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 27 

Abstract 28 

The study of states of arousal is key to understand the principles of consciousness. Yet, how different 29 

brain states emerge from the collective activity of brain regions remains unknown. Here, we studied 30 

the fMRI brain activity of monkeys during wakefulness and anesthesia-induced loss of consciousness. 31 

Using maximum entropy models, we derived collective, macroscopic properties that quantify the 32 

system’s capabilities to produce work, to contain information and to transmit it, and that indicate a 33 

phase transition from critical awake dynamics to supercritical anesthetized states. Moreover, 34 

information-theoretic measures identified those parameters that impacted the most the network 35 

dynamics. We found that changes in brain state and in state of consciousness primarily depended on 36 

changes in network couplings of insular, cingulate, and parietal cortices. Our findings suggest that 37 

the brain state transition underlying the loss of consciousness is predominantly driven by the 38 

uncoupling of specific brain regions from the rest of the network. 39 

This PDF includes: Main Text with embodied Figures (5 figures), Appendix, and Supplementary 40 

Figures S1 to S8. 41 

 42 
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Introduction 43 

Interesting phenomena in biological systems are usually collective behaviors emerging from the 44 

interactions among many constituents. Large-scale brain activity is not an exception: the brain’s 45 

network continuously generates coordinated spontaneous patterns of activity among brain regions at 46 

multiple spatiotemporal scales (1-3). Changes in spontaneous brain activity are observed in different 47 

brain states, the study of which is essential to understand the organizing principles of brain activity. 48 

For instance, anesthesia has been used to transiently induce loss of consciousness and to investigate 49 

the neural correlates of the awake state. Previous studies showed that different anesthetics, acting on 50 

different molecular targets (4), similarly impact the strength and the structure of functional 51 

correlations (5-10), and their dependence on interareal anatomical connections (8, 11). However, how 52 

changes in local regions and subnetworks combine to affect the collective brain dynamics and to lose 53 

consciousness remains largely unknown. To answer this question, it is essential to precisely 54 

characterize the collective properties of different brain states and their dependence on parameters at 55 

the system’s level. This dependence is likely not straightforward since, as for many complex systems, 56 

the system’s behavior could be differently affected by changes in its parameters. In such a case, while 57 

some parameters can largely vary without affecting the system’s behavior (so-called “sloppy” 58 

parameters), even small changes in some others can significantly modify it (12-14). 59 

In recent years, statistical mechanics has proven to be more and more useful to describe collective 60 

neural activity. Statistical mechanics shows that the behaviors of complex systems can be captured 61 

by macroscopic properties, which emerge from the collective activity of the units, in a way largely 62 

independent of the microscopic details of the system. These emergent (macroscopic) behaviors can 63 

be classified into qualitatively different ordered or disordered phases. Of particular interest are 64 

dynamics poised close to phase transitions, or critical points, where order and disorder coexist. 65 

Theoretical reasoning shows that complex dynamics and optimal information processing are expected 66 

at critical points, making criticality a candidate unifying principle to account for the brain’s inherent 67 

complexity necessary to process and represent its environment (15-18). Following this view, studies 68 

of whole-brain and local circuits dynamics have proposed that anesthesia shifts the dynamics from 69 

the critical point (19, 20). This is supported by the reduction of several measures of brain dynamics 70 

complexity under anesthesia (21-24). The global mechanisms underlying different conscious states 71 

have been recently investigated using an anatomically-constrained dynamical model with a global 72 

coupling parameter in combination with EEG recordings (25). However, it remains unknown which 73 

are the macroscopic properties and the relevant local/global parameters describing the transition of 74 

collective activity from the awake to anesthetized states. Indeed, different local/global network 75 

parameters are likely to jointly determine the different brain states and to differently contribute to the 76 

state transitions. 77 

In this study, we addressed these questions by analyzing the brain’s collective activity in different 78 

levels of arousal, i.e., during wakefulness and under anesthesia. Specifically, we analyzed resting-79 

state fMRI dynamics of awake and anesthetized macaque monkeys (11). Five different anesthesia 80 

protocols, involving 3 different anesthetics (propofol, ketamine, and sevoflurane), were used to 81 
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induce moderate sedation or deep anesthesia. First, we derived efficient statistics that distinguished 82 

between awake and anesthetized brain states. Second, we used these statistics and the maximum 83 

entropy principle to model the brain’s activity and to derive important emergent properties that 84 

described the different brain states. These emergent properties provided information about the 85 

system’s physical state, and about its capability to produce work, to contain information and to 86 

transmit it. Finally, we investigated the dependence of collective activity on the different model 87 

parameters. 88 

 89 

Results 90 

We analyzed the resting-state fMRI dynamics of five rhesus macaques (Macaca mulatta) under 91 

different levels of arousal: wakefulness (n = 24 scans), two levels of propofol sedation (light, LPP, n 92 

= 21, and deep, DPP, n = 23), sedation through ketamine (KETA, n = 22), and two types of 93 

sevoflurane anesthesia (SEV2, n = 18, and SEV4, n = 11) (see Methods and Appendix). fMRI MION 94 

time-series were obtained for 𝑁 = 82 previously defined regions of interest (ROIs) (CoCoMac 95 

Regional Map parcellation). Each scan was 20 min long and was acquired in time frames of 2.4 s 96 

(i.e., 500 time frames). 97 

 98 

Coupling to population reliably distinguished between awake and anesthetized brain states 99 

We were interested on collective patterns displayed among the 𝑁 ROIs, for the six different 100 

experimental conditions. For this, we first binarized the z-scored time-series of each ROI, 𝑥𝑖(𝑡), by 101 

imposing a threshold 𝜃 = −1 (Fig. 1A,B, see Methods). Binarization of time-series has proven to 102 

effectively capture and compress fMRI large-scale dynamics (26, 27). We concentrated on different 103 

statistics that described the resulting binary data: the activation rate of each ROI, i.e., 〈𝜎𝑖〉, the 104 

correlation between ROIs, i.e., 𝐶𝑖𝑗 = corr(𝜎𝑖 , 𝜎𝑗), and the population activity, i.e., 𝐾(𝑡) = ∑ 𝜎𝑖(𝑡)𝑁
𝑖=1  105 

(Fig. 1C). We were particularly interested on the coupling of each ROI to the population activity, 106 

defined as: 107 

𝑧𝑖 = corr[𝜎𝑖(𝑡), 𝐾≠𝑖(𝑡)],                                                              (1) 108 

where 𝐾≠𝑖(𝑡) is the sum activity of all but ROI 𝑖: 𝐾≠𝑖(𝑡) = ∑ 𝜎𝑖(𝑡)𝑗≠𝑖 . Recent findings showed that 109 

propofol anesthesia affects the coupling to global signal in human and rats (28).  In the following we 110 

showed that the statistics 𝒛 = [𝑧1, … , 𝑧𝑁] provides, with only 𝑁 parameters, a compact description of 111 

the binary collective activity and can be used to classify the brain states.  112 
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 113 

Figure 1. Binarization and statistics. (A) MION fMRI signals were z-scored and binarized by imposing a threshold 114 
equal to the standard deviation, for each signal. (B) In each time bin of 2.4 s, the state of signal of ROI 𝑖, noted 𝜎𝑖(𝑡), 115 
was equal to 1 if the MION signal for this ROI was lower than minus its standard deviation, or equal to 0 otherwise. 116 
The average activity of ROI 𝑖 was 〈𝜎𝑖〉 = ∑ 𝜎𝑖(𝑡)𝑛

𝑡=1 , where 𝑛 is the number of time points. (C) The population 117 
activity was defined as the sum of the binary activity of the 𝑁 ROIs in each time bin t, i.e., 𝐾(𝑡) = ∑ 𝜎𝑖(𝑡)𝑁

𝑖=1 . 118 

 119 

The couplings to the population were highly predictive of the functional correlations (Fig. 2A-C). 120 

Indeed, the product 𝜂𝑖𝑗 = 𝑧𝑖 × 𝑧𝑗  highly correlated with the functional correlation (FC) between the 121 

fMRI time-series of ROIs (𝑖, 𝑗) (corr.: 0.65‒0.78, p < 0.001). Moreover, we found that the vector 𝒛 122 

correlated across scans within the same experimental conditions, with the average correlation 123 

coefficient being equal to 0.3 ± 0.01 (Fig. 2D, blue distribution). This correlation was significantly 124 

higher (p < 0.001, F(2,3533)  = 976.5, one-way ANOVA followed by Tukey's post hoc analysis) than 125 

those obtained using the vectors representing the average activities and the correlations, i.e., vectors 126 

𝝁 = [〈𝜎1〉, … , 〈𝜎𝑁〉] and 𝝆 = [𝐶1,2, 𝐶1,3, … , 𝐶𝑁−1,𝑁], respectively (Fig. 2D, green and red 127 

distributions, corr.: 0.06 ± 0.01 and 0.11 ± 0.01).  128 

 129 
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 130 

Figure 2. Coupling to population predicts the functional connectivity and is consistent within experimental 131 
conditions.  (A) Top and left insets: ROIs were ordered according to 𝑧𝑖 averaged for each scan within a given 132 
experimental condition (here for the awake condition). Color map: The average functional connectivity (FC) is shown 133 
after ordering the ROIs according to 𝒛. (B) Same as (A) but for the deep propofol (DPP) anesthesia condition. (C) 134 
The elements of the FC and the corresponding products of coupling to population (𝑧𝑖𝑧𝑗) highly correlated. (D) We 135 

tested whether 〈𝜎〉, 𝑧, and FC were similar across scans within the same experimental condition. For example, for the 136 
statistic 𝑧, we calculate the correlation of this 𝑁-dimensional variable for all pairs of scans belonging to the same 137 
experimental condition and computed the distribution of correlation coefficients (blue distribution). High correlation 138 
coefficients indicate that, within experimental conditions, scans yielded similar vector 𝒛. The same can be done for 139 
the 𝑁-dimensional variable 〈𝜎〉 (green distribution) and the vector of FC elements (𝑁(𝑁 − 1)/2 dimensions; red 140 
distribution). 141 

