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Risk minimization for nonsmooth nonconvex problems naturally leads to firstorder sampling or, by an abuse of terminology, to stochastic subgradient descent. We establish the convergence of this method in the path-differentiable case, and describe more precise results under additional geometric assumptions. We recover and improve results from Ermoliev-Norkin [1] by using a different approach: conservative calculus and the ODE method. In the definable case, we show that first-order subgradient sampling avoids artificial critical point with probability one and applies moreover to a large range of risk minimization problems in deep learning, based on the backpropagation oracle. As byproducts of our approach, we obtain several results on integration of independent interest, such as an interchange result for conservative derivatives and integrals, or the definability of set-valued parameterized integrals.

Introduction

We consider possibly nonconvex and nonsmooth risk minimization problems of the form min w∈R p J (w) := E ξ∼P [f (w, ξ)] ,

(

) 1 
where P is a probability distribution on some measurable space (S, A). We assume throughout the paper that J is bounded below. This type of problems has many applications, we refer for instance to [START_REF] Ruszczyński | Convergence of a stochastic subgradient method with averaging for nonsmooth nonconvex constrained optimization[END_REF][START_REF] Ruszczyński | A stochastic subgradient method for nonsmooth nonconvex multilevel composition optimization[END_REF] and references therein, for various examples in several fields. Our specific interest goes in particular to online deep learning [START_REF] Sahoo | Online deep learning: Learning deep neural networks on the fly[END_REF] and machine learning more broadly [START_REF] Bottou | Optimization methods for largescale machine learning[END_REF]. We consider a minimization approach through first-order sampling: our model is that of the stochastic gradient method1 , which in its classical form generates iterates (w k ) k∈N through

w 0 ∈ R p w k+1 = w k -α k v(w k , ξ k ) for k ∈ N, (2) 
where v(w k , ξ k ) is a descent direction at w k for the function f (•, ξ k ).

When f is smooth, v may be taken to be the gradient of f , so that, in expectation, the search direction boils down to the gradient:

E ξ∼P [∇ w f (•, ξ)] = ∇E ξ∼P [f (•, ξ)] = ∇J (3) 
where the first equality follows under mild integrability conditions. This is a well-known case for which many convergence results are available, see, e.g., [START_REF] Kushner | Stochastic approximation and recursive algorithms and applications[END_REF].

In the nonsmooth nonconvex world, it has become classical to consider Clarke subgradient oracles. In that case the average update direction in [START_REF] Ruszczyński | Convergence of a stochastic subgradient method with averaging for nonsmooth nonconvex constrained optimization[END_REF] falls into E ξ∼P [∂ c w f (•, ξ)]; but contrary to (3), we merely have

E ξ∼P [∂ c w f (•, ξ)] ⊃ ∂ c E ξ∼P [f (•, ξ)] = ∂ c J , (4) 
see [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF]Theorem 2.7.3]. Without additional convexity or regularity assumptions, as in [START_REF] Majewski | Analysis of nonsmooth stochastic approximation: the differential inclusion approach[END_REF][START_REF] Davis | Stochastic subgradient method converges on tame functions[END_REF], the inclusion is strict in general. In plain words, general subgradient sampling is not a stochastic subgradient method: expected increments may not be subgradients of the loss. As a consequence, the very nature of a first-order sampling method may generate undesired directions that could result in sporadically erratic movements or artificial and irrelevant steady states [START_REF] Bolte | A mathematical model for automatic differentiation in machine learning[END_REF]. The situation is even worse in deep learning where the oracle is based on backpropagation [START_REF] Rumelhart | Learning representations by back-propagating errors[END_REF], which may add more artifacts to the dynamics, see, e.g., [START_REF] Bolte | A mathematical model for automatic differentiation in machine learning[END_REF] and references therein. Despite these issues, many real-world algorithms are designed according to this model, justifying the need for theoretical support and guarantees to the practical success of these methods.

This paper aims at addressing these problems in the vanishing step size regime. We build upon conservative calculus introduced in [START_REF] Bolte | Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning[END_REF]. This approach makes rigorous the use of formal subdifferentiation in a wide mathematical framework encompassing most nonconvex nonsmooth problems. One of its main features is that sum or composition of conservative gradients are conservative. Under mild assumptions, we shall extend this property to integration, parameterized integrals of conservative gradients being conservative. An important advantage of this approach is its full compatibility with one of the core modern algorithms of large-scale optimization: backpropagation [START_REF] Abadi | Tensorflow: A system for large-scale machine learning[END_REF][START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF][START_REF] Bradbury | JAX: composable transformations of Python+NumPy programs[END_REF].

