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On the Whittle index of Markov Modulated Restless Bandits

In this paper we study a Multi-Armed Restless Bandit Problem (MARBP) subject to time fluctuations. This model has numerous applications in practice, like in cloud computing systems or in wireless communications networks. Each bandit is formed by two processes: a controllable process and an environment. The transition rates of the controllable process are determined by the state of the environment, which is an exogenous Markov process. The decision maker has full information on the state of every bandit, and the objective is to determine the optimal policy that minimises the long-run average cost.

Given the complexity of the problem, we set out to characterise the Whittle index, which is obtained by solving a relaxed version of the MARBP. As reported in the literature, this heuristic performs extremely well for a wide variety of problems. Assuming that the optimal policy of the relaxed problem is of threshold type, we provide an algorithm that finds Whittle's index. We then consider a multi-class queue with linear cost and impatient customers. For this model, we show threshold optimality, prove indexability, and obtain Whittle's index in closed-form. We also study the limiting regimes in which the environment is relatively slower and faster than the controllable process. By numerical simulations, we assess the suboptimality of Whittle's index policy in a wide variety of scenarios, and the general observation is that, as in the case of standard MARBP, the suboptimality gap of Whittle's index policy is small.

Introduction

The Multi-Armed Restless Bandit Problem (MARBP), introduced in [START_REF] Whittle | Restless bandits: Activity allocation in a changing world[END_REF], represents an important class of Markov Decision Processes (MDPs) with numerous applications spanning resource allocation, machine maintenance, health-care systems, and others. In an MARBP, there are multiple concurrent projects or bandits and the decision maker decides which R bandits to simultaneously activate. The decision maker knows the states of all bandits and the cost in every state, and aims at minimising the average cost. The state of a bandit evolves stochastically according to transition rates that depend on whether the bandit is active. In general, MARBPs cannot be solved proofs of the theorems are in Section 6. [START_REF] Anand | A Whittle's index based approach for QoE optimization in wireless networks[END_REF]. In Section 7 we derive Whittle's index for a multi-class queue without abandonments living in a Markov-modulated environment. Finally, in Section 8 we numerically evaluate the performance of Whittle's index policy. For ease of reading, many proofs are presented in the appendix.

Related literature

A classical reference for MDPs is [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF], and a comprehensive coverage for MABP and MARBP is given in [START_REF] Gittins | Multi-Armed Bandit Allocation Indices[END_REF]. Even though Whittle's seminal work introduced Whittle's index within the context of average cost criterion, a large body of work has focused on tackling an MARBP under the total discounted cost criterion. For the discounted cost criterion and finite state space, [START_REF] Niño-Mora | Dynamic priority allocation via restless bandit marginal productivity indices[END_REF] provides a thorough analysis and efficient algorithms (based on linear programming) to establish indexability and to give an expression for Whittle's index. The same approach was undertaken to obtain the Whittle index for a general MARBP in [START_REF] Niño-Mora | Restless bandit marginal productivity indices, diminishing returns, and optimal control of make-to-order/make-to-stock M/G/1 queues[END_REF]. By letting the discounting factor tend to one, we can retrieve the index for the average cost criterion, see for instance [START_REF] Glazebrook | Index policies for the maintenance of a collection of machines by a set of repairmen[END_REF][START_REF] Ansell | Whittle's index policy for a multi-class queueing system with convex holding costs[END_REF]. Another approach to calculate the index lies in sweeping the state space, by recursively identifying and calculating the states with higher Whittle's indices. This can be done by iterative schemes, see for example [START_REF] Borkar | Whittle indexability in egalitarian processor sharing systems[END_REF][START_REF] Borkar | An index policy for dynamic pricing in cloud computing under price commitments[END_REF][START_REF] Borkar | Opportunistic scheduling as restless bandits[END_REF], and in some particular cases analytically, see [START_REF] Argon | Dynamic routing of customers with general delay costs in a multiserver queuing system[END_REF][START_REF] Opp | Outsourcing warranty repairs: Dynamic allocation[END_REF][START_REF] Larrañaga | Dynamic control of birth-and-death restless bandits: application to resource-allocation problems[END_REF]. The references above consider unidimensional bandits, which is a critical assumption in order to establish indexability, and in turn to calculate the index. On the other hand, literature on multidimensional MARBPs, as is the case for MM-MARBP, is scarce. The main difficulty lies in establishing indexability, i.e., ordering the states, in a multidimensional space. Important exceptions are [START_REF] Aalto | Whittle index approach to size-aware scheduling with timevarying channels[END_REF][START_REF] Anand | A Whittle's index based approach for QoE optimization in wireless networks[END_REF], in which the authors derive Whittle's index. These papers model the problem of scheduling tasks in a wireless setting: the controllable process is the remaining service time of tasks, which is a decreasing process, and the environment is given by the capacity of the channel, which fluctuates over time in an uncontrollable manner. The above references consider independent environments for each of the bandits. In [START_REF] Gast | A mean field approach for optimization in discrete time[END_REF] the authors consider an MDP made of independent objects evolving in a common environment. It is shown that as the number of objects tends to infinity, the optimal policy converges to the optimal policy of a deterministic discrete time system. In [START_REF] Duran | Asymptotic optimal control of markov-modulated restless bandits[END_REF], MM-MARBP are studied when the environment is unobservable, that is, the decision maker cannot observe the state of the environment, and it can take its decision only based on the state of the controllable process. It is shown that as the number of bandits grow large and the environment changes state relatively fast, a set of priority policies -that includes an averaged version of Whittle's index -is asymptotically optimal. In the numerical section, we will compare the performance of the averaged Whittle's index policy to that of the index policy in the observable setting as studied in this paper. There are a few other papers that have investigated the optimal control of particular queueing systems -in an asymptotic regime -operating in an unobservable environment. In [START_REF] Budhiraja | Scheduling control for markov-modulated single-server multiclass queueing systems in heavy traffic[END_REF], the authors study a single-server multiclass queueing network in heavy traffic with modulated arrival and service rates. In the main result, it is shown that an "averaged" version of the classical cµ-rule is asymptotically optimal. In [START_REF] Arapostathis | Optimal control of markov-modulated multiclass many-server queues[END_REF], the authors investigate optimal control of a many-server system with modulated arrivals, service and abandonment rates in the Halfin-Whitt regime.

In this work, we use the multi-class abandonment queue as a case study where customers may

• Independent environments: The variables (D k (t)) N k=1 are independently distributed. As a consequence, given the action, the evolution of the two-dimensional state of a bandit, (M k (t), D k (t)), is independent of the others. Hence, this setting falls within the classical MARBP with a 2-dimensional state space.

• Common environment: There is only one environment affecting all bandits, that is, D 1 (t) = . . . = D N (t) = D(t). When environment D(t) changes state from d to d , it changes the transition rates of all bandits at once. In this case there is a correlation between bandits, which does not fit in the standard MARBP model.

Let ϕ denote the policy that determines the action taken for each bandit. We assume that policies are Markovian, that is, they can base their decisions only on the current state of the bandits. In particular, this implies that decisions can depend on the state the environments are in. That is, the decision maker can observe the environments. For a given policy ϕ, let M ϕ k (t) ∈ X denote the state of the controllable process of bandit k at time t, k = 1, . . . , N . Note that M ϕ k (t), D k (t) describes the two-dimensional state of bandit k. The full description (M ϕ 1 (t), D 1 (t), . . . , M ϕ N (t), D N (t)) , is then a Markov process. Throughout this paper, we assume this process to be ergodic. We note that obtaining ergodicity conditions on the parameters is out of the scope of this paper.

We denote the passive action by a = 0 and the active action by a = 1. We further denote by A ϕ k (t) ∈ {0, 1} the action taken for bandit k at time t under policy ϕ, and A ϕ (t) := (A ϕ 1 (t), . . . , A ϕ N (t)) the actions taken for all the bandits. The constraint of making at most R bandits active can be expressed as

N k=1 A ϕ k (t) ≤ R, ∀t ≥ 0. (1) 
We define the set of feasible policies Φ, as the set of all Markovian policies that satisfy [START_REF] Aalto | Whittle index approach to size-aware scheduling with timevarying channels[END_REF]. When action a is applied to bandit k and its environment is in state d, its controllable process makes a transition from state m to state m at rate q k (m |m, d, a). Let C k (m, d, a) denote the cost per unit of time for bandit k when the controllable process is in state m, the environment is in state d and the action taken is a. For any k, we assume that C k (m, d, a) is a convex non-decreasing function in m for any d, a.

The objective of the optimisation problem is to find the policy ϕ that minimises the long-run average holding cost under constraint (1), i.e., solve:

min ϕ∈Φ lim sup T →∞ 1 T E T 0 N k=1 C k (M ϕ k (t), D k (t), A ϕ k (t))dt . ( 2 
)
Finding a solution for the constrained problem ( 2) is PSPACE-hard, i.e., it can not be solved using a polynomial amount of memory nor a polynomial amount of time, see [START_REF] Gittins | Multi-Armed Bandit Allocation Indices[END_REF][START_REF] Mahajan | Multi-armed bandit problems[END_REF][START_REF] Whittle | Optimal Control, Basics and Beyond[END_REF]. However, we refer to Whittle [START_REF] Whittle | Restless bandits: Activity allocation in a changing world[END_REF] where a Lagrangian relaxation method is introduced allowing to obtain efficient index policies for the original problem. In Section 4 this is applied to the MARBP with uncontrollable environments.

Relaxation and Whittle's index policy

In this section, we introduce the relaxed version of the Markov-modulated multi-armed restless bandit problem. The main idea of this methodology, as proposed by Whittle in [START_REF] Whittle | Restless bandits: Activity allocation in a changing world[END_REF], is to solve an unconstrained problem obtained via a Lagrangian relaxation approach, instead of solving problem (2) under constraint [START_REF] Aalto | Whittle index approach to size-aware scheduling with timevarying channels[END_REF]. This leads to a significant simplification of the problem: instead of solving the problem for N bandits simultaneously, one solves the problem separately for each of the N bandits. The solution for the relaxed problem can be described by the so-called Whittle index, which forms the basis for a heuristic for the original problem, known as the Whittle index policy, defined later on in this section. the Whittle index policy for the standard MARBP has been proved to be well-performing in many important examples, see Niño-Mora [START_REF] Niño-Mora | Sensor scheduling for hunting elusive hiding targets via whittle's restless bandit index policy[END_REF], and asymptotically optimal under certain circumstances, see Weber and Weiss [START_REF] Weber | On an index policy for restless bandits[END_REF], Ji et al. [START_REF] Ji | Achieving optimal throughput and near-optimal asymptotic delay performance in multichannel wireless networks with low complexity: a practical greedy scheduling policy[END_REF], Ouyang et al. [START_REF] Ouyang | Asymptotically optimal downlink scheduling over markovian fading channels[END_REF] and Verloop [START_REF] Verloop | Asymptotically optimal priority policies for indexable and nonindexable restless bandits[END_REF].

We now study the relaxed problem, that is, the constraint on the number of active bandits must be satisfied on average, and not in every decision epoch:

lim sup T →∞ 1 T E T 0 N k=1 A ϕ k (t)dt ≤ R, (3) 
or equivalently, lim sup T →∞

1

T E T 0 N k=1 1 -A ϕ k (t)dt ≥ N -R.
We denote the set of policies satisfying constraint (3) by Φ REL , and we note that Φ ⊆ Φ REL . We now consider the problem of finding a policy ϕ that minimises (2) under constraint [START_REF] Anand | A Whittle's index based approach for QoE optimization in wireless networks[END_REF]. We use the Lagrangian multipliers approach to rewrite the following unconstrained version of the relaxed problem: find a policy ϕ that minimises min ϕ lim sup

T →∞ 1 T E T 0 N k=1 C k (M ϕ k (t), D k (t), A ϕ k (t)) -W (R -N + N k=0 1 -A ϕ k (t) ) dt . ( 4 
)
The Lagrange multiplier W can be viewed as a subsidy for making a bandit passive. The key observation made by Whittle is that problem (4) can be decomposed into N subproblems, one for each bandit, due to the fact that there is no longer a common constraint. Thus, the solution to (4) is obtained by combining the solution to N separate optimisation problems, that is,

min ϕ lim sup T →∞ 1 T E T 0 C k (M ϕ k (t), D k (t), A ϕ k (t)) -W (1 -A ϕ k (t)) dt , ( 5 
)
for each bandit k. Under ergodicity conditions, we define g ϕ k (W ) as

g ϕ k (W ) := E C k (M ϕ k , D k , A ϕ k ) -W E(1 A ϕ k =0 ), (6) 
where M ϕ k , D k and A ϕ k are the respective steady-state variables for a given bandit under policy ϕ. Then, problem ( 5) is equivalent to the problem min ϕ g ϕ k (W ). We now introduce the indexability notion. Let P k (W ) ⊂ X × Z denote the set of states (m, d) in which it is optimal to be passive when the subsidy for passivity is

W . A bandit is called indexable if P k (W ) increases in W . Definition 1. Bandit k is indexable if W < W implies P k (W ) ⊆ P k (W ).
In other words, indexability implies that if for W = W 0 it is optimal to be passive in state (m, d), then it is also optimal to be passive for any value for the subsidy W ≥ W 0 . In [START_REF] Niño-Mora | Dynamic priority allocation via restless bandit marginal productivity indices[END_REF] a survey on indexability results can be found. In particular, in [START_REF] Niño-Mora | Dynamic priority allocation via restless bandit marginal productivity indices[END_REF] an algorithmic method is provided in order to determine if, for a given set of parameters, the problem is indexable. In [START_REF] Weber | On an index policy for restless bandits[END_REF], the authors run statistical tests with random parameters to check indexability, obtaining that around 90% of the cases are indexable. Examples where indexability has been proved for particular model instances can be found in [START_REF] Larrañaga | Dynamic control of birth-and-death restless bandits: application to resource-allocation problems[END_REF][START_REF] Whittle | Restless bandits: Activity allocation in a changing world[END_REF]. In this work, we establish indexability for a multi-class queue with linear cost and impatient customers under certain conditions, see Section 6.2. Indexability guarantees the existence of Whittle's index, which is defined as follows: it is the smallest value for the subsidy such that it is optimal to be passive in that state.

Definition 2. When bandit k is indexable, Whittle's index in state (m, d) is defined by W k (m, d) := inf {W : (m, d) ∈ P k (W )}.
We can now give an optimal solution to the relaxed control problem (4) for a given W . At any moment in time t, make active all bandits whose current Whittle's index exceeds the subsidy for passivity, i.e., W k (M k (t), D k (t)) > W . A standard Lagrangian argument together with the fact that the cost functions C k are convex non-decreasing, gives that there exists a multiplier W such that constraint (3) is satisfied. Since the solution to the relaxed optimisation problem will in general not be feasible for the original problem (2) with constraint (1), Whittle proposed a heuristic based on the Whittle index. We will refer to this policy as Whittle's index policy. Definition 3 (Whittle's index policy). At time t, the Whittle index policy prescribes to make active the R bandits having currently the largest value for their Whittle'

s index W k (M k (t), D k (t)).

Calculation of Whittle's index

In this section, we present our main results for the general model. In Section 5.1, we provide an algorithm to calculate the Whittle index, and in Section 5.2, we obtain Whittle's index when the environment changes very slowly compared to the state of the controllable process. Since we focus on the relaxed problem for one bandit [START_REF] Arapostathis | Optimal control of markov-modulated multiclass many-server queues[END_REF], we omit the dependence on k for ease of notation throughout this section.

