m′, d′)|(m, d), a) the transition rate of the process from state (m, d) to state (m′, d′), when
action a is applied, where action a is determined by the threshold policy ~n.
We introduce the uniformization constant H(L) := maxd

{
λ(d) + µ(d) + r(d) + Lθ(d)

}
and the tran-

sition probabilities P ~n,L ((m′, d′)|(m, d), a) obtained after the standard uniformization approach
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[32, P.110] for each step of length H(L). Let V ~n,Lt (m, d) denote the expected cumulative cost over
t steps under threshold policy ~n when starting in state (m, d). Then V ~n,Lt satisfies the relation

V ~n,Lt+1 (m, d) = C~n(m, d,1m>nd
)

H(L) +
∑

(m′,d′)
P ~n,L

(
(m′, d′)|(m, d),1m>nd

)
V ~n,Lt (m′, d′).

Let G~nL denote the expected reward for the truncated processes, and, using result 9.3.2 in [11,
Chapter 9], we will prove that

G(n1,n2),L ≤ G(n1+1,n2),L. (47)

In order to apply result 9.3.2 in [11, Chapter 9], we need to prove that for all states (m, d) and
t ≥ 0,

C(n1+1,n2)(m, d, a)− C(n1,n2)(m, d, a) (48)
+

∑
(m′,d′)

[
q(n1+1,n2),L((m′, d′)|(m, d), a)− q(n1,n2),L((m′, d′)|(m, d), a)

]
·
[
V

(n1,n2),L
t (m′, d′)− V (n1,n2),L

t (m, d)
]

≥ 0.

Note that for (m, d) 6= (n1 + 1, 1), C(n1+1,n2) (m, d, a) = C(n1,n2) (m, d, a), and
q(n1+1,n2),L((m′, d′)|(m, d), a) = q(n1,n2),L((m′, d′)|(m, d), a), for any (m′, d′). Thus the inequality
holds directly. It remains to check the state (m, d) = (n1 + 1, 1). The only difference in rates
between q(n1+1,n2),L and q(n1,n2),L is the transition to state (n1, 1). Hence, inequality (48) simplifies
to

1− µ(1)
[
V

(n1,n2),L
t (n1, 1)− V (n1,n2),L

t (n1 + 1, 1)
]
≥ 0,

or equivalently,
V

(n1,n2),L
t (n1, 1)− V (n1,n2),L

t (n1 + 1, 1) ≤ 1
µ(1) . (49)

By induction, we can prove the following more general result. For ease of reading, its proof appears
in Appendix 10.4.2.

Lemma 7.

V
(n1,n2),L
t (m, d)− V (n1,n2),L

t (m+ 1, d) ≤ 1
µ(1) , ∀ 0 ≤ m ≤ L− 1, d = 1, 2.

With this Lemma, the proof for the truncated processes is done and (47) holds. To generalize this
for the original processes with unbounded rates we use the following result from [33, Theorem 3.1].
There exist constants K1,K2 such that∣∣∣G(n1,n2),L −G(n1,n2)

∣∣∣ ≤ K1
H(L) ,∣∣∣G(n1+1,n2),L −G(n1+1,n2)

∣∣∣ ≤ K2
H(L) .
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As a consequence and after (47), we get the following relation:

G(n1,n2) ≤ G(n1,n2),L + K1
H(L) ≤ G

(n1+1,n2),L + K1
H(L) ≤ G

(n1+1,n2) + K2
H(L) + K1

H(L) .

Since this holds for every L, and H(L) → ∞ when L → ∞, we conclude (46) and the proof is
done. �

10.4.2 Proof of Lemma 7.

To simplify notation, since (n1, n2) and L are fixed in the lemma, we will write Vt for V (n1,n2),L
t

and H for H(L). The inequality to prove is

Vt(m, d)− Vt(m+ 1, d) ≤ 1
µ(1) , ∀ 0 ≤ m ≤ L− 1, d = 1, 2.

We initialize with k = 0, V0(m, d) = 0 for every (m, d), and for k = 1,

V1(m, d) =
{

1/H if d = 1 and m ≤ n1

0 otherwise.

As a consequence, sup(m,d) |V1(m, d)− V1(m+ 1, d)| = 1
H
≤ 1
µ(1) .

We assume now Vt(m, d)− Vt(m+ 1, d) ≤ 1
µ(1) for every (m, d), and we prove it for Vt+1(m, d)−

Vt+1(m+ 1, d). We begin with the state (n1, 1), where we have

Vt+1(n1, 1) = 1
H

+ 1
H

[
n1θ

(1)Vt(n1 − 1, 1) + r(1)Vt(n1, 2) + λ(1)Vt(n1 + 1, 1)

+
(
H − n1θ

(1) − r(1) − λ(1)
)
Vt(n1, 1)

]
,

Vt+1(n1 + 1, 1) = 1
H

[(
(n1 + 1)θ(1) + µ(1)

)
Vt(n1, 1) + r(1)Vt(n1 + 1, 2) + λ(1)Vt(n1 + 2, 1)

+
(
H − (n1 + 1)θ(1) − µ(1) − r(1) − λ(1)

)
Vt(n1 + 1, 1)

]
.