An essential series of works on subgradient sampling are those developed in [START_REF] Ermoliev | Stochastic generalized gradient method for nonconvex nonsmooth stochastic optimization[END_REF], followed also by [START_REF] Ruszczyński | Convergence of a stochastic subgradient method with averaging for nonsmooth nonconvex constrained optimization[END_REF][START_REF] Ruszczyński | A stochastic subgradient method for nonsmooth nonconvex multilevel composition optimization[END_REF], using the generalized derivatives and the calculus introduced in Norkin [START_REF] Norkin | Generalized-differentiable functions[END_REF], see Section 6 for more details. They address, in particular, the interplay between expectations and subgradients under various assumptions and ensure as well convergence to "generalized critical points". The ideas of [START_REF] Ermoliev | Stochastic generalized gradient method for nonconvex nonsmooth stochastic optimization[END_REF], and some follow-up research [START_REF] Norkin | Stochastic generalized gradient methods for training nonconvex nonsmooth neural networks[END_REF], have been surprisingly overlooked by the stochastic optimization and machine learning communities, at least until recently 2 . There is a strong common point between the present article and Norkin's research since, key to our work, is a new first-order calculus. But there are also important differences and additions that we highlight below:

-We follow the conservative approach of [START_REF] Bolte | Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning[END_REF] instead of the generalized derivative approach of [START_REF] Norkin | Generalized-differentiable functions[END_REF], which are different techniques. Focus on the conservative case is motivated by a growing "theory" close to machine learning applications: implicit differentiation [START_REF] Bolte | Nonsmooth implicit differentiation for machine-learning and optimization[END_REF] with application to implicit neural networks [START_REF] Shaojie Bai | Deep equilibrium models[END_REF], nondifferentiable programming [START_REF] Blondel | Efficient and modular implicit differentiation[END_REF], bilevel programming [START_REF] Pedregosa | Hyperparameter optimization with approximate gradient[END_REF][START_REF] Bertrand | Implicit differentiation of lasso-type models for hyperparameter optimization[END_REF]), differential equations [START_REF] Marx | Path differentiability of ode flows[END_REF] which are naturally connected to Neural ODEs [START_REF] Ricky | Neural ordinary differential equations[END_REF][START_REF] Dupont | Augmented neural odes[END_REF], or even partial minimization [START_REF] Pauwels | The ridge method for tame min-max problems[END_REF]. Let us also mention that conservativity is more general than differentiability in the sense of Norkin, see Section 6, even though both notions coincide in the semialgebraic case as recently established in [START_REF] Davis | Conservative and semismooth derivatives are equivalent for semialgebraic maps. Set-Valued and Variational Analysis[END_REF].

-We provide a general and simple result on the avoidance of artificial critical points. First-order sampling and backpropagation create independently artificial critical points that can swamp the method. Under adequate subanalyticity assumptions, matching many practical problems, we establish that this does not occur, see Section 4. Our theory is developed in close connection to semialgebraicity and subanalyticity techniques. This provides a "ready-to-use" flavor to our convergence results for online deep learning and also to obtain new results in the definable world. In particular, we provide conditions for set-valued integrands to result in definable parametrized integrals or expectations as well.

-Another specificity of our work is to rely, for its asymptotic analysis, on the "ODE approach" through the use of Benaim-Hofbauer-Sorin results [START_REF] Benaïm | Stochastic approximations and differential inclusions[END_REF] on stochastic approximations. The versatility and simplicity of this method allow for a quite direct extension to other types of first-order methods as, see, e.g., [START_REF] Bianchi | A closed-measure approach to stochastic approximation[END_REF][START_REF] Gadat | Stochastic heavy ball[END_REF][START_REF] Castera | An inertial newton algorithm for deep learning[END_REF]. Definability provides simple and explicit sufficient conditions for commonly used abstract hypotheses in this framework, such as path-differentiability of the risk and Sard's condition.

The paper is organized as follows: we first present representative samples of our general results in Section 2 with an emphasis on applications to online deep learning and the role of semialgebraic, or definable optimization. In Section 3, we present our main theoretical results with, in particular, a theorem of conservative differentiation for integral functions. Section 4 gathers results from o-minimal geometry and provides set-valued improvement of Cluckers-Miller's integration result [START_REF] Cluckers | Stability under integration of sums of products of real globally subanalytic functions and their logarithms[END_REF] as well as avoidance result for artificial critical points. Section 5 contains the proofs of Section 2 results.

Notations For q ∈ N * , B(R q ) denotes the Borel sigma algebra on R q , λ is the Lebesgue measure on R. • denotes the Euclidean norm. For a subset A of a normed vector space, conv A denotes the convex hull of A and Ā its closure; dim A denotes its Hausdorff dimension. If in addition, A is bounded then

A := sup{ y | y ∈ A}. For x ∈ R p r > 0, B(x, r
) is the open ball of center x and radius r with respect to the Euclidean norm.