 142 

Furthermore, we found that the coupling to the population could be used to classify the awake and 143 

anesthesia states with high accuracy (Fig. 3A). We tested this by using a classifier based on k-means 144 

clustering (see Methods). Based on the statistic 𝒛 we were able to classify the scans of two categories, 145 

awake vs. anesthesia (independently of the anesthetic), with 96.6% of correct classifications (chance 146 

level: 50%). This classification performance was higher than the one obtained using the statistics 𝝁 147 

and 𝝆, yielding 74.0% and 74.8% of correct classifications, respectively (Fig. 3B,C). Classification 148 

among the six experimental conditions yielded lower performances but was higher for statistic 𝒛 than 149 

for 𝝁 and 𝝆: 38.5%, 33.1%, and 29.9%, respectively (chance level: 16.7%). Similar differences in 150 

classification performances for population couplings and functional correlations were obtained using 151 

continuous (not thresholded) signals (Fig. S1). Altogether, these results show that the coupling to 152 

population is a reliable marker to distinguish between awake and anesthetized brain states. 153 
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 154 

Figure 3. Coupling to population predicts the state of the brain. (A-C) Correlation matrix comparing the statistics 155 
𝑧, 〈𝜎〉, and FC among all scans. For example, in panel (A), the element (𝑘, 𝑙) of the matrix represents the correlation 156 
between the coupling to population vector 𝒛 of scans 𝑘 and 𝑙. Coupling to population clearly separated awake and 157 
anesthesia data. Using k-means, we evaluated how well the different statistics could be used to classify the awake 158 
and anesthetized conditions (chance level: 50%). The classification performance using the coupling to population 159 
statistic was 96.64%, that was significantly higher than using the mean activity (73.95%) or the functional 160 
connectivity (74.79%). Classification of the six experimental conditions was generally lower, but higher for 𝑧 than 161 
for 〈𝜎〉 and FC (38% vs. 33% and 29%, chance level: 16.67%). (D) PCA analysis showed that 𝑧 vectors separated the 162 
awake and anesthetized conditions along the first principal component (PC1). Each dot represents a scan. (E) The 163 
absolute coefficient of PC1 associated to each ROI. (F) During anesthesia, 𝑧 was reduced compare to wakefulness 164 
for most of the ROIs. Changes from awake baseline, ∆𝑧(𝑖) =  𝑧(Awake) − 𝑧(𝑖), where 𝑧 was averaged over scans, 165 
were highly correlated for the different anesthetics (with correlation coefficients ranging from 0.85-0.93). The panel 166 
shows the comparison between ∆𝑧(DPP) and ∆𝑧(KET). 167 

 168 

To examine which ROIs contributed the most to distinguish between the awake state and anesthesia 169 

based on 𝒛, we performed PCA on the collection of z-scored vectors 𝒛. The first principal component 170 

was sufficient to separate the awake and anesthesia conditions (Fig. 3D). This component had strong 171 

coefficients for brain regions located in the cingulate, parietal, intraparietal, insular cortices, and the 172 

hippocampus (Fig. 3E). Overall, changes in average couplings to the population with respect to 173 

awake values were similar for all anesthetics (Fig. 3F). We next asked how these changes affect the 174 

collective properties of brain dynamics. 175 

 176 

Modelling collective activity using maximum entropy models 177 

Collective activity is ultimately described by the probability of each of the binary patterns 𝝈 =178 

[𝜎1, … , 𝜎𝑁]. Estimating the distribution 𝑃(𝝈) over the 2𝑁 possible binary patterns from the data is 179 

impractical with limited amount of observations, since for N = 82 there are more than 1024 possible 180 
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patterns. A useful technique to estimate 𝑃(𝝈) relies on the maximum entropy principle. Maximum 181 

entropy models (MEMs) find 𝑃(𝝈) by maximizing its entropy under the constraint that some 182 

empirical statistics are preserved (see Methods). As shown above, an interesting statistic for the 183 

present study is the coupling between the state of each binary signal, 𝜎𝑖, and the population activity 184 

𝐾. The maximum entropy distribution that is consistent with the probability distribution 𝑃(𝐾), the 185 

average activations 〈𝜎𝑖〉, and the linear coupling between 𝜎𝑖 and 𝐾, i.e., 〈𝜎𝑖𝐾〉 (which relates to 𝑧𝑖), 186 

is given by the Boltzmann distribution 𝑃(𝝈) = 𝑒−𝐸(𝝈)/𝑍, where 𝐸(𝝈) represents the energy of the 187 

pattern 𝝈, given as (29): 188 

𝐸(𝝈) = − ∑(𝛼𝑖 + 𝛽𝐾 + 𝛾𝑖)𝜎𝑖

𝑁

𝑖=1

.                                                        (2) 189 

The model parameters 𝛼𝑖, 𝛽𝐾, and 𝛾𝑖 are Lagrange multipliers associated to the constrained 190 

observables 〈𝜎𝑖〉, 𝑃(𝐾), and 〈𝜎𝑖𝐾〉, respectively. The normalizing constant 𝑍 is the partition function, 191 

given by 𝑍 = ∑ 𝑒−𝐸(𝝈)
{𝝈} , which contains information about useful statistics predicted by the model 192 

(see below). This model can be extended to include the non-linear coupling between 𝜎𝑖 and 𝐾. Indeed, 193 

the maximum entropy distribution that is consistent with the joint probability distributions of 𝜎𝑖 and 194 

𝐾, i.e., 𝑃(𝜎𝑖 , 𝐾), yields the following energy function (29): 195 

𝐸(𝝈) = − ∑ 𝐻𝑖,𝐾(𝝈)𝜎𝑖

𝑁

𝑖=1

,                                                                     (3) 196 

where 𝐾(𝝈) is the number of active ROIs in pattern 𝝈 and the parameters 𝐻𝑖,𝐾(𝝈) represent the 197 

tendency of ROI 𝑖 to activate when 𝐾(𝝈) ROIs are active. For both linear and non-linear coupling-198 

MEMs the model parameters were inferred from the data using maximum likelihood (29). Notably, 199 

for the coupling-MEMs the partition function can be calculated directly — something that is generally 200 

not the case for most MEMs, since its calculation involves summing over all possible states.  201 

We used these coupling-MEMs to fit the binary single-scan fMRI data for the different experimental 202 

conditions. The models accurately estimated the distribution of population activity 𝑃(𝐾) (average 203 

Jensen-Shannon divergence 𝐷𝐽𝑆 between the model and data distributions: 𝐷𝐽𝑆 < 10-6 for both the 204 

non-linear and linear coupling-MEM; Fig. 4A and Fig. S2). Moreover, the models were able to 205 

moderately predict the covariances of the data (Fig. 4B,C), which were not used to constrain the 206 

models. Across the different datasets, the average correlation between the data and predicted 207 

covariances was 𝑟 = 0.28 ± 0.03 for the linear coupling model and reached 0.40 ± 0.02 for the non-208 

linear coupling model (see also Fig. S2). Furthermore, scan-classification based on parameters 𝛾𝑖 209 

yielded 86% and 45% correct classifications between awake and anesthetized conditions and among 210 

the six experimental conditions, respectively (Fig. S3A,B). Using parameters 𝛼𝑖 the classifier 211 

performance decreased to 75% and 28%, respectively (Fig. S3B). Thus, the learned linear coupling-212 

MEM showed consistent variations in parameters 𝛾𝑖 (associated to 𝑧𝑖) across the different arousal 213 

states. 214 
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 215 

Figure 4. Maximum entropy models indicate higher free energy and heat capacity during wakefulness than 216 
during anesthesia. (A) Fitting of 𝑃(𝐾) using the non-linear coupling-MEM. Data and predictions from all scans 217 
from the awake condition. (B-C) Fitting of covariances using the linear (B) and nonlinear (C) coupling-MEM for the 218 
awake condition. (D-F) The free energy, the susceptibility, and the heat capacity were derived using non-linear 219 
coupling-MEMs for the different conditions. Similar results were obtained using the linear model (see Fig. S4). 220 
Squares and error bars indicate means and standard deviations across scans, respectively, and the asterisks indicate 221 
significantly different values for the awake condition (p < 0.001 one-way ANOVA followed by Tukey's post hoc 222 
analysis). (G-L) same as (A-F) but using pairwise-MEMs. Error bars indicate standard errors across Monte Carlo 223 
simulations of the models. Asterisks indicate significantly different values for the awake condition (p < 0.001, one-224 
way ANOVA followed by Tukey's post hoc analysis). (M) Heat capacity as a function of temperature. The peak of 225 
heat capacity for 𝑇 = 1 indicates critical dynamics during wakefulness. The heat capacity peaked at 𝑇 < 1 for the 226 
anesthetized conditions, indicating supercritical dynamics during anesthetized states.  227 
 228 

