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Machine Learning models can output confident but incorrect predictions. To address this problem, ML researchers use various
techniques to reliably estimate ML uncertainty, usually performed on controlled benchmarks once the model has been trained.
We explore how the two types of uncertainty—aleatoric and epistemic—can help non-expert users understand the strengths and
weaknesses of a classifier in an interactive setting. We are interested in users’ perception of the difference between aleatoric and
epistemic uncertainty and their use to teach and understand the classifier. We conducted an experiment where non-experts train a
classifier to recognize card images, and are tested on their ability to predict classifier outcomes. Participants who used either larger or
more varied training sets significantly improved their understanding of uncertainty, both epistemic or aleatoric. However, participants
who relied on the uncertainty measure to guide their choice of training data did not significantly improve classifier training, nor were
they better able to guess the classifier outcome. We identified three specific situations where participants successfully identified the
difference between aleatoric and epistemic uncertainty: placing a card in the exact same position as a training card; placing different
cards next to each other; and placing a non-card, such as their hand, next to or on top of a card. We discuss our methodology for
estimating uncertainty for Interactive Machine Learning systems and question the need for two-level uncertainty in Machine Teaching.
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1 INTRODUCTION

Machine Learning (ML) has raised research interest that incorporates a human-computer interaction (HCI) perspective to
increasingly involve end users, leading to the fields of Interactive Machine Learning (IML) and Human-AI Interaction [2,
10, 17]. One research area, Machine Teaching (MT), focuses on the human teacher of ML algorithms and their strategies
for training ML models.

Increasing our understanding of this human perspective should improve the process by which domain experts convey
relevant knowledge to a learning algorithm and, more generally, aid system developers in designing new types of
interactive ML. However, we currently lack a clear understanding of how non-experts, users who are not trained in
Computer Science and ML, interpret an ML algorithm’s output as they teach new domain-specific concepts.
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Although deep neural networks (DNN) have achieved state-of-the-art performance on image classification problems
for over a decade [24], they are also prone to predicting false positives with high confidence levels [18]. Furthermore,
barely perceptible input variations can easily deceive deep neural networks [45]. The real-world implications of
these issues are often dramatic, especially for safety-critical applications such as autonomous driving and assistive
decision-making. One strategy for mitigating this problem is to estimate ML uncertainty. The research literature on
ML uncertainty, particularly Deep Learning uncertainty, distinguishes between aleatoric and epistemic uncertainty.
Aleatoric uncertainty captures ambiguity and noise in the data, and epistemic uncertainty captures novelty. In this
context, the concept of ambiguity refers to the gray area between the classes of a trained model. For example, if a
classifier has been trained to discriminate between cats and dogs, an ambiguous example would be a picture that
includes both cats and dogs. By contrast, the concept of novelty in epistemic uncertainty refers to new classes on which
a model has not been trained yet. Thus in the above example of a cat-dog classifier, an image of a panda would be
considered a novel instance for the model.

Researchers have actively explored both aleatoric and epistemic uncertainty estimation in DNN on controlled,
stereotyped data, such as Fashion MNIST [31]. Within this classical ML empirical approach, uncertain examples—either
ambiguous or novel—are often defined artificially for performance considerations. Especially, we lack a clear under-
standing of uncertainty in DNN from the user’s perspective in interactive settings. The field of Explainable AI (XAI)
explores the role of uncertainty to explain ML predictions and shape people’s trust in ML-based decision-making
systems [4, 8, 50]. Confidence levels alone can be insufficient to improve AI-assisted decision making [50, 51]. Human-
Computer Interaction (HCI) research has shown that the uncertainty inherent in probabilistic models can itself be
considered as design material for interaction design [3]. To our knowledge, inspecting ML aleatoric and epistemic
uncertainty has not been explored in the context of Interactive ML. This two-levels uncertainty can theoretically help
users understand if a model is incorrect because it lacks data or because the example is intrinsically ambiguous. We
investigate this assumption empirically through human-centered evaluations on a realistic teaching task with an IML
system.

This article thus investigates the following research questions:

● How do non-experts in Computer Science and ML use aleatoric and epistemic uncertainties when teaching a ML
classifier?
● How do non-experts perceive the difference between aleatoric and epistemic uncertainty?
● Do aleatoric and epistemic uncertainties improve non-experts’ understanding of the classifier and their ability to
predict its outcome?

Through these questions, we hope to understand users’ perception and use of aleatoric and epistemic uncertainty
estimates in a machine teaching scenario. After reviewing the related research literature on uncertainty estimation and
machine teaching, we report on the results of a benchmark study that assesses aleatoric and epistemic uncertainty
estimates of real-world data using feature transfer from pre-trained models, with two different datasets. We use these
results to select the appropriate method for an experiment investigating how non-experts understand both types of
uncertainty. We use a teaching strategy designed for creative and educational domains [7, 35], where participants
begin with an empty image classifier that makes random predictions and then trains it incrementally by selecting and
presenting a series of images. We show that teaching decisions on training set size and data variability are more critical
than the type of uncertainty participants were exposed to. We also identify and discuss two ML teaching approaches
adopted by participants: using uncertainty as a teaching guide or introducing systematic variations of class-dependent
Manuscript submitted to ACM
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instances. We conclude with a discussion of how the results of the offline benchmark study and the experiment offer
insights into the concepts of aleatoric ambiguity and epistemic novelty in the data from both the system and the human
user’s perspective.

2 BACKGROUND AND RELATEDWORK

We present a background on uncertainty estimation in Deep Neural Networks. We then introduce Machine Teaching
and the related work associated with this approach.

2.1 Background in Uncertainty Estimation in Deep Neural Networks

Before Machine Learning, the characterization of uncertainties and the manner of dealing with them was primarily
the subjects of study of statisticians and engineers [12, 33, 44] and largely applied to risk analysis. These fields first
introduced the distinction between epistemic and aleatoric [20], also called model and data uncertainty. The notion
spread within the Machine Learning community much more recently, starting with the field of computer vision [23].
Uncertainty has been used with active learning, which aims to select the most informative instances to train the model
and optimally reduce its epistemic uncertainty [38]. Active learning aims to train models with data that are costly to
acquire. With the advent of Deep Learning and its adoption in many real-world applications, more effort has been made
to develop methods capable of estimating the level and origin of uncertainty in a model prediction.

Aleatoric uncertainty captures the intrinsic randomness and ambiguity of the task. It is irreducible with further
data. Epistemic uncertainty is caused by a lack of knowledge. It is reducible given additional information. An approach
in uncertainty estimation relies on Bayesian Neural Networks (BNN) that are an extension of Neural Networks in
which all parameters—weights and bias—have a probability distribution associated with them. BNN emits predictions
with uncertainty i.e. the errors margin in a data point prediction. Within the BNN approach, the distinction between
aleatoric and epistemic uncertainty was first discussed by Kendall and Gal [23], showing neural network’s limited
awareness of its own confidence [22]. The research was driven by the necessity of determining if additional training
data can resolve uncertainty. Theoretically, the mathematical formulation of uncertainty in BNN can be split in its
reducible and irreducible contributions [43]. Empirically, the ML literature showed that the challenge lies in estimating
epistemic uncertainty. Estimations of the aleatoric uncertainty use well-understood measures drawn from information
theory such as the Shannon entropy [39]. In the following subsection, we present state-of-the-art techniques to estimate
epistemic uncertainty.