Given f : R p → R locally Lipschitz continuous, Rademacher's theorem ensures that f is differentiable on a set of full measure denoted diff f . Its Clarke subgradient is defined for

x ∈ R p as ∂ c f (x) = conv lim k→+∞ ∇f (x k ) x k ∈ diff f , x k → k→∞ x .
Given g : R p ×R m → R such that for almost all s ∈ R m g(•, s) is locally Lipschitz, ∂ c w g(•, s) denotes the Clarke subgradient of g(•, s) whenever the latter is locally Lipschitz.

For F : R p → R q locally Lipschitz, the Clarke Jacobian is defined as

Jac c F (x) = conv lim k→+∞ Jac F (x k ) x k ∈ diff F , x k → k→∞ x ,
and for G :

R p × R m → R q such that G(•, s) is locally Lipschitz for almost all s ∈ R m , Jac c w G(•, s) is the Clarke Jacobian of G(•, s) for almost all s ∈ R m .

Main results and online deep learning

This section provides simplified formulations of our results and also gives applications to online deep learning.

Subgradient sampling method

Framework Let us consider the stochastic minimization problem [START_REF] Ermoliev | Stochastic generalized gradient method for nonconvex nonsmooth stochastic optimization[END_REF] where P is a fixed probability distribution, f is possibly nonsmooth and nonconvex such that the risk function J is well defined and bounded below, in particular f (x, •) is P -integrable for all x ∈ R p . This problem is tackled through the first-order sampling algorithm (2). (ξ k ) k∈N is a sequence of i.i.d. random variables with distribution P and the mapping

v : R p × R m → R p is a selection of ∂ c w f : R p × R m ⇒ R p , i.e., for almost all s ∈ R m , for all w ∈ R p , v(w, s) ∈ ∂ c w f (w, s).
Assumption 1

1. There exist a function κ : R m → R + square integrable with respect to P , and Observe that the first condition implies local Lipschitz continuity of J hence ∂ c J is well defined. Furthermore, beyond semialgebraicity, all the results of this work extend to globally subanalytic functions f and selections v, which encompasses the vast majority of machine learning examples. In particular, globally subanalytic functions are polynomially bounded and they satisfy Assumption 1 (1) if P has compact support.

q 0 ∈ N such that for almost all s ∈ R m , ∀x, y ∈ R p , |f (x, s) -f (y, s)| ≤ κ(s)(1 + max { x , y } q 0 ) x -y . 2. For all k ∈ N, α k > 0, k∈N α k = ∞ and lim k→∞ α k = 0,
Some solutions have been proposed in the literature to ensure Assumption 1 (4). In [START_REF] Ermoliev | Stochastic generalized gradient method for nonconvex nonsmooth stochastic optimization[END_REF], the iterates are projected on a compact set. The authors of [START_REF] Borkar | Stochastic Approximation: A Dynamical Systems Viewpoint[END_REF][START_REF] Nurminski | Minimization of nondifferentiable functions in the presence of noise[END_REF] use a restart mechanism: the sequence is reset, either at w 0 in [START_REF] Nurminski | Minimization of nondifferentiable functions in the presence of noise[END_REF] or on a sphere in [START_REF] Borkar | Stochastic Approximation: A Dynamical Systems Viewpoint[END_REF], when the objective function is too high. Such mechanisms are however hard to apply in our case since they require computing J (w k ) at each iteration.

Remark 2.1 (Probability spaces) In this work, the term "almost surely" can refer to different probability spaces. Assumption 1 (1) refers to a probability space (S, A, P ) where S = R m and A = B(R m ), whereas in Assumption 1 (4), it is question of a countable product of probability spaces on which is defined the whole sequence (w k ) k∈N . In the paper, randomness has to be understood regarding these different probability spaces.

A glance at the convergence results In this general setting, we are not able to guarantee the almost sure convergence of (w k ) k∈N to the set of critical points of J , but we can describe its limit behavior in a weaker sense introduced in [START_REF] Benaïm | Ergodic properties of weak asymptotic pseudotrajectories for semiflows[END_REF] and extended to setvalued flows in [START_REF] Bianchi | A closed-measure approach to stochastic approximation[END_REF], see also [START_REF] Faure | Ergodic properties of weak asymptotic pseudotrajectories for set-valued dynamical systems[END_REF][START_REF] Bolte | Long term dynamics of the subgradient method for lipschitz path differentiable functions[END_REF]. This relies on the notion of essential accumulation points.

