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A Global Appearance and Local Coding Distortion
based Fusion Framework for CNN based Filtering

in Video Coding
Jian Yue*, Yanbo Gao*, Shuai Li†, Hui Yuan, Senior Member, IEEE, Frédéric Dufaux, Fellow, IEEE

Abstract—In-loop filtering is used in video coding to process
the reconstructed frame in order to remove blocking artifacts.
With the development of convolutional neural networks (CNNs),
CNNs have been explored for in-loop filtering considering it can
be treated as an image de-noising task. However, in addition
to being a distorted image, the reconstructed frame is also
obtained by a fixed line of block based encoding operations in
video coding. It carries coding-unit based coding distortion of
some similar characteristics. Therefore, in this paper, we address
the filtering problem from two aspects, (i) global appearance
restoration for disrupted texture and (ii) local coding distortion
restoration caused by fixed pipeline of coding. Accordingly, a
three-stream global appearance and local coding distortion based
fusion network is developed with a high-level global feature
stream, a high-level local feature stream and a low-level local
feature stream. Ablation study is conducted to validate the
necessity of different features, demonstrating that the global
features and local features can complement each other in filtering
and achieve better performance when combined. To the best of
our knowledge, we are the first one that clearly characterizes
the video filtering process from the above global appearance
and local coding distortion restoration aspects with experimen-
tal verification, providing a clear pathway to developing filter
techniques. Experimental results demonstrate that the proposed
method significantly outperforms the existing single-frame based
methods and achieves 13.5%, 11.3%, 11.7% BD-Rate saving
on average for AI, LDP and RA configurations, respectively,
compared with the HEVC reference software.

Index Terms—convolutional neural network, in-loop filtering,
video coding, HEVC.

I. INTRODUCTION

W ITH the boom of social media and short video centred
applications, the amount of video data is growing

dramatically, which requires more efficient video compression
methods. Although High Efficiency Video Coding (HEVC)
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[1], [2] has brought over 50% coding bit rate reduction com-
pared to the H.264/AVC [3], it still uses the block-based video
coding framework, incurring blocking and ringing artifacts in
reconstructed video frames due to the coding inconsistency
between coding units and quantization errors. To reduce such
errors and blocking artifacts, filtering methods including the
traditional de-blocking filter such as the deblocking filter [4]
and sample adaptive offset (SAO) [5] and deep learning based
ones have been developed [6]–[27].

With the development of deep learning, many deep learning
based in-loop filtering methods [6]–[27] have been proposed.
Considering that in-loop filtering is a pixel-level restoration
task to reduce the distortion at each pixel, many methods
focus on exploring local features to preserve fine spatial details
where the network modules process input and intermediate
features at the input resolution. Advanced architectures have
also been employed such as residual or dense networks
[13], [19], [28]–[35], and attention mechanisms [23], [36]–
[38]. However, without the exploration of broad contextual
information, desired fine texture information may not be able
to be restored in the filtered image.

On the other hand, considering that the target of filtering is
similar to image de-noising in terms of improving the quality
of reconstructed frame, there are also methods employing de-
noising neural networks as filtering in the video coding, which
explores global semantic information such as the encoder-
decoder [26], [30], [39]–[41] architecture with pooling and
deconvolution. However, deconvolutions are not capable of
generating spatially accurate outputs, and thus some video
encoding-specific distortion such as blocking artifacts may not
be well recovered.

Since the to-be-filtered reconstructed frame is obtained by
a fixed pipeline of video coding procedures, including coding
unit partition, prediction, transform coding and quantization,
it is not only just a general distorted image but with specific
video encoding distortion patterns. However, few efforts have
been made to co-explore both features, i.e., to recover the
global disrupted fine textures and deal with the specific local
coding distortion. In order to address this problem, we pro-
pose a multilevel and mixed-scale feature fusion approach by
exploiting broad contextual information for restoring global
appearance, and local coding distortion to recover fine spatial
details.

The contributions of this paper can be summarized as
follows.
• The CNN based filtering in video coding is thoroughly
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investigated, and characterized from two aspects: restor-
ing the disrupted texture in the reconstructed frame
as a denoising process, and recovering the local video
coding distortion resulted by a fixed pipeline of coding-
unit based encoding procedures including prediction,
transform and quantization. Experiments are designed to
demonstrate that different pixels may be better filtered by
different methods.

• We present a global appearance and local coding distor-
tion fusion framework for CNN based filtering in video
coding, where three streams including low-level local
feature extraction, high-level local feature extraction and
global feature extraction are used.

• An encoder-decoder architecture is used to extract the
high-level global features and a mixed-scale residual
block is developed to better capture the high-level local
features. A channel and spatial attention based fusion
(CSAF) is further developed to progressively fuse the
global and local features for the final filtering.

Extensive experiments have been conducted with ablation
studies on different modules. Experimental results demonstrate
that the proposed method achieves state-of-the-art performance
in All Intra coding configuration, and better performance than
the existing single-frame based filtering methods in Low Delay
and Random Access configurations. A preliminary version of
this work has appeared in [42]. Significant improvements have
been further made in this paper, where the mechanism of
CNN based filtering is thoroughly investigated and a three-
stream fusion framework is proposed. New modules have been
developed to improve the performance of the streams and
the final fusion including a mixed-scale residual block and
channel and spatial attention based fusion (CSAF) method.
More experiments are conducted including ablation studies to
validate the effectiveness of the proposed method.