Threshold policies

We assume throughout the paper that there exists a threshold policy (defined below) that is an optimal solution of (5). This is typically the case in many queueing models. For the case study of an abandonment queue, we prove it to hold in Section 6.1. In this section, we further assume the bandit is indexable, as defined in Definition 1. Threshold policies are defined through a vector n = (n d : d ∈ Z), where n d ∈ {-1, 0, 1, . . .} ∪ {∞}, for all d. Threshold policy n activates the bandit if and only if the controllable process is above the threshold n d when the state of the environment is d. In other words,

A n (m, d) = 1 if m > n d and A n (m, d) = 0 if m ≤ n d .
We denote by π n (m, d) the stationary probability of the process M n (t), D(t) to be in state (m, d). Alternatively, for some problems, an appropriate definition of threshold policy is to activate the bandit if and only if the controllable process is below a threshold. The analysis of both cases is similar, and we choose the former case in our presentation. See [START_REF] Larrañaga | Dynamic control of birth-and-death restless bandits: application to resource-allocation problems[END_REF]Section 3.2] for a case where both types of threshold policies are considered. Since we assume that threshold policies are optimal, in order to obtain Whittle's index, one can focus on finding the optimal threshold policies for any value of W . Below, we will present an algorithm that allows us to determine those optimal threshold policies. A similar algorithm was presented in [START_REF] Larrañaga | Asymptotically optimal index policies for an abandonment queue with convex holding cost[END_REF], where an expression for Whittle's index is obtained for the classical abandonment queue. In [START_REF] Larrañaga | Asymptotically optimal index policies for an abandonment queue with convex holding cost[END_REF], the state space of the bandits is one-dimensional, so that the threshold value is one-dimensional as well. In this paper, we present a generalised version of that algorithm as we will have multiple threshold values, one threshold per environment. First recall that the average cost (see [START_REF] Argon | Dynamic routing of customers with general delay costs in a multiserver queuing system[END_REF]) under a threshold policy n is given by

g n (W ) := d∈Z ∞ m=0 C (m, d, a) π n (m, d) -W d∈Z n d m=0 π n (m, d). ( 7 
)
Hence, the optimal average cost can be written as

g(W ) := min n g n (W ).
In Figure 1, the function g(W ) and the functions g n (W ) are plotted. Note that for any n, g n (W ) is a non-increasing linear function in W whose slope equals -d∈Z n d m=0 π n (m, d), and g(W ) is a lower envelope of the functions g n (W ). In particular, one observes that the horizontal axis can be split in intervals, where in each interval a different threshold policy is optimal. To find these intervals, note that for W = -∞ the threshold policy n -1 := (-1, -1, . . .) is optimal. This follows because the slope under threshold policy (-1, -1, . . .) equals -d∈Z -1 m=0 π n (m, d) = 0, while the slope of all other threshold policies are strictly negative. Now one can look to the first value

Ŵ0 Ŵ1 Ŵ2 Ŵ3 W g n (W) ( -1, -1, . . ) (n 0 1 , n 0 2 , . . ) (n 1 1 , n 1 2 , . . ) (n 2 1 , n 2 2 , . . ) (∞, ∞, . . ) g(W)
Figure 1: Lower envelop g(W ) := min n g n (W ).

of the subsidy, Ŵ0 , where a linear function g n (W ) crosses g (-1,-1,...) (W ), so that (-1, -1, . . .) is optimal if and only if W ∈ (-∞, Ŵ0 ]. Let n 0 be the corresponding threshold policy of this linear function. Note that in case there are two threshold policies that turn optimal in the crossing point Ŵ0 , then the one having the steepest slope will be the one that minimises when the subsidy increases slightly. Hence, we choose that one in case of a tie. In case there are more than one minimisers with the same slope, one chooses the maximum value of n d in each component. Then, one knows that Whittle's index is given by W (m, d) = Ŵ0 , for m = 0, . . . , n 0 d for all d such that n 0 d ≥ 0, since Ŵ0 is the smallest value such that it is optimal to be passive in those states. Similarly, one can now determine the first value of the subsidy W > Ŵ0 , denoted by Ŵ1 , where a linear function g n (W ) crosses g n 0 (W ). Let n 1 be the corresponding threshold policy. Now, the Whittle index for states (m, d), with n 0 d < m ≤ n 1 d , is given by W (m, d) = Ŵ1 . We can repeat this procedure as long as a new crossing point occurs as W increases. In case in step j no new crossing point occurs, this implies that there exists a n j-1 such that g(W ) = g n j-1 (W ) for W ≥ Ŵj-1 . Hence, for states (m, d), with m > n j-1 d , it is optimal to be active for any value of W , that is, the Whittle index is not defined for those states. To formalize the above procedure, we introduce the following notation for the crossing points of the linear functions g n (W ). We denote by W ( n, n ) := W ∈ R g n (W ) = g n (W ) , the set of multipliers W such that the expected cost under threshold policies n and n is equal. In case the slopes are not equal, i.e., d∈Z 7) is given by:

n d m=0 π n (m, d) = d∈Z n d m=0 π n (m, d), the set W ( n, n ) has a unique element, which from (
W ( n, n ) = d∈Z ∞ m=0 C (m, d, a) π n (m, d) -d∈Z ∞ m=0 C (m, d, a) π n (m, d) d∈Z n d m=0 π n (m, d) -d∈Z n d m=0 π n (m, d) . ( 8 
)
In case the slopes are equal, the linear functions g n (W ) and g n (W ) are parallel to each other. Then, W ( n, n ) is either the empty set, or the full state space.

In Algorithm 1 we summarise the above. Under the assumption of threshold optimality and indexability, the output of Algorithm 1 are the threshold policies n that optimize [START_REF] Arapostathis | Optimal control of markov-modulated multiclass many-server queues[END_REF] for each W and Whittle's index. A mathematical proof of Algorithm 1 would follow according to similar steps as in Glazebrook et al. [START_REF] Glazebrook | Index policies for the admission control and routing of impatient customers to heterogeneous service stations[END_REF], where an algorithm is developed for finding Whittle's index in the context of admission control and routing of impatient customers.

Algorithm 1. Define n -1 the vector equal to -1 in every coordinate, that is, under policy n -1 the bandit is active in all environments. Then, for j ≥ 0,

Step j Let

E j = { n : d∈Z n d m=0 π n (m, d) = d∈Z n j-1 d m=0 π n j-1 (m, d) and n d ≥ n j-1 d , ∀d}
.

If E j = ∅, compute Ŵj = inf n∈E j W ( n, n j-1 ). ( 9 
)
Denote by n j the minimiser of (9) in case the latter is unique. In case of a tie, choose the minimisers of (9) (denoted by n 

Slowly changing environment

In this section, we give an analytical solution of Whittle's index when the environment changes at a much slower time scale than the dynamics of the controllable process of the bandit. We show that in the limit, the Whittle index in state (m, d) coincides with the Whittle index of a bandit that only sees environment d. Before giving the results, we introduce some notation for a bandit that always sees environment d.

That is, the bandit lives in the state space X = {0, 1, . . .} and its transition rates are q(m |m, a) := q(m |m, d, a) for m, m ∈ X and a = 0, 1. Let (p n d ,(d) (m)) denote the corresponding steady-state probability under threshold policy n d . We further let W (d) (m) be Whittle's index in state m of a bandit that always sees environment d.

The different time scales are obtained by scaling the transition rates of the environment by β: βr (dd ) , and taking the limit β → 0. In order to obtain an analytical expression for Whittle's index in the slow regime, we will assume the environment can be in a finite set of states, i.e., |Z| < ∞.

When the environment changes state at a much slower time scale than the controllable process, the conditional (on the environment) steady-state behavior of the bandit is that of a bandit whose environment never changes. This is stated formally below. The proof can be found in Appendix 10.1.

Lemma 1. Assume |Z| = Z < ∞ and let the transitions of the environment be scaled by β, i.e., βr (dd ) . Then it holds that

lim β→0 π n (m, d) = φ(d)p n d ,(d) (m), ∀m ∈ N 0 . ( 10 
)
The following lemma states that in the slow regime, the index value given by Algorithm 1 can be found by changing the threshold value in only one of the environments. The proof can be found in Appendix 10.1. For a given β, we denote by n j (β) = (n j 1 (β), . . . , n j Z (β)), Z = |Z| the values of n j as defined in Algorithm 1.

Lemma 2. Let |Z| < ∞ and the transitions of the environment be scaled by β, βr (dd ) . Assume (n j 1 , . . . , nj Z ) := lim β→0 (n j 1 (β), . . . , n j Z (β)) exists, for all j, and that the family {M n , β} is uniform integrable, for any threshold policy n. Furthermore, assume n m=0 p n,(d) (m) -n m=0 p n ,(d) (m) ≥ 0 for any d and any pair n > n . Then,

lim β→0 inf n∈E j Z d=1 ∞ m=0 C (m, d, a) π n (m, d) -Z d=1 ∞ m=0 C (m, d, a) π n j-1 (β) (m, d) Z d=1 n d m=0 π n (m, d) -Z d=1 n j-1 d (β) m=0 π n j-1 (β) (m, d) (11) = min d=1,...,Z inf n>n j-1 d ∞ m=0 C (m, d, a) p n,(d) (m) -∞ m=0 C (m, d, a) p nj-1 d ,(d) (m) n m=0 p n,(d) (m) - nj-1 d m=0 p nj-1 d ,(d) (m) (12) = ∞ m=0 C (m, d 0 , a) p nj d 0 ,(d 0 ) (m) -∞ m=0 C (m, d 0 , a) p nj-1 d 0 ,(d 0 ) (m) nj d 0 m=0 p nj d 0 ,(d 0 ) (m) - nj-1 d 0 m=0 p nj-1 d 0 ,(d 0 ) (m) , ( 13 
)
where d 0 is such that nj d 0 = nj-1 d 0 (there is at least one such d 0 ).

The following proposition states that in the slow regime the index W (m, d) converges to the index for a fixed environment d, W (d) (m).

Proposition 1. Let |Z| < ∞ and the transitions of the environment be scaled by β, βr (dd ) . Under the assumptions of Lemma 2, we have that for any m, d,

lim β→0 W (m, d) = W (d) (m).
The uniform integrability property needs to be checked case by case. For the abandonment queue, as studied in Section 6, we give an alternative proof for the above, which does not require to verify uniform integrability, see Proposition 3.

Proof of Proposition 1:

The index W (m 0 , d 0 ) is as obtained from the Algorithm 1, through the values n j d (β). Since we assume that the limit of n j d (β) exists and lives on N, we have n j d (β) = nj d for β small enough. Hence, we can choose j such that n j-1 d 0 (β) < m 0 ≤ n j d 0 (β) and we have lim

β→0 W (m 0 , d 0 ) = lim β→0 inf n∈E j Z d=1 ∞ m=0 C (m, d, a) π n (m, d) -Z d=1 ∞ m=0 C (m, d, a) π n j-1 (β) (m, d) Z d=1 n d m=0 π n (m, d) -Z d=1 n j-1 d (β) m=0 π n j-1 (β) (m, d) .
For d 0 it holds that nj d 0 = nj-1 d 0 . Hence, by Lemma 2, the latter is equal to

lim β→0 W (m 0 , d 0 ) = inf n>n j-1 d 0 ∞ m=0 C (m, d 0 , a) p n,(d 0 ) (m) -∞ m=0 C (m, d 0 , a) p nj-1 d 0 ,(d 0 ) (m) n m=0 p n,(d 0 ) (m) - nj-1 d 0 m=0 p nj-1 d 0 ,(d 0 ) (m) . ( 14 
)
The latter is the Whittle index of a bandit that always sees environment d 0 , W (d 0 ) (m 0 ). This follows by applying Algorithm 1 to the bandit that always sees environment d 0 . This concludes the proof.

Asymptotic optimality of Whittle's index policy

In [START_REF] Weber | On an index policy for restless bandits[END_REF], the authors considered the standard MARBP model (i.e., no environments) and proved that Whittle's index policy is optimal as the number of bandits and the number of active bandits, R, scale proportionally. This result holds for the standard MARBP setting and requires a so-called global attractor property to be satisfied for the corresponding deterministic set of differential equations.

In the case of independently distributed environments, the state (m, d) is a two-dimensional state of a classical bandit. Hence, the asymptotic optimality result of [START_REF] Weber | On an index policy for restless bandits[END_REF] directly applies. When the environments are correlated on the other hand, no asymptotic result is known. We leave this as future research.

Abandonment queue in a Markovian environment

In this section we study a multi-class queue with abandonments living in an observable environment. There are N classes of jobs. Each class is associated an environment process D k (t) that can be either in state 1 or state 2. We restrict to two states, as this will allow to obtain a closed-form expression for Whittle index. For ease of notation, we define r ,d,a) denote the cost per unit of time for holding m class-k jobs in the system when the environment is in state d and action a is taken. We assume that the cost function satisfies [START_REF] Gast | A mean field approach for optimization in discrete time[END_REF] for all m, d, such that m ≥ 0. This property is directly implied, for example, when (i)

(d) k . Let C k (m
C k (m, d, 0)-C k ((m-1) + , d, 0) ≤ C k (m+1, d, 1)-C k (m, d, 1) ≤ C k (m+1, d, 0)-C k (m, d, 0),
C k (m, d, a) = C k (m, d), or when (ii) C k (m, d, a) = C k ((m -a) + , d).
Here, (i) represents holding cost of jobs in the system and case (ii) represents holding costs of jobs waiting for service in the queue.

The objective is to minimise the time-average holding cost, see [START_REF] Altman | Perturbation analysis for denumerable markov chains with application to queueing models[END_REF]. Similar to [START_REF] Larrañaga | Index policies for multi-class queues with convex holding cost and abandonments[END_REF], we can cast this abandonment model into a Markov-modulated MARBP. There are N bandits, where each bandit represents a class of jobs. The state of bandit k is simply the number of class-k jobs in the system. We then have the following transition rates for bandit k:

q k (m + 1|m, d, a) = λ (d) k and q k ((m -1) + |m, d, a) = mθ (d) k + aµ (d) ,
for m ∈ N 0 , d = 1, 2 and a = 0, 1. Activating a bandit is equivalent to serving this class. At most R < N classes can be served at a time. In the remainder of this section, we calculate Whittle's index for one class/bandit. In order to use Algorithm 1, we first show in Section 6.1 that an optimal solution of the relaxed problem is of threshold type. Then, in Section 6.2, we obtain a closed-form expression for Whittle's index in the case of linear holding cost.

Threshold policies

In this section, we prove that an optimal solution of the relaxed problem ( 5) for the abandonment model is of threshold type. We henceforth focus on one bandit. For ease of exposition, we remove the subscript k. Proposition 2. For each W , there exists an n(W ) = (n 1 (W ), n 2 (W )) such that the threshold policy n(W ) is an optimal solution of the relaxed problem [START_REF] Arapostathis | Optimal control of markov-modulated multiclass many-server queues[END_REF].

Proof:

The value function V (m, d) satisfies the Bellman's optimality equation for average costs [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF], which in this case is

(µ (d) + mθ (d) + λ (d) + r (d) )V (m, d) + g = λ (d) V (m + 1, d) + mθ (d) V ((m -1) + , d) + r (d) V (m, 3 -d) (16) + min C(m, d, 0) -W + µ (d) V (m, d), C(m, d, 1) + µ (d) V ((m -1) + , d) ,
where g is the averaged cost incurred under the optimal policy. Proving optimality of a threshold policy is equivalent to proving that if in state m + 1 (with m ≥ 0) it is optimal to be passive, it is also optimal to be passive in state m. Regarding ( 16), we have to show that

C(m + 1, d, 0) - W + µ (d) V (m + 1, d) ≤ C(m + 1, d, 1) + µ (d) V (m, d) implies that C(m, d, 0) -W + µ (d) V (m, d) ≤ C(m, d, 1) + µ (d) V ((m -1) + , d).
A sufficient condition to prove this is Property [START_REF] Gast | A mean field approach for optimization in discrete time[END_REF] together with convexity of the value function for each d, m, so 2V (m, d)

≤ V (m + 1, d) + V ((m -1) + , d), which we prove next.
In order to prove the convexity of V (m, d), we use the value iteration method. However, this technique needs uniformly bounded transition rates. We therefore consider a truncated space at L and smooth the arrival transitions. We define the value function for the truncated system with parameter L as V L (m, d). In Appendix 10.2.1 we show that V L (m, d) is a convex function, and in Appendix 10.2.2 that sufficient conditions hold in order to apply [7, Theorem 3.1], to state convergence of V L → V as L → ∞. With these two results, convexity of V is concluded.

Below we prove properties on π n (m, d), the steady-state probability of having m jobs in the system and being in environment d under threshold policy n. The proofs can be found in Appendix 10.3 and Appendix 10.4.

The first property can be seen as a rate-conservation law and is based on the fact that, for any given policy, the long-run number of arrivals into a given environment must be the same as the long-run number of departures out of that environment. We state this result in Lemma 3 in the context of threshold policies.

Lemma 3.

Under threshold policy n it holds that

λ (d) φ(d) + r (3-d) E M n 1 (D=3-d) = θ (d) + r (d) E M n 1 (D=d) + µ (d) ∞ m=n d +1 π n (m, d), ( 17 
)
for d = 1, 2
, where M n denotes the random variable with distribution π n .

Lemma 4 proves monotonicity properties on n d m=0 π n (m, d). This quantity represents the probability of observing environment d and not serving the class.

Lemma 4.

The function

n d m=0 π n (m, d) is non-decreasing in n d , for d = 1, 2.

The function

n d m=0 π n (m, d) is non-increasing in n 3-d , for d = 1, 2.
The first property follows naturally, as increasing the threshold n d implies that this class is kept passive in more states in environment d. Hence, the probability of being passive in environment d increases. If instead n 3-d increases, the number of states where the class is passive in environment d are the same. However, in environment 3 -d the class is being served in less states, hence this diminishes the death rates in certain states. This allows us to prove that the probability of being passive in environment d decreases, i.e., the second property.