Then, the following equation holds, and we apply the inductive hypothesis
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Vt+1(n1, 1)− Vt+1(n1 + 1, 1)

= 1
H

+ 1
H

[
n1θ

(1) (Vt(n1 − 1, 1)− Vt(n1, 1)) + r(1) (Vt(n1, 2)− Vt(n1 + 1, 2))

+ λ(1) (Vt(n1 + 1, 1)− Vt(n1 + 2, 1))−
(
θ(1) + µ(1)

)
(Vt(n1, 1)− Vt(n1 + 1, 1))

+
(
H − n1θ

(1) − r(1) − λ(1)
)

(Vt(n1, 1)− Vt(n1 + 1, 1))
]

= 1
H

+ 1
H

[
n1θ

(1) (Vt(n1 − 1, 1)− Vt(n1, 1)) + r(1) (Vt(n1, 2)− Vt(n1 + 1, 2))

+ λ(1) (Vt(n1 + 1, 1)− Vt(n1 + 2, 1))

+
(
H − n1θ

(1) − θ(1) − µ(1) − r(1) − λ(1)
)

(Vt(n1, 1)− Vt(n1 + 1, 1))
]

≤ 1
H

+ 1
H

[
n1θ

(1) 1
µ(1) + r(1) 1

µ(1) + λ(1) 1
µ(1)

+
(
H − n1θ

(1) − θ(1) − µ(1) − r(1) − λ(1)
) 1
µ(1)

]

= H − θ(1)

Hµ(1) ≤
1
µ(1) .

For states (m, d) 6= (n1, 1), C~n (m, d, a) = C~n (m+ 1, d, a), which makes the inequality easier to
check. Again, using similar algebraic calculations, we can conclude that Vt+1(m, d) − Vt+1(m +
1, d) ≤ 1/µ(1) and the Lemma is proved. �

10.4.3 Proof of Property 2) in Lemma 4:

We compare again the processes (n1, n2) with (n1 + 1, n2). In this case we have to prove

n2∑
m=0

π(n1,n2)(m, 2) ≥
n2∑
m=0

π(n1+1,n2)(m, 2).

We denote byM (n1,n2)(t) andM (n1+1,n2)(t) the controllable processes of the bandit, under policies
(n1, n2) and (n1 + 1, n2) respectively, with initial state given by the stationary measure. Note that
their distribution is given by π~n: for a given m ∈ X ,

P(M~n(t) = m) = π~n(m, 1) + π~n(m, 2).

A simple coupling argument shows that M (n1,n2)(t) ≤st M (n1+1,n2)(t), since they have the same
rates in every state except for (n1 +1, 1), whereM (n1+1,n2)(t) does not serve and, as a consequence,
it has a lower death rate. Furthermore, the previous statement is true when looking to the second
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environment, i.e., M (n1,n2)(t)1(D(t)=2) ≤st M (n1+1,n2)(t)1(D(t)=2). This inequality implies that for
any n ∈ X ,

n∑
m=0

π(n1,n2)(m, 2) = P
(
M (n1,n2)(t) ≤ n,D(t) = 2

)
≥ P

(
M (n1+1,n2)(t) ≤ n,D(t) = 2

)
=

n∑
m=0

π(n1+1,n2)(m, 2).

If we take n = n2, the Proposition is proved. �

10.5 Proof of Proposition 3:

Slow regime. We assume without loss of generality µ(1)

θ(1) + r(1) + r(2) ≤
µ(2)

θ(2) + r(1) + r(2) . Note that

limβ→0W
(d) = c

µ(d)

θ(d) for both d = 1, 2. Together with Theorem 2, it is direct that limβ→0W (m, 2) =

c
µ(2)

θ(2) for m ≥ 0.
For d = 1, recall from the definition of the crossing points nj that the linear functions g(nj−1,0) and
g(nj ,0) are not parallel. Thus, Lemma 5 can be applied, and we obtain that W ((nj−1, 0), (nj , 0)) is
written as a function of s1((nj−1, 0), (nj , 0)) and s2((nj−1, 0), (nj , 0)). For any j ≥ 0, s2((nj−1, 0), (nj , 0)) =
π(nj−1,0)(0, 2) − π(nj ,0)(0, 2). From Lemma 1 we can deduce that for any d ∈ Z and any pair of
policies ~n, ~n′ such that nd = n′d,

lim
β→0

π~n(m, d) = lim
β→0

π~n
′(m, d) ∀m ≥ 0. (50)

In particular,
lim
β→0

s2((nj−1, 0), (nj , 0)) = 0.

Then, following from (23), limβ→0W ((nj−1, 0), (nj , 0)) = W (1) = c
µ(1)

θ(1) , which concludes the proof
for the slow regime.

Fast regime. Since φ(d) = r(3−d)

r(1) + r(2) and θ =
∑2
d=1 φ(d)θ(d), we can write

lim
β→∞

W (d) = lim
β→∞

cµ(d) β(r(1) + r(2)) + θ(3−d)

β(r(1)θ(2) + r(2)θ(1)) + θ(1)θ(2)

= lim
β→∞

cµ(d)
1 + θ(3−d)

β(r(1)+r(2))
β(r(1)θ(2)+r(2)θ(1))

β(r(1)+r(2)) + θ(1)θ(2)

β(r(1)+r(2))

= lim
β→∞

cµ(d)
1 + θ(3−d)

β(r(1)+r(2))

(φ(2)θ(2) + φ(1)θ(1)) + θ(1)θ(2)

β(r(1)+r(2))

= c
µ(d)

θ
,
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which gives the value of the index for d = 2. �

10.6 Proof of results in Section 6.3.

10.6.1 Proof of Lemma 5: expression for W (~n, ~n′).

Since
∑nd
m=0 π

~n(m, d) +
∑∞
m=nd+1 π

~n(m, d) = φ(d), Lemma 3 for ~n states

λ(d)φ(d) + r(3−d)
∞∑
m=0

mπ~n(m, 3− d) = (θ(d) + r(d))
∞∑
m=0

mπ~n(m, d) + µ(d)φ(d)− µ(d)
nd∑
m=0

π~n(m, d),

or, equivalently,
∞∑
m=0

mπ~n(m, d) =
(
λ(d)φ(d) + r(3−d)