The rest of this paper is organized as follows. The related
work on CNN based filtering in video coding is reviewed in
Section II. Our proposed method is presented in Section III
and the experimental results are shown in Section IV with
ablation studies. At last, Section V draws the conclusion.

II. RELATED WORK

Many deep learning based in-loop filtering methods have
been proposed in the literature. In this section, we briefly de-
scribe the related work in three categories: local feature based,
large scale feature based and coding information enhanced
CNN filtering in video coding.

A. Local feature based CNN filtering in video coding

Considering in-loop filtering is a pixel-wise genera-
tion/restoration task, many methods design CNNs operating
on the original input image resolution in order to preserve the
fine spatial details. In [6], a four layers convolution neural
network named AR-CNN was proposed to deal with various
artifacts in image compression. It directly processes the coded
images in order to produce a high quality image. Considering
directly generating an image is difficult than producing just

the distortion, in [7], a convolutional neural network named
IFCNN was proposed, which uses a skip connection to add
the input reconstructed frame to the output resulting in only
producing the distortion with the network. In [10], a frame-
based dynamic post-processing CNN was introduced using a
20-layer CNN model (VDSR-CNN) to extract feature from
the reconstructed frame, and use side information of content
complexity to assist the restoration of reconstructed frame. It
is further enhanced by adding a classifier to adaptively choose
whether different CUs use the VDSR-CNN based filtering
[18]. In [13], [19], residual CNNs, dense CNNs and recursive
CNNs were used, where deep networks are constructed for
filtering. In [23], Squeeze-and-Excitation Filtering CNN (SE-
FCNN) was proposed for In-loop filtering, where a channel-
wise attention network is used. In [24], an enhanced deep
convolutional neural networks (EDCNN) was proposed with a
weighted normalization and feature fusion block. A mixed loss
with MSE and MAE is used for training. These methods all
focus on local feature extraction without taking advantage of
the global image information, thus mainly restoring the frame
from the perspective of local coding distortion. In this way,
some desired fine texture may not be kept in the filtered image.

B. Large scale feature based CNN filtering in video coding

While in-loop filtering is a position-sensitive task where
pixel-to-pixel correspondence from the input reconstructed
frame to the output filtered frame is needed, the large scale
semantic information can still assist the distortion recovering
process. In [9], a variable-filter-size residual learning CNN
(VRCNN) was further developed using filters with different
sizes to capture features with different receptive fields. In
addition to increasing the filter size, large scale features can
also be extracted by increasing the receptive filed such as
pooling. In [8], [25], CNNs with down-sampling and up-
sampling (or deconvolution) blocks was used, where average
pooling is adopted to enlarge receptive filed. In [43], a multi-
scale convolutional neural network was proposed with an
extra network branch of processing the down-sampled input
features. In [44], a blind quality enhancement method (RBQE)
was proposed to process different frames, e.g., easy or hard
distorted frames, with a shallow (early exit) or deep subnet
via a quality check procedure. These methods extract large-
scale features to assist the filtering process. However, without
proper exploration of the local coding distortion patterns, some
spatial details could be lost, reducing the overall quality.

C. Coding information enhanced CNN filtering in video cod-
ing

In addition to the above methods that focus on developing
different neural networks to reduce the local coding distortion
based on a single reconstructed frame, there are also methods
aiming to explore more coding information in the filtering
process. In [15], a partition-masked CNN was proposed using
partition information as side information to unequally process
the video contents based on their coding unit partition modes.
In [14], the quantization parameter (QP) is used as extra input
to make the single trained model applicable to reconstructed
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Fig. 1: Proposed GL-Fusion Net - A Global Appearance and Local Coding Distortion based Fusion Framework: Three streams are used to extract low-level local feature (LLF),
high-level global feature (HGF) and high-level local feature (HLF), and progressively fused by a channel and spatial attention based fusion (CSAF) module.

frames with all QPs. In addition to the coding information,
there are also methods exploring multiple frames for filtering.
In [12], [17], [20], [21], multiple temporally adjacent recon-
structed frames or patches are used together for filtering where
the temporal information is fused within the CNN framework.
In [12], recurrent neural works such as LSTM are used for
the temporal fusion of multiple frames. In [21], multiple high-
quality reference frames, chosen by a reference frame selector
(RFS), are first aligned by motion compensation net (MC-net)
and then used to enhance the current frame. Similarly, in [27],
the Kalman filter is employed for exploring multiple frames.
With the coding information other than the input reconstructed
frame explored for filtering, the performance can generally be
improved. However, as investigated in the single-frame based
methods [6]–[19], [21], [23], [24] , most of the information
is contained in the reconstructed frame, and how to better
extract useful features from the reconstructed frame is still
the key problem for filtering, especially considering that in
cases such as All Intra (AI) coding only the information from
single frame is available for filtering. Moreover, it is worth
investigating the single-frame based filtering as a basic and
general module, which can be readily incorporated into tem-
poral correlation enhanced filtering methods to further improve
the performance. Therefore, this paper mainly investigates
the CNN based video filtering using a single reconstructed
frame and the exploration of other coding information can be
extended upon the proposed method.