Gal and colleagues [15] proposed a method to sample a trained model by randomly switching off a certain number
of connections at inference (called dropout). Hence, one can derived 𝑁 different models from a single trained model.
Each model potentially provides different predictions. The variability across the 𝑁 predictions of the ensemble is used
as an estimator of epistemic uncertainty. Similarly, Lakshminarayanan and colleagues [25] proposed to independently
train 𝑁 DNN randomly initialized, using the same training examples. This approach is called Deep Ensemble. This
approach also looks for disagreement among the predictions of the models ensemble. The uncertain instances, according
to the epistemic uncertainty, are those on which the ensemble strongly disagree i.e. the ensemble gives confident
predictions contradicting themselves. The ambiguous instances, i.e. uncertain according to the aleatoric uncertainty, are
the instances on which the models of the ensemble all give non-confident predictions. Deep Ensembles have empirically
outperformed all other methods for estimating epistemic uncertainty. For example, Dropout-based techniques [16], or
techniques involving end-to-end learning of uncertainty measures [9, 13] were proved to be less successful. However,
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the drawback with the Deep Ensemble approach is that training time and memory load linearly increase with the
number of models in the ensemble.

Figure 1 illustrates both types of uncertainty in the context of Deep Ensemble. At the top, the figure depicts an
ambiguous image (with respect to a handwritten digit dataset), leading to predictions with low confidence. The average
confidences are low, as well as the error bars. At the bottom, the figure depicts a novel image leading to different
predictions with high confidence. The average confidences remain low, but the error bars are large.
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Fig. 1. Illustration of aleatoric and epistemic uncertainties through the Deep Ensemble approach, using as input data an
ambiguous image with respect to the training set (made of handwritten digits recognition problem (MNIST)) and a novel
image (unrelated to the training set).

Recently, uncertainty estimation has been tackled through a novel approach involving the use of feature space
distances and density [27–29, 31, 47]. This approach assumes epistemic uncertainty increases in sparse regions of
the feature space i.e. where fewer training examples were given. This feature-based approach aims at providing a
deterministic, efficient and reliable estimation of epistemic uncertainty. Postels et al. [34] proposed a method using the
density of the feature space in different layers as a measure of the epistemic uncertainty. They found that deeper layers
provide better aleatoric uncertainty while shallower layers provide better epistemic uncertainty. The challenge of this
approach lies in the problem of feature collapse [47], i.e. the fact that intermediate layers tend to map novel samples to
the dense region of the feature space. Mukhoti et al. [31] introduced regularization techniques of the feature space to
mitigate this effect. The technique provides good results on low-resolution image datasets in which the distinction
between novel and ambiguous data is controlled and exacerbated. For example, they used MNIST as the in-distribution
data and Fashion MNIST as novel data.

This short overview reveals that Deep Ensemble remains the baseline for estimating epistemic uncertainty while
density-based approaches are promising to lower the computational cost of epistemic uncertainty estimation. That said,
reported methods were evaluated in a setting where the training set was fixed and controlled, and the models were
trained end-to-end using standard offline methods. In the context of this work, we identify two main challenges. First,
epistemic and aleatoric have not been evaluated within an IML workflow. Second, short iterations on model training is
Manuscript submitted to ACM
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crucial for the IML workflow. However, the computational cost of training DNN prevents incremental teaching from
scratch. To enable incremental training from scratch, one can use pre-trained models for feature extraction along with
a train a shallower network for classification [35]. This is a well-known technique in transfer learning [37] that was
studied an IML context with novices [30]. As far as we know, the ML literature does not address the effect of transfer
learning techniques on the DNN uncertainty estimations. We explore this problem in Section 3 and use the results to
choose adequate uncertainty estimation for the user experiment in section 4.

2.2 Machine Teaching with novices

Machine Teaching (MT) originally refers to a mathematical problem that aims to find a minimal set of examples to train
a target model [40, 41, 52]. In HCI, Machine Teaching refers to humans training ML models. Simard and colleagues [42]
see MT as a way to improve the human teacher in the task of building machine learning models. The research in
Machine Teaching is thus related to human-centered research in ML [17], but has also been investigated in Human-Robot
Interaction (HRI) where a human trains a robot to learn given concepts [6, 46]. HCI-centred approach of MT primarily
involves non-experts users as teachers (developers, domain-experts, or the general public). It aims to open up ML
technology to a broader range of expertise.

Hong et al. [19] investigated how participants trained and deployed an image recognition application using images
taken with their mobile phones. They focused their analysis on the type of variability induced in the data, showing that
participants incorporate diversity in their examples, drawing parallels to how humans recognize objects independent
of size, viewpoint, location, and illumination. Dwivedi et al. [11] conducted workshops with children in which they
used MT to classify origami. They argued that MT could help children develop creativity and comfort with ML and AI.
Their results proposed insights for designing MT experiences for children, including the fact that confidence scores and
complementary metrics should be visible for experimentation and that the interface should allow quick data inspection.
In a recent study, Sanchez et al. [35] investigated how adult novices teach an image classifier with sketches drawn by
participants. They conducted a think-aloud study to reveal users’ strategy and understanding while teaching the system.
Among these results, they highlighted that optimization inertia of NN affects novices’ understanding. They suggested
guiding users in building a meaningful teaching curriculum i.e. a strategy that organizes the training examples to
gradually introduce complexity.

In terms of guidance, Wall et al. [48] investigated how ML expert annotations and teaching strategies can serve to
design notification guidance for novices in the task of training a classifier on articles. Although guidance did not improve
the classifier’s performances trained by novices, the task was found less difficult when novices had guidance. On the
same line, Cakmak and Thomaz [6] studied how users spontaneously teach a binary classifier with examples from a
finite set of combinations. They found that participants did not spontaneously generate optimal teaching sequences to
improve mode accuracy, but this result can be leveraged with automated guidance.

In this work, teaching relied primarily on ML predictions, which can be misleading with complex tasks involving
DNN. We explore the use of aleatoric and epistemic uncertainty as feedback for teaching DNNs, which is the focus of
Section 4 and 5.

3 BENCHMARK STUDY

This section explores state-of-the-art epistemic and aleatoric uncertainty estimation in a transfer learning context. The
goal is to select uncertainty measures that will be used in the machine teaching experiment presented in the following
sections.

Manuscript submitted to ACM



6 Sanchez et al.

3.1 Datasets and embeddings

We explore uncertainty estimates on two different datasets. The first dataset is derived from literature in ML. The
second dataset was collected using the apparatus of the machine teaching experiment presented in Sections 4.2. Each
dataset contains a training set, a test set and uncertain set. The training and test sets are comprised of In-Distribution
(ID) data whereas the uncertain set is comprised of Out-of-Distribution (OoD) data. The uncertain set contains both
epistemic and aleatoric instances. The datasets are:

(1) The MNIST dataset [26] with additional ambiguous (Dirty-MNIST) and novel (Fashion-MNIST) images. MNIST
and Dirty-MNIST are 28x28 pixel images representing handwritten digits. Dirty-MNIST includes ambiguous and
noisy images. Fashion-MNIST contains 28x28 pixel images representing clothes. This dataset has been previously
used in ML uncertainty assessment [31]. We used 160 examples in the training set, 200 examples in the test set
and 240 examples in the uncertain set.