∞∑
m=0

mπ~n(m, 3− d)− µ(d)φ(d) + µ(d)
nd∑
m=0

π~n(m, d)
)

1
θ(d) + r(d) ,

for d = 1, 2. After some algebra, we can solve these two equations in
∑∞
m=0mπ

~n(m, 1) and∑∞
m=0mπ

~n(m, 2), and then we obtain

∞∑
m=0

mπ~n(m, d) =
((
λ(d) − µ(d)

)
φ(d)

(
θ(3−d) + r(3−d)

)
+
(
λ3−d − µ(3−d)

)
φ(3− d)r(3−d)

+µ(3−d)r(3−d)
n3−d∑
m=0

π~n(m, 3− d) + µ(d)
(
θ(3−d) + r(3−d)

) nd∑
m=0

π~n(m, d)
)

· 1
θ(1)θ(2) + θ(2)r(1) + θ(1)r(2) , (51)

for d = 1, 2. In the numerator in (22), the terms can be regrouped per environment, i.e.

2∑
d=1

c

( ∞∑
m=0

mπ~n(m, d)−
∞∑
m=0

mπ~n
′(m, d)

)
. (52)

From (51), and together with the notation si(~n, ~n′) :=
∑ni
m=0 π

~n(m, i)−
∑n′i
m=0 π

~n′(m, i), we obtain

∞∑
m=0

mπ~n(m, d)−
∞∑
m=0

mπ~n
′(m, d) =

µ(d)
(
θ(3−d) + r(3−d)

)
sd(~n, ~n′) + µ(3−d)r(3−d)s3−d(~n, ~n′)

θ(1)θ(2) + θ(2)r(1) + θ(1)r(2) . (53)

Summing we obtain the following expression for (52):

2∑
d=1

c

( ∞∑
m=0

mπ~n(m, d)−
∞∑
m=0

mπ~n
′(m, d)

)

= c ·
µ(1)

(
θ(2) + r(1) + r(2)

)
s1(~n, ~n′) + µ(2)

(
θ(1) + r(1) + r(2)

)
s2(~n, ~n′)

θ(1)θ(2) + r(1)θ(2) + r(2)θ(1)

= s1(~n, ~n′)W (1) + s2(~n, ~n′)W (2).

Since the denominator in (22) is s1(~n, ~n′) + s2(~n, ~n′), Lemma 5 is proved. �
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10.6.2 Proof of Lemma 6: comparison to policy (∞,∞).

Note that
∑ni
m=0 π

~n(m, i)+
∑∞
m=ni+1 π

~n(m, i) = φ(i). Hence, if ni <∞, then
∑∞
m=ni+1 π

~n(m, i) > 0
and hence

∑ni
m=0 π

~n(m, i) < φ(i). From this, it follows that si((∞,∞), ~n) =
∑∞
m=0 π

(∞,∞)(m, i)−∑ni
m=0 π

~n(m, i) = φ(i) −
∑ni
m=0 π

~n(m, i) > 0. As a consequence, if ~n 6= (∞,∞), s1((∞,∞), ~n) +
s2((∞,∞), ~n) > 0, and Lemma 5 can be applied with 0 ≤ t ≤ 1. From (23), It follows that
W ((∞,∞), ~n) ∈ [W (1),W (2)].
In case n1 <∞,

∑n1
m=0 π

~n(m, 1) < φ(1), so s1((∞,∞), ~n) = φ(1)−
∑n1
m=0 π

~n(m, 1) > 0 and t > 0.
Equation (23) can be rewritten as W (2)− t(W (2)−W (1)), hence W ((∞,∞), ~n) < W (2) if n1 <∞.
If n1 = ∞, s1((∞,∞), ~n) =

∑∞
m=0 π

(∞,∞)(m, 1) −
∑∞
m=0 π

(∞,n2)(m, 1) = φ(1) − φ(1) = 0, and
t = 0. In this case, W ((∞,∞), ~n) = W (2).
The reasoning for n2 =∞ is analogous. �

10.6.3 Proof of Proposition 4

In order to prove Point 1, we start withW = 0. The difference between policies (−1,−1), (−1, 0), (0,−1)
and (0, 0) relies on serving or not a queue when it’s empty. As a consequence, they have no dif-
ference in their dynamics (thus, in their invariant distribution π~n), neither in their expected cost∑2
d=1

∑∞
m=0 cmπ

~n(m, d). From the definition of g~n(0) in Equation (7) we obtain that g(−1,−1)(0) =
g(−1,0)(0) = g(0,−1)(0) = g(0,0)(0). Furthermore, if either n1 > 0, or n2 > 0, or both of them are
larger than 0, then the expected costs satisfy

∑2
d=1

∑∞
m=0 cmπ

(0,0)(m, d) <
∑2
d=1

∑∞
m=0 cmπ

~n(m, d),
because the former is active in every non-zero state. Hence, g(0,0)(0) < g~n(0) for any ~n /∈
{(−1,−1), (−1, 0), (0,−1), (0, 0)}.
ForW < 0, the proof follows considering the slope of the linear functions g~n(W ), which is given by
−
∑2
d=1

∑nd
m=0 π

~n(m, d). For policy (−1,−1) the slope is 0, while −
∑2
d=1

∑nd
m=0 π

~n(m, d) < 0 for
any ~n 6= (−1,−1). Together with the fact that in W = 0 policy (−1,−1) minimises, we get that
(−1,−1) is the unique optimal threshold policy for W < 0, and the proof of Point 1 is finished.
For the proof of Point 2 we state the following lemma. We present its proof in Appendix 10.6.4.