Definition 2.2 (Essential accumulation point) An accumulation point w ∈ R p is called essential if for every neighborhood U of w one has lim sup

k→∞ k i=0 α i 1 {w i ∈U } k i=0 α i > 0 almost surely.
Intuitively, non essential accumulation points are hardly never seen. This is made more precise in [29, Corollary 4.9], through the use of occupation measures.

A first result on the criticality of the essential accumulation points of (w k ) k∈N is as follows:

Theorem 2.3 (Criticality of essential accumulation points) Let (w k ) k∈N defined by [START_REF] Ruszczyński | Convergence of a stochastic subgradient method with averaging for nonsmooth nonconvex constrained optimization[END_REF]. Then under Assumption 1, the following hold:

1. All essential accumulation points w of (w k ) k∈N satisfy the weak notion of criticality

0 ∈ E ξ∼P [∂ c w f ( w, ξ)] = R m ∂ c w f ( w, s) dP (s) ( 5 
)
where the integral is taken in the sense of Aumann (Definition 3.5).

2.

If P has a density with respect to Lebesgue measure, there exists a subset Γ ⊂ R whose complement is finite such that if α k ∈ Γ for all k ∈ N, then, for all initialization w 0 chosen in a residual full-measure set, and with probability 1, (w k ) k∈N verifies for all k ∈ N,

w k+1 = w k -α k ∇ w f (w k , ξ k ) and R m ∇ w f (w k , s)dP (s) = ∇J (w k ).
Also, the essential accumulation points w of (w k ) k∈N are Clarke critical, i.e.,

0 ∈ ∂ c J ( w). ( 6 
)
Remark 2.4 1. (Generalized criticality) The criticality notion ( 5) is inherent to the very nature of subgradient sampling methods and relates to the notion of an artificial critical point as described in [START_REF] Bolte | A mathematical model for automatic differentiation in machine learning[END_REF]. Gradient artifacts can be generated by sampling from discrete or continuous distributions as in the two following examples: let f : (w, s) → s|w| and

P = 1 2 δ -1 + 1 2 δ 1 or P is the uniform density on [-1, 1], then ∂ c J (w) = 0 for all w ∈ R, but E ξ∼P [∂ c w f (0, ξ)] = [-1, 1]
. Due to the chain rule characterization of conservative gradients, Definition 3.7. These senseless outputs are however extremely rare, this is why they do not impact first-order optimization much. This is shown in 2 through (6)

2. (Extension to conservative gradient oracles) Under the same assumptions, Theorem 2.3 (1) holds, mutatis mutandis, replacing the Clarke subgradient by a conservative gradient. Indeed, ∂ c w f can be replaced by a semialgebraic set-valued map D where for P -almost all s ∈ R m , D(•, s) is a conservative gradient for f (•, s). In this case, Theorem 2.3 (2) also holds true as is.

With an additional assumption on (α k ) k∈N and the distribution P , all accumulation points are Clarke critical and the risk function converges.

Assumption 2 P has a semialgebraic density with respect to Lebesgue.

Assumption 3 k∈N α 2 k < ∞.
Theorem 2.5 (Criticality of accumulation points and convergence) Under Assumption 1-2-3, Theorem 2.3 holds for all accumulation points. In addition, J (w k ) converges almost surely.

Remark 2.6 1. (On proofs) In order to prove item 2, we use a property of semialgebraic functions called stratification, see Definition 4.7. The intermediary results leading to item 2 are gathered in Section 4. The proof of Theorem 2.5 is based on results from [START_REF] Benaïm | Stochastic approximations and differential inclusions[END_REF][START_REF] Bianchi | A closed-measure approach to stochastic approximation[END_REF] and an abstract stochastic approximation version is found in Section 3.3.

(On Assumption 2)

The main reason for this assumption is that it provides enough rigidity to ensure a strong form of Sard's theorem for the risk function J . Semialgebraic densities are extremely flexible: they approximate all continuous densities on compact sets.

Although assumption 2 relates to the unknown distribution P , this is a reasonable proxy for a large class of distributions. Beyond semialgebraicity, P can be assumed to be globally subanalytic, see Section 4.1 for the definition of such functions, which includes analytic densities with semialgebraic compact support, like truncated Gaussian distributions.

Since definability and consequently Sard's property are preserved by finite sum, Theorem 2.3 and theorem 2.5 also hold for P being the joint distribution between a discrete and a continuous random variable. This allows to consider classification tasks in online deep learning (see theorem 2.8). We limit ourselves to an absolutely continuous distribution for the sake of simplicity.