(2) The CARDS dataset are 350 images of playing cards we collected with a webcam fixed above a black tray used
in the experiment reported in the following sections (see Figure 5). We collected the card images in the same
lighting condition as the machine teaching experiment. The dataset comprises 150 training examples and 150
testing examples of the cards Nine, Queen and King, and 50 uncertain images showing both ambiguous and
novel configurations. Note that the choice of the images to be added to the uncertain set was subjective. Our aim
is not to create a benchmark dataset with validated labels across annotators. Rather, we designed a dataset as
close as possible to the ones that participants may create in the experimental study presented in Section 4.

Images from each dataset are processed through a pre-trained model and give a feature vector called embedding, on
which we conduct the benchmark. This approach is standard in transfer learning, where a pre-trained model is used
to create embeddings, on which a simpler classifier is trained to map embeddings values to class outputs. Transfer
learning enables incremental and few-shot learning [49]. To assess the impact of the feature extraction technique on
uncertainty estimation, we consider three pre-trained models available online: MobileNetV1 [21], MobileNetV2 [36] and
ResNet50 [32].

3.2 Uncertainty estimation

3.2.1 Epistemic uncertainty estimation. To estimate epistemic uncertainty, we used two approaches from the related
work: the Deep Ensemble baseline and a deterministic approach using Density estimation in the feature space given by
the pre-trained models introduced above.

● The Deep Ensemble method consists of training 𝑁 DNNs independently on the same training data. Each DNN
in the ensemble is randomly initialized. Measuring epistemic uncertainty consists of estimating the disagreement
between the predictions emitted by the ensemble, which we achieve by computing the averaged standard
deviation of the per-class likelihoods:

𝑢(𝑧) = 1
𝑁

𝑁

∑
𝑖=1

std((︀𝑝𝑘𝑖 (𝑧)⌋︀𝑘=1..𝑀) (1)

where 𝑝𝑘𝑖 (𝑧) is the probability of class 𝑖 given by the 𝑘𝑡ℎ model in the ensemble, for input data 𝑧, std is the
standard deviation computed over the models in the ensemble. In this paper we consider an ensemble of 3
Multi-Layer Perceptrons (MLP) with two hidden layers of 64 and 32 neurons. Each MLP is placed on top the
pre-trained model. During training, only the MLPs are trained.
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● The Density estimation computes the data density in the feature space as created by the pre-trained models.
Novel images are assumed to be far from the dense area composed of the training data projected in the feature
space. They will therefore obtain low likelihood probability under the density model. The density-based uncer-
tainty measure relies solely on data representation in the feature space and does not require the training of a
classifier. We use two different approaches:

(1) Gaussian Mixture Model (GMM): each Gaussian component is centered on a class from the training set. The
model learns the variances and the mixing weights. Epistemic uncertainty is estimated using the weighted
log-likelihood of a new input data point under the trained GMM.

(2) Gaussian Density: one density function using Gaussian kernel is trained per class on data embeddings created
by the pre-trained models. Measuring epistemic uncertainty is performed by computing the sum log-likelihood
over the density models.

3.2.2 Aleatoric uncertainty estimation. To estimate aleatoric uncertainty, we follow the standard approach by computing
the entropy of the softmax distribution provided at the output of the classifier [31].

The entropy computed on the softmax probability distribution is as follows:

𝐻(𝑧) = −
𝑁

∑
𝑖=1

𝑝𝑖(𝑧) log2 𝑝𝑖(𝑧) (2)

where 𝑧 is an input data point and 𝑝𝑖(𝑧) is the softmax value for class 𝑖 . We note that the uncertainty is calculated
downstream from the predictions’ probability emitted by the Neural Network.

3.3 Results

We assessed uncertainty estimates through their performance in detecting uncertain data (out-of-distribution) from
test data (in-distribution). We consider the problem as a binary classification between positives (test data) and nega-
tives (uncertain data) and use the area under the ROC curve (AUROC) as the performance metric. We also report a
complementary analysis on the influence of pre-trained models on uncertainty estimation.

3.3.1 Epistemic uncertainty estimation. Figure 2a reports the results obtained considering epistemic uncertainty
measures. The results showed an influence of the type of embedding (MobileNetV1, MobileNetV2, or ResNet50) on
the detection performance. On the MNIST dataset, techniques using ResNet50 performed significantly better than
when using the two other embeddings. In addition, combining with density-based approaches provided nearly optimal
detection rates (AUROC=0.98 for both GMM and Gaussian density). On the CARDS dataset, both MobileNetV1 and
MobileNetV2 achieved higher performance than ResNet50. Combining with density-based approaches also showed
higher performance (AUROC=0.93 [resp. 0.87] for Gaussian density [resp. GMM]). Hence, this result showed that
epistemic uncertainty on the playing card data is better estimated using MobileNetV1 as an embedding and Gaussian
Kernel density.

3.3.2 Aleatoric uncertainty estimation. Figure 2b reports the results obtained considering aleatoric uncertainty measures.
On the MNIST dataset, we found that a MobileNetV1 embedding yields the highest AUROC measure, regardless of
whether there is an MLP or an ensemble of MLPs used to produce the prediction likelihoods (AUROC=0.69 [resp. 0.76]
for MLP Ensemble [resp. Simple MLP]). On the CARDS dataset, we found fewer differences between embedding and
techniques. The highest detection rates are about 0.8.
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Fig. 2. (a) AUROC metric of a binary classifier detecting uncertain data from in-distribution data with the epistemic
uncertainty estimation techniques, considering different datasets (MNIST and CARDS) and embeddings (MobileNetV1,
MobileNetV2 and ResNet50). (b) AUROC metric of a binary classifier detecting uncertain data from in-distribution
data with the aleatoric uncertainty estimation techniques and considering different datasets (MNIST and CARDS) and
embeddings (MobileNetV1, MobileNetV2 and ResNet50). The dashed black line represents random sample assignment
between uncertain and in-distribution.

3.3.3 Detecting ambiguous and novel data in the play card dataset. We focused on the CARDS dataset. We inspected
the distribution of uncertainty estimates for in-distribution, ambiguous and novel data. We used the best techniques
from 3.3.1 and 3.3.2: Gaussian Kernel on MobilenetV1 for estimating epistemic uncertainty, and MLP Ensemble on
MobilenetV1 for estimating aleatoric uncertainty. Figure 3 reports the histograms: the left panel reports the histogram
of epistemic uncertainty estimations (Gaussian Kernel), the right panel reports the histogram of aleatoric uncertainty
estimations (Deep Ensemble). Both techniques use the MobileNetV1 embedding.

Novel data has high values from the Gaussian Kernel density estimation. By contrast, novel data have low entropy
values computed on the MLP Ensemble probability distributions and are confused by positive data. Ambiguous data,
however, has intermediate entropy values.

(a) Epistemic uncertainty estimation (b) Aleatoric uncertainty estimations

Fig. 4. Images from the playing card dataset that obtained extreme values according to the two types of uncertainty: (a)
Gaussian Kernel with MobileNetV1 for the epistemic uncertainty and (b) entropy on a MLP Ensemble using MobileNetV1
features for the aleatoric uncertainty.