Lemma 8. Assume Conditions 1 and 2 hold. When d = 2 and m ≥ 0, being active is an optimal
action for 0 ≤W < W (2). When d = 2 and m = 0, being passive is an optimal action for 0 ≤W .

From Lemma 8, for 0 ≤ W < W (2) in environment 2 the optimal action is passive in m = 0 and
active in m > 0, then the optimal threshold policy in environment 2 has to be 0. Thus, the optimal
solutions are in the set of policies {(n, 0)}−1≤n≤∞.
Point 3 follows from Lemma 6 and a comparison of the linear functions. For any policy ~n = (n1, n2),
W ((∞,∞), ~n) ≤ W (2) and the slope of its linear function is −

∑2
d=1

∑nd
m=0 π

~n(m, d) ≥ −1, since
π~n is a probability distribution. For the policy (∞,∞), the slope is −

∑∞
m=0 π

(∞,∞)(m, d) = −1,
thus the linear function g(∞,∞)(W ) is the steepest one. It follows that for W ≥ W (2), (∞,∞) is
an optimal solution of (7) and it is the only one for W > W (2). In addition, when W = W (2), only
policies of the form (∞, n) have the same cost g~n(W ) as (∞,∞) (see Lemma 6). Hence, when
W = W (2), optimal threshold policies are of the form (∞, n). �
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10.6.4 Proof of Lemma 8.

We want to show the optimal policies in environment d = 2 for 0 ≤ W < W (2). Recall from (16)
that Bellman’s optimality equation is given by:

(µ(d) +mθ(d) + λ(d) + r(d))V (m, d) + g =
cm+ λ(d)V (m+ 1, d) +mθ(d)V ((m− 1)+, d) + r(d)V (m, 3− d) (54)
+ min

{
−W + µ(d)V (m, d), µ(d)V ((m− 1)+, d)

}
.

Hence, in state (m, d) passive is an optimal action if and only if −W + µ(d)V (m, d) ≤ µ(d)V ((m−
1)+, d). Similarly, active is an optimal action if and only if −W+µ(d)V (m, d) ≥ µ(d)V ((m−1)+, d).
In case m = 0, −W + µ(d)V (0, d) ≤ µ(d)V (0, d) if and only if W ≥ 0. In other words, in state 0
the optimal action is passive if and only if W ≥ 0, and both actions are optimal if W = 0.
Let W < W (2). We will show that

−W + µ(2)V (m, 2) ≥ µ(2)V (m− 1, 2), ∀m ≥ 1,

or equivalently,
V (m, 2)− V (m− 1, 2) ≥W/µ(2), ∀m ≥ 1. (55)

Since we will use the value iteration method, we formulate an analogous property for the truncated
value function V L, see Lemma 9. We truncate the state space at L and smooth the transition
rates from state m to state m+ 1 as in (38). That is, we replace the arrival rates λ(d) by

λ(d)
(

1− m

L

)+
,

for m = 0, 1, . . . , L. The uniformization constant is taken as

γ := λ(1) + λ(2) + µ(1) + µ(2) + r(1) + r(2) + Lθ(1) + Lθ(2), (56)

We define the value function V L
t (m, d) as follows. For any d and m = 0, . . . , L we initialize by

defining V L
0 (m, d) = 0 and

V L
t+1(m, d) =cm

γ
+
(

1− m

L

)+ λ(d)

γ
V L
t (min {m+ 1, L} , d)

+ r(d)

γ
V L
t (m, 3− d) + mθ(d)

γ
V L
t ((m− 1)+, d)

+ 1
γ

min{−W + µ(d)V L
t (m, d), µ(d)V L

t ((m− 1)+, d)}

+ min
{
m

L
, 1
}
λ(d)

γ
V L
t (m, d) + (L−m)θ(d)

γ
V L
t (m, d)

+ 1
γ

(
λ(3−d) + µ(3−d) + r(3−d) + Lθ(3−d)

)
V L
t (m, d).

The following lemma states the property needed for V L.
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Lemma 9. Assume Conditions 1 and 2 hold. For 0 ≤W < W (2) there exists an L0 large enough
such that

V L(m, 2)− V L(m− 1, 2) ≥W/µ(2) ∀L ≥ L0 and 1 ≤ m ≤ L. (57)

We can conclude now the proof of Lemma 8. From Lemma 9 there exists an L0 such that inequality
(57) holds for all L ≥ L0. Since V L → V , as stated in Section 10.2, inequality (55) is proved,
which concludes the proof. �

10.6.5 Proof of Lemma 9:

We define the parameters WL,(d):

WL,(d) := cµ(d) θ(3−d) + r(1) + r(2) + λ(3−d)/L(
θ(1) + r(1) + λ(1)

L

) (
θ(2) + r(2) + λ(2)

L

)
− r(1)r(2)

.

Note that WL,(d) →W (d) as L→∞. We further define:

C
L,(d)
t (m) := V L

t (m, d)− V L
t (m− 1, d), d = 1, 2,

and we will show that there exists an L0 and t0 such that for L ≥ L0 and t ≥ t0,

C
L,(2)
t (m) ≥W/µ(2) for 1 ≤ m ≤ L, (58)

We write CL,(d)
t+1 (m) as follows:

C
L,(d)
t+1 (m) = V L

t+1(m, d)− V L
t+1(m− 1, d) (59)

= c

γ
+
(

1− m

L

)+ λ(d)

γ
C
L,(d)
t (m+ 1) + r(d)

γ
C
L,(3−d)
t (m) + (m− 1)θ(d)

γ
C
L,(d)
t (m− 1)

+ 1
γ

min
{
−W + µ(d)Vt(m, d), µ(d)Vt(m− 1, d)

}
−1
γ

min
{
−W + µ(d)Vt(m− 1, d), µ(d)Vt((m− 2)+, d)

}
+m− 1

L

λ(d)

γ
C
L,(d)
t (m) + (L−m)θ(d)

γ
C
L,(d)
t (m)

+λ(3−d) + µ(3−d) + r(3−d) + Lθ(3−d)

γ
C
L,(d)
t (m).