Whittle's index for linear cost

In this section, we assume linear holding cost, that is, C(m, d, a) = cm, with c ∈ R =0 . We first prove that the abandonment problem is indexable, and then give an expression for Whittle's index.

For ease of reading, the proofs of the theorems are in Section 6.3. We introduce the following values: (1) , [START_REF] Glazebrook | Index policies for the maintenance of a collection of machines by a set of repairmen[END_REF] for d = 1, 2. The value W (d) has the following interpretation (which will be proved in Lemma 6): If the subsidy W equals W (d) , and the class is kept passive in environment 3 -d, then any threshold value for environment d gives the same performance. Throughout Sections 6.2 and 6.3, we assume w.l.o.g. that W (1) ≤ W (2) , or equivalently

W (d) := cµ (d) θ (3-d) + r (1) + r (2) θ (1) θ (2) + r (1) θ (2) + r (2) θ
µ (1) θ (1) +r (1) +r (2) ≤ µ (2)
θ (2) +r (1) +r [START_REF] Altman | Perturbation analysis for denumerable markov chains with application to queueing models[END_REF] . The parameters W (1) and W (2) will play a key role in the characterisation of the optimal solution of the relaxed problem, see Figure 2, and hence in proving indexability and Whittle's index. The results presented in Figure 2 are proved in Section 6.3. Given W (1) ≤ W (2) , we make the following two technical conditions, which are needed in order to prove indexability. Numerical simulations however suggest that indexability holds for any set of parameters.

0

W (1) W (2) W g n (W) (-1, -1) (n, 0) (n , 0) (∞, 0) (∞, ∞) (n , ∞)
Figure 2: Optimal threshold policies for the abandonment queue.

Condition 1.

µ (1) ≤ µ (2) and θ (1) ≥ θ (2) .

Condition 2.

W (2) ≤ cµ (2) θ (2) + r (2) .

Theorem 1. Assume Conditions 1 and 2 hold. Then all bandits are indexable.

A closed-form expression for the Whittle index W (m, d) can now be given.

Theorem 2. Assume the bandit is indexable, and

µ (1) θ (1) + r (1) + r (2) < µ (2) θ (2) + r (1) + r (2) . We define the subsequence (n j ) j≥-1 as follows: n -1 = -1, n 0 = 0, and for j ≥ 1 let

n j := arg min n>n j-1 W ((n j-1 , 0), (n, 0)), ( 19 
)
where W ((n j-1 , 0), (n, 0)) is given by [START_REF] Borkar | Opportunistic scheduling as restless bandits[END_REF]. In case there is more than one minimiser in [START_REF]Special issue on queueing systems with abandonments[END_REF], choose the one that minimises -2

d=1 n d m=0 π (n,0) (m, d). Whittle's index W (m, d) is given by W (m, d) =        0 for m = 0 W ((n j-1 , 0), (n j , 0))
for n j-1 < m ≤ n j , and d = 1 W (2) for m ≥ 1 and

d = 2, ( 20 
)
where W ((n j-1 , 0), (n, 0)) is given by [START_REF] Borkar | Opportunistic scheduling as restless bandits[END_REF]. Moreover, W (m, 1) ≤ W (1) ≤ W (2) for all m.

If µ (1) θ (1) + r (1) + r (2) = µ (2) θ (2) + r (1) + r (2) , then W (m, 1) = W (1) = W (2) for all m. Remark 2. If µ (1) -µ (2) < θ (2) , then the slope of the linear function g (n,0) , -2

d=1 n d m=0 π (n,0) (m, d)
, is a non-increasing sequence in n, as it will be stated in Proposition 5. As a consequence, in that case, for each step j in Theorem 2, the minimiser n j with the steepest slope is the largest minimiser n.

In the following corollary we consider the particular case where n j = j for all j ≥ -1, or equivalently, the sequence W ((n -1, 0), (n, 0)) is strictly increasing in n.

Corollary 1. If

µ (1) θ (1) + r (1) + r (2) < µ (2) θ (2) + r (1) + r (2) and the sequence

(W ((n -1, 0), (n, 0))) n∈N is strictly increasing in n, then Whittle's index W (m, d) is given by W (m, d) =        0 for m = 0 W ((m -1, 0), (m, 0)) for d = 1 W (2)
for d = 2 and m ≥ 1.

(

) 21 
Although we could not prove the strict-increasing property for the crossing points W ((n-1, 0), (n, 0)), based on numerical observations we believe this holds whenever W (1) = W (2) .

Remark 3. The queuing model with abandonments without an environment has been studied in [START_REF] Larrañaga | Asymptotically optimal index policies for an abandonment queue with convex holding cost[END_REF]. That is, λ (1) = λ (2) = λ, µ (1) = µ (2) = µ and θ (1) = θ (2) = θ. Then, Whittle's index as in Theorem 2 equals cµ/θ, which is in agreement with [START_REF] Larrañaga | Asymptotically optimal index policies for an abandonment queue with convex holding cost[END_REF]Section 6.1].

We now scale the transition rates of the environments, to further characterise Whittle's index in the two extreme cases of very slow changing or very fast changing environments. As in Section 5.2, β is the scaling parameter and βr (d) is the transition rate of the environment. The proof can be found in Appendix 10.5.

Proposition 3. Assume the transition rates of the environment are scaled as βr (d) . As β → 0, it holds that

lim β→0 W (m, d) = c µ (d) θ (d) , ∀m, d. Assume the limit lim β→∞ W ((n j-1 , 0), (n j , 0)) exists. As β → ∞, it holds that lim β→∞ W (m, d) =          0 for m = 0 lim β→∞ W ((n j-1 , 0), (n j , 0)) for n j-1 < m ≤ n j , and d = 1 c µ (2) θ for d = 2,
where θ := 2 d=1 φ(d)θ (d) .

For the slow regime, we observe that the Whittle Index W (m, d) coincides with that of the Whittle index when the bandit always sees environment d, given by cµ (d) θ (d) , see [START_REF] Larrañaga | Index policies for multi-class queues with convex holding cost and abandonments[END_REF]. When the environment changes fast compared to the controllable state of the bandit, the Whittle index remains state dependent. In environment 2, the index simplifies to c µ (2) θ . This index is very similar to (i) c µ θ , which is Whittle's index when there are no environments.

(ii) c µ θ , an index that was proved to be asymptotically optimal in case the environments are unobservable [START_REF] Duran | Asymptotic optimal control of markov-modulated restless bandits[END_REF].

Hence, we see that when the environment is observable and changes very fast, the Whittle index depends on the departure rate of the current environment and the averaged abandonment rate. In case the environment is unobservable, the averaged value is taken both for the departure rate and for the abandonment rate.

Proof of Theorems 1 and 2

In this section, we present the proofs of Theorems 1 and 2. These proofs are based on the characterisation of the optimal solution of the relaxed optimisation problem. This characterisation can be found in Propositions 4 and 6. For the lemmas and propositions stated in the section, the proofs can be found in Appendix 10.6. We start by rewriting W ( n, n ), the subsidy such that the expected cost under both threshold policies n and n are equal. From (8), we obtain

W ( n, n ) = c • 2 d=1 ∞ m=0 mπ n (m, d) -2 d=1 ∞ m=0 mπ n (m, d) 2 d=1 n d m=0 π n (m, d) -2 d=1 n d m=0 π n (m, d) , ( 22 
)
given that the denominator in [START_REF] Larrañaga | Asymptotically optimal index policies for an abandonment queue with convex holding cost[END_REF] is not equal to 0. The rate conservation property of Lemma 3 allows us to give an alternative expression for W ( n, n ).

For that, we define

s d ( n, n ) := n d m=0 π n (m, d) - n d m=0 π n (m, d),
as the difference between the probability of being passive under threshold policies n and n , while the environment is in state d.

Lemma 5. In case s 1 ( n, n ) + s 2 ( n, n ) = 0, it holds that W ( n, n ) = tW (1) + (1 -t)W (2) , ( 23 
)
where

t := s 1 ( n, n ) s 1 ( n, n ) + s 2 ( n, n ) .
Consider two policies that are always passive in environment d = 1, i.e., n = (∞, n 2 ) and n = (∞, n 2 ), for any pair n 2 , n 2 . We have that ∞ m=0 π (∞,n 2 ) (m, 1) = φ [START_REF] Aalto | Whittle index approach to size-aware scheduling with timevarying channels[END_REF], where φ(1) is the stationary measure of the environment for being in state d = 1. Hence,

s 1 ( n, n ) = ∞ m=0 π (∞,n 2 ) (m, 1) - ∞ m=0 π (∞,n 2 ) (m, 1) = 0, and if s 2 ( n, n ) = n 2 m=0 π (∞,n 2 ) (m, 2) - n 2 m=0 π (∞,n 2 ) (m, 2) = 0, then from Lemma 5 we have W ((∞, n 2 ), (∞, n 2 )) = W (2) . ( 24 
)
Similarly, we have W ((n 1 , ∞), (n 1 , ∞)) = W (1) . Following similar reasonings, we derive properties for the policy that never serves the bandit, i.e., (∞, ∞). Lemma 6. We consider the threshold policy that never serves the bandit, (∞, ∞). For any policy ) , W (2) ]. Furthermore, W ((∞, ∞), n) = W (2) if and only if n 1 = ∞ and W ((∞, ∞), n) = W (1) if and only if n 2 = ∞.

n = (n 1 , n 2 ) it holds that W ((∞, ∞), n) ∈ [W (1
In the following proposition, we characterise optimal threshold policies of the relaxed optimisation problem [START_REF] Bhulai | On structural properties of the value function for an unbounded jump markov process with an application to a processor sharing retrial queue[END_REF] as a function of the subsidy W . For a visual representation of the optimal policies, we refer to Figure 2, where the optimal threshold policies are indicated as W varies.

Proposition 4.

1. The threshold policy (-1, -1) is an optimal solution of (7) when W ≤ 0. When W < 0, it is the unique optimal threshold policy. When W = 0, the optimal threshold policies are (-1, -1), (-1, 0), (0, -1) and (0, 0).

Assume Conditions 1 and 2 hold.

For W ∈ 0, W (2) the optimal threshold solutions of [START_REF] Bhulai | On structural properties of the value function for an unbounded jump markov process with an application to a processor sharing retrial queue[END_REF] are of the form (n, 0) with n ≥ -1.

3. The threshold policy (∞, ∞) is an optimal solution of (7) when W ≥ W (2) . When W > W (2) , it is the unique optimal threshold policy. When W = W (2) , the optimal threshold policies are of the form (∞, n) with n ≥ 0.

Proposition 5. Assume Condition 1 holds. Then the sequence -2

d=1 n d m=0 π (n,0) (m, d) n∈N ,
which represents the slope of the linear functions (g (n,0) ) n∈N , is a non-increasing sequence.

We can now prove Theorem 1.

Proof of Theorem 1: By Proposition 2, an optimal solution of ( 7) is of threshold form. For a given subsidy W , let n d (W ) denote the minimum value for a threshold in environment d such that the threshold policy (n d (W ), ñ3-d ), for some ñ3-d , is optimal.

If n 1 (W ) ≤ n 1 (W + ∆) and n 2 (W ) ≤ n 2 (W + ∆), (25) 
with ∆ > 0, then, the bandit is indexable. Equation (25) will be proved below. First assume W < 0. Then, by Proposition 4, the optimal threshold policy is (-1, -1). In W = 0 it turns to (0, 0), and for W > 0 it is of the form (n, 0). Hence, for W ≤ 0, (25) holds. Now assume 0 ≤ W < W (2) . If W + ∆ > W (2) , then the inequality ( 25) is trivially true. Now assume W +∆ < W (2) . By Proposition 4, it follows that there are n and n such that n(W ) = (n, 0) and n(W +∆) = (n , 0). Since the function g(W ) is a lower envelope, the linear function g (n ,0) (W ) has a steeper slope than the linear function g (n,0) (W ), as it can be seen in Figure 1. Furthermore, in Proposition 5 we proved that the slope of the linear functions g (n,0) (W ) is non-increasing in n. Therefore, n ≤ n , and (25) holds. Finally, for W ≥ W (2) , the optimal threshold policy is (∞, ∞), hence n d (W ) = ∞ for both d = 1, 2, and ( 25) is trivially true.

In order to prove Theorem 2, we first show that threshold policy (∞, 0) is an optimal solution of (7) when W ∈ W (1) , W (2) . Again, we refer to Figure 2 for a visual representation.

Proposition 6. The threshold policy (∞, 0) is an optimal solution of (7) when W ∈ W (1) , W (2) .

If W ∈ (W (1) , W (2) ), then it is the unique optimal threshold policy. If W = W (2) , then any threshold policy (∞, n) with n ≥ 0 is optimal, and no other threshold policy is.

Proof of Theorem 2:

Recall that the Whittle index of a state (m, d) is the smallest value for the subsidy W such that the optimal threshold policy makes that state passive. First consider states (0, d). From Proposition 4, we have that in state 0 it is optimal to be active when W < 0 and passive if W = 0. Hence, we have that W (0, d) = 0, for both d = 1, 2. Now consider states (m, 2), with m > 0. From Proposition 6, we have that for W ∈ (W (1) , W (2) ) the unique optimal threshold policy is (∞, 0). For W ≥ W (2) , the optimal threshold policy is (∞, ∞), since it is the steepest one. Hence, W (2) is the smallest value for the subsidy W such that in state (m, 2) the optimal action is to be passive, that is, W (m, 2) = W (2) for every m ≥ 0. Now consider states of the form (m, 1), with m > 0. Note that for W = 0, in state 0 it is optimal to be passive, and for W ∈ (W (1) , W (2) ) the optimal threshold policy is (∞, 0). As a consequence, and since the bandit is indexable, when 0 ≤ W < W (2) , an optimal threshold policy is of the form (n, 0). Algorithm 1 characterises Whittle's index by iteratively defining Ŵj . From Proposition 4, we have that for W < 0 the unique optimal threshold policy is n -1 = (-1, -1), and for W = 0 the optimal threshold policies are (-1, -1), (-1, 0), (0, -1) and (0, 0). Hence, Ŵ0 = 0. Furthermore, since the bandit is indexable, for W ≥ 0 it is optimal to be passive in state 0. Therefore, among those four threshold policies, the optimal threshold policy in the interval [0, Ŵ1 ] is n 0 = (0, 0). Then, in W = Ŵ1 the linear function of the following optimal threshold policy (n 1 , 0) crosses the linear function g (0,0) . Inductively, the increasing sequence (n j ) j≥0 , provides the set of minimising policies inside the set {(n, 0)} n≥0 . As a consequence, in order to determine the smallest value of W such that the optimal threshold policy makes a state (m, 1) passive, it is enough to determine the value j such that n j-1 < m ≤ n j . In other words, W (m, 1) = W ((n j-1 , 0), (n j , 0)) for any j and n j-1 < m ≤ n j .

We are left to prove that W ((n j , 0), (n j-1 , 0)) ≤ W (1) for every j. To do so, note that from the definition of the crossing points n j , the linear functions g (n j-1 ,0) and g (n j ,0) are not parallel, hence s 1 ((n j , 0), (n j-1 , 0)) + s 2 ((n j , 0), (n j-1 , 0)) = 0. Then, from [START_REF] Larrañaga | Dynamic control of birth-and-death restless bandits: application to resource-allocation problems[END_REF] we have that W ((n j , 0), (n j-1 , 0)) = W (1) + (1 -t) W (2) -W (1) ,

with 1 -t := s 2 ((n j , 0), (n j-1 , 0)) s 1 ((n j , 0), (n j-1 , 0)) + s 2 ((n j , 0), (n j-1 , 0))
. From Property 2) in Lemma 4 it follows that s 2 ((n j , 0), (n j-1 , 0)) < 0. We state the following property between arbitrary linear functions in R: if two linear functions cross each other in a given W , the one that minimises for W ≥ W is steeper than the one that minmises for W ≤ W . In this case, since g (n j-1 ,0) (W ) minimises for W ≤ W ((n j , 0), (n j-1 , 0)) and g (n j ,0) (W ) minimises for W ≥ W ((n j , 0), (n j-1 , 0)), g (n j ,0) is steeper than g (n j-1 ,0) , i.e., s 1 ((n j , 0), (n j-1 , 0)) + s 2 ((n j , 0), (n j-1 , 0)) > 0. Then 1 -t ≤ 0, and as a consequence, W ((n j , 0), (n j-1 , 0)) ≤ W (1) for every j.