To help the reader appreciate the data detected as uncertain, Figure 4 depicts the images located at the highest values
of both uncertainty measures. We observed that high estimates of epistemic uncertainty showed out-of-distribution
Manuscript submitted to ACM



Deep Learning Uncertainty in Machine Teaching 9

Fig. 3. Distribution of the playing card data according to (left) the epistemic uncertainty (Gaussian Kernel on MobileNetV1
features) and (right) the aleatoric uncertainty (entropy on MLP Ensemble using MobileNetV1 features). The label “classifi-
able” refers to data from the test set. Ambiguous and novel labels have been assigned to instances from the uncertain set
by the first author.

data, where the background may be dark or showing a hand. This data can be considered as novel in the sense that the
concept defined by a hand or a dark background is novel for playing cards. On the other side, high estimates of aleatoric
uncertainty show ambiguous images, in which two cards are shown instead of one.

3.3.4 Analysis of variance. Finally, we report further analysis to understand pre-trained model’s influence on detection
performance in epistemic uncertainty. More precisely, we inspect whether the distribution of variance within the space
influences the detection performance. We performed a Principal Component Analysis (PCA) on the training set through
each pre-trained model— MobileNetV1, MobileNetV2 and ResNet50. We kept the 10 first principal components and
computed the variance explained by each component. Finally, we computed the entropy of these 10-dimension vectors.
High entropy means that the variance is spread over the components, while low entropy means that the variance is
concentrated on fewer components. Table 1 reports the entropy values together with the averaged AUROC values
across models. It shows that entropy is intrinsically linked to detection performance: higher entropy values imply better
detection. In other words, having an embedding where the variance is spread over a higher number of components
increases the detection capacity of epistemic uncertainty estimates.

MNIST Playing cards
entropy mean(AUROC) entropy mean(AUROC)

MobileNetV1 1.72 0.63 1.98 0.87
MobileNetV2 1.69 0.51 1.98 0.84
ResNet50 1.99 0.89 1.87 0.59

Table 1. Entropy of the ten first components of the PCA on both datasets and the three different embeddings.

4 EXPERIMENTAL STUDY

The benchmark study looked at aleatoric and epistemic uncertainty estimates on two fixed data sets in order to identify
appropriate uncertainty measures for an interactive image classification task. Here, our focus shifts to the human
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10 Sanchez et al.

teachers: we are interested in the strategies that novices use to predict the behavior of the classifier, given the two types
of uncertainty. We conducted a one-factor within-participant experiment where participants interactively teach an
image classifier to recognize three types of ordinary playing cards—nines, queens, and kings—. The two conditions are
the type of uncertainty used as feedback: aleatoric or epistemic.

4.1 Participants

We recruited 16 participants (11 women, 5 men, 15 aged between 18 and 29, 1 above 30). We recruited participants
using mailing lists and social networks from the university, associated schools, and student residences. We selected
participants with little or no computer science training. They are from biology (6), design (4), sociology (1, former
student), philosophy (1), linguistics (1, former student), math (1), economics (1) and chemistry (1). Half have never
programmed, 6 have minimal programming training, 2 have programming experience, but not as their main activities.
Six participants had never heard of Machine Learning. The rest have heard about it through the media but have never
had any theoretical or practical training. Participants received 10 euros in compensation.

4.2 Setup

Apparatus: Figure 5:(top) shows the setup, which includes a 42" monitor and a mouse for interacting with the
experiment application and a camera stand with a fixed Logitech C270 HD webcam located 25 cm above a tray covered
with black fabric, where participants place cards to be trained or tested. Participants have a set of 12 playing cards (4
nines, 4 queens and 4 kings from each suit) from a standard French deck with the Paris pattern [1]. This deck represents
the classes that participants must teach to the classifier. They also have access to the rest of the deck, blank sheets of
paper, a pen, and a black and a red marker.

Software1: Figure 5:(bottom) shows the experiment application, developed using the Marcelle [14] interactive
machine learning (IML) toolkit for building interactive web interfaces based upon ML pipelines. The application and the
model training and inference all run in JavaScript. The application also uses a python server to run a python script that
performs Gaussian Kernel density estimation with each new data input. We use a NeDB backend for data storage. The
software displays 9 tabs. The first seven describe the successive steps of the experiment (see Section 4.3): Introduction,
Instructions, Teaching, Exploration, Uncertainty Test, Classification Test, Questionnaire and Pause. The final tab Debug is
for us to retrain the classifier in case the application crashed, which did not happen during the experiments.

Machine Learning pipeline and uncertainty estimation: Figure 6 summarized the choice made during the
benchmark on the ML pipeline and uncertainty estimation techniques. We use a pre-trained MobileNetV1 model to
process the input image. The MobileNetV1 output (features) is used as input to both the 3 MLPs (2 layers of 64 and 32
hidden units) and the density estimation algorithm. Aleatoric uncertainty is computed using the entropy on the MLPs’
outputs. Epistemic uncertainty is computed through the Gaussian kernel density model.

4.3 Procedure

We use a one-factor, within-participants design with two conditions: aleatoric and epistemic uncertainty. Participants
first watch an introductory video that describes the purpose of the study, a short primer on machine learning, a
description of the setup, and the procedure steps. We ask participants to read and sign a consent form. Next, participants
watch a video introducing ML uncertainty concepts, the experiment interface, and the basic training task. We label

1The source code of both the Marcelle application and the benchmark presented in section 3 is available at https://github.com/teo-sanchez/teaching-
uncertainties-iui2022.
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Interface

Rest of the deck

Paper and penSet of cards (9, K, Q) 

Camera

Tray to capture cards

Mouse

Only during exploration

Fig. 5. Top: The setup includes a screen, mouse, and camera stand for recording individual cards. Participants have access
to the 12 training cards, the rest of the deck, paper and pens. Bottom: The application displays the live webcam feed,
training set, prediction, uncertainty estimation and a series of tabs associated with each step of the experiment. The
above interface is not shown in full screen for legibility. During the experiment, the different components are arranged
in the same way but in full screen format.
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Input 
224 x 224 x 64

Pre-trained embedding  
MobileNetV1

Feature vector

MLP Ensemble

Predictions
3 

Normalization Aleatoric
uncertaintyEntropy 

64
32

1024
MobileNet V1

Multilayer Perceptron

Gaussian Kernel Model 

Normalization Epistemic
uncertainty

Density
estimation

Fig. 6. Machine Learning pipeline and uncertainty estimation chosen for the user experiment. The first image represent a
frame from the video stream. All the computation are performed in real-time. The prediction given on the interface is
the averaged prediction over the MLP Ensemble.

the two uncertainty measures A and B. Uncertainty A corresponds to aleatoric uncertainty, uncertainty B
corresponds to epistemic uncertainty. We only tell participants that they correspond to two different methods
for computing uncertainty. Participants do not know what they are nor how they are computed. Participants then
complete two iterations of the following five steps, one for each uncertainty condition, counterbalanced for order across
participants.

(1) Teaching: Participants have 7.5 minutes to provide the classifier with a series of training examples. The
participant first picks a card and places it on the tray. The participant clicks on a label —nine, queen or king— to
add a new labeled image to the training set. After the participant labeled three examples, the model is trained
for the first time and the timer starts. Until then, the system gives real-time predictions from the camera video
stream. The video frames are used to predict both the label and the uncertainty. The name of the predicted
label is displayed while the uncertainty is represented by a gauge (high values correspond to high uncertainty).
Each time the participant labels a new image, it launches training on the updated training set again. We asked
participants to provide a verbal comment to explain their actions, their current understanding of the classifier’s
behavior, and any confusion about the classifier or the uncertainty measures.