We have the following properties for functions CL,(1)
t (m) and CL,(2)

t (m).

Lemma 10. Assume 0 ≤W < W (2). Define

t0 := min
t

{
t s.t. µ(d)C

L,(d)
t (m) ≥W for a pair (m, d)

}
.

Then there exists an L1 large enough such that for L ≥ L1, t0 < ∞ and CL,(d)
t (m) = C

L,(d)
t is

constant in m for all t ≤ t0.
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From the previous lemma, we have that t0 is the minimum t such that either µ(1)C
L,(1)
t ≥ W

or µ(2)C
L,(2)
t ≥ W for L ≥ L1. Under Condition 1, we will prove that at time t0, it holds that

µ(2)C
L,(2)
t0 ≥ µ(1)C

L,(1)
t0 , and hence µ(2)C

L,(2)
t0 ≥W .

Lemma 11. Assume Condition 1 holds and let 0 ≤ W < W (2) and L > 0. Then µ(2)C
L,(2)
t ≥

µ(1)C
L,(1)
t for t ≤ t0.

The previous property allows us to state conditions under which inequality (58) holds in t = t0 for
all L ≥ L1. Note that for t > t0, Condition 2 will be sufficient to prove that (58) holds for t ≥ t0
and for all m.

Lemma 12. Assume Condition 2 holds and 0 ≤W < W (2). Then there exists an L0 large enough
such that for all L ≥ L0, CL,(2)

t (m) ≥W/µ(2), ∀1 ≤ m ≤ L and t ≥ t0.

Lemma 12 proves that (58) holds for 0 ≤W < W (2) and L ≥ L0. Equivalently, (57) holds and the
proof of Lemma 9 is finished. �

We provide now the proofs of Lemmas 10, 11 and 12.

Proof of Lemma 10: Since the sequence WL,(2) →W (2) as L→∞ and W < W (2), we can take
L1 such that for all L ≥ L1 W < WL,(2). The property of CL,(d)

t (m) being constant in m is trivial
for t = 0, since V L

0 (m) = 0 for all m, and thus CL,(d)
0 (m) = 0 as well. For a given t < t0 we assume

C
L,(d)
t (m) is constant, and we then prove this property for t+1. Since µ(d)C

L,(d)
t (m) < W , at time

t passive is the optimal action in (59) for m ≥ 1 and for W ≥ 0 passive is also optimal for m = 0.
Hence,

C
L,(d)
t+1 (m) = c

γ
+
(

1− m

L

)
λ(d)

γ
C
L,(d)
t (m+ 1) + r(d)

γ
C
L,(3−d)
t (m) + (m− 1)θ(d)

γ
C
L,(d)
t (m− 1)

+µ(d)

γ
C
L,(d)
t (m) + m− 1

L

λ(d)

γ
C
L,(d)
t (m) + (L−m)θ(d)

γ
C
L,(d)
t (m)

+λ(3−d) + µ(3−d) + r(3−d) + Lθ(3−d)

γ
C
L,(d)
t (m).

At time t, we have that CL,(d)
t (m) = C

L,(d)
t for every d and m ∈ {1, . . . , L}, hence
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C
L,(d)
t+1 (m) = c

γ
+
(

1− m

L

)
λ(d)

γ
C
L,(d)
t + r(d)

γ
C
L,(3−d)
t + (m− 1)θ(d)

γ
C
L,(d)
t

+µ(d)

γ
C
L,(d)
t + m− 1

L

λ(d)

γ
C
L,(d)
t + (L−m)θ(d)

γ
C
L,(d)
t

+λ(3−d) + µ(3−d) + r(3−d) + Lθ(3−d)

γ
C
L,(d)
t

= c

γ
+
(

1− 1
L

)
λ(d)

γ
C
L,(d)
t + r(d)

γ
C
L,(3−d)
t + µ(d)

γ
C
L,(d)
t

+(L− 1)θ(d)

γ
C
L,(d)
t + λ(3−d) + µ(3−d) + r(3−d) + Lθ(3−d)

γ
C
L,(d)
t

= c

γ
+ γ − θ(d) − r(d) − λ(d)/L

γ
C
L,(d)
t + r(d)

γ
C
L,(3−d)
t , (60)

where the last inequality follows from the definition of γ, (56). Hence, CL,(d)
t+1 (m) does not depend

on m. To conclude, we show that t0 6= ∞. Since for d = 1, 2, CL,(d)
t is increasing in t, let

CL,(d) := limt→∞C
L,(d)
t . Following from (60), CL,(1) and CL,(2) are the solutions of the following

system of equations.
CL,(1) = c

γ
+
γ − θ(1) − r(1) − λ(1)

L

γ
CL,(1) + r(1)

γ
CL,(2)

CL,(2) = c

γ
+
γ − θ(2) − r(2) − λ(2)

L

γ
CL,(2) + r(2)

γ
CL,(1)

(61)

After some algebraic computation, we find that the solutions of this set of equations are CL,(1) =
WL,(1)/µ(1) and CL,(2) = WL,(2)/µ(2). If t0 = ∞, then limt→∞ µ

(2)C
L,(2)
t ≤ W < WL,(2), which

gives a contradiction. Hence, t0 <∞. �

Proof of Lemma 11: Let ∆t = µ(2)C
L,(2)
t − µ(1)C

L,(1)
t . Using (60) and after some computation

we get

C
L,(1)
t+1 = C

L,(1)
t

γ − θ(1) − r(1) − λ(1)

L

γ
+ µ(1)r(1)

γµ(2)

+ ∆t
r(1)

γ
+ c

∆t+1 = µ(1)C
L,(1)
t

γ

[
θ(1) + µ(2)r(2)

µ(1) + r(1) − θ(2) − r(2) − µ(1)r(1)

µ(2)

]

+∆t

µ(2)(γ − θ(2) − r(2) − λ(2)

L )− µ(1)r(1)

γµ(2)

+ c(µ(2) − µ(1))
γ

.