Overall, the existing methods either focuses on recover-
ing spatial details but ignoring global semantic information
with a single-scale pipeline, or uses large-scale features to
explore broad contextual information but under-exploring the

local coding distortion. Few efforts have been made to bring
multilevel feature fusion to in-loop video filtering. However,
the coded video frame is not only a distorted image but also
distorted by a fixed pipeline of video encoding operations.
The video in-loop filtering needs to consider both the global
appearance by exploring the broad contextual information and
the local coding distortion by taking advantage of the spatial
details. Therefore, in this paper, we develop a multilevel
feature fusion approach for CNN in-loop filtering by com-
bining the global appearance and the local coding distortion
information.

III. PROPOSED APPROACH

In HEVC, the deblocking filter and SAO are used as the
in-loop filters to reduce the coding artifacts. In this paper,
we propose a CNN based filtering method to replace these
conventional filters, which adaptively learns to reduce the
compression artifacts in video encoding. The proposed method
is described in the following.

A. Proposed global appearance and local distortion based
framework

As briefly described in the Introduction Section, in the
current video coding process, each frame is encoded by a
fixed pipeline of operations including coding unit partition, in-
tra/inter prediction, transform coding, quantization and entropy
coding, then the reconstruction process (entropy decoding,
inverse quantization, inverse transform and prediction com-
pensation) to obtain the reconstructed frame X ∈ RH×W×C

and then in-loop filter. H , W , and C represent the height,



IEEE TRANSACTIONS ON BROADCASTING 4

Fig. 2: Encoder-decoder based high-level global feature extraction.

width, number of channels of distorted image, respectively.
The distortion in the reconstructed frames is introduced in
the quantization process applied on transform coefficients (or
directly the prediction residual if PCM mode is used), which
may share similar patterns in different frames and videos.
Such patterns mostly reside in each coding unit or along
the boundaries of neighboring coding units as the encoding
process is performed on the basis of coding units. Therefore,
local features are highly required and thus CNNs processing
in the original resolution without pooling is used.

On the other hand, since the reconstructed frame is essen-
tially a distorted image (not just coding units), the texture of
the image also provides a strong prior for filtering. Therefore,
the broad contextual information and high-level features are
desired for restoring the unnatural and structurally destructive
noisy frames. Accordingly, a CNN with capability of extract-
ing high level features is also used in the proposed method.

To combine the advantages of contextualized high-level
feature and local spatially-enriched features in restoration, we
propose a mixed multilevel feature fusion approach for CNN
in-loop filtering. The framework of the proposed approach is
shown in Fig.1, consisting of three CNN branches and an
extra skip connection. The reconstructed video frame X before
filtering is used as the input. The extra skip connection adds
the input reconstructed frame to the output to simplify the
CNN to only produce the residual R (restored distortion).
The three branches extract the low-level local features fll,
high-level local features fhl and high-level global feature fhg ,
respectively, and are explained in the following subsections.

B. Low-level local feature extraction (LLF)

As noted above, local features learning the encoding-
specific distortion is highly desired. In this paper, two branches
are further used to obtain the low-level local features and high-
level ones. The low-level local processing layers progressively
produce features fll with basic image semantics and the
resolution of the features is held constant to support spatially-
accurate mapping.

To be specific, a six-layer CNN without pooling was used
for low level feature extraction as shown in the left branch of
Fig.1, and can be represented by

fout = σ(φ(W ∗ fin + b)), (1)

where the fin and fout represent the input and output of each
layer, respectively. The filter size is set to 3×3 and 64 neurons
are used. Note that the input of the first layer in the network is
the reconstructed frame X . The output of the network without
the outer residual connection is distortion, which is of quite
different characteristics from the input. Thus six-layers can
be considered as a relatively shallow processing. Such low-
level processing with the local features is able to capture the
encoding distortion patterns within each coding units. The
batch normalization [45] φ and ReLU activation σ are used in
each convolutional layer.

C. Contextualized high-level global feature extraction (HGF)

The video coding distortions, while appearing local patterns,
also disrupt the image textures inevitably. The global texture
of the reconstructed frame can also sever as a strong prior
for restoration. For example, an object usually spreads across
multiple adjacent coding tree units (CTUs) in video coding,
especially in large resolution videos. The relationship between
these blocks can be captured by global features and help
the recovery of local losses within each CTU. In this paper,
high-level features extracted with large receptive fields (using
pooling) containing rich contextualized information is used as
global information. To be specific, an encoder-decoder CNN
similar to U-Net [46], [47] is used, as shown in Fig.2, which
is the middle branch of the overall framework in Fig.1. It
consists of four progressive down-scale operations (D{}) with
pooling to increase the receptive fields in order to yield the
contextualized feature.

dout = D{σ(φ(W ∗ din + b))}, (2)

where din and dout represent the input and output of each
down-scale operation D, respectively.

Four up-scale operations with up-sampling (U{}) is used
to transfer the high-level global information back to high-
resolution space and generate output fhg . The intermediate
high-level features extract the global information, and then the
final high-resolution features produced together with the high-
level global features facilitate the generation of the original
resolution output

uout = D{σ(φ(W ∗ [uin, dout] + b))}, (3)

where [uin, dout] and uout represent the input and output of
each up-scale process.

At each down-scale process, max pooling of 2× 2 is used
to reduce the size of features and increase the receptive field.
The number of channels is doubled after each max pooling.
At each up-scale process, the opposite operation is applied
with up-sampled resolution of features. The features obtained
in the down-scale process are concatenated with the features
of the same resolution in the up-scale process to guide the
higher-level and higher-resolution feature extraction.
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Fig. 3: Mixed-scale residual block for high-level local feature extraction.