Collective activity indicated reduced free energy, susceptibility, and heat capacity under 229 

anesthesia 230 

We can learn interesting features of collective activity using the estimated models. One important 231 

quantity is the system’s Helmholtz free energy, which is given by the difference between the average 232 

energy (〈𝐸〉) and the entropy (𝑆), i.e., 𝐹 = 〈𝐸〉 − 𝑆. The free energy quantifies the useful energy that 233 
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is obtainable from the system. Using the Boltzmann distribution, the free energy can be directly 234 

obtained from the partition function as 𝐹 = −ln(Z). Thus, since 𝑍 is tractable for the coupling-MEMs, 235 

we can directly estimate 𝐹. We found that the free energy was significantly higher for the awake state 236 

compared to all anesthetized conditions for both the non-linear (Fig. 4D) and the linear (Fig S4A) 237 

coupling-MEM (p < 0.001, one-way ANOVA followed by Tukey's post hoc analysis). This result is 238 

both interesting and reasonable because it indicates that more useful energy can be extracted from the 239 

awake state than from the anesthetized state. 240 

Two other important statistical quantities can be derived from the model, namely the susceptibility 241 

and the heat capacity. The susceptibility 𝜒 relates to the diversity of population states, while the heat 242 

capacity 𝐶ℎ quantifies the diversity of accessible energy states. Specifically, the susceptibility and the 243 

heat capacity of the model are given by the variances of the population activity and the energy, 244 

respectively, i.e., 𝜒 = var(𝐾) and 𝐶ℎ = var(𝐸).  We found that 𝜒 and 𝐶ℎ were significantly higher 245 

for the awake state compared to all anesthetized conditions for both linear and non-linear coupling-246 

MEM (non-linear model: Fig. 4E,F, linear model: Fig S4B,C; p < 0.001, one-way ANOVA followed 247 

by Tukey's post hoc analysis). This indicates that the awake system had larger population fluctuations 248 

and a larger repertoire of energy states than the system under anesthesia.  249 

We next tested whether the same differences in these statistical quantities were found using MEM 250 

constraint by other statistics. To build the models we estimated the maximum entropy distribution 251 

𝑃(𝝈) under the constraint that the activation rates (< 𝜎𝑖 >) and the pairwise correlations (< 𝜎𝑖𝜎𝑗 >) 252 

are preserved. The energy of the Boltzmann distribution that is consistent with these expectation 253 

values is given by (30, 31): 254 

𝐸(𝝈) = − ∑ ℎ𝑖

𝑁

𝑖=1

𝜎𝑖 −
1

2
∑ ∑ 𝐽𝑖𝑗𝜎𝑖𝜎𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 .                                            (4)  255 

In this pairwise-MEM, the parameter ℎ𝑖, called intrinsic bias, represents the intrinsic tendency of ROI 256 

i towards activation or silence and the parameter 𝐽𝑖𝑗 represents the effective interaction between ROIs 257 

i and j. The estimation of the model parameters Ω = {𝒉, 𝑱} was achieved through a pseudo-likelihood 258 

maximization (32) (see Methods). Since this model requires the precise estimation of < 𝜎𝑖𝜎𝑗 >, it 259 

cannot be fitted to single-scan data and, for this reason, we used concatenated data from each 260 

experimental condition. The pairwise-MEM accurately predicted the observed correlations and, to a 261 

lower extend, it predicted the distribution of population activity 𝑃(𝐾) (average correlation fit: 𝑟 = 262 

0.985 ± 0.002; average 𝐷𝐽𝑆 = 0.006 ± 0.002; Fig. 4G-I and Fig. S2) — this is expected, since 𝑃(𝐾) 263 

was not used to constrain the model. We found that biases and couplings parameters were changed 264 

for different states, with some parameters increasing or decreasing, and with a reduction of the 265 

variance of couplings in the anesthetized states (Fig. S5A-D). Moreover, coupling parameters showed 266 

a higher correlation with the anatomical connectivity (or brain connectome) in the anesthetized states 267 

than in the awake state (Fig. S5E). 268 
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Using this model, we calculated the collective statistical quantities for the different experimental 269 

conditions. Since in the pairwise-MEM the partition function is not tractable, we calculated 𝐹, 𝜒 and 270 

𝐶ℎ using Monte Carlo simulations (see Methods). Consistent with the above results, we found that 271 

the awake system had larger available energy (free energy, Fig. 4J, see also Fig. S6), larger 272 

population fluctuations (susceptibility, Fig. 4K) and larger repertoire of states (heat capacity, Fig. 273 

4L) than the system under anesthesia. Thus, the different versions of the MEM used here indicate the 274 

same results concerning the statistical properties of awake and anesthetized states. Furthermore, as 275 

shown in the Appendix, the susceptibility can be viewed as a measure of the network response to a 276 

small stimulus. Consequently, we found that application of an external stimulus elicited larger and 277 

more diverse responses for the pairwise-MEM corresponding to the awake state than for the models 278 

corresponding to the anesthetized states (Fig. S7). 279 

 280 

Awake collective activity displayed critical dynamics that were shifted to a super-critical regime 281 

under anesthesia 282 

The pairwise-MEM can be used to assess the physical state of the system. Indeed, by introducing a 283 

scaling parameter 𝑇, analogous to the temperature in statistical physics, one can obtain relevant 284 

features of the collective dynamics. For this, we scaled all model parameters as 𝛀 →  𝛀/𝑇 and 285 

calculated the heat capacity as a function of 𝑇, given by 𝐶ℎ(𝑇)  =  var[𝐸]/𝑇2. The “temperature” 𝑇 286 

controls the level of disorder and its effects can be understood by examining the system’s energy 287 

levels (Fig. S8). Briefly, at low temperatures, interactions dominate over fluctuations making the 288 

system predominantly silent and ordered. In contrast, at high temperatures, the system is disordered 289 

and relatively uncoupled because fluctuations dominate over interactions. Both low and high 290 

temperatures lead to a low 𝐶ℎ. However, for a specific temperature 𝑇max, order and disorder coexist 291 

in the system and 𝐶ℎ is maximal as expected for critical dynamics (33, 34). Thus, a maximal heat 292 

capacity at 𝑇max = 1 (corresponding to the model learned from the data) suggests that the system 293 

operated close to a critical state (whereas 𝑇max <  1 and 𝑇max >  1 indicates super-critical and sub-294 

critical dynamics, respectively).  295 

We found that the heat capacity curve was maximal for a temperature equal to 1 for the awake state, 296 

while it peaked at 𝑇max <  1 for the anesthetized conditions (Fig. 4M). These results suggest that the 297 

awake state displayed critical dynamics, while dynamics under anesthesia were super-critical, which 298 

indicates that the anesthetics had a disconnection effect. 299 

 300 

Couplings to population relate to the sensitive parameters of the system 301 

We next evaluated how the different parameters affected the model’s collective behavior. In general, 302 

changes in parameters can differently affect the system’s behavior, with some parameters (called 303 

“stiff” parameters) effectively modifying it, while others have little effect on it (“sloppy” parameters) 304 

(12). We used an information-theoretical approach based on the Fisher Information Matrix (FIM, 305 

noted 𝐺) to detect the parameters that have a strong effect on the collective activity (see Methods). 306 
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The FIM measures the change in the model log-likelihood 𝑃(𝝈|𝛀) with respect to changes in the 307 

model parameters 𝛀. As demonstrated in the Appendix, the FIM relates to the second derivatives of 308 

the free energy with respect to the model parameters, i.e., 𝐺𝑖𝑗 = −
𝜕2𝐹

𝜕Ω𝑖𝜕Ω𝑖
. This relation provides a 309 

direct link between a macroscopic quantity (the free energy) describing the collective dynamics of 310 

the different brain states and the underlying model parameters. For the linear model, the parameters 311 

that contributed the most to the FIM were the parameters 𝛾𝑖 (Fig 5A). This explains how changes in 312 

couplings to population, as observed between awake and anesthetized states, effectively change the 313 

collective state of the system, leading to the observed shift from critical to supercritical dynamics. 314 

 315 

 316 

Figure 5. Model sensitivity to the different parameters. (A) Fisher information matrix (FIM) calculated using the 317 
linear coupling-MEM built using the data concatenated across scans from the awake condition. The FIM measures 318 
how much the model log-likelihood changes with respect to changes in the model parameters, i.e., 𝛀 = {𝜶, 𝜷, 𝜸} for 319 
the linear coupling-MEM. (B) For each scan, we decomposed the FIM in eigenvectors and the mean contribution to 320 
first eigenvector of parameters 𝛾 was represented on the brain’s image. This represents the sensitivity of collective 321 
activity on the parameters 𝛾 associated to the different ROIs. (C) The ROIs with larger reduction of parameter 𝛾 in 322 
anesthetized states with respect to the awake state were those with strongest sensitivity. (D) Change of pairwise 323 
correlations between awake and anesthetized states: ∆𝐶 = 𝐶awake − 〈𝐶anesth〉. ROIs were ordered according to their 324 
contribution to the first eigenvector of ∆𝐶 (top and right insets). Two groups of ROIs were detected according to their 325 
positive or negative contribution to this eigenvector, respectively, with both groups reducing the correlation between 326 
awake and anesthesia. (E) First eigenvector of ∆𝐶 represented in the brain. (F-G) The two groups of ROIs had 327 
significantly different associated sensitivity (p < 0.001, Wilcoxon rank sum test), as measured by the FIM values 328 
associated to parameters 𝛾. 329 

 330 
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To evaluate the importance of each of the parameters, we defined the parameter’s sensitivity as its 331 

absolute contribution to the first eigenvector of the FIM (see Methods). The regions with the largest 332 

associated sensitivity for parameter 𝛾 were located in the cingulate, parietal, and insular cortices (Fig. 333 