We show by induction that both CL,(1)
t ≥ 0 and ∆t ≥ 0. For t = 0 it is trivial. Assume it holds

for t. Since γ − θ(1) − r(1) − λ(1)

L > 0, it follows that for CL,(1)
t+1 ≥ 0. For ∆t+1 we have that

49



c(µ(2) − µ(1))
γ

≥ 0, because µ(2) − µ(1) ≥ 0 by Condition 1. The term multiplying ∆t is:

µ(2)(γ − θ(2) − r(2) − λ(2)/L)− µ(1)r(1)

γµ(2) ≥ 0,

which is non-negative if and only if

µ(2)(γ − θ(2) − r(2) − λ(2)/L) ≥ µ(1)r(1).

This holds because µ(2) ≥ µ(1) and (γ − θ(2) − r(2) − λ(2)/L) ≥ r(1), by definition of γ.
Finally, since µ(1) ≤ µ(2) and θ(2) ≤ θ(1), we have

θ(2) + r(2) + µ(1)

µ(2) r
(1) ≤ θ(1) + µ(2)

µ(1) r
(2) + r(1).

Hence ∆t+1 ≥ 0 and the proof is finished. �
Proof of Lemma 12: We show that there is an L0 such that the following property holds for
every t ≥ t0, for all L ≥ L0 and all m ≥ 1:

C
L,(2)
t (m) ≥ W

µ(2)

C
L,(1)
t (m) ≥ (θ(2) + r(2) + λ(2)/L)W − cµ(2)

r(2)µ(2) .
(62)

Since from Condition 2, W < W (2) ≤ cµ(2)

θ(2) + r(2) , there exists an L2 such that

W ≤ cµ(2)

θ(2) + r(2) + λ(2)/L
,

for all L ≥ L2, or equivalently, (θ(2)+r(2)+λ(2)/L)W−cµ(2) ≤ 0. On the other hand, it is easy to see
by induction from (59) that CL,(1)

t (m) ≥ 0 for all m, t. Hence, CL,(1)
t (m) ≥ (θ(2)+r(2)+λ(2)/L)W−cµ(2)

r(2)µ(2)

for all L ≥ L2 and all t.
In Lemmas 10 and 11 we proved that CL,(2)

t0 (m) ≥ W

µ(2) , holds for L ≥ L1 and t = t0. Then we take

L0 = max (L1, L2), we assume inequalities in (62) hold for t > t0, and we prove they are valid for
t+ 1. For all states (m, 2) we have that active is an optimal action because CL,(2)

t+1 (m) ≥ W/µ(2).
Hence, from (59):

C
L,(2)
t+1 (m) = c

γ
+
(

1− m

L

)
λ(2)

γ
C
L,(2)
t (m+ 1) + r(2)

γ
C
L,(1)
t (m) + (m− 1)θ(2)

γ
C
L,(2)
t (m− 1)

+µ(2)

γ
C
L,(2)
t (m− 1) + m− 1

L

λ(d)

γ
C
L,(2)
t (m) + (L−m)θ(2)

γ
C
L,(2)
t (m)

+λ(1) + µ(1) + r(1) + Lθ(1)

γ
C
L,(2)
t (m)

≥ c

γ
+ γ − θ(2) − r(2) − λ(2)/L

γ

W

µ(2) + r(2)

γ

(θ(2) + r(2) + λ(2)/L)W − cµ(2)

r(2)µ(2)

= W

µ(2) ,
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where in the inequality we used that CL,(1)
t (m) ≥ (θ(2)+r(2)+λ(2)/L)W−cµ(2)

r(2)µ(2) . On the other hand,

C
L,(1)
t (m) ≥ (θ(2)+r(2)+λ(2)/L)W−cµ(2)

r(2)µ(2) holds for all t as it was proved before. This concludes the
proof of both inequalities in (62) for t ≥ t0, and then Lemma 12 is proved as well. �

10.6.6 Proof of Proposition 5.

The proof here is similar to the one of Property 1) in Lemma 4 in Section 10.4.1, in the sense
that we will compare the truncated processes with limited capacity L > n, using the comparison
result 9.3.2 in [11, Chapter 9]. Here we compare the truncated process under threshold policy
(n, 0) with the one under threshold policy (n+1, 0). For the uniformization, as we repeat the same
structure, H(L), P ~n,L ((m′, d′)|(m, d), a) and V ~n,Lt have the same definitions. However, we take as
cost function C~n(m, d), for a given threshold policy ~n = (n1, n2),

C~n(m, d) =
{

1 if m ≤ nd d = 1, 2
0 otherwise.