On calculus: chain rule for expectations A pivotal result in our analysis is the following:

Lemma 2.7 (Chain rule for expectations) Under Assumption 1, J admits a chain rule with respect to ∂ c J , i.e., for any absolutely continuous curve γ :

[0, 1] → R p , d dt (J • γ)(t) = a, γ(t) for all a ∈ ∂ c J (γ(t)) for almost all t ∈ [0, 1].
J also admits a chain rule with respect to

E ξ∼P [∂ c w f (•, ξ)].
Let us recall that, functions admitting a chain rule with respect to their 

Comparison with related works

Recent works [START_REF] Davis | Stochastic subgradient method converges on tame functions[END_REF][START_REF] Majewski | Analysis of nonsmooth stochastic approximation: the differential inclusion approach[END_REF] assume the Clarke subgradient and integral operations to be interchangeable, which in practice requires regularity assumptions. Without such assumptions, as here, first-order sampling may produce absurd trajectories or lead to spurious critical points. This was first observed in [START_REF] Ermoliev | Stochastic generalized gradient method for nonconvex nonsmooth stochastic optimization[END_REF] and rediscovered in [START_REF] Bolte | Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning[END_REF][START_REF] Bolte | A mathematical model for automatic differentiation in machine learning[END_REF]. To avoid converging to these undesirable points [1, Remark 4.2] suggests perturbing iterates by random noise. Instead, our Theorem 2.5 ensures that "almost all" subgradient sampling sequences accumulate to Clarke critical points, justifying the correctness of the algorithm as implemented in practice. Avoidance of spurious critical points is also obtained in [START_REF] Bianchi | Convergence of constant step stochastic gradient descent for non-smooth non-convex functions[END_REF] through probabilistic and continuity arguments. The definable framework allows for a sharper description of the set of step sizes and initializations leading to spurious points. For instance, with a finite horizon K, the set of bad initializations is a finite union of manifolds of dimension strictly lower than p, while the set of bad step sizes is finite.

Due to the role of the ODE method in the analysis of stochastic optimization methods, considering risk functions having a chain rule is not new in the literature, either as an assumption [START_REF] Bianchi | Convergence of constant step stochastic gradient descent for non-smooth non-convex functions[END_REF] or using restrictive sufficient conditions [START_REF] Davis | Stochastic subgradient method converges on tame functions[END_REF][START_REF] Majewski | Analysis of nonsmooth stochastic approximation: the differential inclusion approach[END_REF]. With Lemma 2.7, we provide instead simple and explicit sufficient conditions (see also Theorem 3.10 for a general form). Similarly, our Assumption 2 is sufficient to obtain a strong form of Sard's condition which is usually stated in a weak abstract form as a hypothesis [START_REF] Ermoliev | Stochastic generalized gradient method for nonconvex nonsmooth stochastic optimization[END_REF][START_REF] Benaïm | Stochastic approximations and differential inclusions[END_REF][START_REF] Bianchi | Convergence of constant step stochastic gradient descent for non-smooth non-convex functions[END_REF].

Several works consider a constrained version of (1). For instance, [START_REF] Schechtman | Stochastic proximal subgradient descent oscillates in the vicinity of its accumulation set[END_REF] studies a proximal stochastic subgradient method and [START_REF] Ermoliev | Stochastic generalized gradient method for nonconvex nonsmooth stochastic optimization[END_REF] considers a projection on a compact set. We decide to focus on the unconstrained setting, but a precise study of the constrained setting could be a matter of future work.

First-order sampling, backpropagation, and deep learning

Deep learning model Let P be a probability distribution on R d × R I called population distribution. One of the goals of machine learning is to build a predicting function h : R d → R I such that h(X) Y when (X, Y ) is distributed according to P , written (X, Y ) ∼ P .

The input X can be, for instance, an image, and Y can either be discrete for a classification task or continuous for a regression task.

In deep learning, the predictor h is a neural network defined by a compositional structure involving L layers and a parameters vector w = (w (1) , . . . , w (L) ) seen as a vector of R p . For l = 0, . . . , L, the l-th layer is represented by a real vector x (l) ∈ R p l . We consider that layer 0 has the same dimension as R d , p 0 = d. Given an input x ∈ R d the predicting function encoded by the neural network with parameter w ∈ R p is denoted by h(w, •) and is defined by the relations:

   x (0) = x, x (l)
= g l (w (l) , x (l-1) ), for l = 1, . . . , L, h(w, x) = x (L) . [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF] For l = 1, . . . , L, the function g l can take several forms, see e.g. [START_REF] Lecun | Deep learning[END_REF]. With a slight abuse of notation, we will consider that w is a vector in R p , consisting of the concatenation of all vectors w 1 , . . . , w L .