5B). Those that contributed the least were visual and prefrontal cortices. Interestingly, the regions 334 

presenting larger reductions of 𝛾 between awake and anesthesia tended to be those with higher 335 

associated sensitivity (corr: 0.74, p < 0.001; Fig. 5C).  336 

Finally, we further examined how changes in pairwise correlations between awake and anesthesia 337 

related to changes in parameters of different sensitivity. We analyzed the average difference of 338 

correlation (∆𝐶) between awake and anesthesia. Two groups of ROIs were clearly separated 339 

according to their positive or negative contribution to the first eigenvector of the matrix ∆𝐶, 340 

respectively (Fig. 5D). Those that contributed positively were prefrontal and visual cortices, and those 341 

that contributed negatively were the cingulate, parietal, and insular cortices (Fig. 5E). Both groups 342 

presented a reduction of correlations under anesthesia, but prefrontal and visual cortices were related 343 

to parameters of low sensitivity (Fig. 5F-G). Hence, although prefrontal and visual areas changed 344 

their correlations, these changes were related to parameters that had a low impact on collective 345 

dynamics.  346 

 347 

Discussion 348 

In this study, we analyzed the fMRI binary collective activity of monkeys during wakefulness and 349 

under anesthesia. We showed that the coupling between each brain region and the rest of the 350 

population provides an efficient statistic that discriminates between awake and anesthetized states. 351 

We built MEMs based on this and other statistics to derive macroscopic properties that described the 352 

different brain states, such as the free energy 𝐹, the susceptibility 𝜒, and the heat capacity 𝐶ℎ. All 353 

these quantities were maximized in the awake state. By studying the heat capacity curve 𝐶ℎ(𝑇) as a 354 

function of scaling parameter, controlling the disorder of the system, we showed that awake critical 355 

dynamics were shifted to supercritical ones under anesthesia. Finally, using the FIM, we showed that 356 

changes in brain state were primarily dependent on changes in the couplings to population which 357 

were associated with the sensitive parameters of the MEMs and with specific brain regions. 358 

 359 

Population couplings and network sensitivity 360 

Previous research at the microcircuit level showed that neurons differ in their coupling to the 361 

population activity, with neurons that activate most often when many others are active and neurons 362 

that tend to activate more frequently when others are silent (35). Using the FIM analysis to detect 363 

sloppy and stiff parameters, it has been shown that these different types of neurons have a different 364 

impact on the network activity, different stimulus response properties, and different involvement in 365 

cortical state transitions (14). We showed that brain regions coupled differently to the rest of the 366 
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whole-brain network, consistent with previous findings (28), and, furthermore, that these couplings 367 

primarily determined the collective activity (i.e., they were associated to the stiff parameters of the 368 

model) and varied across arousal brain states. Overall, we proposed that the distribution of sensitivity 369 

of brain regions and their functional role could be a general principle of neural networks at different 370 

scales. 371 

Using principal components, we detected the combination of ROIs that contributed the most to 372 

distinguish between the awake and the anesthetized states based on their population couplings. The 373 

brain regions that changed their population coupling from the awake state to the anesthetized state 374 

were the cingulate, parietal, and insular cortices (Fig. 3E). Notably, the model parameters associated 375 

to the couplings of these regions were among those impacting the most the collective dynamics (Fig. 376 

5B-C). Our results suggest that anesthesia modified some important local/global parameters that 377 

effectively induced a change of brain state. Our results highlight the key role of the parieto-cingulate 378 

cortex in the mechanism of anesthesia-induced loss of consciousness. Previous studies have shown 379 

that the parietal cortex (4, 9, 36) and the cingulate cortex (37) are most strongly affected by 380 

anesthetics. These cortices also present alterations in brain injury-induced unconsciousness in 381 

humans (37, 38). Moreover, consistent with our results, it has been shown that the insula plays an 382 

important role in awareness and is a potential neural correlate of consciousness (39). 383 

Interestingly, although some brain regions, such as visual and prefrontal cortices, had different 384 

correlations between awake and anesthesia, they were associated to parameters with low impact on 385 

collective activity. This highlights the importance of studying not only the change in statistics 386 

between brain states but also their sensitivity on network dynamics. Consistent with our findings, a 387 

recent study of neuronal activity from several brain regions and in different arousal states (40) shows 388 

that parieto-basal ganglia circuits predicted the state of consciousness, while prefrontal activity failed. 389 

In addition, it has been proposed that the prefrontal cortex is mostly involved in the report of 390 

consciousness, rather than in the conscious experiences per se (41). 391 

 392 

Macroscopic thermodynamic quantities 393 

Using the MEMs, we learned interesting collective properties describing the different brain states. 394 

We measured the susceptibility that quantifies the diversity of spontaneous population fluctuations. 395 

The susceptibility can be viewed as a measure of the network response to a vanishing stimulus (Fig 396 

S7, see also the Appendix). Thus, the higher susceptibility observed in the awake state, compared to 397 

the anesthetized states, is consistent with Transcranial Magnetic Stimulation (TMS) studies showing 398 

that stimulation elicits a more diverse and complex response in the awake state than in low-level 399 

states of consciousness, such as sleep, anesthesia, and coma (42-45). Our study predicts that the 400 

network response to a localized stimulation would covary with the population couplings and the 401 

associated parameter sensitivities of brain region.  402 

Moreover, the models also allowed the estimation of the system’s heat capacity, a measure that 403 

quantifies the extent of the accessible dynamical repertoire. Indeed, a maximal heat capacity not only 404 
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indicates that the system can display a large number of energy states, but also that these states are 405 

distinguishable (Fig S8). Thus, a large heat capacity indicates a large capacity to represent 406 

information in numerous separable states. The observed reduction of heat capacity in the anesthetized 407 

states is consistent with previous studies showing that the repertoire of correlation states is limited 408 

during anesthesia (11). Furthermore, by varying a scaling parameter analogous to temperature, the 409 

resulting heat capacity curves suggest that awake dynamics were critical, while anesthetized 410 

dynamics were supercritical, consistent with previous predictions (19, 20). The model used here gives 411 

an intuitive interpretation of the transition between critical to supercritical dynamics. Indeed, in the 412 

pairwise-MEM supercritical dynamics are associated with a regime in which random fluctuations 413 

dominate over interactions, which is consistent with a disconnection of effective couplings.  It is 414 

important to note that the scale parameter 𝑇 is only introduced to assess the state, i.e., subcritical, 415 

critical, or supercritical, of the observed system (the one given for 𝑇 = 1, for which the pairwise-416 

MEM fits the data). This does not mean that differences between awake and anesthetized states are 417 

due to a global reduction of interactions and biases, instead different arousal states yielded different 418 

biases and couplings (Fig S5) which, in combination, resulted in a change of the system’s state. This 419 

means that the anesthesia reconfigured the system and not only scaled its parameters. Consistently, 420 

we found that effective couplings correlated more with the anatomical connections for the 421 

anesthetized states than for the awake state, an effect that has been observed in empirical data (8, 11) 422 

and cannot be explained by changes in global connectivity alone (25). 423 

Lastly, we measured the Helmholtz free energy of the estimated models. The free energy measures 424 

the useful energy that can be extracted from the system to the environment, i.e., its ability to produce 425 

work. Reasonably, the awake state led to higher free energy than the anesthetized states. Another 426 

important property of free energy is that its change with respect to the model parameters is equal to 427 

the Fisher information and, thus, it relates to the sensitivity of collective dynamics on these 428 

parameters. This result provides a direct link between the sensitivity of parameters and the change of 429 

a macroscopic quantity, the free energy, the behavior of which is known to characterize the phase 430 

transition (46). For the linear coupling-MEM, we showed that the couplings to population (𝑧) were 431 

associated to the parameters that have the strongest impact on collective activity. Consistently, we 432 

found that that 𝑧 was an efficient observable to classify the arousal states which collective dynamics 433 

were qualitatively different (in terms of criticality and supercriticality). Thus, these results give a 434 

coherent theoretical justification of the relevance of the statistic 𝑧 to characterize the brain states and 435 

to estimate their free energy. Altogether, our findings represent a significant step in the understanding 436 

of brain states, resulting in a coherent explanation of the transition from awake to anesthesia: the 437 

phase transition between brain states is driven by those parameters that change the free energy, which 438 

are the “stiff” parameters of the systems and which relate to population couplings. 439 

 440 

Implications for studies on pathological low-level states of consciousness 441 

An interesting extension of this work could be to study brain dynamics in coma using the present 442 

statistical mechanics framework. Loss of consciousness due to anesthesia or coma share common 443 
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features: complexity of dynamics and neural communication are generally reduced in low-level states 444 

of consciousness (23, 47). Consequently, estimates of complexity of human brain activity have been 445 

used to assess the depth of anesthesia (48, 49) and to predict the recovery of consciousness in 446 

vegetative patients (50). Reduction of complexity is consistent with a deviation from critical 447 

dynamics when consciousness is lost. Since the coupling-MEMs can be fitted to data from single 448 

scans and, as shown here, their parameters change in different brain states, future investigation could 449 

use these models and the statistic 𝑧 in the case of disorders of consciousness.  450 

 451 

Methods 452 

Animals 453 

This study included a total of five rhesus macaques (Macaca mulatta; 4 females, 1 male, 5–8 kg; 8–454 

12 years of age). All procedures were conducted in accordance with the European convention for 455 

animal care (86-406) and the National Institutes of Health’s Guide for the Care and Use of Laboratory 456 

Animals. Animal studies were approved by the institutional Ethical Committee (Comité d'Ethique en 457 