Multi-class queue in a Markovian environment

In this section we study a queueing model without abandonments with an observable random environment and general holding cost. That is, we consider the model as described in Section 6 where now the abandonment rates are set equal to zero. First, we present the maximum stability conditions. Secondly, we derive an index policy, based on the results obtained in the previous section for an abandonment queue (by letting θ → 0).

Maximum stability conditions

We first provide the maximum stability conditions, that is the conditions on the parameters such that there exists a policy that makes the system stable. This stability result follows from [START_REF] Stolyar | Maxweight scheduling in a generalized switch: State space collapse and workload minimization in heavy traffic[END_REF].

Proposition 7 (Proposition 1, Section 4, in [START_REF] Stolyar | Maxweight scheduling in a generalized switch: State space collapse and workload minimization in heavy traffic[END_REF]). Let φ( d) be the probability that bandit k sees environment

d k , k = 1, . . . , N . Recall that φ k (d k ) denotes the marginal distribution.
If there exists a policy such that the multi-class queue with environments is stable, then there exists a vector γ = (γ

k d : 1 ≤ k ≤ N, d ∈ Z N ), such that γ k d ≥ 0 and N k=1 γ k d ≤ φ( d), for all k, d, ( 26 
)
and d∈Z λ (d) k φ k (d) ≤ d∈Z N µ (d k ) k γ k d , ∀1 ≤ k ≤ N. ( 27 
)
If there exists a vector γ such that [START_REF] Niño-Mora | Dynamic priority allocation via restless bandit marginal productivity indices[END_REF] and

d∈Z λ (d) k φ k (d) < d∈Z N µ (d k ) k γ k d , ∀1 ≤ k ≤ N, ( 28 
)
then there exists a policy that makes the system stable.

Proof: For the sake of readability we present a sketch of the proof.

If the system is stable under some policy ϕ, then we consider the process under this policy in a stationary regime, and let γ ϕ k d be the average fraction of time that the environment is d and bandit k is active. The obtained vector γ ϕ satisfies (26) by definition. It also satisfies Equation [START_REF] Niño-Mora | Sensor scheduling for hunting elusive hiding targets via whittle's restless bandit index policy[END_REF], which can be seen by contradiction. Assume it did not hold, then at least one bandit would grow indeterminately towards infinite with probability 1. If ( 26) and ( 28) hold for a certain γ, we define the policy ϕ as the policy that, under environment d, makes bandit k active with probability γ k d /φ( d) and with probability 1

- N k=1 γ k d φ( d)
does not make active any bandit. Then policy ϕ allocates to bandit k on average a service rate equal to 

d∈Z N µ (d k ) k γ k d ,

Whittle's index policy

In this section we assume that the environment of each bandit can be either in state 1 or state 2. For the multi-class queue without abandonments, one cannot directly apply Algorithm 1 in order to get Whittle's index. The reason for this is that the value of the threshold does not always impact the average obtained subsidy for passivity, and hence does not provide a Whittle index. For example, assume µ (1) < µ (2) . Then, as the subsidy grows from -∞ to ∞, threshold policies of the form (n, 0), n = 1, 2, . . ., will be optimal, and for large enough W , the threshold policy (∞, 0) is optimal. However, once in environment 1 it is optimal to be passive in all states, when now comparing different threshold values for environment 2, each such threshold will have the same steady-state probability of being passive. Hence, there is no difference in the average obtained subsidy for passivity between threshold policies of the form (∞, n) and (∞, n + n ). This means that no index can be defined for states (m, 2). A similar observation was made for the classical multi-class queue without environments, see [START_REF] Larrañaga | Asymptotically optimal index policies for an abandonment queue with convex holding cost[END_REF]Section 7]. In order to obtain Whittle's index for the multi-class queue with environments, we therefore assume there are abandonments, and then let the abandonment rate scale to zero. We assume linear holding cost. Let W θ (m, d) be the Whittle index in the presence of abandonments (as derived in Section 6.2), with θ 1 = θ 2 = θ, with θ > 0. It is direct from Theorem 2 that if µ (1) < µ (2) , then lim θ→0 θW θ (m, 2) = cµ (2) , for all m ≥ 1.

That is, in environment 2, one needs to consider the scaled index. For environment 1, no scaling is needed. In fact, we believe the following to be true:

Conjecture 1. lim θ→0 W θ (m, 1) < ∞.
This conjecture is based on our numerical observations. In Table 1 we show the Whittle index as the abandonment rate approaches zero. We consider a multi-class queue with the following parameters: λ (d) = 4, for d = 1, 2, and µ

(1)

1 = 5, µ (2) 
1 = 8, hence µ (1) < µ (2) . The rates for the environment are r (1) = 17 and r (2) = 15. We set the abandonment rate as θ (d) = θ for d = 1, 2. In Table 1, we show the index for different states m. It can be seen that, as θ tends to 0, the index W θ (m, 1) seems to converge. In order to prove this conjecture, one needs to study W ((n j-1 , 0), (n j , 0)), which by [START_REF] Larrañaga | Dynamic control of birth-and-death restless bandits: application to resource-allocation problems[END_REF] depends on the steady-state distributions. A perturbation approach as presented in [2, Theorem 2], would allow to write the steady state as an expansion in θ. However, the results of [START_REF] Altman | Perturbation analysis for denumerable markov chains with application to queueing models[END_REF] do not directly apply since there the transition rates are assumed to be uniformly bounded.

We can now define a heuristic for the multi-class queue with a random environment. Let us assume there are N bandits and R can be made active. Define for each bandit k,

1 ≤ k ≤ N , d k such that µ (3-d k ) ≤ µ (d k )
. In every decision epoch make active the bandits that are currently in their state d k . If there are more than R, choose the R ones having the largest value for c k µ (d k ) . If there are less than R, make also active the bandits currently in state 3 -d k having the largest value for lim θ→0 W θ k (m, 3 -d k ). We extend the previous example to numerically illustrate the performance of the heuristics. We consider a model with two classes of users k = 1, 2, and two states for the environment, Z = {1, 2} . At each decision epoch the decision maker chooses which user to serve, that is, R = 1. We simulate our heuristic and compare its average cost to that of an optimal policy obtained via value iteration. More details on the models used for the simulations can be found in Section 8.2. We choose the following parameters: the arrival rates are λ

(d) k = 4, for k = 1, 2, d = 1, 2. The departure rates are µ (1) 1 = 5, µ (2) 1 = 8, µ (1) 2 = 21, µ (2) 2 = 27, hence µ (1) k < µ (2)
k for k = 1, 2. We consider three models for the environment: a model with independent and identically distributed environments, a model with independent environments with different distributions, and a model with common environments for both classes of users, i.e., they see the same state of the environment at each moment in time. The parameters for the environments are as follows:

• In the first case, both environments D 1 (t), D 2 (t) are independent and identically distributed and their transition rates are given by r • In the second case, the environments are independent and their transition rates are given by r

(1)

1 = 15, r (2) 
1 = 17, r (1) 
2 = 10 and r

(2) 2 = 2.

• In the third case, the environments are common with r (1) = 15 and r (2) = 17, k = 1, 2.

The obtained performances are, for each case:

• In the first case, the performance of our heuristic is g HEU R = 1.13 and for the optimal policy is g OP T = 1.11. In other words, our heuristic presents a suboptimality gap of 1.82%.

• In the second case, the performance of our heuristic is g HEU R = 0.8042 and for the optimal policy is g OP T = 0.8044. In other words, our heuristic presents a suboptimality gap of 0.02%.

• In the third case, the performance of our heuristic is g HEU R = 1.41 and for the optimal policy is g OP T = 1.36. In other words, our heuristic presents a suboptimality gap of 4.3%.

Numerical evaluation

In this section the performance under Whittle's index policy is compared to the performance of an optimal policy obtained via value iteration. We consider the abandonment model with two classes of users and two states for the environment(s), Z = {1, 2}. The decision epochs occur when there is a change of state, either in the queue length or in the environment. At each decision epoch the decision maker chooses which user to serve, that is, R = 1. We assume linear holding costs that do not depend on the environment or action taken, i. We plot the relative suboptimality gap in percentage for the different policies. We denote by g ϕ the performance under policy ϕ. Then, the suboptimality gap for policy ϕ is given by 100 * (g ϕg OP T )/g OP T , where g OP T is the average cost under an optimal policy. In Section 8.1, we generate a large number of parameters and using boxplots we show the suboptimality gaps under different policies. In Section 8.2 we focus on one particular set of parameters. In Section 8.3, we discuss how much one can gain by observing the state of the environments.

Boxplots

In this section we consider two different models for the environments. The first model is that of one common environment, and the second model is that of independent identically distributed environments. Numerically we calculate the suboptimality gap under Whittle's index policy W (m, d), Whittle's index policy for a fixed environment W (d) (m), and the policy that for each set of parameters chooses uniformly at random which bandit to serve in each state (1/2 of probability of serving each class, in each state). We do this for 200 sets of randomly generated parameters in order to obtain a boxplot. This allows us to plot for each policy the 25th and 75th percentiles, the median value with an horizontal line and the outliers with "+". Figure 3 (left) considers random sets of parameters chosen as follows: The parameters are chosen uniformly at random such that λ [START_REF] Ji | Achieving optimal throughput and near-optimal asymptotic delay performance in multichannel wireless networks with low complexity: a practical greedy scheduling policy[END_REF], and θ

(d) k = λ ∈ [1, 10], µ (d) k ∈ [1, 20], r (d) k = r (d) ∈ [1,
(d) k = θ ∈ [0.1, 0.5], for k = 1, 2 and d = 1, 2.
We observe that the suboptimality gap of policies W (m, d) and W (d) (m) is very small, both for independent environments as well as for a common environment. The random policy shows worse performance having a median of the suboptimality gap in 18%. The fact that the policy W (d) (m) performs similar to Whittle's index policy W (m, d) is surprising. The former does not take into account that the environment changes dynamically over time. To show that W (d) (m) is not an efficient policy, we narrow our set of randomly generated parameters. As before, we chose the parameters λ = µ, where the value µ is chosen uniformly at random in the interval [START_REF] Aalto | Whittle index approach to size-aware scheduling with timevarying channels[END_REF][START_REF] Ji | Achieving optimal throughput and near-optimal asymptotic delay performance in multichannel wireless networks with low complexity: a practical greedy scheduling policy[END_REF]. In environment d = 1, we take µ (1) 1 = µ -a and µ (1) 2 = µ + a, where a ∈ [0, µ] is chosen uniformly at random. Now, the fixed policy W (d) (m) will give equal priority to classes 1 and 2 in environment 2. However, since the environment will change later to state d = 1, it could have been better to prioritize class 1 in environment 2, because in environment 1 it will have a lower departure rate, while class 2 has a higher departure rate. This effect of changing environments is taken into account in the Whittle index policy W (m, d). Figure 3 (right) plots the result for 200 samples. As expected, Whittle's index policy has an suboptimality gap close to 0, as in the previous example, while this is not the case for Whittle's index policy for a fixed environment, W (d) k (m). For the latter policy, the median is 4% and the 75th percentile is 15% for the common environment setting and the median is 3% and the 75th percentile is 9% for the independent environments setting.

Particular example

From the above boxplots, we conclude that even in a common environment, Whittle's index performs rather well. Below we show that this is not always the case. We obtain a set of parameters such that Whittle's index policy has a good performance when the environments are independent, but it performs bad when the environments are common for both bandits. We choose the following parameters: the arrival rates are λ

(d) k = 4γ, γ > 0, for k = 1, 2, d = 1, 2,
and hence independent of the environment. The departure rates are µ

(1) 1 = 8, µ (2) 1 = 5, µ (1) 2 = 27, µ (2) 2 = 21, hence µ (d) 1 < µ (d)
2 , for each environment d. The abandonment rates are θ

(1) 1 = 0.1, θ (2) 1 = 0.1, θ (1) 2 = 0.4, θ (2) 2 = 0.3, hence θ (d) 1 < θ (d)
2 , for each environment d. These parameters satisfy the following inequalities:

1) W (1) 2 << W (1) 1 and 2) W (2) 1 < W (1) 2 .
As such, when the environment is in state (D 1 (t), D 2 (t)) = (1, 1), the indices (relation 1) indicate that preference is leaning towards serving class 1. This is surprising, since the departure rate for class 1, µ (1) 1 = 8 is much smaller than the departure rate for class 2 in environment 1, µ (1) 2 = 27. However, when (D 1 (t), D 2 (t)) = (2, 1), then from relation 2, one sees that preference leans towards serving class 2 at its high departure rate 27. When the two environments are independent, one visits this state a positive fraction of time and hence profits from the highest departure rate for class 2. If instead the environment for both classes is common, one is never in state (D 1 (t), D 2 (t)) = (2, 1), explaining why Whittle's index policy can have a large suboptimality gap. We consider three cases for the environment parameters:

• in the first set, both environments D 1 (t), D 2 (t) are identically distributed and their transition rates are given by r • In the second set, the environments are non-identical and their transition rates are given by r

(1) 1 = 15β, r (2) 1 = 17β, r (1) 2 
= 10β and r • In the third set, the environments are common with r (1) = 15β and r (2) = 17β, k = 1, 2, with β > 0. Thus, φ (1) = 17/32 and φ (2) = 15/32. Indicated in the plot by "common".

Note that Condition 1 and Condition 2, which were needed in order to prove indexability, are not satisfied for the above parameters. However, numerically we observed that for this parameter setting, the system is indexable.

Scaling arrivals

We first study the suboptimality gap as the load in the system changes. We set β = 1. In Figure 4 (left) the relative suboptimality gap under Whittle's index policy (denoted by W (m, d)) is plotted as a function of γ. For the independent environment settings, the gap is not larger than 7%, and is 1% when in overload. However, in a common environment, the gap can be around 25%.

Scaling speed of the environments

We now study the suboptimality gap as the speed of the environments changes.

In Figure 4, (right) the suboptimality gap for both policies W (m, d) and W (d) (m) is plotted as a function of the speed of the transitions of the environment (and γ = 1). For the two independent environment settings, we observe that for β around 10 -2 , the performance under Whittle's index policy W (m, d) and the policy W (d) (m) are very similar. Their suboptimality gap is less than 12%. On the other hand, for the common environment, the suboptimality gap under Whittle's index policy is around 23% when the transition rates of the environments are not scaled. Surprisingly, the fixed Whittle index performs rather well for any choice of β.

Recall from Proposition 1 that Whittle's index W (m, d) converges as β → 0 to W (d) (m). This explains why in Figure 4, (right) the performance of Whittle's index policy converges towards the fixed Whittle index policy. Under linear cost,

W (d) (m) is equal to cµ (d) k /θ (d)
k , for k = 1, 2 and d = 1, 2. In Figure 5, we plot Whittle's index in state m = 1 and m = 10, respectively, as well as the values cµ

(d) k /θ (d)
k . We see in both cases the convergence as β → 0.

Unobservable environments

In practice, the environment might not be observable due to technical constraints. In this section, we assess the performance degradation in case information on the environment is not available. In [START_REF] Duran | Asymptotic optimal control of markov-modulated restless bandits[END_REF] it was shown that so-called averaged Whittle index policy are asymptotically optimal when the state of environments is unobservable, as the number of bandits grows large together with the speed of the environment. In particular, from [START_REF] Duran | Asymptotic optimal control of markov-modulated restless bandits[END_REF] together with [START_REF] Larrañaga | Asymptotically optimal index policies for an abandonment queue with convex holding cost[END_REF], one obtains that for the abandonment multi-class queue with linear cost, the averaged Whittle index W k (m), is given by

W k (m) = c k θ k µ k , with θ k := d∈Z φ k (d)θ (d) k and µ k := d∈Z φ k (d)µ (d)
k . We present here boxplots that compare the performance of the averaged Whittle index policy, W (m), to the Whittle index policy, W (m, d), obtained for the observable model. We further include the policy that for each set of parameters chooses at random which bandit to serve in each state. We consider two models for the environment: (i) one common environment for both classes, (ii) independent identically distributed environments. We first consider 200 sets of randomly generated parameters. In Figure 6 (left) the parameters are chosen uniformly at random such that λ

(d) k = λ ∈ [1, 10], µ (d) k ∈ [1, 20], r (d) k = r (d) ∈ [1, 20], and θ (d)
k ∈ [0.1, 0.5], for k = 1, 2 and d = 1, 2. We observe that the suboptimality gap of policy W (m, d) is very small, with a median of 0% for both the common environment and the independent environments setting. The suboptimality gaps of policy W (m) are larger, with a median of 7% for the common environment setting and 10% for the independent environments setting. The random policy shows worse performance, where the median of the suboptimality gap is above 20% in both cases. For Figure 6 (right), we narrow our set of randomly generated parameters. In particular, we choose parameters such that the optimal action depends on the state of the environment. The averaged index policy will not be able to mimic this, since it is a static policy. We fix the parameters such that W

(1) 1

>> W

(1) 2 and W

(2) 1

<< W

(2) 2 . Hence, in environment 1 it will be optimal to serve bandit 1 with high probability, and in environment 2 it will be optimal to serve bandit 2 with high probability. In the boxplot of Figure 6 (right), we still observe that the median of the suboptimality gap of policy W (m, d) is 0% in both cases, while the median of the suboptimality gap of policy W (m) is 29% for the common environment setting and 22% for the independent environments setting. In Figure 6, we considered that the environment has transition rates of the same order as the main process. In a separate analysis we consider environments whose transition rates are 100 times larger than the transitions rates of the controllable process. We recall that the averaged Whittle's index policy W (m) was proved to be optimal in a rapidly varying unobservable environment [START_REF] Duran | Asymptotic optimal control of markov-modulated restless bandits[END_REF]. In the boxplots of Figure 7 the parameters are chosen as in Figure 6, except for the rates of the environment, where we take r

(d) k = r (d) ∈ [100, 2000].
We consider 200 sets of parameters for each boxplot. In this case we observe that the suboptimality gap of policy W (m, d) is still small, below 1% in both boxplots and in both settings. The median of the suboptimality gap of policy W (m) for the random parameters (left) is 9% for the common environment setting, and 12% for the independent environments setting, and for the constrained parameters (right) is 24% for the common environment setting, and 20% for the independent environments setting. We conclude that in both regimes, with normal speed and with fast speed, there is an important loss in performance if we consider an unobservable policy. 