(2) Exploration: The aim of this phase is for the participant to understand how the classifier behaves. We do
not allow the participant to label new images. Therefore, the classifier is not further trained on new examples.
However, the participant can continue placing cards under the camera to explore the classifier predictions. They
can use kings, queens, nines, or any other or use cards from the remaining deck. As before, participants provide
a verbal comment as they work. They can also write notes to help them memorize the classifier behavior.
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(3) Uncertainty test: Participants see a sequence of 12 new card images on the interface. For each card, participants
use a slider to manually set the level of uncertainty that they predict the trained classifier would display for
this card. 7 out of 12 cards are in-distribution i.e. they represent either a nine, a queen or a king. 5 out of 12 are
out-of-distribution. They represent an empty image (1), a hand (1), and two different cards on the same image (3).
None of the 12 images are cards from the rest of the deck.

(4) Classification test: Participants see a sequence of 20 new images of playing cards among nines, kings, and
queens. Participants must predict if the system will successfully classify them or not. Participants receive one
point for each correct prediction: either by correctly predicting that it will succeed or by correctly predicting
that it will fail. They lose a point for each incorrect prediction and neither gain nor lose a point if they answer
that they do not know.

(5) Questionnaire: Participants answer five questions about the teaching session and their perception of the
uncertainty measure using 5-point Likert scales. One question is about the classifier’s performance; the next
three questions are about the usefulness of the uncertainty measure to identify the examples that the classifier
knows, does not know, or is ambiguous about. The last question is about the predictability of the uncertainty
measure. The questionnaire is given in appendix.

(6) Interview: The experiment ends with a semi-structured interview based on the participants’ questionnaire
answers. It also comprises open-ended questions about their comments during the teaching, exploration and test
steps, and how they describe the system’s uncertainty behavior.

(7) Pause: After the first condition, participants take a short break before starting the second condition.

After completing the above five steps for each of the two uncertainty conditions, participants complete a questionnaire
with demographic information, their background level of knowledge of programming and understanding of machine
learning, their reasons for participating in the study, and their level of engagement with the tasks in the experiment.

4.4 Data collection and analysis

We collected all the images used for training by each participant, the weights of the model trained after each example,
and the participants’ answers given during the uncertainty test, classification test, and questionnaire. We also recorded
audio during all steps and video during the exploration step. To preserve anonymity, we transcribed the audio of
participants’ verbal comments throughout the experiment and conducted a mixed thematic analysis [5] with anonymized
transcripts. We first identified themes that emerged from analyzing the transcripts from the first eight participants; and
then examined the transcripts of the remaining eight participants according to those themes. We iterated on the themes
by re-examining all 16 participants.

We divided the themes in two groups:

(1) Teaching curricula contains four themes: systematic, non-systematic, exhaustive and exclusive curricula.
(2) Understanding of the uncertainty measures contains four themes: explanations, differences, usefulness and

confusions.

We also present the results of the Likert-scale questionnaire to support for the qualitative results. Regarding the
quantitative analysis, we computed the following measures to be compared between the two conditions:

● Participant uncertainty test score, calculated the average proximity between the uncertainty values chosen by the
participants on the 12 images and the actual uncertainty estimation for the condition, either aleatoric uncertainty
(A) or epistemic uncertainty (B). To have a performance score that increases when participants succeed, we

Manuscript submitted to ACM



14 Sanchez et al.

calculate the proximity as one minus the average distance between participants’ response and the actual value:

𝑠𝑐𝑜𝑟𝑒𝑢𝑛𝑐𝑒𝑟𝑡 = 1 −
1
𝑁

𝑁

∑
𝑖=1
⋃︀𝑢𝑚𝑜𝑑𝑒𝑙(𝑋) −𝑢𝑔𝑢𝑒𝑠𝑠𝑒𝑑(𝑋)⋃︀ (3)

with𝑢𝑚𝑜𝑑𝑒𝑙(𝑋) being the actual uncertainty on the image𝑋 displayed and𝑢𝑔𝑢𝑒𝑠𝑠𝑒𝑑(𝑋) the uncertainty estimated
by the participant for the same image 𝑋 during the study. In our case, N equals 12, the number of images tested.
● Participant classification test score, calculated as described in subsection 4.3 i.e. the number of times participants
correctly predicted the classifier outcomes minus the number of wrongly predicted classifier outcomes.
● Classifier accuracy, calculated as the number of times the classifier found the correct label among the test images,
divided by the number of test images (20).
● Number of training examples is a simple counting of the number of images given by the participants to the
classifier.
● Training set variability, computed within a class using Euclidean distance between pairs of images in the feature
space, i.e. between the output vectors of MobileNetV1 for each drawing. We only calculate the similarity between
images of a same a class. It does not make sense to compute a similarity between images from different concept
class. Finally, we averaged the computed distances between all pairwise combinations of instances within a class.
We then averaged the per-class variability for each participant. Formally:

𝑉𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑠𝑒𝑡 =
1
3 ∑
𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠

1
𝐶2
𝑠𝑖𝑧𝑒(𝑐)

∑
𝑋𝑖 ,𝑋 𝑗 ∈𝑐

𝑑(𝑀(𝑋𝑖),𝑀(𝑋 𝑗)) (4)

with 𝐶2
𝑠𝑖𝑧𝑒(𝑐) the number of combinations of 2 instances in the class 𝑐 , 𝑑 the Euclidean distance, and𝑀(𝑋) the

feature vector after passing the input image 𝑋 through the MobileNet network. To help the reader appreciate
the variability across participants, Figure 11 and Figure 12 in the Appendix depict the training sets of the most
variable and least variable teaching sessions.

5 RESULTS

This section reports results on (1) participants’ ability to predict the behavior of the classifier and (2) their ability to
explain how it behaves. The results on (1) are presented is section 5.1, and studied through the quantitative analysis of
the uncertainty test and classification test introduced in section 4.3. The results on (2) are presented in section 5.3
through the analysis of the think-aloud verbalizations from the teaching and exploration phases and from the interviews
conducted in each condition. On average, participants managed to train their classifier with a mean classification
accuracy of 0.83 (𝑠𝑡𝑑 = 0.09).

5.1 Ability to predict the classifier behavior

After teaching, participants successfully predicted the classifier outcomes during the test phase. One-way ANOVAs
reveal that participants predicted both model classification and uncertainty above chance (𝐹 = 96 and 𝑝𝑣𝑎𝑙𝑢𝑒 < 0.001 for
classification test and 𝐹 = 25 and 𝑝𝑣𝑎𝑙𝑢𝑒 < 0.001 for uncertainty test).

5.1.1 Influence of the type of uncertainty. We inspect whether the type of uncertainty affects participants’ ability to
predict the classifier behavior. More precisely, we test whether this factor influences both the participants’ uncertainty
test and classification test scores.
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When grouping teaching sessions across participants according to the two conditions, aleatoric uncertainty and
epistemic uncertainty, two one-way ANOVAs reveal that the type of uncertainty has no significant effect on participants’
uncertainty test score (𝐹 = 0.43 and 𝑝𝑣𝑎𝑙𝑢𝑒 = 0.52) nor on classification test score (𝐹 = 0.135 and 𝑝𝑣𝑎𝑙𝑢𝑒 = 0.72). This
suggests that participants do not predict one type of uncertainty better than the other after teaching the classifier.
Moreover, it indicates that the type of uncertainty shown has little effect on participants’ ability to predict the clas-
sifier outcomes, both for classification and uncertainty. The Likert scale questionnaire suggests that the uncertainty
predictability is subject to a great variability across participants and does not depend on the type of uncertainty used,
as depicted in Figure 7. Finally, we performed a similar test using classifier accuracy as an independent measure. We
also found no significant effect of the type of uncertainty (𝐹 = 0 and 𝑝𝑣𝑎𝑙𝑢𝑒 = 1.0).