Such connections allow the subnet to preserve spatial fea-
tures lost in down-sampling and also facilitates the back propa-
gation of the gradient. In the down-scale and up-scale process,
after each pooling or up-sampling, two convolutional layers
are added to extract corresponding features. The filter size of
the convolutional layer is 3 × 3, the channel number of the
first convolutional layer is 64, and then increased or decreased
according to the down-scale and up-scale operations. ReLU
and batch normalization is used similarly as above.

D. High-level local feature extraction (HLF)

As aforementioned in Subsection A and B, the reconstructed
video frames are generated with a fixed procedures of coding
operations, and the resulted distortions may share a similar
property with rich spatial and local information. While the
low-level local features may be able to represent the distortions
in a coding units, it is difficult to extract features for a large
neighborhood of coding units. Especially considering different
coding units may be coded with different prediction modes and
transform modes, the distortion patterns within each coding
unit can be quite different from that of coding unit boundaries
and a collection of coding units. Moreover, the down-sampling
operation in the high-level global feature extraction branch
may bring irreversible loss in detailed pixel information and
this high-level local feature extraction branch can provide
notion of spatial locations for the global features. In order
to learn such high-level local features, a multiple mixed-scale
residual module stacked CNN is developed as shown in Fig.3.
The mixed-scale residual module generates spatial features
floc on two different scales with an original CNN and an extra
encoder-decoder block design.

Each mixed-scale residual module contains two branches,
a trunk branch and a shallow encoder-decoder branch. Each
trunk branch extracts features xt at its original resolution, i.e.,
local features,

xt = σ(φ(Wt ∗ xm + bt)), (4)

while the shallow encoder-decoder branch extracts features
xe at a slightly larger scale by first down-sampling (D{}),
processing and then up-sampling (U{}) the features,

xt = U{σ(φ(We ∗ xm + be))}. (5)
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Fig. 4: Channel and Spatial Attention (CSA).

This compensates the trunk branch to obtain locally larger-
scale information such as information across neighboring
coding units, and thus is concatenated with the features from
the trunk branch. The mixed-scale residual module is shown in
Fig.3 and this locally mixed information ym can be obtained
by

ym = σ(φ(Wm ∗ [xt, xe] + bm)). (6)

At the end, a convolutional layer is further added to enhance
the spatial features. A skip-connection is further added to facil-
itate the gradient backpropagation. Five mixed-scale residual
modules are stacked to obtain the high-level local features fhl.

E. Channel and Spatial Attention based Fusion (CSAF)

To combine the low-level local features, high-level local
features and high-level global features for both the global
appearance-based and the local coding distortion-based filter,
a progressive fusion framework is developed in this paper as
shown in Fig.4. Considering the low-level local features can
bring spatial details to assist the high-level global features
back-projected to the original resolution features, they are first
concatenated together to obtain high-resolution features,

f
′

hg = σ(φ(Wm ∗ [fhg, fll] + b)). (7)

where fhg and fll represent the high level global features
and the low level local features obtained above. Then the
high-level local features are further combined by a channel
and spatial attention based fusion (CSAF) modified from the
CBAM (Convolutional Block Attention Module) [48] using
the spatial and channel attention to adaptively weight different
features as shown in Fig.4. The channel or spatial attentions
are obtained by using max pooling and average pooling com-
plementarily with pooling performed on spatial dimension or
channel dimension, respectively. With the pooling operations,
the complexity of a CSAF module is greatly reduced. Different
from [48], hyperbolic tangent activation (tanh) is used in
our CSAF in order to learn both emphasizing or suppressing
different features. Considering that with a residual connection
in the attention block, the features can only be enhanced if
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TABLE I: Comparison of different feature extraction and fusion networks (BD-rate saving,%).

Sequences LLF HGF HLF
Fusion

(LLF+HLF)

Fusion

(HLF+HGF)

Fusion

(HGF+LLF)

Fusion

(LLF+HLF+HGF)

Traffic -9.2 -13.7 -14.0 -13.6 -14.2 -14.6 -14.7

PeopleOnstr. -8.8 -12.3 -12.5 -12.0 -13.1 -13.1 -13.4

Kimono -7.0 -12.1 -12.3 -11.8 -12.5 -12.9 -13.0

ParkScene -7.3 -10.4 -10.7 -10.5 -11.0 -11.2 -11.2

Cactus -7.5 -11.5 -11.7 -11.3 -12.2 -12.4 -12.6

BasketballDr. -6.6 -12.0 -12.4 -11.8 -12.7 -13.1 -13.7

BQterrace -4.5 -7.6 -7.7 -7.4 -7.9 -8.2 -8.4

BasketballD. -10.9 -18.5 -19.0 -18.3 -19.4 -20.1 -20.7

BQmall -7.9 -12.0 -12.7 -12.2 -12.9 -13.1 -13.4

PartySence -5.1 -7.2 -7.7 -7.4 -7.7 -7.9 -8.1

RaceHorses -5.6 -8.0 -8.1 -7.8 -8.5 -8.6 -8.9

BasketballP. -8.3 -13.3 -13.9 -13.5 -14.1 -14.4 -14.9

BQSquare -6.1 -9.3 -9.8 -9.5 -9.6 -10.0 -10.4

BlowingB. -6.9 -9.9 -10.3 -10.0 -10.4 -10.6 -10.9

RaceHorses -9.4 -12.1 -12.4 -12.2 -12.6 -12.7 -13.0

FourPeople -11.5 -17.4 -18.0 -17.3 -15.2 -18.9 -19.1

Johnny -10.8 -17.2 -18.3 -17.6 -12.7 -18.8 -19.5

KristenAnd. -11.3 -16.3 -17.2 -16.6 -16.4 -17.9 -18.1

Class A -9.0 -13.0 -13.6 -12.8 -13.6 -13.8 -14.1
Class B -6.6 -10.7 -11.0 -10.5 -11.3 -11.6 -11.8
Class C -7.4 -11.4 -11.9 -11.4 -12.1 -12.4 -12.7
Class D -7.7 -11.2 -11.6 -11.3 -11.7 -11.9 -12.3
Class E -11.2 -17.0 -17.8 -17.2 -14.8 -18.5 -18.9