Expérimentation Animale, protocols #10-003 and #12-086). 458 

Experimental procedures 459 

Monkeys received anesthesia either with propofol, ketamine, or sevoflurane (11). The details of the 460 

anesthesia protocols are described in the Appendix. Monkeys were scanned on a 3-T horizontal 461 

scanner (Siemens Tim Trio; TR, 2,400 ms; TE, 20 ms; and 1.5-mm3 voxel size; 500 brain volumes 462 

per scan session). Before each scanning session, a contrast agent monocrystalline iron oxide 463 

nanoparticle (MION) was injected into the monkey’s saphenous vein. Acquisition and preprocessing 464 

of functional images followed the standard steps described in (8) and in the Appendix. Time-series 465 

were obtained for 𝑁 = 82 previously defined cortical regions of interest (ROIs) (CoCoMac Regional 466 

Map parcellation). 467 

Data binarization 468 

fMRI time series were binarized to study the data statistics and to learn two different families of 469 

maximum entropy models (MEMs). While binarization was required to construct the MEMs, 470 

transformation of continuous fMRI signals into discrete point processes has proven to effectively 471 

capture and compress fMRI large-scale dynamics (26). Indeed, it has been shown that point process 472 

resulting from signal thresholding largely overlaps with deconvoluted fMRI signals using the 473 

hemodynamic response function and preserve the topology of the resting state networks (RSNs) [24]. 474 

We here discretized the signals as follows. For each scan, the z-scored time-series of each ROI, 𝑥𝑖(𝑡) 475 

(1 ≤ 𝑖 ≤ 𝑁), was binarized by imposing a threshold 𝜃 = −1. Two binarization procedures were used. 476 

The first method detects the threshold crossings: the binarized activity is 𝜎𝑖(𝑡) = 1 if 𝑥𝑖(𝑡) < 𝜃 and 477 

𝑥𝑖(𝑡 − 1) > 𝜃, and 𝜎𝑖(𝑡) = 0 otherwise. The second method assigns the values 1 and −1 to all time 478 

points below or above the threshold, respectively: 𝜎𝑖(𝑡) = 1 if 𝑥𝑖(𝑡) < 𝜃, and 𝜎𝑖(𝑡) = −1 otherwise. 479 
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The first and the second procedure result in sparse and dense binary activity, respectively. We used 480 

the sparse and dense methods to construct coupling-MEMs and pairwise-MEM, respectively. This 481 

was to meet the assumptions of the model inference (see Appendix). 482 

k-means classification 483 

We used k-means clustering to classify the scans based on different statistics. Let 𝒗(𝑖) be a vector 484 

calculated from scan 𝑖, e.g., the vector containing all pairwise correlations among the ROIs. We used 485 

k-means to partition the collection of 𝒗(𝑖) into a pre-specified number (𝑘) of clusters. k-means 486 

minimizes the within-cluster variation, over all clusters. We used 𝑘 = 2 to evaluate how well the scans 487 

corresponding to the awake state and those corresponding to the anesthetized states (independent of 488 

the anesthetic protocol) could be classified based on vectors 𝒗(𝑖). To classify the six different 489 

experimental conditions, we used 𝑘 = 6. The classification performance was given by the proportion 490 

of correctly clustered scans. We used 100 random initial conditions of the k-means algorithm to obtain 491 

the average classification performance and its uncertainty. 492 

Maximum entropy models (MEMs) 493 

MEMs estimate the probability of all possible binary patterns, 𝑃(𝝈), that matches the expectation of 494 

a set of data observables. Let 𝒪1(𝝈), … , 𝒪𝐿(𝝈) be the set of 𝐿 data observables we seek to preserve. 495 

For example, if we were interested only on activation rates, 〈𝜎𝑖〉, we would need to consider 𝑁 496 

observables 𝜎1, … , 𝜎𝑁. Under the model distribution 𝑃(𝝈), the observables’ expectations are given 497 

as: 498 

〈𝒪𝑖〉model = ∑ 𝑃(𝝈)𝒪𝑖(𝝈)
{𝜎}

,                                                          (5) 499 

and should fit those of the data, 〈𝒪𝑖〉data =
1

𝑛
∑ 𝒪𝑖(𝝈𝑡)𝑛

𝑡=1 , where 𝝈𝑡 is the observed pattern at time 𝑡 500 

(1 ≤ 𝑡 ≤ 𝑛). We search for the model distribution 𝑃(𝝈) that does less assumptions, i.e., the one that 501 

has maximal entropy 𝑆 = ∑ 𝑃(𝝈)ln𝑃(𝝈){𝝈} . Thus, the problem is equivalent to maximizing a function 502 

(the entropy) given some constraints on the expectation values of the observables, a problem that can 503 

be generally solved using Lagrange multipliers. The maximum entropy distribution has the general 504 

form: 505 

𝑃(𝝈) =
1

𝑍
exp (∑ Ω𝑖

𝐿

𝑖=1

𝒪𝑖(𝝈)) =
1

𝑍
exp(−𝐸(𝝈)),                                      (6) 506 

Where 𝛀 = [Ω1, … , Ω𝐿] are the Lagrange multipliers enforcing the constraints, 𝐸(𝝈) =507 

− ∑ Ω𝑖
𝐿
𝑖=1 𝒪𝑖(𝝈) represents the energy of the pattern, and the normalizing factor 𝑍 =508 

∑ exp(−𝐸(𝝈)){𝝈}  is the partition function (see Appendix). We estimated different MEMs built on 509 

different constrained data observables. 510 
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Linear coupling-MEM. First, we considered the MEM that is consistent with the probability 511 

distribution 𝑃(𝐾), the average activations 〈𝜎𝑖〉, and the linear coupling between 𝜎𝑖 and 𝐾, i.e., 〈𝜎𝑖𝐾〉 512 

(which relates to 𝑧𝑖). As shown in Gardella et al. (29) the resulting energy function is given as: 𝐸(𝝈) =513 

− ∑ (𝛼𝑖 + 𝛽𝐾 + 𝛾𝑖)𝜎𝑖
𝑁
𝑖=1 . The model parameters 𝜶 = [𝛼1, … , 𝛼𝑁], 𝜷 = [𝛽0, … , 𝛽𝑁], and 𝜸 =514 

[𝛾1, … , 𝛾𝑁] are Lagrange multipliers associated to the constrained observables 〈𝜎𝑖〉, 𝑃(𝐾), and 〈𝜎𝑖𝐾〉, 515 

respectively. 516 

Non-linear coupling-MEM. The above model can be extended to include the non-linear coupling 517 

between 𝜎𝑖 and 𝐾. The complete coupling between 𝜎𝑖 and 𝐾 is provided by the joint probability 518 

distributions of 𝜎𝑖 and 𝐾, i.e., 𝑃(𝜎𝑖 , 𝐾), which is the target observable of the non-linear coupling-519 

MEM. In this case, the energy is given as 𝐸(𝝈) = − ∑ 𝐻𝑖,𝐾(𝝈)𝜎𝑖
𝑁
𝑖=1  (29), where 𝐾(𝝈) is the number 520 

of active ROIs in pattern 𝝈 and the parameters 𝐻𝑖,𝐾(𝝈) are associated to the constrained observables 521 

〈𝜎𝑖𝛿𝐾,𝑘〉, where 𝑃(𝐾 = 𝑘) = 〈𝛿𝐾,𝑘〉 and 𝛿𝐾,𝑘 is the Kronecker’s delta. The linear model is a special 522 

case of this model with 𝐻𝑖,𝐾(𝝈) = 𝛼𝑖 + 𝛽𝐾 + 𝛾𝑖. 523 

Pairwise-MEM. The third model we considered is the one that targets the activation rates (< 𝜎𝑖 >) 524 

and the pairwise correlations (< 𝜎𝑖𝜎𝑗 >) of the data. The resulting energy function of the maximum 525 

entropy distribution is given as 𝐸(𝝈) = − ∑ ℎ𝑖
𝑁
𝑖=1 𝜎𝑖 −

1

2
∑ ∑ 𝐽𝑖𝑗𝜎𝑖𝜎𝑗

𝑁
𝑗=1

𝑁
𝑖=1   (30, 31). The model 526 

parameter ℎ𝑖, called intrinsic bias, represents the intrinsic tendency of neuron i towards activation 527 

(𝜎𝑖 = +1) or silence (𝜎𝑖 = −1) and the parameter 𝐽𝑖𝑗 represents the effective interaction between 528 

neurons i and j. 529 

The parameters of the coupling-MEMs and pairwise-MEMs were estimated from the data using 530 

likelihood (29) and pseudo-likelihood (32) maximization, respectively (see Appendix).  531 

Macroscopic quantities 532 

The analysis of the learned MEMs provides relevant properties of the collective activity. These 533 

quantities derive from the Boltzmann distribution and they are interpretable in the framework of 534 

statistical physics. The description and calculation of these quantities are presented in the Appendix 535 

in detail. Briefly, we studied the system’s Helmholtz free energy, susceptibility, and heat capacity. 536 

The free energy 𝐹 is given by the difference between the average energy and the entropy, i.e. 𝐹 =537 