So C~n(m, d) = 1 in the passive states, regardless the environment. As a result, the reward per
unit time is G~n,L =

∑2
d=1

∑nd
m=0 π

~n(m, d), which is the term to compare between the truncated
processes.
We consider the costs C(n,0), C(n+1,0) and the transition rates q(n,0),L, q(n+1,0),L for the truncated
processes under policies (n, 0) and (n+ 1, 0), respectively. Then Inequality (48) has to be proved
for all the states where C(n+1,0) and C(n,0) or q(n+1,0),L and q(n,0),L are not the same. This happens
in the states that are active under one policy (n, 0) and passive under the other one (n+ 1, 0), i.e.,
in state (n+ 1, 1). The inequality to prove reduces to

V
(n,0),L
t (n, 1)− V (n,0),L

t (n+ 1, 1) ≤ 1
µ(1) , (63)

for t ≥ 0. As before, we prove a more general result, as stated in Lemma 13.

Lemma 13. Under Condition 1,

V
(n,0),L
t (m, d)− V (n,0),L

t (m+ 1, d) ≤ 1
µ(1) ∀ 0 ≤ m ≤ L− 1, d = 1, 2.

Now, result 9.3.2 in [11, Chapter 9] can be applied, and we obtain

2∑
d=1

nd∑
m=0

π(n,0)(m, d) ≤
2∑
d=1

nd∑
m=0

π(n+1,0)(m, d)

for the truncated processes. Using the same reasoning as in the proof of Property 1) in Lemma 4,
we obtain that this property holds as well for the original (untruncated) process.

�
Proof of Lemma 13.
The proof is similar to the one in Section 10.4.2. To simplify notation, since (n, 0) and L are fixed
in the lemma, we will write Vt for V (n,0),L

t and H for H(L). The proof goes by induction, and the
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cases of t = 0 and t = 1 are the same as before. We assume Vt(m, d) − Vt(m + 1, d) ≤ 1
µ(1) for

every (m, d). We prove it now for t+ 1. We first consider the state (0, 2).

Vt+1(0, 2) = 1
H

+ 1
H

[
r(2)Vt(0, 1) + λ(2)Vt(1, 2) +

(
H − r(2) − λ(2)

)
Vt(0, 2)

]
,

Vt+1(1, 2) = 1
H

[(
θ(2) + µ(2)

)
Vt(0, 2) + r(2)Vt(1, 1) + λ(2)Vt(2, 2)

+
(
H − θ(2) − µ(2) − r(2) − λ(2)

)
Vt(1, 2)

]
.

By applying the inductive hypothesis, we obtain

Vt+1(0, 2)− Vt+1(1, 2)

= 1
H

+ 1
H

[
r(2) (Vt(0, 1)− Vt(1, 1)) + λ(2) (Vt(1, 2)− Vt(2, 2))

−
(
θ(2) + µ(2)

)
(Vt(0, 2)− Vt(1, 2)) +

(
H − r(2) − λ(2)

)
(Vt(0, 2)− Vt(1, 2))

]

≤ 1
H

+ 1
H

[
r(2) 1

µ(1) + λ(2) 1
µ(1) +

(
H − θ(2) − µ(2) − r(2) − λ(2)

) 1
µ(1)

]

= H + µ(1) − θ(2) − µ(2)

Hµ(1) .

The inequality H + µ(1) − θ(2) − µ(2)

Hµ(1) ≤ 1
µ(1) holds if and only if µ(1) − µ(2) < θ(2). The latter

holds from Condition 1 and θ(2) > 0.
Similarly, one obtains the same conclusion for states (m, d) 6= (0, 2). This finishes the inductive
step and the Lemma is proved. �

10.6.7 Proof of Proposition 6.

The proof relies on comparing g(n,m)(W ) for an arbitrary policy (n,m) with g(∞,0)(W ) for W ∈[
W (1),W (2)

]
. In particular, it will be shown that i) g(∞,0)(W ) ≤ g(n,m)(W ) for W ∈ [W (1),W (2)],

ii) g(∞,0)(W ) < g(n,m)(W ) for W ∈ (W (1),W (2)), and iii) for W = W (2) the equality g(∞,0)(W ) =
g(n,m)(W ) holds if and only if n =∞.
To prove the above properties, we distinguish between the two cases n =∞ and n <∞.
We start by assuming n = ∞. From Equation (24), it is direct to see that W ((∞,m), (∞, 0)) =
W (2), hence g(∞,m)(W (2)) = g(∞,0)(W (2)). Then, we compare the slopes, recall that−

∑2
d=1

∑nd
m=0 π

~n(m, d)
is the slope of g~n(W ) for any threshold policy ~n. In this case, the slope of g(∞,m)(W ) is −(φ(1) +∑m
k=0 π

(∞,m)(k, 2)) and the slope of g(∞,0)(W ) is −(φ(1) + π(∞,0)(0, 2)). From Property 2) in
Lemma 4, we know that

∑m
k=0 π

(∞,m)(k, 2) > π(∞,0)(0, 2). As a consequence, g(∞,m)(W ) is
steeper than g(∞,0)(W ), and therefore, for W < W (2), g(∞,0)(W ) < g(∞,m)(W ) and i) and ii)
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Figure 8: Proof of Proposition 6. Comparing slopes of functions g(n,0) and g(∞,0).

are proved. For the “if and only if” of iii) , in case n 6= ∞, g(n,m)(W (2)) 6= g(∞,0)(W (2)), because
if g(n,m)(W (2)) = g(∞,0)(W (2)), then g(n,m)(W (2)) = g(∞,∞)(W (2)), and this contradicts Lemma 6.