Average -9.0 -12.3 -12.7 -12.3 -12.4 -13.2 -13.55

using the sigmoid activation as in [48]. This may not be a
problem for classification tasks as in [48] which uses relative
features after softmax for final classification, but for video
filtering providing precise pixel values, tanh could be more
flexible. In our experiments, we also found that our CSAF
with tanh consistently performs better than the original CBAM
as shown in Section IV.C.4. Three CSAF modules are used in
the proposed network as shown in Fig.1, where CSAF is first
applied for each branch and then fused together. In the end,
one last convolutional layer is used to produce the predicted
coding distortion from the above enhanced features.

R = σ(φ(W ∗ CSAF (f
′

hg, fhl) + b)). (8)

Together with the input reconstructed frame added by a skip
connection shown in Fig.1, the final filtered output Y can be
obtained as Y = X + R. Considering the first few layers in
the three branches are of same resolution and function, they
are shared together to reduce the number of parameters. The
proposed global appearance and local coding distortion fusion
network (GL-Fusion) can be trained end-to-end, and the mean
squared error (MSE) was used as the objective function

IV. EXPERIMENTAL RESULTS

In this section, the experimental setups including the dataset
establishment and implementation details are first introduced,
and ablation studies on different modules are conducted to
justify the development of the proposed GL-Fusion network.
The proposed method is incorporated into the HEVC refer-
ence software (HM 16.9) and the performance is compared

with state-of-the-art methods to validate the effectiveness of
proposed method.

A. Dataset Establishment

Considering that the proposed method investigates using
only one single frame without other temporal frames, the
AI (All-Intra) configuration in HEVC is used as the main
comparison configuration. For AI, training based on images
is the same to sequences without considering temporal cor-
relation. Moreover, using images also increases the diversity
of the training data since different frames in videos contain
large portions of similar contents, making it redundant for the
training. Therefore, for AI, the DIV2K [41] and Flickr2K [49]
image datasets are used to establish our dataset for training.
DIV2K and Flickr2K are high-quality (2K resolution) image
datasets for image restoration or super resolution. DIV2K con-
tains 900 high resolution images, and Fliker2K contains 2650
high resolution images. DIV2K and Flickr2K training dataset
are common used as training datasets for filtering as in [18],
[20], [23], [50]. Firstly, the images are converted to YUV420
format and compressed under AI configuration by HM16.9.
And the coding configuration file is encoder intra main.cfg
with debloking filtering and SAO off. In addition to the main
AI configuration, the LDP (Low-Delay-P) and RA (Random-
Access) configuration in HEVC are also tested to demonstrate
that the proposed method can also work well on other frame
types. For LDP and RA, images cannot be used for training
since no temporal correlation exists. Therefore, for LDP and
RA, 108 raw YUV sequences collected from [51]–[53] are
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(a) Global (b)  Local (C)  Original

(C)  (a) (b)  

Fig. 5: Visualization of the absolute difference to the groundtruth (c) of global feature stream net (a) and local feature stream net (b). The darker the pixel (the values are transformed
for better visualization), the better the enhancement. It can be seen in the red blocks that the local feature stream net can better handle the coding distortion around the coding unit
boundary; on the contrary, it can be seen in the white blocks that the global feature stream can better handle the global flat pattern.

TABLE II: Probability of global net and local net achieving better filtering result in terms

of pixel percentages.

Sequences Probability

Class A 51.83%

Class B 51.51%

Class C 51.66%

Class D 50.75%

Class E 52.32%

Average 51.62%

used for training, which are also used as training datasets for
filtering in [11], [23], [43]. The sequences are compressed
similarly as above only using the LDP and RA configuration,
respectively. The native filters including SAO and De-blocking
filtering are also turned off in the compression. For LDP
and RA, the model is trained on P frames and B frames,
respectively. It is implemented as a post-processing in the
experiments, but it can be readily incorporated into the RDO
optimization framework using the switchable filtering mech-
anism proposed in [23]. The sequences in the common test
condition (CTC) recommend by JCT-VC [1], including videos
of five different classes, are used for testing. The QP and
other coding settings are the same to CTC including four QPs
{22,27,32,37}.