Online deep learning Given a loss function : R I × R I → R, training is formulated as a risk minimization problem:

min w∈R p J (w) := E (X,Y )∼P [ (h(w, X), Y )] (8) 
The expectation is generally unknown and approximated through statistical sampling. Consider a sequence (x k , y k ) k∈N of i.i.d. samples generated from the distribution P and, let us tackle the problem [START_REF] Majewski | Analysis of nonsmooth stochastic approximation: the differential inclusion approach[END_REF] with the first-order sampling algorithm [START_REF] Ruszczyński | Convergence of a stochastic subgradient method with averaging for nonsmooth nonconvex constrained optimization[END_REF]. In this setting, (ξ k ) k∈N is (x k , y k ) k∈N while f is the function (w, x, y) → (h(w, x), y).

Backpropagation and conservative gradients

In deep learning first-order information is accessed using backpropagation [START_REF] Rumelhart | Learning representations by back-propagating errors[END_REF]. It is an efficient application of the chain rule of differentiable calculus which provides a numerical evaluation of the derivative of f . We will consider differentiation with respect to the decision variable w in ( 8) and denote the output of backpropagation by backprop w . The function f writes as a composition f = f r • . . . • f 1 where the functions f 1 , . . . , f r involve the functions and g 1 , . . . , g L from ( 7) and [START_REF] Majewski | Analysis of nonsmooth stochastic approximation: the differential inclusion approach[END_REF]. When applied to nondifferentiable functions f 1 , . . . , f r , backprop w could be considered as an oracle evaluating an element in the product of their Clarke Jacobians:

backprop w f (w, x, y) ∈ ∂ c f r (f r-1 • . . . • f 1 (w, x, y)) T × Jac c f r-1 (f r-2 • . . . • f 1 (w, x, y)) × . . . × Jac c w f 1 (w, x, y). ( 9 
)
With this definition in mind, we may define the backpropagation variant of (2).

Algorithm 1 First-order sampling with backpropagation 1: Inputs: w 0 ∈ R p , (x k , y k ) k∈N i.i.d. with distribution P , (α k ) k∈N positive step sizes. 2: for k = 0, 1, . . . do 3:

w k+1 = w k -α k backprop w k (h(w k , x k ), y k ) 4: end for
Backpropagation does not necessarily compute an element of the Clarke subgradient. When f 1 , . . . , f r are path-differentiable, backpropagation computes a selection of a conservative gradient of f . It is satisfied for instance if , g 1 , . . . , g L are locally Lipschitz and semialgebraic, or more generally, globally subanalytic. We hence assume the following which is a condition satisfied by the vast majority of applications: Assumption 4 (Locally Lipschitz continuity and semialgebraicity) The neural network training problem in (8) satisfies for l = 1, . . . , L, the functions g l : R p l-1 → R p l and : R I × R I → R are locally Lipschitz and semialgebraic functions.

In order to formulate our results, we further require an assumption on the distribution P .

This assumption is quite mild as it encompasses a large class of probability distributions in classification or regression.

Assumption 5 (Semialgebraic distribution with compact support) The joint distribution P satisfies one of the following:

-Regression: P has a semialgebraic density φ with compact support with respect to Lebesgue on R d × R I .

-Classification: P is supported on R d × (e i ) I i=1 where for i = 1 . . . I, e i is the i-th element of the canonical basis in R I . The distribution P factorizes as P (X, Y ) = P (Y )P (X|Y ) and we assume P Y is discrete over (e i ) I i=1 and P (X|Y = e i ) has a density φ i with respect to Lebesgue, that is semialgebraic and compactly supported.

In this setting, a consequence of Theorem 2.3 and Theorem 3.15 is the following: Theorem 2.8 (First-order sampling and training for online deep learning) Under Assumptions 4 and 5, let (w k ) k∈N be generated by Algorithm 1. We suppose that the sequence (α k ) k∈N is strictly positive and

verifies k∈N α k = ∞, α k = o(1/ log(k)). Assume furthermore that sup{ w k : k ∈ N} < ∞ almost surely.
Then there exist a set Γ ⊂ R whose complement is finite, and W ⊂ R p of full measure and residual such that if for all k ∈ N, α k ∈ Γ and w 0 ∈ W , J (w k ) converges almost surely as k → ∞ and all accumulation point w of (w k ) k∈N is Clarke critical, i.e., verifies 0 ∈ ∂ c J ( w). This theorem parallels [START_REF] Bolte | Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning[END_REF]Theorem 9] for a general population distribution: assumptions are simple and widespread, it is fully compatible with backpropagation, and shows that spurious outputs hardly matter for the training phase. Note however that the validity of absolutely continuous randomness is questionable in practice. In particular, the density of W , and the finiteness of Γ c can be affected due to quantization errors. For instance, [START_REF] Bertoin | Numerical influence of relu'(0) on backpropagation[END_REF] empirically shows that gradient artifacts created by conservative calculus can impact the method.