Fig. 7. Answers to the question "Globally, the uncertainty measure had a predictable behavior" exhibit a great variability
across participants no matter the type of uncertainty shown as feedback.

5.1.2 Order and learning effect. Participants, especially novices, might be subject to a learning effect: their ability to
perform the task increases from the first iteration to the second. We found that participants gave more variable images
in the second iteration than in the first one. A Student’s t-test shows that the training set variability (see section 4.4)
is significantly higher in the second iteration than in the first one (𝐹 = 13.4 and 𝑝𝑣𝑎𝑙𝑢𝑒 = 0.001). We can explain this
observation by the fact that participants usually explore the level of variability the classifier can handle in the first
iteration. Thus, we assume that participants gave more variable images in the second iteration because they already
explored the limits of the classifier in the first iteration.

Furthermore, participants better estimate uncertainty after the second iteration, independently of the type of
uncertainty. A t-test shows a borderline effect of iteration on the participant uncertainty test score (𝐹 = 3.24 and
𝑝𝑣𝑎𝑙𝑢𝑒 = 0.081). However, the iteration does not help in estimating the classification behavior.

One participant commented on this learning effect: «I don’t know if it’s the lessons I learned from the other one that

made me behave this way for this one or if it’s because the measure of uncertainty is different and therefore it induced a

different behavior in me. I really can’t say.» (P2).

5.1.3 Accuracy. We found that the classifier accuracy is positively correlated with the participant classification test

score (𝑅 = 0.60 and 𝑝𝑣𝑎𝑙𝑢𝑒 < 0.001) but not with the participant uncertainty test score (𝑅 = 0.27 and 𝑝𝑣𝑎𝑙𝑢𝑒 = 0.13).
This result shows that it is easier to estimate the classification accuracy when the model is well-trained, probably
because participants do not have to remember all the cases where the classifier might fail. However, it is worth noting
participants’ ability to predict their classifier uncertainty is not influenced by the classifier accuracy.

5.1.4 Number of training examples and variability. The variability in the test results suggests that the individual
specificity of the teaching prevails over the effect of the type of uncertainty. We propose looking at the teaching
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curriculum i.e. the strategy of organizing the training examples and introducing complexity. In these quantitative
results, we focus on two characteristics of the teaching curricula: the training set size and variability (described in
section 4.4).

First, we found that participants who gave more training examples also gave more variable ones. Indeed, we found a
positive Pearson’s correlation between the size of the training set and the training set variability (𝑅 = 0.50, 𝑝𝑣𝑎𝑙𝑢𝑒 < 0.01).
We also found that participants who give a higher number and more variable training examples train more accurate
classifiers. The size and variability of the training set are both correlated with the classifier accuracy (𝑅 = 0.50,
𝑝𝑣𝑎𝑙𝑢𝑒 < 0.01 for the training size and 𝑅 = 0.57 and 𝑝𝑣𝑎𝑙𝑢𝑒 < 0.001 for the variability). In the same way, the size and
variability of the training set are also both correlated with the participant accuracy test score (𝑅 = 0.62, 𝑝𝑣𝑎𝑙𝑢𝑒 < 0.001
for the training size and 𝑅 = 0.47 and 𝑝𝑣𝑎𝑙𝑢𝑒 < 0.001 for the variability). Bigger and more variable training sets produce
a more accurate classifier, and the outcomes of an accurate classifier are easier predict for participants.

More importantly, we found that only the variability of the training set correlates with high scores in the participant
uncertainty test (𝑅 = 0.40 and 𝑝𝑣𝑎𝑙𝑢𝑒𝑠 = 0.024). We assume that exploring more variable configurations might trigger
greater variations in uncertainty between these configurations, which in turn would help participants understand the
uncertainty dynamics. Finally, neither the size of the training set nor the classifier accuracy affects the participants’
ability to predict the classifier uncertainty. We report these results in Figure 8, as well the linear regressions between
the size and variability of the training set and the participants’ classification and uncertainty scores.
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Fig. 8. Linear regressions between the training set size (the first two) and variability (the last two) and the participants’
uncertainty test score (blue) and classification test score (orange). The dashed black lines represent the chance baseline i.e.
random responses during the test phases.

The findings of this subsection 5.1 can be summarized as follow:

● Participants can successfully predict the classifier outcomes both in term of predictions and uncertainty. Partici-
pants’ ability to predict the system behavior does not depend on the type of uncertainty shown.
● The choices made during teaching about the number of training examples and their variability affect the
participants’ ability to predict the classifier’s behavior. The training set size only improves participants’ ability to
predict the classifications made by their classifier. The training set variability improves both participants’ ability
to predict their model classification and uncertainty.
● The more accurate the classifier, the more easily participants can predict the classification made by their
classifier—however, this correlation does not hold when predicting the type of uncertainty.
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5.2 Participants’ teaching curricula

This section examines the participants’ teaching curricula in more detail than the two characteristics —size and
variability— introduced in the previous section. We analyze participants’ verbalizations to categorize and describe the
different teaching curricula employed and how these curricula relate to the uncertainty. We use acronyms to quote
participant number and the condition in which the quote was verbalized. For example, P3-A refers to condition A
(aleatoric uncertainty) of participant 3.

5.2.1 Uncertainty as a guide. Four participants—P2-A, P7-B, P9-B, P8-B and P15—AB used the uncertainty measure as a
guide to look for uncertain images and add them to the training set. They expect this strategy to optimally reduce the
epistemic uncertainty and errors: « The greater the uncertainty, the more careful I am. It’s more the negative that makes

you adjust than the positive. [...] We are more driven to fix what’s wrong than to take care of what’s right. Actually that’s it,

I have to test it by moving it around, to see what it does in terms of uncertainty. » (P2). Similarly, P9 explicitly looked for
the most uncertain region and validated the class. P8 also had a spatial metaphor to describe this strategy: «I tell myself

that I just have to train it as much as possible when it is the most uncertain, so that he can fill the void it has.» (P8).
These strategies echo the Active Learning paradigm [38] where a model tries to select the most uncertain—therefore

informative— instances in order to improve performance while reducing the amount of data resource.

5.2.2 Systematic teaching curricula. Participants can adopt systematic teaching curricula. Systematic curricula imply a
planned order in which images are added, usually by series of colors or inclination across all classes. These strategies
are usually conducted after participants realize that imbalanced variations across classes cause misclassifications.