Conclusions and further work

In this paper we have introduced and studied a stochastic control problem with environments. The transition rates of the controllable processes depended on the state of the environments, which were assumed to be exogenous processes. Given the complexity of the problem, we focused on the approximate approach pioneered by Whittle, which is known to yield extremely good performing heuristics. We took as a case study a multi-class queue with abandonments, for which we obtained a closedform expression for Whittle's index. These results are restricted to having only two environment states. They crucially rely on the rate-conservation law stated in Lemma 3, which allowed us to simplify the formula for Whittle's index, see Lemma 5. We did not succeed in generalizing this approach to an arbitrary number of environment states. As a first step in future research, it would be worthwhile to consider more than two environment states, but with a specific structure for the transition of the environment state such as birth-and-death, cyclic, etc. 10 Appendix 10.1 Proof of Lemmas of Section 5.2.

Proof of Lemma 1:

The measure p n d ,(d) (m) is the stationary distribution of the one-dimensional process with the following rates for m ≥ 0: q(m + 1|m) = λ (d) , and q((m -1) + |m) = mθ (d) + 1 (m>n d ) µ (d) , Let p n d ,(d) (m) be the stationary measure of this process, which satisfies the following balance equations:

λ (d) + mθ (d) + 1 (m>n d ) µ (d) p n d ,(d) (m) (30) = 1 (m>0) λ (d) p n d ,(d) (m -1) + (m + 1)θ (d) + 1 (m+1>n d ) µ (d) p n d ,(d) (m + 1),
for all m ≥ 0, d.

The balance equations for π n (m, d) are

(λ (d) + mθ (d) + 1 (m>n d ) µ (d) + βr (d) )π n (m, d) (31) = 1 (m>0) λ (d) π n (m -1, 1) + (m + 1)θ (d) + 1 (m+1>n d ) µ (d) π n (m + 1, d) + d =d βr (dd ) π n (m, d ),
for all m ≥ 0, d. The stationary probability measure that satisfies the balance equations is unique. As β → 0, ( 31) is equal to [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF] with p n d ,(d) (m) replaced by lim β→0 π n (m, d). After normalisation, we hence have that lim

β→0 π n (m, d) = φ(d)p n d ,(d) (m)
, for all m ≥ 0.

Proof of Lemma 2:

Recall that for a given β, n j (β), j = 0, . . . , is the minimisation vector obtained in [START_REF] Borkar | Whittle indexability in egalitarian processor sharing systems[END_REF], and nj = lim β→0 n j (β).

For n ≥ nj d , define

Âj d (n) := ∞ m=0 C (m, d, a) p n,(d) (m) - ∞ m=0 C (m, d, a) p nj d ,(d) (m) Bj d (n) := n m=0 p n,(d) (m) - nj d m=0 p nj d ,(d) (m).
We define the function

f j ( n) := lim β→0 Z d=1 ∞ m=0 C (m, d, a) π n (m, d) -Z d=1 ∞ m=0 C (m, d, a) π n j (β) (m, d) Z d=1 n d m=0 π n (m, d) -Z d=1 n j d (β) m=0 π n j (β) (m, d) , ( 32 
)
for n ∈ E j . By Lemma 1 and since M n(β) is uniform integrable, we have that

f j ( n) is equal to Z d=1 ∞ m=0 C (m, d, a) φ(d)p n d ,(d) (m) -Z d=1 ∞ m=0 C (m, d, a) φ(d)p nj d ,(d) Z d=1 n d m=0 φ(d)p n d ,(d) -Z d=1 nj d m=0 φ(d)p nj d ,(d)
.

Proof of Proposition 2:

For a given L 1, we truncate the state space at L and we smooth the arrival transitions by

q L (m + 1|m, d, a) := λ (d) 1 - m L + , (38) 
for m = 0, 1, . . . , L.

Convexity of V L

We assume 1 = λ (1) + λ (2) + µ (1) + µ (2) + r (1) + r (2) + Lθ (1) + Lθ (2) for the uniformization constant, without loss of generality. For any d and m = 0, . . . , L, we initialize by defining V L 0 (m, d) = 0 and

V L t+1 (m, d) = 1 - m L λ (d) V L t (min{m + 1, L}, d) + r (d) V L t (m, 3 -d) + mθ (d) V L t ((m -1) + , d) + min{-W + C(m, d, 0) + µ (2) V L t (m, d), C(m, d, 1) + µ (2) V L t ((m -1) + , d)} + m L λ (d) V L t (m, d) + (L -m)θ (d) V L t (m, d) + λ (3-d) + µ (3-d) + r (3-d) + Lθ (3-d) V L t (m, d).
We will prove that

2V L t (m, d) ≤ V L t ((m -1) + , d) + V L t (m + 1, d), for 0 ≤ m ≤ L -1, (39) 
for any t, i.e. the convexity of V L . We first prove by induction in t that V L t (m, d) is non-decreasing in m. Note that V L 0 (m, d) = 0 is non-decreasing by definition, so we assume V L t (m, d) is non-decreasing and we prove that

V L t+1 (m + 1, d) -V L t+1 (m, d) ≥ 0 for 0 ≤ m ≤ L -1. (40) 
We study the inequality splitting in terms according to the parameter that is multiplying. Firstly, we look to the terms multiplied by λ (d) in

V L t+1 (m + 1, d) -V L t+1 (m, d), so we have λ (d) 1 - m + 1 L V L t (min{m + 2, L}, d) + λ (d) m + 1 L V L t (min{m + 1, L}, d) -λ (d) 1 - m L V L t (min{m + 1, L}, d) - m L λ (d) V L t (m, d) = λ (d) 1 - m + 1 L V L t (min{m + 2, L}, d) + m L λ (d) V L t (min{m + 1, L}, d) -λ (d) 1 - m + 1 L V L t (min{m + 1, L}, d) - m L λ (d) V L t (m, d) = λ (d) 1 - m + 1 L (V L t (min{m + 2, L}, d) -V L t (min{m + 1, L}, d)) + m L λ (d) (V L t (min{m + 1, L}, d) -V L t (m, d)) ≥ 0.
The last inequality is due to the inductive hypothesis for V L t (m, d). Let us consider now the terms multiplied by θ (d) :

(m + 1)θ (d) V L t (m, d) + (L -m -1)θ (d) V L t (min{m + 1, L}, d) -mθ (d) V L t ((m -1) + , d) -(L -m)θ (d) V L t (m, d) = mθ (d) V L t (m, d) + (L -m -1)θ (d) V L t (min{m + 1, L}, d) -mθ (d) V L t ((m -1) + , d) -(L -m -1)θ (d) V L t (m, d) ≥ mθ (d) (V L t (m, d) -V L t ((m -1) + , d)) + (L -m -1)θ (d) (V L t (min{m + 1, L}, d) -V L t (m, d)) ≥ 0.
The last inequality holds because of the non-decreasing hypothesis for V L t (m, d). For the terms multiplied by r (d) it is straightforward that

r (d) V L t (m + 1, 3 -d) -r (d) V L t (m, 3 -d) ≥ 0,
because of the inductive hypothesis as well. Equivalently for the dummy transition terms,

(λ (3-d) + µ (3-d) + r (3-d) + Lθ (3-d) ) (V L t (m + 1, d) -V L t (m, d)) ≥ 0.
Finally, we consider the minimisation terms in

V L t+1 (m + 1, d) -V L t+1 (m, d),
where the inequality is a consequence of the non-decreasing property of V L t (m, d) and C, and the fact that if A ≥ B and A ≥ B , then min{A, A } ≥ min{B, B }:

min{-W + C(min{m + 1, L}, d, 0) + µ (2) V L t (min{m + 1, L}, d), C(min{m + 1, L}, d, 1) + µ (2) V L t (m, d)} ≥ min{-W + C(m, d, 0) + µ (2) V L t (m, d), C(m, d, 1) + µ (2) V L t ((m -1) + , d)}.
This concludes the proof of (40), i.e., V L t is non-decreasing. We consider now equation (39). Note that for m = 0 the equation reduces to d), which is true for every t and every d, because V L t is non-decreasing in m. Then for 1 ≤ m ≤ L -1, we make an analogous reasoning: we prove it by induction in t and we split the inequalities according to the multiplying parameters. For the initial step V L 0 (m) = 0 the inequality holds, so we assume it holds for V L t (m, d) and we study the inequality (39) for t + 1. Note that

V L t (0, d) ≤ V L t (1,
2V L t+1 (m, d) =2 1 - m L λ (d) V L t (m + 1, d) + 2 m L λ (d) V L t (m, d) (41) + 2r (d) V L t (m, 3 -d) + 2mθ (d) V L t (m -1, d) + 2(L -m)θ (d) V L t (m, d) + 2 min{-W + C(m, d, 0) + µ (2) V L t (m, d), C(m, d, 1) + µ (2) V L t (m -1, d)} + 2 λ (3-d) + µ (3-d) + r (3-d) + Lθ (3-d) V L t (m, d) The term V L t+1 (m -1, d) + V L t+1 (m + 1, d) equals λ (d) 1 - m -1 L V L t (m, d) + λ (d) 1 - m + 1 L V L t (min {m + 2, L} , d) + λ (d) m -1 L V L t (m -1, d) + λ (d) m + 1 L V L t (m + 1, d) + r (d) V L t (m -1, 3 -d) + r (3-d) V L t (m -1, d) + r (d) V L t (m + 1, 3 -d) + r (3-d) V L t (m + 1, d) + (m -1)θ (d) V L t ((m -2) + , d) + (m + 1)θ (d) V L t (m, d) + (L -m + 1)θ (d) V L t (m -1, d) + (L -m -1)θ (d) V L t (m + 1, d) + min{-W + C(m -1, d, 0) + µ (2) V L t (m -1, d), C(m -1, d, 1) + µ (2) V L t ((m -2) + , d)} + min{-W + C(m + 1, d, 0) + µ (2) V L t (m + 1, d), C(m + 1, d, 1) + µ (2) V L t (m, d)} (42) + λ (3-d) + µ (3-d) + r (3-d) + Lθ (3-d) V L t (m -1, d) + λ (3-d) + µ (3-d) + r (3-d) + Lθ (3-d) V L t (m + 1, d).
We first compare the two terms multiplied by λ (d) in (41) to check they are smaller than or equal to the ones multiplied by λ (d) in (42). First assume 1 ≤ m ≤ L -2. The terms multiplied by λ (d) in ( 41) are

2 1 - m L V L t (m + 1, d) + 2 m L V L t (m, d) = 2 1 - m + 1 L V L t (m + 1, d) + 2 m L V L t (m, d) + 2 L V L t (m, d) ≤ 1 - m + 1 L V L t (m, d) + 1 - m + 1 L V L t (m + 2, d) + 2 m L V L t (m, d) + 2 L V L t (m + 1, d) = 1 - m -1 L V L t (m, d) - 2 L V L t (m, d) + 1 - m + 1 L V L t (m + 2, d) + 2 m L V L t (m, d) + 2 L V L t (m + 1, d) = 1 - m -1 L V L t (m, d) + 1 - m + 1 L V L t (m + 2, d) + 2 m -1 L V L t (m, d) + 2 L V L t (m + 1, d) (43) 
Because of convexity, we know that 2

m-1 L V L t (m, d) ≤ m-1 L (V L t (m -1, d) + V L t (m + 1, d)), hence
the third term in (43) can be bounded, and we obtain:

2 1 - m L V L t (m + 1, d) + 2 m L V L t (m, d) ≤ 1 - m -1 L V L t (m, d) + 1 - m + 1 L V L t (m + 2, d) + m -1 L V L t (m -1, d) + V L t (m + 1, d) + 2 L V L t (m + 1, d) ≤ 1 - m -1 L V L t (m, d) + 1 - m + 1 L V L t (m + 2, d) + m -1 L V L t (m -1, d) + m + 1 L V L t (m + 1, d), (44) 
which is the same as the terms multiplied by λ (d) in (42). Now assume m = L -1, then inequality (39) reduces to 2(1

-2/L)V L t (L -1, d) ≤ (1 -2/L)(V L t (L -2, d) + V L t (L, d))
, which holds because of convexity of V L t . We consider now the terms multiplied by θ (d) . We need to prove

2mV L t (m -1, d) + 2(L -m)V L t (m, d) ≤ (m -1)V L t ((m -2) + , d) + (m + 1)V L t (m, d) + (L -m + 1)V L t (m -1, d) + 2V L t (m -1, d) + (L -m -1)V L t (m + 1, d), or, equivalently, 2(m -1) 
V L t (m -1, d) + 2(L -m -1)V L t (m, d) ≤ (m -1)V L t ((m -2) + , d) + (m -1)V L t (m, d) + (L -m -1)V L t (m -1, d) + (L -m -1)V L t (m + 1, d).
This last inequality is obtained from the convexity property for 2V L t (m -1, d) and 2V L t (m, d) on the lhs. For the terms multiplied by r (d) , and the dummy transitions (λ (3-d) + µ (3-d) + r (3-d) + Lθ (3-d) ), the inequalities to prove are

2r (d) V L t (m, 3 -d) ≤ r (d) V L t (m -1, 3 -d) + r (d) V L t (m + 1, 3 -d) and 2(λ (3-d) + µ (3-d) + r (3-d) + Lθ (3-d) )V L t (m, d) ≤ (λ (3-d) + µ (3-d) + r (3-d) + Lθ (3-d) ) (V L t (m -1, d) + V L t (m + 1, d)),
which are a direct consequence of convexity of V L t . We lastly consider the minimisation terms, for which we analyse each possible combination of optimal actions in states m -1 and m + 1. Since at time t, V L t is convex, the optimal actions satisfy the optimality of threshold policies. Denote by a * m ∈ {0, 1} the optimal action in state m, where action 0 (1) is passive (active). Then, since the threshold policy is optimal at time t, (a * m-1 , a * m+1 ) equals (0, 0), (0, 1) or [START_REF] Aalto | Whittle index approach to size-aware scheduling with timevarying channels[END_REF][START_REF] Aalto | Whittle index approach to size-aware scheduling with timevarying channels[END_REF]. We also use Property [START_REF] Gast | A mean field approach for optimization in discrete time[END_REF], regarding the cost function. For a * = (0, 1) and 1 ≤ m ≤ L -1 we have

2 min{-W + C(m, d, 0) + µ (2) V L t (m, d), C(m, d, 1) + µ (2) V L t (m -1, d)} ≤ -W + C(m, d, 0) + µ (2) V L t (m, d) + C(m, d, 1) + µ (2) V L t (m -1, d) ≤ -W + C(m -1, d, 0) + µ (2) V L t (m, d) + C(m + 1, d, 1) + µ (2) V L t (m -1, d) = min{-W + C(m -1, d, 0) + µ (2) V L t (m -1, d), C(m -1, d, 1) + µ (2) V L t ((m -2) + , d)} + min{-W + C(m + 1, d, 0) + µ (2) V L t (m + 1, d), C(m + 1, d, 1) + µ (2) V L t (m, d)},
where in the last equality the value for the minimums are given by the optimal action a * = (0, 1).