〈𝐸〉 − 𝑆 = −ln(Z); it quantifies the useful energy that is obtainable from the system. The 538 

susceptibility 𝜒 relates to the diversity of population states, i.e. 𝜒 = var(𝐾), but, importantly, it also 539 

relates to the system’s response to intrinsic or external inputs (see Appendix and Fig. S7). The heat 540 

capacity 𝐶ℎ quantifies the diversity of accessible energy states, i.e. 𝐶ℎ = var(𝐸). The heat capacity 541 

measures the size of the dynamic repertoire of the system. Furthermore, a parameter 𝑇, that scales all 542 

model parameters (𝛀 →  𝛀/𝑇), can be introduced to study the effect of a change in the system’s 543 

disorder (“temperature”) on the repertoire of accessible energy states, i.e., the function 𝐶ℎ(𝑇) =544 

var(𝐸)/𝑇2. This function is informative of the state of the system in terms of criticality: a maximum 545 

of the heat capacity close to 𝑇max  =  1 suggests that the observed system is likely to be close to a 546 
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critical state, whereas 𝑇max <  1 and 𝑇max >  1 indicate super-critical and sub-critical dynamics, 547 

respectively (31, 33, 34) (see Appendix and Fig. S8). 548 

Fisher information matrix 549 

We were interested in detecting which parameters have the strongest effect on the collective activity. 550 

For this, we studied the Fisher information matrix (FIM, noted 𝑮) of the learned MEMs. The FIM 551 

represents the curvature of the log-likelihood of the model, log 𝑃(𝝈|𝛀), with respect to the model 552 

parameters, i.e., it quantifies the sensitivity of the model to changes in parameters. It is given as: 553 

𝐺𝑘𝑙 = − ∑ 𝑃(𝝈|𝛀)
𝜕2ln 𝑃(𝝈|𝛀)

𝜕Ω𝑘𝜕Ω𝑙
{𝝈}

 .                                                (7) 554 

where 1 ≤ 𝑘, 𝑙 ≤ 𝐿, where 𝐿 is the number of parameters. As shown in Appendix, the FIM is given 555 

by the second derivatives of the free energy:  556 

𝐺𝑘𝑙 =
𝜕2ln 𝑍

𝜕Ω𝑘𝜕Ω𝑙
= −

𝜕2𝐹

𝜕Ω𝑘𝜕Ω𝑙
 .                                                       (8) 557 

To quantify the sensitivity of the different parameters we decomposed the FIM into eigenvectors, 558 

noted 𝝂1, … , 𝝂𝐿, and measured the sensitivity of a given parameter 𝑖 by its absolute contribution to 559 

the first eigenvector, i.e. |𝜈1(𝑖)|. 560 

Statistical analysis 561 

We used one-way ANOVA followed by Tukey's post hoc analysis to compare the means of three or 562 

more distributions and Wilcoxon rank sum test to compare the medians of two distributions. We 563 

measured the dissimilarity between two distributions (i.e., data vs. model distribution) through the 564 

Jensen-Shannon divergence. Correlation matrices were analyzed using standard PCA. Statistical 565 

models (i.e., maximum entropy models) were estimated using likelihood and pseudo-likelihood 566 

maximization.  567 
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Supplementary Materials 714 

 715 

Includes: 716 

Appendix 717 

Supplementary Figures S1 to S8 718 

 719 

Appendix 720 

 721 

Anesthesia Protocols 722 

Monkeys received anesthesia either with propofol, ketamine, or sevoflurane (11). Levels of 723 

anesthesia were defined using a clinical score and continuous electroencephalography monitoring. 724 

Under ketamine, deep propofol anesthesia and deep sevoflurane anesthesia, monkeys stopped 725 

responding to all stimuli, reaching a state of general anesthesia (11). The 3 animals scanned at a deep 726 

level of ketamine anesthesia received an intramuscular (i.m.) injection of ketamine (20 mg/kg i.m., 727 

Virbac, France), followed by a continuous intravenous infusion of ketamine (15-16 mg/kg/h i.v.) to 728 

maintain anesthesia. For propofol anesthesia, monkeys were scanned under moderate propofol 729 

sedation and deep propofol anesthesia. The awake monkeys were injected with an intravenous (i.v.) 730 

propofol bolus (5-7.5 mg/kg i.v.; Fresenius Kabi, France) to induce anesthesia, followed by target-731 

controlled infusion (Alaris PK Syringe pump, CareFusion, CA, USA) of propofol (moderate propofol 732 

sedation: 3.7-4.0 microg/ml; deep propofol anesthesia 5.6-7,2 microg/ml). During the ketamine and 733 

moderate propofol sedation, a muscle-blocking agent was administered (cisatracrium, 0.15 mg/kg 734 

bolus i.v. followed by continuous i.v. infusion at a rate of 0.18 mg/kg/h, GlaxoSmithKline, France) 735 

to avoid artifacts related to potential movements during magnetic resonance imaging (MRI) 736 

acquisition. For sevoflurane anesthesia, monkeys were scanned under moderate and deep sevoflurane 737 

anesthesia. Monkeys received an intramuscular (i.m.) injection of ketamine (20 mg/kg i.m., Virbac, 738 

France) for induction of anesthesia, followed by sevoflurane anesthesia (moderate sevoflurane 739 

anesthesia: I/E: 2,2/2,1 vol% or deep sevoflurane anesthesia: I/E: 4,4/4,0 vol%) (Abbott, France). For 740 

all the anesthesia experiments, monkeys were intubated and ventilated. Heart rate, non-invasive blood 741 

pressure (systolic/diastolic/mean), oxygen saturation (SpO2), respiratory rate, end-tidal CO2 742 

(EtCO2), and cutaneous temperature were monitored (Maglife, Schiller, France) and recorded online 743 

(Schiller, France). 744 

 745 

fMRI Data Acquisition 746 

Monkeys were scanned on a 3-T horizontal scanner (Siemens Tim Trio; TR, 2,400 ms; TE, 20 ms; 747 

and 1.5-mm3 voxel size; 500 brain volumes per scan session). Before each scanning session, a contrast 748 

agent monocrystalline iron oxide nanoparticle (MION, Feraheme; AMAG Pharmaceuticals; 10 749 

mg/kg, i.v.) was injected into the monkey’s saphenous vein (8). Preprocessing of functional images 750 

followed the standard steps described in (8), normalized to the anatomical template of the monkey 751 
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MNI space (51), and band-pass filtered in the frequency range of interest (0.0025–0.05 Hz). Time-752 

series were obtained for 𝑁 = 82 previously defined cortical regions of interest (ROIs) (CoCoMac 753 

Regional Map parcellation). Scans that presented signs of artifacts in time-series or power spectral 754 

density were discarded. The procedure was based on the visual inspection of the time series for all 755 

the nodes, the Fourier transform of each signal. A total of 119 scans were kept for subsequent 756 

analyses, corresponding to different levels of arousal: wakefulness (n = 24 scans), two levels of 757 

propofol sedation (light, LPP, n = 21, and deep, DPP, n = 23), ketamine anesthesia (KETA, n = 22), 758 

and two types of sevoflurane anesthesia (SEV2, n = 18, and SEV4, n = 11). 759 

 760 

Anatomical connectivity 761 

We used a fully weighted whole-cortex macaque structural connectivity matrix (connectome) derived 762 

by combining the information from fiber-tracing and tractography (52). The connectome is publicly 763 

available here: https://zenodo.org/record/1471588#.X44C6dAzY2x. Briefly, the tractography 764 

algorithm was optimized to best reproduce the weighted but partial-cortex tracer connectome from 765 

Markov et al. (53), before estimating whole-cortex connectome weights. The directed connectome 766 

weights between ROIs of the CoCoMac parcellation were given as the number of streamlines detected 767 

between them, divided by the total number of streamlines that were sent from the seed. Tractography-768 

derived structural connectivity matrices were averaged across nine macaque monkeys. For details see 769 

Shen et al. (52). 770 

 771 

Macroscopic quantities 772 

The analysis of the learned MEMs provides relevant properties of the collective activity. These 773 

quantities derive from the Boltzmann distribution and they are interpretable in the framework of 774 

statistical physics. Using the distribution 𝑃(𝝈) the mean energy and the entropy are given as: 775 

〈𝐸〉 = ∑ 𝑃(𝝈)𝐸(𝝈)
{𝝈}

,                                                                (S1) 776 

𝑆 = − ∑ 𝑃(𝝈)ln𝑃(𝝈)

{𝝈}

.                                                         (S2) 777 

An important quantity describing the system is the Helmholtz free energy defined as: 𝐹 = 〈𝐸〉 − 𝑆.  778 

Using the above expressions for the mean energy and the entropy we get:   779 

𝐹 = ∑ 𝑃(𝝈)[𝐸(𝝈) + ln𝑃(𝝈)]

{𝝈}

= −ln(𝑍) ∑ 𝑃(𝝈)

{𝝈}

= −ln (𝑍).                     (S3) 780 

Thus, the free energy can be obtained either by calculating the mean energy and the entropy or directly 781 

by means of the partition function. These two strategies can be more or less difficult depending on 782 
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the model. For the coupling-MEMs, we measured 𝐹 for each scan through 𝑍, since 𝑍 is tractable and 783 

the models can be fitted to single-scan data. For the pairwise-MEM, for which 𝑍 is not tractable, we 784 

performed Metropolis Monte Carlo simulations of the model (106 steps) to estimate 〈𝐸〉 and 𝑆. The 785 

