Ga2O3 and Related Ultra‐Wide Bandgap Power Semiconductor Oxides: New Energy Electronics Solutions for CO2 Emission Mitigation - Archive ouverte HAL
Article Dans Une Revue Materials Année : 2022

Ga2O3 and Related Ultra‐Wide Bandgap Power Semiconductor Oxides: New Energy Electronics Solutions for CO2 Emission Mitigation

Jacob J. Asher
  • Fonction : Auteur
Mike Jennings
  • Fonction : Auteur
A. Pérez‐tomás
  • Fonction : Auteur

Résumé

Currently, a significant portion (~50%) of global warming emissions, such as CO2, are related to energy production and transportation. As most energy usage will be electrical (as well as transportation), the efficient management of electrical power is thus central to achieve the XXI century climatic goals. Ultra‐wide bandgap (UWBG) semiconductors are at the very frontier of electronics for energy management or energy electronics. A new generation of UWBG semiconductors will open new territories for higher power rated power electronics and solar‐blind deeper ultraviolet optoelectronics. Gallium oxide—Ga2O3 (4.5–4.9 eV), has recently emerged pushing the limits set by more conventional WBG (~3 eV) materials, such as SiC and GaN, as well as for transparent conducting oxides (TCO), such asIn2O3, ZnO and SnO2, to name a few. Indeed, Ga2O3 as the first oxide used as a semiconductor for power electronics, has sparked an interest in oxide semiconductors to be investigated (oxides represent the largest family of UWBG). Among these new power electronic materials, AlxGa1‐xO3 may provide high‐power heterostructure electronic and photonic devices at bandgaps far beyond all materials available today (~8 eV) or ZnGa2O4 (~5 eV), enabling spinel bipolar energy electronics for the first time ever. Here, we review the state‐of‐the‐art and prospects of some ultra‐wide bandgap oxide semiconductor arising technologies as promising innovative material solutions towards a sustainable zero emission society.
Fichier principal
Vignette du fichier
materials-15-01164.pdf (1.75 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03579478 , version 1 (08-03-2022)

Licence

Identifiants

Citer

Z. Chi, Jacob J. Asher, Mike Jennings, Ekaterine Chikoidze, A. Pérez‐tomás. Ga2O3 and Related Ultra‐Wide Bandgap Power Semiconductor Oxides: New Energy Electronics Solutions for CO2 Emission Mitigation. Materials, 2022, 15 (3), ⟨10.3390/ma15031164⟩. ⟨hal-03579478⟩
134 Consultations
672 Téléchargements

Altmetric

Partager

More