For a * = (0, 0), we use convexity of C and V L t :

2 min{-W + C(m, d, 0) + µ (2) V L t (m, d), C(m, d, 1) + µ (2) V L t (m -1, d)} = -2W + 2C(m, d, 0) + 2µ (2) V L t (m, d) ≤ -2W + C(m -1, d, 0) + C(m + 1, d, 0) + µ (2) V L t (m -1, d) + µ (2) V L t (m + 1, d) = min{-W + C(m -1, d, 0) + µ (2) V L t (m -1, d), C(m -1, d, 1) + µ (2) V L t ((m -2) + , d)} min{-W + C(m + 1, d, 0) + µ (2) V L t (m + 1, d), C(m + 1, d, 1) + µ (2) V L t (m, d)}.
Equivalently for a * = (1, 1), we make use of convexity properties:

2 min{-W + C(m, d, 0) + µ (2) V L t (m, d), C(m, d, 1) + µ (2) V L t (m -1, d)} = 2C(m, d, 1) + 2µ (2) V L t (m -1, d) ≤ C(m -1, d, 1) + C(m + 1, d, 1) + µ (2) V L t ((m -2) + , d) + µ (2) V L t (m, d) = min{-W + C(m -1, d, 0) + µ (2) V L t (m -1, d), C(m -1, d, 1) + µ (2) V L t ((m -2) + , d)} min{-W + C(m + 1, d, 0) + µ (2) V L t (m + 1, d), C(m + 1, d, 1) + µ (2) V L t (m, d)}.
This finishes the proof of (39) for t + 1, hence function V L t is convex. By [START_REF] Puterman | Markov Decision Processes: Discrete Stochastic Dynamic Programming[END_REF]Chapter 9.4] it follows that V L t (•) -tg → V L as t → ∞, where g is the averaged cost incurred under the optimal policy. Hence, convexity of V L t implies convexity of V L .

Hypothesis needed for [7, Theorem 3.1]

In this section, we verify that V L → V as L → ∞. In particular, we verify that the sufficient conditions as stated in [7, Theorem 3.1] hold. For ease of notation, we introduce q L ((m , d )|(m, d), a) as the transition rate of the truncated process from state (m, d) to state (m , d ), when action a is applied. That is, 

q L ((m + 1, d)|(m, d), a) = λ (d) 1 - m L + , q L (((m -1) + , d)|(m, d), a) = mθ (d) + aµ (d)

Proof of Lemma 3

Since each class-k job abandons with a rate θ

(d)
k > 0 when in environment d, it is certain that the system is stable and existence of the steady-state distribution is guaranteed. Stability implies that the long-run number of job arrivals will be the same as the long-run number of departures. The same applies to a subsystem corresponding to one state of the environment. That is, for environment d, we consider the process M n (t)1 (D(t)=d) and refer to it as the process of the subsystem d. Hence, when the environment is in state D(t) = d, the subsystem d has all the jobs, and the subsystem in environment 3 -d is empty. Accordingly, when the environment changes its state, all jobs "move" from one subsystem to the other subsystem.

Since the Markov chain is unichain, stability also implies that the long-run number of arrivals and departures in each of these subsystems will be equal. This is precisely what Equation ( 17) captures. To see this, we note that the long-run number of arrivals of new customers to subsystem d is λ (d) φ(d). Arrivals to subsystem d might also come from subsystem 3 -d when the environment changes from state 3 -d to state d. This happens with rate r (3-d) and gives an average increase in the number of jobs in subsystem d by E M n 1 (D=3-d) .

Regarding the departures, the long-run number of departures due to service completions in subsystem d equals µ (d) ∞ m=n d +1 π n (m, d). The long-run number of departures due to abandonments in subsystem d equals θ (d) E M n 1 (D=d) . All customers leave subsystem d in a batch in case the environment changes from state d to state 3 -d. This happens with rate r (d) and gives an average decrease of E M n 1 (D=d) . Equation ( 17) now follows by equating the long-run number of arrivals and the long-run number of departures. Without loss of generality, we assume that the increasing term is n 1 . Then, for a given (n 1 , n 2 ), we will show that

n 1 m=0 π (n 1 ,n 2 ) (m, 1) ≤ n 1 +1 m=0 π (n 1 +1,n 2 ) (m, 1).
The idea of the proof relies on using the comparison result 9.3.2 in [START_REF] Boucherie | Queueing networks: a fundamental approach[END_REF]Chapter 9], for both processes given by the threshold policies (n 1 , n 2 ) and (n 1 + 1, n 2 ). For that, we define the following cost function:

C n (m, d, a) := 1 if d = 1 and m ≤ n 1 0 otherwise.
In other words, C n (m, d, a) = 1 if and only if the state of the environment is 1 and the process is in a passive state for policy n. We also define the resulting expected reward per unit time,

G n := n 1 m=0
π n (m, 1).

The remainder of the proof consists in showing

G (n 1 ,n 2 ) ≤ G (n 1 +1,n 2 ) . ( 46 
)
Since the result 9. 

V n,L t+1 (m, d) = C n (m, d, 1 m>n d ) H(L) + (m ,d ) P n,L (m , d )|(m, d), 1 m>n d V n,L t (m , d ).
Let G n L denote the expected reward for the truncated processes, and, using result 9.3.2 in [11, Chapter 9], we will prove that

G (n 1 ,n 2 ),L ≤ G (n 1 +1,n 2 ),L . ( 47 
)
In order to apply result 9.3.2 in [START_REF] Boucherie | Queueing networks: a fundamental approach[END_REF]Chapter 9], we need to prove that for all states (m, d) and t ≥ 0,

C (n 1 +1,n 2 ) (m, d, a) -C (n 1 ,n 2 ) (m, d, a) (48) + (m ,d ) q (n 1 +1,n 2 ),L ((m , d )|(m, d), a) -q (n 1 ,n 2 ),L ((m , d )|(m, d), a) • V (n 1 ,n 2 ),L t (m , d ) -V (n 1 ,n 2 ),L t (m, d) ≥ 0. Note that for (m, d) = (n 1 + 1, 1), C (n 1 +1,n 2 ) (m, d, a) = C (n 1 ,n 2 ) (m, d, a), and q (n 1 +1,n 2 ),L ((m , d )|(m, d), a) = q (n 1 ,n 2 ),L ((m , d )|(m, d), a)
, for any (m , d ). Thus the inequality holds directly. It remains to check the state (m, d) = (n 1 + 1, 1). The only difference in rates between q (n 1 +1,n 2 ),L and q (n 1 ,n 2 ),L is the transition to state (n 1 , 1). Hence, inequality (48) simplifies to 1 -µ (1) V

(n 1 ,n 2 ),L t (n 1 , 1) -V (n 1 ,n 2 ),L t (n 1 + 1, 1) ≥ 0, or equivalently, V (n 1 ,n 2 ),L t (n 1 , 1) -V (n 1 ,n 2 ),L t (n 1 + 1, 1) ≤ 1 µ (1) . ( 49 
)
By induction, we can prove the following more general result. For ease of reading, its proof appears in Appendix 10.4.2.

Lemma 7.

V (n 1 ,n 2 ),L t (m, d) -V (n 1 ,n 2 ),L t (m + 1, d) ≤ 1 µ (1) , ∀ 0 ≤ m ≤ L -1, d = 1, 2.
With this Lemma, the proof for the truncated processes is done and (47) holds. To generalize this for the original processes with unbounded rates we use the following result from [33, Theorem 3.1].

There exist constants K 1 , K 2 such that

G (n 1 ,n 2 ),L -G (n 1 ,n 2 ) ≤ K 1 H(L) , G (n 1 +1,n 2 ),L -G (n 1 +1,n 2 ) ≤ K 2 H(L) . V t+1 (n 1 , 1) -V t+1 (n 1 + 1, 1) = 1 H + 1 H n 1 θ (1) (V t (n 1 -1, 1) -V t (n 1 , 1)) + r (1) (V t (n 1 , 2) -V t (n 1 + 1, 2)) + λ (1) (V t (n 1 + 1, 1) -V t (n 1 + 2, 1)) -θ (1) + µ (1) (V t (n 1 , 1) -V t (n 1 + 1, 1)) + H -n 1 θ (1) -r (1) -λ (1) (V t (n 1 , 1) -V t (n 1 + 1, 1)) = 1 H + 1 H n 1 θ (1) (V t (n 1 -1, 1) -V t (n 1 , 1)) + r (1) (V t (n 1 , 2) -V t (n 1 + 1, 2)) + λ (1) (V t (n 1 + 1, 1) -V t (n 1 + 2, 1)) + H -n 1 θ (1) -θ (1) -µ (1) -r (1) -λ (1) (V t (n 1 , 1) -V t (n 1 + 1, 1)) ≤ 1 H + 1 H n 1 θ (1) 1 µ (1) + r (1) 1 µ (1) + λ (1) 1 µ (1) + H -n 1 θ (1) -θ (1) -µ (1) -r (1) -λ (1) 1 µ (1) = H -θ (1)
Hµ (1) ≤ 1 µ (1) .

For states (m, d) = (n 1 , 1), C n (m, d, a) = C n (m + 1, d, a), which makes the inequality easier to check. Again, using similar algebraic calculations, we can conclude that V t+1 (m, d) -V t+1 (m + 1, d) ≤ 1/µ (1) and the Lemma is proved.

Proof of Property 2) in Lemma 4:

We compare again the processes (n 1 , n 2 ) with (n 1 + 1, n 2 ). In this case we have to prove

n 2 m=0 π (n 1 ,n 2 ) (m, 2) ≥ n 2 m=0 π (n 1 +1,n 2 ) (m, 2).
We denote by M (n 1 ,n 2 ) (t) and M (n 1 +1,n 2 ) (t) the controllable processes of the bandit, under policies (n 1 , n 2 ) and (n 1 + 1, n 2 ) respectively, with initial state given by the stationary measure. Note that their distribution is given by π n : for a given m ∈ X ,

P(M n (t) = m) = π n (m, 1) + π n (m, 2).
A simple coupling argument shows that M (n 1 ,n 2 ) (t) ≤ st M (n 1 +1,n 2 ) (t), since they have the same rates in every state except for (n 1 +1, 1), where M (n 1 +1,n 2 ) (t) does not serve and, as a consequence, it has a lower death rate. Furthermore, the previous statement is true when looking to the second environment, i.e., M (n 1 ,n 2 ) (t)1 (D(t)=2) ≤ st M (n 1 +1,n 2 ) (t)1 (D(t)=2) . This inequality implies that for any n ∈ X ,

n m=0 π (n 1 ,n 2 ) (m, 2) = P M (n 1 ,n 2 ) (t) ≤ n, D(t) = 2 ≥ P M (n 1 +1,n 2 ) (t) ≤ n, D(t) = 2 = n m=0 π (n 1 +1,n 2 ) (m, 2).
If we take n = n 2 , the Proposition is proved.

Proof of Proposition 3:

Slow regime. We assume without loss of generality µ (1) θ (1) + r (1) + r (2) ≤ µ (2) θ (2) + r (1) + r (2) . Note that

lim β→0 W (d) = c µ (d) θ (d) for both d = 1, 2. Together with Theorem 2, it is direct that lim β→0 W (m, 2) = c µ (2)
θ (2) for m ≥ 0. For d = 1, recall from the definition of the crossing points n j that the linear functions g (n j-1 ,0) and g (n j ,0) are not parallel. Thus, Lemma 5 can be applied, and we obtain that W ((n j-1 , 0), (n j , 0)) is written as a function of s 1 ((n j-1 , 0), (n j , 0)) and s 2 ((n j-1 , 0), (n j , 0)). For any j ≥ 0, s 2 ((n j-1 , 0), (n j , 0)) = π (n j-1 ,0) (0, 2) -π (n j ,0) (0, 2). From Lemma 1 we can deduce that for any d ∈ Z and any pair of policies n, n such that

n d = n d , lim β→0 π n (m, d) = lim β→0 π n (m, d) ∀m ≥ 0. ( 50 
)
In particular, lim β→0 s 2 ((n j-1 , 0), (n j , 0)) = 0.

Then, following from [START_REF] Larrañaga | Dynamic control of birth-and-death restless bandits: application to resource-allocation problems[END_REF], lim β→0 W ((n j-1 , 0), (n j , 0)) = W (1) = c µ (1) θ (1) , which concludes the proof for the slow regime.

Fast regime. Since φ(d) = r (3-d) r (1) + r (2) and θ = 2 d=1 φ(d)θ (d) , we can write

lim β→∞ W (d) = lim β→∞ cµ (d) β(r (1) + r (2) ) + θ (3-d) β(r (1) θ (2) + r (2) θ (1) ) + θ (1) θ (2) = lim β→∞ cµ (d) 1 + θ (3-d) β(r (1) +r (2) ) β(r (1) θ (2) +r (2) θ (1) ) β(r (1) +r (2) ) + θ (1) θ (2) β(r (1) +r (2) ) = lim β→∞ cµ (d) 1 + θ (3-d) β(r (1) +r (2) ) (φ(2)θ (2) + φ(1)θ (1) ) + θ (1) θ (2) β(r (1) +r (2) ) = c µ (d) θ ,
which gives the value of the index for d = 2.

10.6 Proof of results in Section 6.3.

10.6.1 Proof of Lemma 5: expression for W ( n, n ).

Since

n d m=0 π n (m, d) + ∞ m=n d +1 π n (m, d) = φ(d), Lemma 3 for n states λ (d) φ(d) + r (3-d) ∞ m=0 mπ n (m, 3 -d) = (θ (d) + r (d) ) ∞ m=0 mπ n (m, d) + µ (d) φ(d) -µ (d) n d m=0 π n (m, d), or, equivalently, ∞ m=0 mπ n (m, d) = λ (d) φ(d) + r (3-d) ∞ m=0 mπ n (m, 3 -d) -µ (d) φ(d) + µ (d) n d m=0 π n (m, d) 1 θ (d) + r (d) ,
for d = 1, 2. After some algebra, we can solve these two equations in ∞ m=0 mπ n (m, 1) and ∞ m=0 mπ n (m, 2), and then we obtain

∞ m=0 mπ n (m, d) = λ (d) -µ (d) φ(d) θ (3-d) + r (3-d) + λ 3-d -µ (3-d) φ(3 -d)r (3-d) +µ (3-d) r (3-d) n 3-d m=0 π n (m, 3 -d) + µ (d) θ (3-d) + r (3-d) n d m=0 π n (m, d) • 1 θ (1) θ (2) + θ (2) r (1) + θ (1) r (2) , (51) 
for d = 1, 2. In the numerator in [START_REF] Larrañaga | Asymptotically optimal index policies for an abandonment queue with convex holding cost[END_REF], the terms can be regrouped per environment, i.e. (52)

From (51), and together with the notation s i ( n, n

) := n i m=0 π n (m, i) - n i m=0 π n (m, i), we obtain ∞ m=0 mπ n (m, d) - ∞ m=0 mπ n (m, d) = µ (d) θ (3-d) + r (3-d) s d ( n, n ) + µ (3-d) r (3-d) s 3-d ( n, n ) θ (1) θ (2) + θ (2)
r (1) + θ (1) r (2) . (53)

Summing we obtain the following expression for (52): (2) .

2 d=1 c ∞ m=0 mπ n (m, d) - ∞ m=0 mπ n (m, d) = c • µ (1) θ (2) + r (1) + r (2) s 1 ( n, n ) + µ (2) θ (1) + r (1) + r (2) s 2 ( n, n ) θ (1) θ (2) + r (1) θ (2) + r (2) θ (1) = s 1 ( n, n )W (1) + s 2 ( n, n )W
Since the denominator in ( 22) is s 1 ( n, n ) + s 2 ( n, n ), Lemma 5 is proved. Lemma 9. Assume Conditions 1 and 2 hold. For 0 ≤ W < W (2) there exists an L 0 large enough such that

V L (m, 2) -V L (m -1, 2) ≥ W/µ (2) ∀L ≥ L 0 and 1 ≤ m ≤ L. ( 57 
)
We can conclude now the proof of Lemma 8. From Lemma 9 there exists an L 0 such that inequality (57) holds for all L ≥ L 0 . Since V L → V , as stated in Section 10.2, inequality (55) is proved, which concludes the proof.

Proof of Lemma 9:

We define the parameters W L,(d) :

W L,(d) := cµ (d) θ (3-d) + r (1) + r (2) + λ (3-d) /L θ (1) + r (1) + λ (1) L θ (2) + r (2) + λ (2)
L -r (1) r (2) .