B. Implementation details

The proposed method is implemented based on PyTorch
framework, and trained/tested on a Nvidia Tesla V100 card.
Adam [54] is used as the optimizer and the initial learning rate
is set to 2× 10−3. Four models are trained for different QPs
{22,27,32,37}. The patch size is set as 128×128, and the batch
size is set to 32 in the training stage. At test stage, one entire
frame is used as input for simplicity. The models are initialized
using the normalization method in [55]. However, for the
last layer producing the output distortion, the parameters are

Fig. 6: PSNR improvement comparison using different block sizes (64, 96, 128) for
training.

initialized differently. Since the output is directly used as the
distortion not being normalized by softmax such as in clas-
sification problems, the output needs to be distributed in the
range of the groundtruth distortion. Therefore, the parameters
are initialized under the principle that the distribution of its
outputs is the same to the groundtruth distortion. It is done by
scaling the parameters with the standard variance difference
between the actual output and the groundtruth distortion in a
way similarly as in [55].

C. Ablation studies and analysis

In this subsection, extensive ablation studies are conducted
to validate the proposed GL-Fusion modules including the ne-
cessity of contextualized high-level global feature extraction,
high-level local feature extraction and the CSAF fusion, and
different experimental settings such as the input size.

1) The necessity of the high-level global and local feature
extraction: Ablation study on different networks are first
conducted and the results are provided in Table I. It can be
seen that the BD-rate saving [56] of the LLF, HGF, HLF,
LLF+HLF, HLF+HGF and HGF+LLF is -9.0%, -12.3%, -
12.7%, -12.3%, -12.4% and -13.2%, respectively, while it
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TABLE III: Illustration of the performance with the proposed Mixed-scale residual

module (BD-rate saving,%).

Sequences
Without the mixed-scale

residual module
Proposed

Traffic -14.0 -14.7

PeopleOnstr. -12.6 -13.4

Kimono -12.4 -13.0

ParkScene -10.7 -11.2

Cactus -11.9 -12.6

BasketballDr. -12.8 -13.7

BQterrace -7.5 -8.4

BasketballD. -19.7 -20.7

BQmall -12.8 -13.4

PartySence -7.7 -8.1

RaceHorses -8.4 -8.9

BasketballP. -14.2 -14.9

BQSquare -9.8 -10.4

BlowingB. -10.4 -10.9

RaceHorses -12.6 -13.0

FourPeople -18.2 -19.1

Johnny -16.6 -19.5

KristenAnd. -17.3 -18.1

Class A -13.3 -14.1
Class B -11.0 -11.8
Class C -12.1 -12.7
Class D -11.8 -12.3
Class E -17.4 -18.9

Average -12.80 -13.55

TABLE IV: The comparison of the hyperbolic tangent activation against sigmoid used

in CSAF (BD-rate saving,%).

Sequences\activation Sigmoid Hyperbolic tangent

Class A 14.01 14.05

Class B 11.06 11.80

Class C 12.70 12.74

Class D 12.21 12.28

Class E 18.30 18.87

Average 13.41 13.55

reaches -13.5% for the proposed GL-Fusion net. The results
of the LLF+HLF and HLF+HGF are very similar to the
performance of HLF (even slightly worse), indicating that
the simple combination of features does not work very well.
On the contrary, the combination of HGF+LLF works better
showing their complementary nature, i.e., the high-level global
information and the low-level local information. Our method
achieves the best performance, proving its effectiveness in both
the feature extraction and fusion. On the other hand, to qualita-
tively illustrate the difference of different feature streams, we
further designed an experiment to show the different effects
brought by different features. First, a global feature stream
consisting of LLF+HGF is designed for extracting broad
contextual information desired for restoring the unnatural and
structurally destructive noisy frames, corresponding to the
proposed filtering aspect of global appearance based filtering.
Note that LLF is added together with HGF in order to recover

TABLE V: Comparison of different fusion method (BD-rate saving,%).

Sequences Addition Concate SE CSAF

Traffic -14.5 -14.5 -12.6 -14.7

PeopleOnstr. -13.1 -13.0 -10.9 -13.4

Kimono -13.0 -12.8 -11.1 -13.0

ParkScene -11.2 -11.0 -9.8 -11.2

Cactus -12.4 -12.3 -10.8 -12.6

BasketballDr. -13.0 -13.0 -11.3 -13.7

BQterrace -8.3 -5.8 -6.6 -8.4

BasketballD. -19.7 -19.9 -18.8 -20.7

BQmall -13.2 -13.0 -12.3 -13.4

PartySence -8.0 -7.9 -7.5 -8.1

RaceHorses -8.6 -8.6 -7.3 -8.9

BasketballP. -14.3 -14.4 -13.6 -14.9

BQSquare -10.0 -10.0 -10.0 -10.4

BlowingB. -10.6 -10.6 -9.8 -10.9

RaceHorses -12.8 -12.7 -11.9 -13. 0

FourPeople -18.9 -18.7 -17.0 -19.1

Johnny -19.1 -16.7 -17.0 -19.5

KristenAnd. -17.9 -17.6 -16.3 -18.1

Class A -13.8 -13.7 -11.7 -14.1
Class B -11.6 -11.0 -9.9 -11.8
Class C -12.4 -12.4 -11.5 -12.7
Class D -11.9 -11.9 -11.3 -12.3
Class E -18.6 -17.6 -16.8 -18.9

Average -13.25 -12.90 -12.00 -13.55

spatial details. Then the high-level local feature stream (HLF)
is used for removing the specific coding distortion while
preserving the spatially-enriched information, corresponding
to the proposed filtering aspect of local coding distortion based
filtering. To demonstrate that the two streams can complement
each other and are both needed for filtering, experiments
are conducted by setting each stream being one individual
network.