We now assume n < ∞. We split the proof in two steps. In the first step, we compare policies
(∞, 0) and (n, 0). Then, in the second step we compare policies (n, 0) and (n,m). This will be
sufficient to conclude the comparison between policies (∞, 0) and (n,m).
Step 1. In this step we prove that g(∞,0)(W ) < g(n,0)(W ), when W ∈

(
W (1),W (2)

]
, and

g(∞,0)(W (1)) ≤ g(n,0)(W (1)) when W = W (1).
To prove Step 1, we distinguish between three cases, as depicted in Figure 8. The cases represent
the possible relations between the slopes of the functions g(∞,0)(W ) and g(n,0)(W ).

Case a) −
∑2
d=1

∑nd
m=0 π

(∞,0)(m, d) < −
∑2
d=1

∑nd
m=0 π

(n,0)(m, d).
In this case g(∞,0)(W ) is steeper than g(n,0)(W ). In terms of s1 and s2, −

∑2
d=1

∑nd
m=0 π

(∞,0)(m, d) <
−
∑2
d=1

∑nd
m=0 π

(n,0)(m, d) is equivalent to s1 ((∞, 0), (n, 0)) + s2 ((∞, 0), (n, 0)) > 0. Recall from
(23) that

W ((∞, 0), (n, 0)) = W (1) + (1− t)
(
W (2) −W (1)

)
,

with t := s1((∞, 0), (n, 0))
s1((∞, 0), (n, 0)) + s2((∞, 0), (n, 0)) .

Since s1 ((∞, 0), (n, 0))+s2 ((∞, 0), (n, 0)) > 0 and s2 ((∞, 0), (n, 0)) = π(∞,0)(0, 2)−π(n,0)(0, 2) ≤ 0
(because of Property 2) in Lemma 4), we have that t ≥ 1. SinceW (2)−W (1) ≥ 0,W ((∞, 0), (n, 0)) ≤
W (1). This, together with the fact that g(∞,0) is steeper, implies that for W > W (1), g(∞,0)(W ) <
g(n,0)(W ) and for W = W (1), g(∞,0)(W (1)) ≤ g(n,0)(W (1)).

Case b) −
∑2
d=1

∑nd
m=0 π

(∞,0)(m, d) > −
∑2
d=1

∑nd
m=0 π

(n,0)(m, d).
When g(n,0)(W ) is steeper the opposite situation occurs. Note that −

∑2
d=1

∑nd
m=0 π

(∞,∞)(m, d) =
−1, hence g(∞,∞)(W ) is the steepest linear function. Besides W ((∞,∞), (n, 0)) < W (2) and
W ((∞,∞), (∞, 0)) = W (2) because of Lemma 6. Hence, W ((∞, 0), (n, 0)) > W (2), and as a
consequence, for W ≤W (2), g(∞,0)(W ) < g(n,0)(W ).

Case c) −
∑2
d=1

∑nd
m=0 π

(∞,0)(m, d) = −
∑2
d=1

∑nd
m=0 π

(n,0)(m, d).
Hence g(n,0)(W ) and g(∞,0)(W ) are parallel, which means that W ((∞, 0), (n, 0)) is not defined.
Since W ((∞,∞), (n, 0)) < W (2) and W ((∞,∞), (∞, 0)) = W (2), we can conclude that g(n,0)(W )
and g(∞,0)(W ) are not the same line, and in particular g(n,0)(W ) > g(∞,0)(W ) for all W .
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Step 2. Assume n 6= ∞, and fix any m. For W ∈
[
W (1),W (2)

]
, we will prove that g(n,0)(W ) ≤

g(n,m)(W ).
If g(n,0)(W ) and g(n,m)(W ) are parallel, in order to compare them we can consider the expected
cost asW = 0, i.e., E

(
C(M~n)

)
. Since policy (n, 0) has larger departure rates than policy (n,m), a

simple coupling argument shows that M (n,0)(t) ≤st M (n,m)(t), and hence, g(n,0)(W ) ≤ g(n,m)(W ).
Now assume that g(n,0)(W ) and g(n,m)(W ) are not parallel, so that Equation (23) can be used.
From Properties 1) and 2) in Lemma 4, s2 ((n,m), (n, 0)) =

∑m
l=0 π

(n,m)(l, 2)− π(n,0)(l, 2) ≥ 0 and
s1 ((n,m), (n, 0)) =

∑n
l=0 π

(n,m)(l, 1) −
∑n
l=0 π

(n,0)(l, 1) ≤ 0. From the fact that s1 ((n,m), (n, 0))
and s2 ((n,m), (n, 0)) have opposite signs, and using Equation (23), W ((n,m), (n, 0)) can not be
in (W (1),W (2)). Hence, we are in one of the following cases.
If W ((n,m), (n, 0)) ≤W (1), then from Equation (23) we have

s2((n,m), (n, 0))
s1((n,m), (n, 0)) + s2((n,m), (n, 0)) ≤ 0.

Since s2((n,m), (n, 0)) ≥ 0, s1((n,m), (n, 0)) + s2((n,m), (n, 0)) < 0, which means that g(n,0)(W )
is steeper than g(n,m)(W ). This implies that g(n,0)(W ) ≤ g(n,m)(W ) for W ≥ W ((n,m), (n, 0)),
hence, in particular for W ≥W (1).
If W ((n,m), (n, 0)) ≥W (2), the reasoning is analogous. From Equation (23) we have

s1((n,m), (n, 0))
s1((n,m), (n, 0)) + s2((n,m), (n, 0)) ≤ 0,

and, as it was stated before, s1((n,m), (n, 0)) ≤ 0. Hence, s1((n,m), (n, 0))+s2((n,m), (n, 0)) > 0,
which means that g(n,m)(W ) is steeper than g(n,0)(W ). As W ((n,m), (n, 0)) ≥ W (2), for any
W ≤W (2), g(n,0)(W ) ≤ g(n,m)(W ). �
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