Note that W L,(d) → W (d) as L → ∞. We further define:

C L,(d) t (m) := V L t (m, d) -V L t (m -1, d), d = 1
, 2, and we will show that there exists an L 0 and t 0 such that for L ≥ L 0 and t ≥ t 0 ,

C L,(2) t (m) ≥ W/µ (2) for 1 ≤ m ≤ L, (58) 
We write C L,(d) t+1 (m) as follows:

C L,(d) t+1 (m) = V L t+1 (m, d) -V L t+1 (m -1, d) (59) = c γ + 1 - m L + λ (d) γ C L,(d) t (m + 1) + r (d) γ C L,(3-d) t (m) + (m -1)θ (d) γ C L,(d) t (m -1) + 1 γ min -W + µ (d) V t (m, d), µ (d) V t (m -1, d) - 1 γ min -W + µ (d) V t (m -1, d), µ (d) V t ((m -2) + , d) + m -1 L λ (d) γ C L,(d) t (m) + (L -m)θ (d) γ C L,(d) t (m) + λ (3-d) + µ (3-d) + r (3-d) + Lθ (3-d) γ C L,(d) t (m).
We have the following properties for functions C L,( 1) t (m) and C L,( 2) t (m).

Lemma 10. Assume 0 ≤ W < W (2) . Define

t 0 := min t t s.t. µ (d) C L,(d) t (m) ≥ W for a pair (m, d) .
Then there exists an L 1 large enough such that for

L ≥ L 1 , t 0 < ∞ and C L,(d) t (m) = C L,(d) t is constant in m for all t ≤ t 0 .
From the previous lemma, we have that t 0 is the minimum t such that either µ (1) 

C L,(1) t ≥ W or µ (2) C L,(2) t ≥ W for L ≥ L 1 .
Under Condition 1, we will prove that at time t 0 , it holds that µ (2) C L,(2) t 0 ≥ µ (1) C L,(1) t 0 , and hence µ (2) C L,(2) t 0 ≥ W . Lemma 11. Assume Condition 1 holds and let 0 ≤ W < W (2) and L > 0. Then µ (2) C L,(2) t ≥ µ (1) C L,(1) t for t ≤ t 0 .

The previous property allows us to state conditions under which inequality (58) holds in t = t 0 for all L ≥ L 1 . Note that for t > t 0 , Condition 2 will be sufficient to prove that (58) holds for t ≥ t 0 and for all m. Lemma 12. Assume Condition 2 holds and 0 ≤ W < W (2) . Then there exists an L 0 large enough such that for all L ≥ L 0 , C L,( 2) t (m) ≥ W/µ (2) , ∀1 ≤ m ≤ L and t ≥ t 0 .

Lemma 12 proves that (58) holds for 0 ≤ W < W (2) and L ≥ L 0 . Equivalently, (57) holds and the proof of Lemma 9 is finished.

We provide now the proofs of Lemmas 10, 11 and 12.

Proof of Lemma 10: Since the sequence W L, (2) → W (2) as L → ∞ and W < W (2) , we can take L 1 such that for all L ≥ L 1 W < W L, (2) . The property of C (m) = 0 as well. For a given t < t 0 we assume C L,(d) t (m) is constant, and we then prove this property for t + 1. Since µ (d) C L,(d) t (m) < W , at time t passive is the optimal action in (59) for m ≥ 1 and for W ≥ 0 passive is also optimal for m = 0. (m) + λ (3-d) + µ (3-d) + r (3-d) + Lθ (3-d) γ C + λ (3-d) + µ (3-d) + r (3-d) + Lθ (3-d) γ C + λ (3-d) + µ (3-d) + r (3-d) + Lθ (3-d) γ C . Following from (60), C L, (1) and C L, (2) are the solutions of the following system of equations. (1) = c γ + γ -θ (1) -r (1) -λ (1) L γ C L, (1) + r (1) γ C L, (2) C L, (2) = c γ + γ -θ (2) -r (2) -λ (2) L γ C L, (2) + r (2) γ C L, (1) (61)

         C L,
After some algebraic computation, we find that the solutions of this set of equations are C L, (1) = W L, (1) /µ (1) and C L, (2) = W L, (2) /µ (2) . If t 0 = ∞, then lim t→∞ µ (2) C L,(2) t ≤ W < W L, (2) , which gives a contradiction. Hence, t 0 < ∞. L γ + µ (1) r (1) γµ (2)   + ∆ t r (1) γ + c 1) t γ θ (1) + µ (2) r (2) µ (1) + r (1) -θ (2) -r (2) µ (1) r (1) µ (2) +∆ t   µ (2) (γ -θ (2) -r (2) -λ (2) L ) -µ (1) r (1) γµ (2)   + c(µ (2) -µ (1) ) γ .

Proof of

∆ t+1 = µ (1) C L,(
We show by induction that both C L,(1) t ≥ 0 and ∆ t ≥ 0. For t = 0 it is trivial. Assume it holds for t. Since γ -θ (1) -r (1) -λ (1) L > 0, it follows that for C L, [START_REF] Aalto | Whittle index approach to size-aware scheduling with timevarying channels[END_REF] t+1 ≥ 0. For ∆ t+1 we have that c(µ (2) -µ (1) ) γ ≥ 0, because µ (2) -µ (1) ≥ 0 by Condition 1. The term multiplying ∆ t is: µ (2) (γ -θ (2) -r (2) -λ (2) /L) -µ (1) r (1) γµ (2) ≥ 0, which is non-negative if and only if µ (2) (γ -θ (2) -r (2) -λ (2) /L) ≥ µ (1) r (1) .

This holds because µ (2) ≥ µ (1) and (γ -θ (2) -r (2) -λ (2) /L) ≥ r (1) , by definition of γ.

Finally, since µ (1) ≤ µ (2) and θ (2) ≤ θ (1) , we have θ (2) + r (2) + µ (1) µ (2) r (1) ≤ θ (1) + µ (2) µ (1) r (2) + r (1) .

Hence ∆ t+1 ≥ 0 and the proof is finished.

Proof of Lemma 12:

We show that there is an L 0 such that the following property holds for every t ≥ t 0 , for all L ≥ L 0 and all m ≥ 1:

       C L,(2) t (m) ≥ W µ (2)
C L,( 1) t (m) ≥ (θ (2) + r (2) + λ (2) /L)W -cµ (2) r (2) µ (2) .

(

) 62 
Since from Condition 2, W < W (2) ≤ cµ (2) θ (2) + r (2) , there exists an L 2 such that W ≤ cµ (2) θ (2) + r (2) + λ (2) /L , for all L ≥ L 2 , or equivalently, (θ (2) +r (2) +λ (2) /L)W -cµ (2) ≤ 0. On the other hand, it is easy to see by induction from (59) that C (m) ≥ (θ (2) +r (2) +λ (2) /L)W -cµ (2) r (2) µ (2) for all L ≥ L 2 and all t.

In Lemmas 10 and 11 we proved that C L,(2) t 0 (m) ≥ W µ (2) , holds for L ≥ L 1 and t = t 0 . Then we take L 0 = max (L 1 , L 2 ), we assume inequalities in (62) hold for t > t 0 , and we prove they are valid for t + 1. For all states (m, 2) we have that active is an optimal action because C L, [START_REF] Altman | Perturbation analysis for denumerable markov chains with application to queueing models[END_REF] t+1 (m) ≥ W/µ (2) . Hence, from (59): 2) t (m + 1) + r (2) γ C

C L,(2) t+1 (m) = c γ + 1 - m L λ (2) γ C L,(
L,( 1) t (m) + (m -1)θ (2) γ C

L,( 2) t (m -1) + µ (2) γ C

L,( 2) t 2) t (m) + (L -m)θ (2) γ C

(m -1) + m -1 L λ (d) γ C L,(
L,( 2) t (m) + λ (1) + µ (1) + r (1) + Lθ (1) γ C

L,( 2) t (m) ≥ c γ + γ -θ (2) -r (2) -λ (2) /L γ W µ (2) + r (2) γ (θ (2) + r (2) + λ (2) /L)W -cµ (2) r (2) µ (2) = W µ (2) , W W (1) W (2) g(W)

( ∞ , ∞ )

(n, 0) (∞ , 0)

Case a) W W (1) W (2) g(W)

( ∞ , ∞ ) ( n , 0 ) (∞ , 0) Case b) W (1)
W (2) g(W)

( ∞ , ∞ )

(n , 0) (∞ , 0)

Case c)

Figure 8: Proof of Proposition 6. Comparing slopes of functions g (n,0) and g (∞,0) . are proved. For the "if and only if" of iii) , in case n = ∞, g (n,m) (W (2) ) = g (∞,0) (W (2) ), because if g (n,m) (W (2) ) = g (∞,0) (W (2) ), then g (n,m) (W (2) ) = g (∞,∞) (W (2) ), and this contradicts Lemma 6.

We now assume n < ∞. We split the proof in two steps. In the first step, we compare policies (∞, 0) and (n, 0). Then, in the second step we compare policies (n, 0) and (n, m). This will be sufficient to conclude the comparison between policies (∞, 0) and (n, m).

Step 1. In this step we prove that g (∞,0) (W ) < g (n,0) (W ), when W ∈ W (1) , W (2) , and g (∞,0) (W (1) ) ≤ g (n,0) (W (1) ) when W = W (1) . To prove Step 1, we distinguish between three cases, as depicted in Figure 8. The cases represent the possible relations between the slopes of the functions g (∞,0) (W ) and g (n,0) (W ). W ((∞, 0), (n, 0)) = W (1) + (1 -t) W (2) -W (1) , with t := s 1 ((∞, 0), (n, 0)) s 1 ((∞, 0), (n, 0)) + s 2 ((∞, 0), (n, 0)) .

Since s 1 ((∞, 0), (n, 0))+s 2 ((∞, 0), (n, 0)) > 0 and s 2 ((∞, 0), (n, 0)) = π (∞,0) (0, 2)-π (n,0) (0, 2) ≤ 0 (because of Property 2) in Lemma 4), we have that t ≥ 1. Since W (2) -W (1) ≥ 0, W ((∞, 0), (n, 0)) ≤ W (1) . This, together with the fact that g (∞,0) is steeper, implies that for W > W (1) , g (∞,0) (W ) < g (n,0) (W ) and for W = W (1) , g (∞,0) (W (1) ) ≤ g (n,0) (W (1) ).

Case b) -

2 d=1 n d m=0 π (∞,0) (m, d) > -2
d=1 n d m=0 π (n,0) (m, d). When g (n,0) (W ) is steeper the opposite situation occurs. Note that -2 ) is the steepest linear function. Besides W ((∞, ∞), (n, 0)) < W (2) and W ((∞, ∞), (∞, 0)) = W (2) because of Lemma 6. Hence, W ((∞, 0), (n, 0)) > W (2) , and as a consequence, for W ≤ W (2) , g (∞,0) (W ) < g (n,0) (W ). d). Hence g (n,0) (W ) and g (∞,0) (W ) are parallel, which means that W ((∞, 0), (n, 0)) is not defined. Since W ((∞, ∞), (n, 0)) < W (2) and W ((∞, ∞), (∞, 0)) = W (2) , we can conclude that g (n,0) (W ) and g (∞,0) (W ) are not the same line, and in particular g (n,0) (W ) > g (∞,0) (W ) for all W .

d=1 n d m=0 π (∞,∞) (m, d) = -1, hence g (∞,∞)(W

Case c) -

  k for d = 1, 2. When the class-k environment is in state d, new class-k jobs arrive according to a Poisson process with rate λ (d) k . They require an exponentially distributed amount of service with parameter µ (d) k . A class-k job abandons the system after an exponentially distributed amount of time with parameter θ

Figure 3 :

 3 Figure 3: Suboptimality gap with (left) random parameters and (right) constrained parameters.

  , the departure rates are chosen differently. In environment d = 2, the departure rates are equal for both classes, i.e.,

32 .

 32 Indicated in the plot by "i.i.d.".

6 .

 6 Indicated in the plot by "non-identical".

Figure 4 :

 4 Figure 4: Suboptimality gap of Whittle's index policy and the index W (d) (m) as a function of (left) the scaling parameter of arrival rates (γ) and (right) the scaling parameter of the transition rates for the environment (β).

2 Figure 5 :

 25 Figure 5: Whittle's index as a function of the scaling parameter of the transition rates for the environment. (left) state m = 1, (right) state m = 10. The horizontal lines represent the values cµ (d) k /θ (d) k , d = 1, 2 and k = 1, 2.

Figure 6 :

 6 Figure 6: Suboptimality gap for unobservable policies with (left) random parameters and (right) constrained parameters.

Figure 7 :

 7 Figure 7: Suboptimality gap for unobservable policies with a fast environment, with (left) random parameters and (right) constrained parameters.

Definition 4 .

 4 , and q L ((m, 3 -d)|(m, d), a) = r(d) , for m ∈ N 0 , d = 1, 2 and a = 0, 1. In order to state the sufficient conditions of [7, Theorem 3.1], we need the following definition. A function f : X × Z → R + is a moment function if there exists an increasing sequence of finite sets(E n ) n∈N ⊂ X ×Z such that lim n→∞ E n = X ×Z and inf {f (m, d) : (m, d) / ∈ E n } → ∞ as n → ∞.The conditions, as stated in [7, Theorem 3.1], are:1. There exists a function f : X × Z → R + , constants α, β > 0 and M > 0 such that (m ,d )∈X ×Z q L ((m , d )|(m, d), a) f (m , d ) ≤ -αf (m, d) + β1 {m<M } (m, d), for all m, d, ϕ, L.

2 .+ (e - 1 )

 21 (a, L) → q L ((m , d )|(m, d), a) and (a, L) → (m ,d )∈X ×Z q L ((m , d )|(m, d), a)f (m , d ) are continuous functions in a and L for all (m, d) and (m , d ).We take the function f (m, d) = e m with > 0. We define the sets E n = {(0, 1), (0, 2), . . . , (n, 1), (n, 2)} for each n, which are finite, lim n→∞E n = X × Z and inf {f (m, d) : (m, d) / ∈ E n } → ∞ as n → ∞.Condition 1 can be reduced to show that there exists > 0, M > 0 and a constant α > 0 such that(m ,d )∈X ×Z q L ((m , d )|(m, d), a) f (m , d ) ≤ -αf (m, d), for d = 1, 2 and m > M , that is, λ (d) 1 -m L + e (m+1) + (mθ (d) + aµ (d) )e (m-1) + r (d) e m λ (d) 1 -m L + + mθ (d) + aµ (d) + r (d) e m ≤ -αe m ,for d = 1, 2 and m > M , where a is the action taken in state (m, d) under policy ϕ. The inequality can be rewritten asλ (d) 1 -m L + (e -1) + (mθ (d) + aµ (d) )(e --1) ≤ -α,(45)Note that, since 1 -m L + is decreasing in m, there exists a constant C such that λ (d) 1 -m L < C. For the other term, since (e --1) < 0, there exists an M such that for m > M , (mθ(d) + aµ(d) )(e --1) < -C. Then there exists α > 0 such that inequality (45) holds for d = 1, 2 and m > M and Condition 1 is proved. For Condition 2, the continuity of the functions (a, L) → q L ((m , d )|(m, d), a) and (a, L) → (m ,d )∈X ×Z q L ((m , d )|(m, d), a)f (m , d ) in a and L holds by definition of the transition rates.