The filtering results by each stream network are compared
using their difference against the groundtruth frame Diff =|
yg − yt | − | yl − yt |, where yg , yl, yt indicates the
frames enhanced by global (with low-level local feature) net,
high-level local net and the groundtruth frame, respectively.
Diff smaller than zero represent the global feature stream
(HGF+LLF) performing better than the local feature stream
on this pixel, and vice versa. Table II shows the percentage of
global feature stream performing better, i.e., Diff < 0 . It can
be seen that the percentage is around 50%, demonstrating that
the two streams perform very similarly. Each stream can better
handle half of the pixels than the other while worse for the
other half (with different characteristics), agreeing with our
statement that the two streams can complement each other.
Therefore, the proposed GL-Fusion net with all the branches
are necessary to achieve better performance on all pixels.

In Fig.5, we also visualized the absolute difference to the
groundtruth of the global feature stream net and local feature
stream net. It can be seen that the local feature stream net
can clearly handle the coding distortion near the coding unit
boundary better, while the global feature stream focuses more
on the edges of the contents/person and objects of the frame.



IEEE TRANSACTIONS ON BROADCASTING 9

Fig. 7: RD curves of the proposed method in comparison with the HM baseline and SEFCNN [23].

HM

32.25dB

Proposed

33.35dB

Groundtruth

30.11dB 30.92dB
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Intra

Low 

Delay

Random 
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Fig. 8: Visualization of the filtered output by HM and the proposed method under different configurations.

2) Study on different block sizes in training: The perfor-
mance under different block sizes in training is also evaluated
and the result is shown in Fig.6. It can be seen that the average
PSNR gain is 0.640, 0.630, 0.641 for block size 64, 96, 128,
respectively. The performance is relatively similar and the
block size of 128 is used in our following experiments.

3) Verify the effectiveness of the proposed mixed-scale
local feature extraction: To verify the effectiveness of the
proposed mixed-scale local feature extraction, evaluation on
the proposed mixed-scale residual module is conducted with
comparison to the simple residual module (without the mixed-

scale). The result is shown in Table III. It can be seen that
the proposed method with the mixed-scale residual module
performs better on all the test sequences, validating the effec-
tiveness of the mixed-scale local feature extraction.

4) Exploration of different fusion schemes: To evaluate the
proposed channel and spatial attention based fusion (CSAF)
for combining the global contextualized and local spatially-
enriched features, several widely-used fusion schemes were
compared, including addition, concatenation, and the squeeze
and excitation (SE) [57]. The results are shown in Table IV,
and it can be seen that the proposed CSAF scheme achieves
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TABLE VI: Comparison of the proposed method against the state-of-the-art methods(BD-rate saving,%).

VRCNN [9] SEFCNN [23] EDCNN [24] MIF [21] MRNN [22] Proposed

Sequences AI LD RA AI LD RA LD RA LD RA AI LD AI LD RA

Traffic -5.61 -1.81 -3.54 -11.21 -6.84 -7.48 -5.02 -5.97 / -6.80 / / -14.73 -14.30 -12.30

PeopleOnstr. -5.44 -1.79 -3.07 -10.21 -5.73 -7.27 -6.82 -9.17 / -8.54 / / -13.42 -12.30 -13.00

Kimono -2.49 -1.81 -0.59 -8.47 -5.64 -5.49 -1.77 -3.68 / -4.67 -4.5 -4.2 -13.04 -7.30 -8.60

ParkScene -4.41 -0.96 -1.82 -8.57 -3.56 -4.76 -2.77 -3.85 / -4.32 -5.1 -4.8 -11.20 -7.40 -8.70

Cactus -4.54 -3.79 -5.10 -8.17 -7.13 -7.98 -3.38 -5.29 / -8.29 -7.9 -8.4 -12.60 -11.10 -12.90

BasketballDr. -2.16 -1.33 -1.09 -8.43 -7.50 -6.45 -4.31 -5.99 / -8.26 -7.2 -5.5 -13.70 -13.00 -12.40

BQterrace -2.62 -6.02 -4.66 -5.48 -11.45 -9.20 -13.08 -5.08 / -10.0 -8.3 -9.2 -8.40 -8.90 -12.70

BasketballD. -7.01 -3.06 -1.07 -14.96 -9.33 -6.11 -12.06 -10.65 / -5.31 -5.2 -5.9 -20.70 -12.20 -12.10

BQmall -5.17 -3.65 -3.64 -10.37 -8.28 -7.63 -6.03 -7.37 / -5.44 -8.8 -6.7 -13.40 -9.80 -11.10

PartySence -3.59 -2.45 -1.21 -6.41 -4.83 -4.14 -9.10 -9.28 / -3.01 -3.5 -5.9 -8.10 -7.00 -8.30

RaceHorses -3.67 -2.06 -2.75 -6.27 -3.91 -4.91 / / / -6.58 -5.2 -5.9 -8.90 -6.30 -7.30

BasketballP. -5.03 -3.74 -3.07 -11.37 -8.98 -7.93 -6.05 -6.34 / -6.13 -4.8 -5.7 -14.90 -10.7 -10.5

BQSquare -3.92 -4.50 -0.81 -8.13 -9.38 -6.61 -13.08 -10.99 / -4.30 -9.2 -9.1 -10.4 -11.60 -13.70

BlowingB. -4.88 -2.62 -2.19 -8.53 -4.96 -4.28 -8.10 -7.54 / -3.10 -5.0 -7.5 -10.90 -8.90 -9.20