Participants 4-B, 6-AB, 7-B and 8-A were explicitly systematic in their curriculum. For example, P4 said « I did all

the same series in one direction, the 9 of diamonds, the queen of diamonds and the king of diamonds, all in the same

order each time. [...] It’s already obvious that it’s better trained than the first time, I think I dispersed it a bit too much

the first time and the fact to be ordered right away, it doesn’t get lost and it concentrates on the essentials of the cards»

(P8). Among the participants mentioned, two claimed that being systematic helped them understand the uncertainty
behavior. Participant 8 said: « The fact that I created a protocol allowed me to understand better how the gauge reacts. I

trained all the cards the same, with the same number of images, four red, four black, four different angles. It’s like I trained

it in a more neutral way. This way, I understand its behavior a bit more than the first time.» (P8).
The teaching sessions in which participants claimed to use a systematic curriculum have significantly larger training

set size and variability than others according to Student’s t-tests (𝐹 = 4.16, 𝑝𝑣𝑎𝑙𝑢𝑒 = 0.050 for the training size, and
𝐹 = 5.39, 𝑝𝑣𝑎𝑙𝑢𝑒 = 0.027 for the variability). However, having a systematic curriculum does not seem to lead to better
results at the classification or uncertainty test than other teaching curricula (𝐹 = 2.78, 𝑝𝑣𝑎𝑙𝑢𝑒 = 0.10 for classification
test score and 𝐹 = 0.13, 𝑝𝑣𝑎𝑙𝑢𝑒 = 0.72 for uncertainty test score).

In summary:

● Participants exhibit various teaching curricula in which the uncertainty measure can be a guide for selecting
new training images.
● Participants who adopted a systematic teaching curriculum expressed a better understanding of the classifier
behavior. They also provide larger and more variable training sets.
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5.3 Understanding of differences between aleatoric and epistemic uncertainty

We are now interested in how participants perceive the difference between aleatoric and epistemic uncertainty. The
questionnaire suggests a slight difference for the question "The uncertainty measure helped me to identify examples
my classifier does not know" in favor of the epistemic uncertainty as shown in Figure 9.

Fig. 9. The results from the likert-scale question "The uncertainty measure helped me to identify examples my classifier
does not know" suggest that epistemic uncertainty is more helpful to identify novel images than aleatoric uncertainty.

Based on the qualitative data, we found that five participants (P5, P6, P10, P13 and P16) claimed that they perceived
a difference without being able to express the difference precisely: «I see that the logic of the A is different from the B

but don’t know how. The results are a bit different» (P10). Three participants (P4, P16 and P2) acknowledged that the
difference they perceived might be due to a different training strategy of the classifier rather than an intrinsic difference
in the way the uncertainties behave: « In fact, in general I understood uncertainty A less than B, but I can’t figure out if

that was because of what I recorded or because of the uncertainty» (P16). That being said, we found that specific situations
triggered notable differences in the way participants perceived epistemic and aleatoric uncertainty. We report these
situations and participants’ comments in the following subsections.

5.3.1 Placing a card in the exact same configuration as a training example would give consistent epistemic uncertainty.

Four participants (P3, P8, P9, P16) stated that epistemic uncertainty was extremely low when a card was placed in the
exact same position as an other example (from the same class) in the training set. They declared that moving away
from this exact position resulted in a quick increase of the epistemic uncertainty. For instance, participant 3 said «If it’s

the same place where I took the picture it’s completely certain. And when I start to move from the card, the uncertainty rises»

(P3).
This situation can also occur after adding a new image in the training set and leaving this card under the camera.

Participant 15 was confused that aleatoric uncertainty was not decreasing significantly when considering the exact
same image after the classifier update: «I don’t understand why it’s not at 100% certain since I just told it that it’s a

queen» (P15-A). These reactions may explain the Likert-scale result presented in Figure 9 which suggests that epistemic
uncertainty is seen as more useful to identify images that the classifier does not know.

5.3.2 Ambiguous configurations and unstable classification lead to consistent aleatoric estimation. Most participants
explored ambiguous examples by placing two different cards next to each other from different classes. This situation
triggers comments regarding the difference between aleatoric and epistemic uncertainty. Since the classifier can only
guess a single class, participants commented that the classifier prioritizes one class over another. For example, when
participants placed a Nine next to a King (resp. Queen), the classifier usually predicted a Nine and ignored the King
(resp. the Queen). This led P2 to wonder about the inner working of the classifier during the aleatoric uncertainty
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condition: «I wonder if it works with a sufficient minimum, if there is a sufficient minimum of data to say that there is a

nine, and it says that there is a nine and so the king here is negligible.» (P2). Still on aleatoric uncertainty, participant 10
said: « when there is a difficult situation, such as two cards of different types or another new card, for this machine [aleatoric

uncertainty condition], it is difficult to be certain, as if this machine is aware of the situation. It can’t take responsibility for

the answer. The answer is always "I’m not sure"» (P10).
When exploring ambiguous configurations, participants encountered situations in which the predicted label was

unstable i.e. it was quickly changing between two classes despite a stable image in the camera. In this situation, the
two types of uncertainty behaved differently. Since the aleatoric uncertainty is based on the softmax predictions i.e.
its computation is based on predictions, and the uncertainty level was mainly high in this situation. By contrast, the
epistemic uncertainty is computed on the feature space, before the predictions. Consequently, the uncertainty level
could be very low in this situation. Three participants expressed their confusion with the epistemic uncertainty, when
the classification was unstable. For example, participant 8 said that «Then it’s funny because it switches between queen

and king all the time while saying it’s certain. It seems strange to me that it’s certain about the uncertainty but at the same

time the label changes every half second like that» (P8). In the second iteration with aleatoric uncertainty, participant 8
perceived the difference: «The first time, it blinked between queen and king and was certain. This time it blinked but was

less certain» (P8).

5.3.3 Image background and participants’ hand trigger consistent epistemic uncertainty. The edge cases of having another
object in the image, such as the participant’s hand, or having no card at all, also raised comments that differ between
the types of uncertainty.

We observed that the aleatoric uncertainty stayed low when a card was presented next to the participants’ hand. By
contrast, epistemic uncertainty was always high when the participants’ hand was next to the card. Five participants (P1,
P7, P8, P9 and P10) noticed such behavior in either one or the other condition. Participant 7 placed a nine next to a
queen during aleatoric uncertainty condition. When P7 hid the queen with their hand, the aleatoric uncertainty rose: «
And if I put a 9... the uncertainty increases, it predicts that it is a king. If I put my hand on the queen, the uncertainty goes

down and it hesitates between a king and a 9. That’s a pretty good sign» (P7). For epistemic uncertainty, participant 1 said:
«For example, when I showed the card with the hand, right away, it gives high uncertainty» (P1). Participant 9 also said on
epistemic uncertainty that «It is going to be very uncertain when it’s something that doesn’t match at all, like the hand.

When I tried to put the hand, it was very high because it didn’t know at all» (P9).
In summary:

● The epistemic uncertainty is seen as more helpful than aleatoric uncertainty to identify examples a classifier
does not know.
● Differences between the aleatoric and epistemic are perceived in specific situations highlighting the notions of
ambiguity and novelty.

6 DISCUSSION

This section discusses the benchmark results and reflects on the use aleatoric and epistemic uncertainty in Interactive
Machine Learning systems (IML). We then discuss the necessity and implications of distinguishing aleatoric from
epistemic uncertainty.
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6.1 Uncertainty in transfer learning: the importance of the pre-trained model

We saw that the choice of a pre-trained DNN is crucial when using real-time uncertainty estimation in a transfer learning
setting. We showed that the variance distribution of the data in the feature space dimensions influences the participants’
ability to detect uncertain examples (ambiguous and novel) from in-distribution examples. Existing approach retrain
the embedding using regularization techniques for ensuring sensitivity and smoothness of the feature space [31, 47]. In
the context of IML, where iteration cycles are tight [2], we could not afford to retrain the whole model generating the
embedding. However, we assume that an embedding extractor calibrated for the task can be trained offline. Then, one
could freeze its parameters for real-time uncertainty estimation. Rather than using out-of-the-box parameters from
Imagenet, our MobileNetV1 architecture could have been retrained on several cards’ decks with all values and different
backgrounds and using feature-space regularization techniques. That said, the distribution of variance seems to be a
promising tool to assess a pre-trained model in the context of uncertainty estimation and detection. We encourage
further research to understand Transfer Learning for uncertainty estimation with this approach.