10. 4

 4 Proof of Lemma 4 10.4.1 Proof of Property 1) in Lemma 4:

  3.2 in[START_REF] Boucherie | Queueing networks: a fundamental approach[END_REF] Chapter 9] requires a uniformizable process and our abandonment rates grow linearly in n in an infinite state space, we consider a truncated version. Let L be the limited capacity for the truncated version of the process, with L > max {n 1 + 1, n 2 }. We denote by q n,L ((m , d )|(m, d), a) the transition rate of the process from state (m, d) to state (m , d ), when action a is applied, where action a is determined by the threshold policy n. We introduce the uniformization constant H(L) := max d λ (d) + µ (d) + r (d) + Lθ(d) and the transition probabilities P n,L ((m , d )|(m, d), a) obtained after the standard uniformization approach[32, P.110] for each step of length H(L). Let V n,L t (m, d) denote the expected cumulative cost over t steps under threshold policy n when starting in state (m, d). Then V n,L t satisfies the relation

  being constant in m is trivial for t = 0, since V L 0 (m) = 0 for all m, and thus C L,(d) 0

  θ(d) -r(d) -λ(d) where the last inequality follows from the definition of γ, (56). Hence, C L,(d) t+1 (m) does not depend on m. To conclude, we show that t 0 = ∞. Since ford = 1, 2, C L,(d) t is increasing in t, let C L,(d) := lim t→∞ C L,(d) t

Lemma 11 :γ

 11 Let ∆ t = µ(2) C -θ(1) -r (1) -λ(1) 

  ≥ 0 for all m, t. Hence, C L,(1) t

Case a) - 2

 2 d=1 n d m=0 π (∞,0) (m, d) < -2 d=1 n d m=0 π (n,0) (m, d). In this case g (∞,0) (W ) is steeper than g (n,0) (W ). In terms of s 1 and s 2 , -2 d=1 n d m=0 π (∞,0) (m, d) < -2 d=1 n d m=0 π (n,0) (m,d) is equivalent to s 1 ((∞, 0), (n, 0)) + s 2 ((∞, 0), (n, 0)) > 0. Recall from (23) that

2

 2 

  m=0 π (∞,0) (m, d) = -2 d=1 n d m=0 π (n,0) (m,

  The numerical computation of this algorithm requires the set over which the minimisation is done to be finite. Hence, in case |X | = ∞ or |Z| = ∞, the results obtained are an approximation. If, instead, |X | < ∞ and |Z| < ∞, and the steady state distribution of the

	j,i , i = 1, . . . , I) that have the steepest slope -d∈Z d = max i n j,i and set n j s.t. n j d . Define W (m, d) := Ŵj for n j-1 d < m ≤ n j d , for every d. Go n d m=0 π n (m, d)
	to step j+1.	
	If E j = ∅, then for all states (m, d) with m > n j-1 d	the Whittle index is not defined.
	Remark 1. threshold policies is obtained beforehand, the complexity of the algorithm is O |X | |Z| 2	. This
	can be seen as follows. (i) In each step, the algorithm calculates the crossing point W ( n, n j-1 )
	for all threshold policies n in E j . This step has a complexity that corresponds to the number of
	threshold policies, i.e., O |X | |Z| . (ii) Then, in the worst case, the algorithm repeats step (i) for
	each threshold policy, resulting in a complexity of O |X | |Z| 2	.

Table 1 :

 1 which by[START_REF] Opp | Outsourcing warranty repairs: Dynamic allocation[END_REF] is larger than its arrival rate. This implies stability. Whittle's index convergence as θ tends to 0.

	m θ	1	0.8	0.6	0.4	0.2	0.1	0.08	0.06	0.04	0.02	0.01 0.005 0.001
	1	1.63 1.7 1.78 1.87	1.97	2.02	2.03	2.04	2.06	2.07	2.07	2.08	2.08
	5	3.67 4.06 4.55 5.19	6.03	6.57	6.69	6.81	6.94	7.08	7.15	7.18	7.21
	10	4.93 5.64 6.61 7.99 10.10 11.65 12.02 12.42 12.84 13.29 13.53 13.65 13.75
	15	5.62 6.57 7.89 9.90 13.31 16.08 16.78 17.55 18.39 19.32 19.82 20.08 20.29
	20	5.99 7.17 8.76 11.29 15.89 19.97 21.06 22.27 23.62 25.16	26	26.45 26.82
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Hence, equivalently, we can write f j ( n) = φ(1) Âj 1 (n 1 ) + . . . + φ(Z) Âj Z (n Z ) φ(1) Bj 1 (n 1 ) + . . . + φ(Z) Bj Z (n Z )

.

By definition of n(j+1) and since n j+1 (β) = nj+1 for β small enough, f j ( n) is minimised in nj+1 , that is,

In particular, this implies, f j ( nj+1 ) ≤ min(f j (n j+1 1 , nj 2 , . . . , nj Z ), . . . , f j (n j 1 , nj 2 . . . , nj+1 Z )), that is,

, . . . ,

Now, assume there is a strict inequality in [START_REF] Verloop | Asymptotically optimal priority policies for indexable and nonindexable restless bandits[END_REF], and assume

, . . . ,

.

The strict inequality in [START_REF] Verloop | Asymptotically optimal priority policies for indexable and nonindexable restless bandits[END_REF] )

The LHS in [START_REF] Weber | On an index policy for restless bandits[END_REF] can be rewritten as the following convex combination,

for i = 2, . . . , N , α i ≥ 0 (since n ∈ E j and by assumption in Lemma 2), and Z i=2 α i = 1. Together with [START_REF] Weber | On an index policy for restless bandits[END_REF], this gives that

. The latter gives contradiction with the assumption that Âj

, . . . ,

.

Hence, by contradiction we proved that the inequality in ( 34) is an equality, that is,

Assume without loss of generality that

We are left to prove that

. [START_REF] Whittle | Optimal Control, Basics and Beyond[END_REF] Let n * 1 be the n such that the infimum is taken on the RHS. Hence, the RHS can equivalently be written as f j (n * 1 , nj 2 , . . . , nj Z ). We prove (37) by contradiction. That is, assume

, . . . , nj Z ), we have contradiction with the fact that f j is minimised in nj+1 . Combining [START_REF] Van Dijk | Approximate uniformization for continuous-time markov chains with an application to performability analysis[END_REF], [START_REF] Whittle | Restless bandits: Activity allocation in a changing world[END_REF], and (37), we conclude the proof.

As a consequence and after (47), we get the following relation:

Since this holds for every L, and H(L) → ∞ when L → ∞, we conclude (46) and the proof is done.

Proof of Lemma 7.

To simplify notation, since (n 1 , n 2 ) and L are fixed in the lemma, we will write

and H for H(L). The inequality to prove is

We initialize with k = 0, V 0 (m, d) = 0 for every (m, d), and for k = 1, (1) .

We assume now 1) for every (m, d), and we prove it for V t+1 (m, d) -V t+1 (m + 1, d). We begin with the state (n 1 , 1), where we have

Then, the following equation holds, and we apply the inductive hypothesis 10.6.2 Proof of Lemma 6: comparison to policy (∞, ∞).

Note that n

and Lemma 5 can be applied with 0 ≤ t ≤ 1. From [START_REF] Larrañaga | Dynamic control of birth-and-death restless bandits: application to resource-allocation problems[END_REF], It follows that W ((∞, ∞), n) ∈ [W (1) , W (2) ].

) > 0 and t > 0. Equation ( 23) can be rewritten as W (2) -t(W (2) -W (1) (2) . The reasoning for n 2 = ∞ is analogous.

Proof of Proposition 4

In order to prove Point 1, we start with W = 0. The difference between policies (-1, -1), (-1, 0), (0, -1) and (0, 0) relies on serving or not a queue when it's empty. As a consequence, they have no difference in their dynamics (thus, in their invariant distribution π n ), neither in their expected cost

From the definition of g n (0) in Equation ( 7) we obtain that g (-1,-1) (0) = g (-1,0) (0) = g (0,-1) (0) = g (0,0) (0). Furthermore, if either n 1 > 0, or n 2 > 0, or both of them are larger than 0, then the expected costs satisfy

because the former is active in every non-zero state. Hence, g (0,0) (0) < g n (0) for any n / ∈ {(-1, -1), (-1, 0), (0, -1), (0, 0)}. For W < 0, the proof follows considering the slope of the linear functions g n (W ), which is given by

For policy (-1, -1) the slope is 0, while -2 d=1 n d m=0 π n (m, d) < 0 for any n = (-1, -1). Together with the fact that in W = 0 policy (-1, -1) minimises, we get that (-1, -1) is the unique optimal threshold policy for W < 0, and the proof of Point 1 is finished. For the proof of Point 2 we state the following lemma. We present its proof in Appendix 10.6.4. Lemma 8. Assume Conditions 1 and 2 hold. When d = 2 and m ≥ 0, being active is an optimal action for 0 ≤ W < W (2) . When d = 2 and m = 0, being passive is an optimal action for 0 ≤ W .

From Lemma 8, for 0 ≤ W < W (2) in environment 2 the optimal action is passive in m = 0 and active in m > 0, then the optimal threshold policy in environment 2 has to be 0. Thus, the optimal solutions are in the set of policies {(n, 0)} -1≤n≤∞ . Point 3 follows from Lemma 6 and a comparison of the linear functions. For any policy n = (n 1 , n 2 ), W ((∞, ∞), n) ≤ W (2) and the slope of its linear function is -2

is the steepest one. It follows that for W ≥ W (2) , (∞, ∞) is an optimal solution of (7) and it is the only one for W > W (2) . In addition, when W = W (2) , only policies of the form (∞, n) have the same cost g n (W ) as (∞, ∞) (see Lemma 6). Hence, when W = W (2) , optimal threshold policies are of the form (∞, n).

Proof of Lemma 8.

We want to show the optimal policies in environment d = 2 for 0 ≤ W < W (2) . Recall from ( 16) that Bellman's optimality equation is given by:

Hence, in state (m, d) passive is an optimal action if and only if

Similarly, active is an optimal action if and only if

In other words, in state 0 the optimal action is passive if and only if W ≥ 0, and both actions are optimal if W = 0. Let W < W (2) . We will show that

Since we will use the value iteration method, we formulate an analogous property for the truncated value function V L , see Lemma 9. We truncate the state space at L and smooth the transition rates from state m to state m + 1 as in (38). That is, we replace the arrival rates λ (d) by

for m = 0, 1, . . . , L. The uniformization constant is taken as γ := λ (1) + λ (2) + µ (1) + µ (2) + r (1) + r (2) + Lθ (1) + Lθ (2) , (56)

We define the value function V L t (m, d) as follows. For any d and m = 0, . . . , L we initialize by defining V L 0 (m, d) = 0 and

The following lemma states the property needed for V L .

where in the inequality we used that C L,( 1) t

r (2) µ (2) . On the other hand,

r (2) µ (2) holds for all t as it was proved before. This concludes the proof of both inequalities in (62) for t ≥ t 0 , and then Lemma 12 is proved as well.

Proof of Proposition 5.

The proof here is similar to the one of Property 1) in Lemma 4 in Section 10.4.1, in the sense that we will compare the truncated processes with limited capacity L > n, using the comparison result 9.3.2 in [START_REF] Boucherie | Queueing networks: a fundamental approach[END_REF]Chapter 9]. Here we compare the truncated process under threshold policy (n, 0) with the one under threshold policy (n + 1, 0). For the uniformization, as we repeat the same structure, H(L), P n,L ((m , d )|(m, d), a) and V n,L t have the same definitions. However, we take as cost function C n (m, d), for a given threshold policy n = (n 1 , n 2 ),

So C n (m, d) = 1 in the passive states, regardless the environment. As a result, the reward per unit time is

, which is the term to compare between the truncated processes. We consider the costs C (n,0) , C (n+1,0) and the transition rates q (n,0),L , q (n+1,0),L for the truncated processes under policies (n, 0) and (n + 1, 0), respectively. Then Inequality (48) has to be proved for all the states where C (n+1,0) and C (n,0) or q (n+1,0),L and q (n,0),L are not the same. This happens in the states that are active under one policy (n, 0) and passive under the other one (n + 1, 0), i.e., in state (n + 1, 1). The inequality to prove reduces to

for t ≥ 0. As before, we prove a more general result, as stated in Lemma 13.

Lemma 13. Under Condition 1,

Now, result 9.3.2 in [11, Chapter 9] can be applied, and we obtain

for the truncated processes. Using the same reasoning as in the proof of Property 1) in Lemma 4, we obtain that this property holds as well for the original (untruncated) process.

Proof of Lemma 13.

The proof is similar to the one in Section 10.4.2. To simplify notation, since (n, 0) and L are fixed in the lemma, we will write V t for V

(n,0),L t and H for H(L). The proof goes by induction, and the cases of t = 0 and t = 1 are the same as before. We assume V t (m, d) -V t (m + 1, d) ≤ 1 µ (1) for every (m, d). We prove it now for t + 1. We first consider the state (0, 2). (2) V t (0, 1) + λ (2) V t (1, 2) + H -r (2) -λ (2) V t (0, 2) , V t+1 (1, 2) = 1 H θ (2) + µ (2) V t (0, 2) + r (2) V t (1, 1) + λ (2) V t (2, 2)

+ H -θ (2) -µ (2) -r (2) -λ (2) V t [START_REF] Aalto | Whittle index approach to size-aware scheduling with timevarying channels[END_REF][START_REF] Altman | Perturbation analysis for denumerable markov chains with application to queueing models[END_REF] .

By applying the inductive hypothesis, we obtain

= H + µ (1) -θ (2) -µ (2) Hµ (1) .

The inequality H + µ (1) -θ (2) -µ (2) Hµ (1) ≤ 1 µ (1) holds if and only if µ (1) -µ (2) < θ (2) . The latter holds from Condition 1 and θ (2) > 0. Similarly, one obtains the same conclusion for states (m, d) = (0, 2). This finishes the inductive step and the Lemma is proved.

Proof of Proposition 6.

The proof relies on comparing g (n,m) (W ) for an arbitrary policy (n, m) with g (∞,0) (W ) for W ∈ W (1) , W (2) . In particular, it will be shown that i) g (∞,0) (W ) ≤ g (n,m) (W ) for W ∈ [W (1) , W (2) ],

ii) g (∞,0) (W ) < g (n,m) (W ) for W ∈ (W (1) , W (2) ), and iii) for W = W (2) the equality g (∞,0) (W ) = g (n,m) (W ) holds if and only if n = ∞. To prove the above properties, we distinguish between the two cases n = ∞ and n < ∞. We start by assuming n = ∞. From Equation [START_REF] Mahajan | Multi-armed bandit problems[END_REF], it is direct to see that W ((∞, m), (∞, 0)) = W (2) , hence g (∞,m) (W (2) ) = g (∞,0) (W (2) ). Then, we compare the slopes, recall that -2 d=1 n d m=0 π n (m, d) is the slope of g n (W ) for any threshold policy n. In this case, the slope of g

) and the slope of g (∞,0) (W ) is -(φ(1) + π (∞,0) (0, 2)). From Property 2) in Lemma 4, we know that m k=0 π (∞,m) (k, 2) > π (∞,0) (0, 2). As a consequence, g (∞,m) (W ) is steeper than g (∞,0) (W ), and therefore, for W < W (2) , g (∞,0) (W ) < g (∞,m) (W ) and i) and ii)

Step 2. Assume n = ∞, and fix any m. For W ∈ W (1) , W (2) , we will prove that g (n,0) (W ) ≤ g (n,m) (W ). If g (n,0) (W ) and g (n,m) (W ) are parallel, in order to compare them we can consider the expected cost as W = 0, i.e., E C(M n ) . Since policy (n, 0) has larger departure rates than policy (n, m), a simple coupling argument shows that M (n,0) (t) ≤ st M (n,m) (t), and hence, g (n,0) (W ) ≤ g (n,m) (W ). Now assume that g (n,0) (W ) and g (n,m) (W ) are not parallel, so that Equation ( 23) can be used. From Properties 1) and 2) in Lemma 4, s 2 ((n, m), (n, 0)) = m l=0 π (n,m) (l, 2) -π (n,0) (l, 2) ≥ 0 and s 1 ((n, m), (n, 0)) = n l=0 π (n,m) (l, 1) -n l=0 π (n,0) (l, 1) ≤ 0. From the fact that s 1 ((n, m), (n, 0)) and s 2 ((n, m), (n, 0)) have opposite signs, and using Equation [START_REF] Larrañaga | Dynamic control of birth-and-death restless bandits: application to resource-allocation problems[END_REF], W ((n, m), (n, 0)) can not be in (W (1) , W (2) ). Hence, we are in one of the following cases. If W ((n, m), (n, 0)) ≤ W (1) , then from Equation [START_REF] Larrañaga | Dynamic control of birth-and-death restless bandits: application to resource-allocation problems[END_REF] we have s 2 ((n, m), (n, 0)) s 1 ((n, m), (n, 0)) + s 2 ((n, m), (n, 0)) ≤ 0.

Since s 2 ((n, m), (n, 0)) ≥ 0, s 1 ((n, m), (n, 0)) + s 2 ((n, m), (n, 0)) < 0, which means that g (n,0) (W ) is steeper than g (n,m) (W ). This implies that g (n,0) (W ) ≤ g (n,m) (W ) for W ≥ W ((n, m), (n, 0)), hence, in particular for W ≥ W (1) . If W ((n, m), (n, 0)) ≥ W (2) , the reasoning is analogous. From Equation (23) we have s 1 ((n, m), (n, 0)) s 1 ((n, m), (n, 0)) + s 2 ((n, m), (n, 0)) ≤ 0, and, as it was stated before, s 1 ((n, m), (n, 0)) ≤ 0. Hence, s 1 ((n, m), (n, 0)) + s 2 ((n, m), (n, 0)) > 0, which means that g (n,m)(W ) is steeper than g (n,0) (W ). As W ((n, m), (n, 0)) ≥ W (2) , for any W ≤ W (2) , g (n,0) (W ) ≤ g (n,m) (W ).