Similar models have been considered in the literature, but with somehow stronger assumptions, e.g., [START_REF] Ruszczyński | A stochastic subgradient method for nonsmooth nonconvex multilevel composition optimization[END_REF] (which rules out nonsmooth activation functions). Another important contribution is given in [START_REF] Norkin | Stochastic generalized gradient methods for training nonconvex nonsmooth neural networks[END_REF], as discussed in the introduction.

3 Nonsmooth analysis for stochastic approximation algorithms

Set-valued analysis and conservative gradients

Let (X, F) be a measurable space. Let us recall some results from set-valued analysis.

Definition 3.1 (Measurable set-valued maps) Denote K p the set of nonempty compact subsets of R p . It is a measurable space considering the Borel σ-algebra B H (K p ) induced by the topology of the Hausdorff distance. A nonempty compact valued map

F : X ⇒ R p is called measurable, if it is measurable from (X, F) to (K p , B H (K p )).
In this case, for all closed subsets A ⊂ R p , the upper inverse

F u (A) := {x ∈ X | F (x) ⊂ A} is measurable in (X, F).
Proposition 3.2 (Measurable selections, Theorem 18.13 [START_REF] Aliprantis | Infinite Dimensional Analysis[END_REF]) Let F : X ⇒ R p be a measurable nonempty and compact valued map. Then there exists a measurable selection of F , that is a measurable function v : X → R p satisfying for all x ∈ X, v(x) ∈ F (x).

Corollary 3.3 (Castaing's Theorem) Let F : X ⇒ R p nonempty compact valued.
Then F is measurable if and only if there exists a sequence of measurable selections

(F n ) n∈N such that ∀x ∈ X, F (x) = {F 1 (x), F 2 (x), ...}.
Remark 3.4 (Measurability of set-valued composition) Corollary 3.3 can be used to justify measurability of composed set-valued functions. For instance, given g : R p → R continuous and F : X ⇒ R p compact valued and measurable, then g • F is measurable. Indeed, let (F k ) k∈N be a sequence of measurable selections given by Castaing's Theorem, such that ∀x ∈ X, F (s) = {F 1 (x), F 2 (x), ...}. Then by continuity of g, we have for all

x ∈ X, g(F (x)) = g({F 1 (x), F 2 (x), ...}) = {g(F 1 (x)), g(F 2 (x)), ...}. The functions g • F i
are all measurable and g • F is compact valued by continuity of g, whence by Castaing's Theorem, g • F is measurable.

Definition 3.5 (Aumann integral) Let (X, F, µ) be a measure space and F : X ⇒ R p a set-valued map. Then the integral of F with respect to the measure µ is

X F (x) dµ(x) = X v(x) dµ(x) v is integrable and for all x ∈ X, v(x) ∈ F (x) .
We also use the expectation notation E ξ∼P [F (ξ)] = X F (x) dP (x) whenever (X, F, P ) is a probability space and ξ is a random variable with distribution P .

Definition 3.6 Let F : R m ⇒ R p be a set-valued map.

1. (Graph closedness) F is graph closed if its graph defined by Graph F := {(x, y) ∈ R m × R p | y ∈ F (x)} , is a closed subset of R m × R p .

(Local boundedness)

F is locally bounded if for all x ∈ R m , there exist a neighborhood U of x and M > 0, such that for all z ∈ U and y ∈ F (z), y < M .

(Upper semicontinuity)

F is upper semicontinuous at x ∈ R m , if for each open subset V containing F (x)
, there exists a neighborhood U of x such that for all z ∈ U, F (z) ⊂ V.

Definition 3.7 (Conservative gradient) Let f : R p → R be locally Lipschitz continuous. A locally bounded and graph closed set-valued map D : R p ⇒ R p that is nonempty valued is called a conservative gradient for f , if for all absolutely continuous curve γ : [0, 1] → R p , f admits a chain rule with respect to D along γ, i.e.,

d dt (f • γ)(t) = v, γ(t) , for all v ∈ D(γ(t)) and almost all t ∈ [0, 1].
Lipschitz continuous functions f : R p → R admitting a conservative gradient are called path-differentiable. They are central to our analysis.

Conservative gradient of integral functions

In this part (S, A, µ) is a complete measure space. We consider a function f : R p × S -→ R such that for almost all s ∈ S, f (•, s) is path-differentiable with conservative gradient D(•, s). Our goal is to show a result of "conservative differentiation" under the integral sign in order to get a conservative calculus for the parametrized integral S f (•, s) dµ(s).

First, we provide a result of derivation under the integral sign when the integrand is absolutely continuous in its first variable. We shall use the following lemma.