Monte Carlo simulations were repeated ten times to estimate uncertainties on these quantities. The 786 

free energy quantifies the useful energy that can be extracted from the system, called ‘work’ in 787 

physics (54). 788 

Another important quantity is the susceptibility 𝜒 that measures the fluctuations of the population 789 

activity, i.e. 𝜒 = var(𝐾). The susceptibility can be also viewed as a measure of the population 790 

response to a perturbation applied to all units. Assuming that the perturbation 𝐵 adds a term to the 791 

energy, i.e., 𝐸(𝝈) + ∑ 𝐵𝜎𝑖
𝑁
𝑖=1 , the susceptibility is given by the derivative of 〈𝐾〉 with respect to 𝐵, 792 

i.e., 𝜒 = 𝜕〈𝐾〉 𝜕𝐵⁄  (see Fig S7). Here, we were interested in the so-called zero-field susceptibility 793 

obtained for 𝐵 = 0. Using the Boltzmann distribution and noting that 〈𝐾〉 =
1

𝑍

𝜕𝑍

𝜕𝐵
, it can be shown 794 

that 𝜕〈𝐾〉 𝜕𝐵⁄  is equal to the variance of 𝐾, and thus: 795 

𝜒 =
𝜕〈𝐾〉

𝜕𝐵
|

𝐵=0

= 〈𝐾2〉 − 〈𝐾〉2 = var(𝐾).                                             (S4) 796 

The zero-field susceptibility measures the spontaneous fluctuations of the population activity. This 797 

quantity can be measured directly in the coupling-MEMs through the estimated distribution 𝑃(𝐾). In 798 

the pairwise-MEM, the variance of 𝐾 can be estimated using Metropolis Monte Carlo simulations 799 

(ten simulations of 106 steps). In addition, note that 〈𝐾〉 =
1

𝑍

𝜕𝑍

𝜕𝐵
=

𝜕ln𝑍

𝜕𝐵
= −

𝜕𝐹

𝜕𝐵
, which implies the work 800 

𝑊 produced by changing the external stimulus from 𝐵1 to 𝐵2, i.e., 𝑊 = − ∫ 〈𝐾〉
𝐵2

𝐵1
𝑑𝐵, relates to the 801 

variation of the free energy ∆𝐹.   802 

A last important quantity is the heat capacity. The heat capacity 𝐶ℎ quantifies the diversity of 803 

accessible energy states of the system, i.e., 𝐶ℎ = var(𝐸). A useful related measure is the variation of 804 

the heat capacity as a function of a scale parameter 𝑇, analogous to temperature in statistical physics. 805 

This parameter acts as a scaling factor for all model parameters as 𝛀 →  𝛀/𝑇. The “temperature” 𝑇 806 

controls the level of disorder and its effects can be understood by examining the system’s energy 807 

levels (Fig. S8). This creates a family of scaled models in which 𝑇 =  1 corresponds to the MEM 808 

that was fitted to the data. The heat capacity as a function of 𝑇 is given by 𝐶ℎ(𝑇) = var(𝐸)/𝑇2 and 809 

provides useful features of the system. Indeed, it is known that a maximum of the heat capacity close 810 

to 𝑇 =  1 suggests that the observed system is likely to be close to a critical state, whereas 𝑇max <  1 811 

and 𝑇max >  1 indicate super-critical and sub-critical dynamics, respectively (31, 33, 34).  Hence, the 812 

curve 𝐶ℎ(𝑇) can be used as a tool to assess criticality. The heat capacity measures the size of the 813 

dynamic repertoire of the system. It not only provides a measure of the system’s complexity, but also 814 

assess whether the complexity is maximized and whether any reduction of complexity is due to a 815 

transition to subcritical or supercritical regimes (both regimes result in a decrease of complexity with 816 

respect to criticality, but through different mechanisms, see Fig. S8). For instance, if 𝑇max ≠ 1, this 817 

means that the system can be re-scaled to increase the complexity of the model dynamics (e.g., if 818 
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𝑇max < 1, 𝑇 needs to decrease to reach the maximum heat capacity, indicating supercritical 819 

dynamics). 820 

Furthermore it can be shown that the entropy 𝑆 of the system is equal the integral of the function 821 

𝐶ℎ(𝑇)/𝑇 from 𝑇 =  0 to 𝑇 =  1 (31, 33). This is a useful strategy to calculate the entropy that we 822 

used to compute the free energy when direct access to the partition function was not feasible (i.e., for 823 

the pairwise-MEM). In our study, we calculated 𝐶ℎ(𝑇) by estimating the variance of the energies 824 

through Monte Carlo simulations of the pairwise-MEM for different 𝑇 (five simulations of 5.106 steps 825 

for each 𝑇). 826 

Finally, note that the energies are equal to the patterns’ minus log probabilities, or “surprise”, minus 827 

the free energy (a constant), i.e., 𝐸(𝝈) = −ln𝑃(𝝈) + ln𝑍. Thus, the variance of the energy (heat 828 

capacity) measures the range of surprises of the different collective states. A large heat capacity 829 

allows the system to represent sensory events that occur with a wide range of likelihoods (energy 830 

states that are distributed, numerous, and separable) (55). 831 

 832 

Fisher information matrix and free energy 833 

We were interested in detecting which parameters have the strongest effect on the collective activity. 834 

To measure how distinguishable two models, with parameters Ω and Ω + 𝛿Ω, are based on their 835 

predictions, we used the Fisher information matrix (FIM). Indeed, the Kullback-Leibler divergence 836 

between the two models can be written as: 837 

𝐷𝐾𝐿(𝛀; 𝛀 + 𝛿𝛀) = 𝐺𝑘𝑙𝛿Ω𝑘𝛿Ω𝑙 + 𝒪(𝛿Ω
3),                                        (S5) 838 

where 1 ≤ 𝑘, 𝑙 ≤ 𝐿, where 𝐿 is the number of parameters, and the matrix 𝑮 is the FIM matrix given 839 

by: 840 

𝐺𝑘𝑙 = − ∑ 𝑃(𝝈|𝛀)
𝜕2ln 𝑃(𝝈|𝛀)

𝜕Ω𝑘𝜕Ω𝑙
{𝝈}

 .                                                (S6) 841 

The FIM represents the curvature of the log-likelihood of the model, log 𝑃(𝝈|𝛀), with respect to the 842 

model parameters, i.e., it quantifies the sensitivity of the model to changes in parameters.  843 

Note that the FIM relates to the free energy 𝐹 = −ln(Z). Indeed, using the Boltzmann distribution, 844 

we have: 845 

𝜕2ln𝑃

𝜕Ω𝑘𝜕Ω𝑙
=

𝜕

𝜕Ω𝑘𝜕Ω𝑙

[−𝐸(𝝈) − ln (𝑍)].                                           (S7)  846 
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In MEMs the energy is given by the parameters (i.e., Lagrange multipliers) and the target observables 847 

as: 𝐸(𝝈) = ∑ Ω𝑖𝑖 𝒪𝑖(𝝈). Thus, all second derivatives of the energy with respect to the parameters are 848 

zero, 
𝜕2𝐸

𝜕Ω𝑘𝜕Ω𝑙
= 0, and we have: 849 

𝜕2ln 𝑃

𝜕Ω𝑘𝜕Ω𝑙
= −

𝜕2ln 𝑍

𝜕Ω𝑘𝜕Ω𝑙
.                                                             (S8) 850 

Since the right-hand term of equation 17 does not depend on 𝝈, equation 15 gives: 851 

𝐺𝑘𝑙 =
𝜕2ln 𝑍

𝜕Ω𝑘𝜕Ω𝑙
= −

𝜕2𝐹

𝜕Ω𝑘𝜕Ω𝑙
 .                                                       (S9) 852 

 853 

 854 

Estimation of maximum entropy models. 855 

Linear and non-linear coupling-MEMs were estimated using the method described in (29). Briefly, 856 

Newton’s method was used to maximize the log-likelihood 𝐿𝐿, by iteratively updating the parameters 857 

as: 858 

𝛀(𝑘+1) = 𝛀(𝑘) − 𝑎𝑮−𝟏𝛁𝑳𝑳,                                                         (S10) 859 

Where 𝛀(𝑘) is the vector of parameters at iteration 𝑘, 𝑎 is a learning rate, 𝑮 is the FIM with parameter 860 

𝛀(𝑘), and 𝛁𝑳𝑳 is the gradient of 𝐿𝐿 with respect to the model parameters 𝛀(𝑘), i.e., ∇𝐿𝐿𝑖 =
𝜕𝐿𝐿

𝜕Ω𝑖
. It can 861 

be shown that ∇𝐿𝐿𝑖 = 〈𝒪𝑖〉data −
𝜕ln𝑍

𝜕Ω
. This method is feasible because, for coupling-MEM, the 862 

partition function can be analytically obtained from the model parameters and thus providing 𝑮 and 863 

𝛁𝑳𝑳; see details in (29). The algorithm was stopped when the estimation errors for all constraint 864 

observables became lower than 10-6. We found that this algorithm correctly converged for the sparse 865 

binarization. The code for learning the coupling-MEMs is available at: 866 

https://github.com/ChrisGll/MaxEnt_Model_Population_Coupling. 867 

The pairwise-MEM was learned using pseudo-likelihood maximization (32). This method 868 

approximates the likelihood function:  869 

𝐿(𝛀) ≈ ∏ ∏ 𝑃̃(𝜎𝑖|𝛀, 𝜎≠𝑖),

𝑁

𝑖=1

𝑛

𝑡=1

                                                         (S11) 870 

where 𝑛 is the number of time points of the data and 𝑃̃(𝜎𝑖|𝛀, 𝜎≠𝑖) is the conditional Boltzmann 871 

distribution for a unit 𝜎𝑖. 872 

This was done by updating the biases and couplings as: 873 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2021. ; https://doi.org/10.1101/2021.02.03.429578doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.03.429578
http://creativecommons.org/licenses/by/4.0/


29 

 

ℎ𝑖
(𝑘+1)

= ℎ𝑖
(𝑘)

+ 𝑎[〈𝜎𝑖〉data − 〈𝜎𝑖〉mf],                                                  (S12) 874 

𝐽𝑖𝑗
(𝑘+1)