6.2 On the difficulty of providing annotations of uncertain instances

As mentioned in the related work in Section 2, aleatoric uncertainty is commonly associated with ambiguity and noise
in the data. Our benchmark study and our results showed that two different cards on the same image led to high
ambiguity (i.e. high aleatoric uncertainty). It suggests that two cards on an image remains a concept close to what it
has been learned. By contrast, epistemic uncertainty is usually associated with novelty with respect to the training
examples. Our results showed that a hand in the image leads to high novelty (i.e. high epistemic uncertainty), suggesting
that a hand is seen as a different concept by the classifier. Researchers usually rely on annotated data that distinguish
ambiguous from novel instances to evaluate both uncertainty estimates. However, it might be very challenging for
users to make a clear distinction between ambiguous and novel data in real-world problems. ML researchers working
on uncertainty estimation typically use stereotyped datasets that clearly define ambiguous and novel data. For example,
Mukhoti et al. [31] used handwritten digits as in-distribution data but clothing items as novel data. Such distinction
might sound arbitrary in a real-world problem. We typically encountered this problem when labeling the CARDS
dataset. Differentiating between ambiguous and novel examples was not a trivial task.

6.3 On using uncertainty as a guide

We found that participants perceived differences between aleatoric and epistemic uncertainty when exploring extreme
situations: a card in the exact same position as a training example, two different cards next to each other, or placing an
unrelated object (e.g. a hand) within the frame. This finding suggests that it would be beneficial to differentiate when
users need to (1) explore the tail of the uncertainty distribution (extreme values) or (2) teach the classifier and foresee its
outcomes. The first case applies to domain experts who explicitly want to understand the examples on which a model
may be uncertain. For instance, a medical doctor may have a large but noisy dataset. Clinicians could benefit from an
IML system showing both ambiguity or novelty estimates for some chosen input examples to assist decision-making.
Clinicians could then understand the intrinsic uncertainty of the machine in their data and browse novel data to select
the ones that the classifier should take into account. Thus, we foresee a promising research direction in how IML could
enable users to discover edge-cases examples with high uncertainty values. Combining data augmentation techniques
with meaningful interactions could help users discover such instances.
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6.4 On the (absence of perceived) difference between aleatoric and epistemic uncertainties

Participants using uncertainty as a guide did not train a more accurate model, nor were they more able to correctly
foresee their classifier outcomes. Instead, participants with a systematic way of curating the data usually provided
more and more variable data. Consequently, they trained a more accurate classifier and were better at predicting their
classifier’s outcomes regarding both classification and uncertainty estimation. We presume that participants opting for
a structured curriculum might have a better mental picture of their training set content. Hence, encouraging structured
rather than uncertainty-based curricula would be indicated if we want to improve users’ general understanding of their
classifier. These results also suggest that the two-level distinction in ML uncertainty might not be necessary when the
system is trained from scratch to reach a reasonable accuracy. It might instead be helpful when refining the model.

We assume that the perception of ML uncertainties may change when scaling with larger and more complex data
(more variable inputs and more classes). In this case, we suspect that users might lose track of the content of their
dataset, and consequently, why a specific example is uncertain. Therefore, we believe that future work on machine
learning uncertainty should be done in close collaboration with research on explainable AI, and explore how data
complexity affect their ability to understand and track their network’s uncertainty. A promising approach would be to
investigate why a piece of data is uncertain, just as Explainable AI focuses on explaining the model’s predictions.

Finally, ML research suggests that the type of uncertainty can be seen as a continuum from aleatoric to epistemic,
captured across the network’s layers [34]. Epistemic uncertainty is captured in shallower layers of a DNN, whereas
aleatoric uncertainty is captured in deeper layers. Considering the relation between continuous uncertainty estimate and
model architecture is a promising research direction that could lead to novel uncertainty visualization and interaction
techniques.

7 CONCLUSION

We explored two types of uncertainty, aleatoric and epistemic, in an interactive machine teaching task with non-expert
users. We ran a benchmark study that applied transfer learning techniques to real-time uncertainty estimation. We
found that the variability of the data in the feature space is essential for detecting ambiguous and novel images.

We used the results of the benchmark study to design a one-factor, within-participants experiment with non-experts
that compares how they use and perceive aleatoric and epistemic uncertainty, both with respect to their teaching
strategies and their understanding of the classifier. We asked participants to teach a classifier to recognize a dozen
different playing cards among three classes using an Interactive Machine Learning application. Each participant received
real-time classification and uncertainty feedback selected from the benchmark study results. We measured participants’
ability to guess how well the classifier will predict new card images, with respect to both classification and uncertainty.
We also interviewed participants about their subjective understanding of the uncertainty measures.

We found that participants’ choices made while teaching—especially regarding training set size and variability—are
more important than the type of uncertainty participants were exposed to. We also identified and discussed two teaching
approaches: the first uses uncertainty to guide the selection of training data; the second systematically introduces
variation across the classes. We found that the latter results in a better understanding of the classifier outcome. Finally, we
identified three specific situations where participants successfully perceived differences between the two uncertainties,
highlighting the notions of ambiguity and novelty in the data. This result suggests that the distinction between aleatoric
and epistemic uncertainty can be made relevant for domain experts, e.g. medical practitioners, who specifically explore
the extreme values in the “tail” of an uncertainty distribution. However, it also suggests that two-level uncertainty may

Manuscript submitted to ACM



22 Sanchez et al.

not be relevant for performance-oriented Machine Teaching or when users seek a more general understanding of the
classifier’s strengths and weaknesses.

Our results bring a human-centered perspective to a theoretical and computational problem—uncertainty estimation
in neural networks—that may be beneficial to several fields including Explainable AI, Interactive Machine Learning and
Human-centered AI. We hope that this work will encourage other researchers to apply the concepts of aleatoric and
epistemic uncertainty to the design of more usable and transparent ML tools accessible to a broader range of users.
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APPENDIX A

The Deep Ensemble and feature-based approach
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Fig. 10. Schema of the Deep Ensemble (Left) and the feature-based (Right) approaches.

Summary table of the benchmark conducted

Type of uncertainty Embeddings Model Acquisition function

Aleatoric uncertainty MobileNetV1 MLP Ensemble Shannon Entropy
MobileNetV2
ResNet50
MobileNetV1 Single MLP Shannon Entropy
MobileNetV2
ResNet50

Epistemic uncertainty MobileNetV1 MLP Ensemble Standard deviation
GMM Log-lokelihood
Gaussian Kernel Density estimation

MobileNetV2 MLP Ensemble Standard deviation
GMM Log-lokelihood
Gaussian Kernel Density estimation

ResNet50 MLP Ensemble Standard deviation
GMM Log-lokelihood
Gaussian Kernel Density estimation

Table 2. Summary of the approaches used in the benchmark. Each techniques was applied on the MNIST dataset and the
CARDS dataset.
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APPENDIX B

Fig. 11. The least variable training set (participant 15) from the teaching sessions of the participants.

Fig. 12. The most variable training set (participant 4) from the teaching sessions of the participants.
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