RaceHorses -7.08 -2.06 -5.30 -10.75 -6.09 -7.61 -3.27 -3.52 / -6.55 -4.4 -4.0 -13.00 -9.40 -10.0

FourPeople -7.01 -5.77 -7.02 -14.76 -13.79 -13.88 -8.85 -10.53 / -9.40 -10.6 -15.1 -19.10 -17.80 -16.50

Johnny -5.98 -4.80 -3.49 -13.67 -14.63 -12.42 -9.83 -11.22 / -8.77 -8.6 -14.4 -19.50 -19.10 -16.60

KristenAnd. -6.77 -6.57 -6.24 -13.53 -12.64 -12.72 -8.35 -9.00 / -8.94 -8.2 -12.8 -18.10 -17.2 -15.2

Class A -5.52 -1.80 -3.03 -10.71 -6.29 -7.38 -5.92 -7.57 -7.24 -7.67 / / -14.05 -13.25 -12.65

Class B -3.24 -2.78 -2.22 -7.82 -7.06 -6.78 -5.06 -4.78 -5.84 -7.11 -6.6 -9.7 -11.80 -9.50 -11.10

Class C -4.86 -2.80 -2.17 -9.50 -6.59 -5.70 -9.06 -9.56 -4.16 -5.08 -5.7 -6.1 -12.74 -8.80 -9.70

Class D -5.23 -3.70 -2.84 -9.69 -7.35 -6.61 -7.63 -7.10 -3.49 -5.01 -5.9 -6.6 -12.28 -10.20 -10.80

Class E -6.59 -5.77 -5.58 -13.99 -13.69 -13.00 -6.34 -10.25 -8.15 -9.04 -9.5 -14.1 -18.87 -18.00 -16.10

Average -4.85 -3.38 -3.03 -9.96 -8.04 -7.60 -6.27 -6.62 -5.78 -6.59 -6.7 -7.8 -13.55 -11.30 -11.70

the best performance. Ablation study on using tanh or sigmoid
for CSAF is also conducted and results are shown in Table V.
It can be seen that the CSAF with tanh consistently performs
better than sigmoid activation on all sequences with no extra
cost.

D. Comparison with State-of-the-art methods

The proposed method is compared against the state-of-
the-art single-frame based CNN filtering methods, including
VRCNN [9], SEFCNN [23], EDCNN [24], MRRN [22], on
All Intra, Low Delay or Random Access coding configurations.
Moreover, MIF [21] as a basic multiple-frame based filtering is
also compared to shed light on different categories of methods,
but it is worth noting that we are mostly concerned with the
comparison against the existing single-frame based filtering
same to ours. The results are shown in Table VI, and it can be
seen that our proposed method achieves the best performance
under all configurations with a relatively large margin (13.55%
BD-Rate saving against 9.96% for the existing methods).
Note that the methods are compared with the HEVC baseline
with De-blocking and SAO on. RD curves on two example
sequences are shown in Fig.7, where the RD curve of the
proposed method is compared with the HM and SEFCNN [23].
It can be clearly seen that the proposed method outperforms
the existing methods. In addition, some qualitative results are
also shown in Fig.8, which are obtained with QP 37 and the
filter in HEVC is turned on. It can be seen that our method

TABLE VII: The complexity comparison of the method against HM16.9 baseline(time

consumption increase,%).

Sequences AI LD RA

Class A 14.99 5.79 4.09

Class B 16.62 11.55 2.56

Class C 14.67 10.68 7.60

Class D 14.08 3.56 8.18

Class E 17.90 17.29 8.56

Average 15.65 9.77 6.20

handles the blocking artifacts better than the deblocking and
SAO filters in HEVC.

E. Study of Computational Complexity
The computational complexity of proposed method is com-

pared with the HEVC standard reference software HM16.9
with deblocking filter and SAO on. The proposed method is
incorporated into HM16.9 and NVIDIA Tesla V100 GPU is
used for acceleration. As shown in Table VII, the proposed
method takes 15.65%, 9.77%, 6.20% extra time consumption
on AI, LDP, RA configuration, which is acceptable considering
the large coding performance improvement.

V. CONCLUSION

This paper presents a global appearance and local coding
distortion based fusion framework for CNN based filtering
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in video coding. It processes the filtering in video coding
from two aspects: a denoising process where the reconstructed
frame is a distorted image with disrupted texture, and a local
restoration process where each coding unit is distorted by a
fixed pipeline of encoding procedures including prediction,
transform and quantization. Accordingly, a three-stream global
appearance and local coding distortion based fusion network
(GL-Fusion) is developed. One stream focusing on the con-
textualized high-level large-scale feature extraction for global
texture restoration using a multilevel feature encoder-decoder.
The second stream focusing on the high-level local feature
extraction preserves spatially-enriched information for local
coding distortion restoration resulted by the fixed pipeline of
video coding operations. Mixed scale residual blocks are used
to capture the local information. Finally, the last stream focus-
ing on the low-level feature extraction to produce features with
basic image semantics and the resolution of the features is held
constant to the original resolution in order to support spatially-
accurate mapping. The three streams are then progressively
fused together by a channel and spatial attention based fusion
to restore the original video. Experiments have shown that the
proposed method outperforms the state-of-the-art result with
13.5% BD-Rate saving on average in All Intra configuration.
The proposed GL-Fusion net can also be used and incorporated
into the Versatile Video Coding (VVC) [58], which will be
studied in future work.
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