= 𝐽𝑖𝑗
(𝑘)

+ 𝑎[〈𝜎𝑖𝜎𝑗〉data − 〈𝜎𝑖𝜎𝑗〉mf],                                              (S13) 875 

Where 𝑘 denotes the updating iteration (up to 5.103) and  〈. 〉mf are the expected values using the 876 

mean-field approximation: 877 

〈𝜎𝑖〉mf =
1

𝑛
∑ tanh (ℎ𝑖 + ∑ 𝐽𝑖𝑗𝜎𝑗(𝑡)

𝑗≠𝑖

) ,

𝑛

𝑡=1

                                              (S14) 878 

〈𝜎𝑖𝜎𝑗〉mf =
1

𝑛
∑ 𝜎𝑗(𝑡)tanh (ℎ𝑖 + ∑ 𝐽𝑖𝑘𝜎𝑘(𝑡)

𝑘≠𝑖

) ,

𝑛

𝑡=1

                                      (S15) 879 

where 𝜎𝑖(𝑡) is the activity of ROI 𝑖 (taking values 1 or −1). The estimator of the maximum pseudo-880 

likelihood approaches the maximum-likelihood estimator for 𝑛 → ∞ (56). For this reason, pairwise-881 

MEMs were fitted to concatenated data for each of the six experimental conditions. Also, since this 882 

method uses a mean-field approximation, it is accurate when the nodes of the network receive many 883 

inputs, thus we used the dense binarization scheme (see Methods). The code for learning the pairwise-884 

MEMs is available at: 885 

 https://royalsocietypublishing.org/doi/suppl/10.1098/rsta.2016.0287. 886 

 887 

  888 
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Supplementary Figures 889 

 890 

 891 

 892 

Figure S1. Scan-classification using continuous fMRI signals. A-B) Correlation matrix comparing 893 

the statistics 𝑧 and functional correlations, calculated using continuous fMRI signals, among all scans. 894 

For example, in panel (A), the element (𝑘, 𝑙) of the matrix represents the correlation between the 895 

coupling to population vector 𝒛 of scans 𝑘 and 𝑙. Coupling to population clearly separated awake and 896 

anesthesia data. Using k-means, we evaluated how well the different statistics could be used to 897 

classify the awake and anesthetized conditions (chance level: 50%). The classification performance 898 

using the coupling to population statistic was 97.48%, that was significantly higher than using the 899 

functional connectivity (84.87%). Classification of the six experimental conditions was generally 900 

lower, but higher for 𝑧 than for functional connectivity (48% vs. 38.11%, chance level: 16.67%).  901 

  902 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2021. ; https://doi.org/10.1101/2021.02.03.429578doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.03.429578
http://creativecommons.org/licenses/by/4.0/


31 

 

 903 

 904 

 905 

Figure S2. Goodness-of-fit and prediction accuracy of MEMs. We calculated the goodness-of-fit 906 

and prediction accuracy of the three types MEMs. For the linear and non-linear coupling-MEMs, the 907 

goodness-of-fit was given by the fit of the 𝑃(𝐾) distribution, which was the target observable of the 908 

MEMs. For these models, the fit of covariances represent predictions of the models, because 909 

covariances were not used to construct them. In contrast, for the pairwise-MEM, the goodness-of-fit 910 

was given by the covariance fit (since covariances were the target of the model’s learning step) and 911 

the fit of  𝑃(𝐾) was a model prediction. A) Jensen-Shannon divergence (𝐷𝐽𝑆) between the model and 912 

data 𝑃(𝐾) distributions, for the three types of MEMs (lower values of  𝐷𝐽𝑆 indicate better 913 

approximation of 𝑃(𝐾)). ANOVA: linear coupling-MEM: F(5,118) = 1.3, p = 0.289; non-linear 914 

coupling-MEM: F(5,118) = 1.2, p = 0.298. For the pairwise-MEM, ANOVA was not applicable since 915 

models were learned using concatenated data. B) Covariance fit for the three types of MEMs. 916 

ANOVA: linear coupling-MEM: F(5,118) = 11.4, p < 0.001; non-linear coupling-MEM: F(5,118) = 16.6, 917 

p < 0.001. Error bars indicate SEM. 918 

  919 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2021. ; https://doi.org/10.1101/2021.02.03.429578doi: bioRxiv preprint 

https://doi.org/10.1101/2021.02.03.429578
http://creativecommons.org/licenses/by/4.0/


32 

 

 920 

 921 

 922 

Figure S3. Parameters 𝜸 predict the state of the brain. A) PCA analysis showed that the 923 

parameters 𝛾 = [𝛾1, … , 𝛾𝑁] from the linear coupling-MEM separated the awake and anesthetized 924 

conditions along the first principal component. Each point represents a scan. B) Using k-means, we 925 

evaluated how well the different parameters 𝛾 and 𝛼 could be used to classify the awake and 926 

anesthetized conditions (chance level: 50%). The classification performance based on 𝛾 and 𝛼 927 

parameters was 85.6 ± 4.4%, and 75.8 ± 0.0%, respectively. Classification of the six experimental 928 

conditions was 45.0 ± 4.0%, and 27.9 ± 0.9% based on 𝛾 and 𝛼 parameters, respectively. 929 

  930 
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 931 

 932 

Figure S4. Macroscopic quantities using the linear coupling-MEM. A) Free energy 𝐹 for the 933 

different conditions, 𝐹 = 〈𝐸〉 − 𝑆 = −ln 𝑍. B) Susceptibility 𝜒 for the different conditions, 𝜒 =934 

var(𝐾). C) Heat capacity 𝐶 for the different conditions, 𝐶ℎ = var(𝐸). In panels (A) to (B), we the 935 

linear model was used. Squares and error bars indicate means and standard deviations across scans, 936 

respectively, and the asterisks indicate significantly different values for the awake condition (p < 937 

0.001 one-way ANOVA followed by Tukey's post hoc analysis). 938 

  939 
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 940 

 941 

Figure S5. Change of the pairwise-MEM parameters 𝒉 and 𝑱 across brain states. A) Change in 942 

bias model parameters (ℎ) between the awake and deep propofol (DPP) conditions for each ROI. B) 943 

Distribution of the change in couplings (𝐽) between the awake and deep propofol (DPP) conditions 944 

for all pairs of ROIs. Inset: the matrix represents the change of the couplings between awake and 945 

DPP, i.e., Δ𝐽𝑖𝑗 = 𝐽𝑖𝑗
awake − 𝐽𝑖𝑗

DPP. C) Distribution of couplings 𝐽 in the awake and DPP conditions. D) 946 

Variance of couplings 𝐽 for each experimental condition. Error bars indicate bootstrap uncertainties 947 

(500 repetitions). E) Pearson correlation between the coupling matrix 𝐽 and the structural 948 

connectivity, for each experimental condition. The error bars indicate the correlation coefficient’s 949 

95% confidence interval. 950 

 951 
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 952 

Figure S6. Mean energy and entropy for the pairwise-MEM. The mean energy 〈𝐸〉 and the entropy 953 

𝑆 of the learned pairwise-MEMs were calculated using Monte Carlo simulations (106 steps). To 954 

calculate the entropy, we used the heat capacity as a function of the scaled parameter 𝑇, analogous to 955 

temperature (see Methods). 956 

  957 
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 958 

 959 

 960 

Figure S7. Population response to an external stimulus predicted by the pairwise-MEMs. A) An 961 

external stimulus was applied to the learned pairwise-MEMs. The stimulus 𝐵 added a term to the 962 

energy as: 𝐸(𝜎) + ∑ 𝐵𝜎𝑖
𝑁
𝑖=1 . We performed Monte Carlo simulations (100 trials of 5.104 steps) for 963 

different values of 𝐵 to examine the mean population response 〈𝐾〉 as a function of the external 964 

stimulus. In this case, the work 𝑊 produced by changing the external stimulus from 𝐵1 to 𝐵2, i.e., 965 

𝑊 = − ∫ 〈𝐾〉
𝐵2

𝐵1
𝑑𝐵, relates to the variation of the free energy ∆𝐹.  B) Variance of the population 966 

activity. In these simulations, inactive ROIs (𝜎𝑖 = −1) were set to 0, so that 𝐾 represents the number 967 

of active ROIs. 968 

  969 
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 970 

 971 

 972 

Figure S8. Heat capacity and energy levels. A) Heat capacity 𝐶ℎ and entropy 𝑆 of the pairwise-973 

MEM, as a function of the scalling parameter 𝑇, analogous to temperature in statistical physics. The 974 

temperature 𝑇 controls the disorder of the system (i.e., the entropy 𝑆(𝑇) increases as a function of 𝑇).  975 

If the model learned from the data (i.e., 𝑇 = 1) maximized the heat capacity, then its dynamics are 976 

critical. If the temperature that maximizes the heat capacity is larger than 1, the dynamics of the learn 977 

model are subcritical (the temperature must increase to reach the maximum). Finally, if the 978 

temperature that maximizes the heat capacity is lower than 1, the dynamics of the learn model are 979 

supercritical (the temperature must decrease to reach the maximum). B) Observed energies 𝐸 for 980 

subcritical, critical, and supercritical dynamics. 𝐸0 correspond to the energy of the state for which all 981 

units are silent. For subcritical dynamics, the few visited energy levels are sparsely distributed, and 982 

the variance of energies (i.e., heat capacity) is relatively low. For supercritical dynamics, many energy 983 

levels are densely distributed, and their variance of energy is also relatively low. For critical 984 

dynamics, the energy levels are numerous and separable, leading to a maximal variance of energies. 985 

 986 
 987 
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