Lemma 3.8 (Measurability of partial derivatives) Let U ⊂ R open and f : U × S - → R a (B(R) × A)-measurable function.
We suppose that there exists M ⊂ S of full measure such that for all s ∈ M , f (•, s) is absolutely continuous. Then ∂f ∂x is jointly measurable and is defined almost everywhere in U ×S. Also, for almost all x ∈ U , ∂f ∂x (x, s) is defined for almost all s ∈ S.

Proof. Define the following quantities for all x ∈ U and s ∈ M :

f u (x, s) = lim sup h→0 f (x + h, s) -f (x, s) h and f l (x, s) = lim inf h→0 f (x + h, s) -f (x, s) h .
By continuity of f both limit operators may operate only in Q without changing the value of f u and f l . Whence f l and f u are measurable and so is ∂f ∂x . Furthermore, the domain E

of ∂f ∂x is {(x, s) ∈ U × S | f l (x, s) = f u (x, s), -∞ < f u (x, s) < +∞} which is measurable. Applying Fubini's Theorem yields U ×S 1 E c (x, s) d(λ × µ) (x, s) = S U 1 E c (x, s) dx dµ(s) = U S 1 E c (x, s) dµ(s) dx.
Since f (•, s) is absolutely continuous for s ∈ M , it is differentiable almost everywhere, hence ∀s ∈ M, U 1 E c (x, s) dx = 0 and the second integral is zero. The third integral vanishes, so for almost all x ∈ U , S 1 E c (x, s) dµ(s) = 0, i.e., ∂f ∂x (x, s) is defined for almost all s, which concludes the proof. Proposition 3.9 (Differentiation of absolutely continuous integrals)

Let U ⊂ R open and f : U × S - → R such that: 1. For all x ∈ U , f (x, •) is integrable.
2. For almost all s ∈ S, f (•, s) is absolutely continuous.

3. ∂f ∂x is locally integrable, jointly in x and s:

for any compact interval [a, b] ⊂ U , S b a ∂f ∂x (x, s) dx dµ(s) < ∞.
Then, the function g : x → S f (x, s) dµ(s), is absolutely continuous, differentiable at almost all x ∈ U with g (x) = S ∂f ∂x (x, s) dµ(s).

Proof. Let f : U × S -→ R satisfying all the assumptions. We consider the function g : x ∈ U → S f (x, s) dµ(s) and a < b in U . From Lemma 3.8, ∂f ∂x (x, s) and exists a.e. in (x, s) ∈ U × S and admits a measurable extension. The a.e. defined function ∂f ∂x is identified with some measurable extension. Since for almost all s ∈ S f (•, s) is absolutely continuous, the fundamental theorem of calculus for Lebesgue integration (see Theorem 14 in Section 4, Chapter 5 of [START_REF] Royden | Real Analysis[END_REF]) implies that

g(b) -g(a) = S [f (b, s) -f (a, s)] dµ(s) = S b a ∂f ∂t (t, s) dt dµ(s).
Under Assumption 3, by measure completeness, Fubini-Lebesgue's Theorem applies:

g(b)- g(a) = b a S ∂f ∂t (t, s) dµ(s) dt. The function x → S ∂f ∂x (x, s) dµ(s) is integrable on [a, b] so g is absolutely continuous. By the fundamental theorem of calculus, g (x) is defined for almost all x ∈ U with g (x) = S ∂f ∂x (x, s) dµ(s).
The following result is one of the cornerstones of this paper. It can be seen as interchanging conservative gradient and integral operations. 1. For all x ∈ R p , f (x, •) is integrable.

2. For almost all s ∈ S, f (•, s) is locally Lipschitz continuous and D(•, s) is conservative for f (•, s).

D

: R p × S ⇒ R p is jointly measurable in B(R p ) × A.
4. For all compact subset C ⊂ R p , there exists an integrable function κ : S -→ R + such that for all (x, s) ∈ C × S, D(x, s) ≤ κ(s), where for

(x, s) ∈ R p × S, D(x, s) := sup y∈D(x,s) y . Then S f (•, s) dµ(s) is path-differentiable and S D(•, s) dµ(s) is a conservative gradient for S f (•, s) dµ(s).
Proof. With the chain rule definition of conservativity, Definition 3.7, we will show that the problem reduces to the differentiation of an absolutely continuous integral and then, we shall use Proposition 3.9 to conclude. Let f : R p × S → R and D : R p ⇒ R p verifying the assumptions 1 to 4 displayed above.

Following the conservative gradient definition, Definition 3.7, in particular we verify → R p be any absolutely continuous curve. By hypothesis, there exists a set of full measure M ⊂ S such that for all s ∈ M , f (•, s) has conservative gradient D(•, s). We have ∀s ∈ M , f (γ(•), s) is absolutely continuous because f is locally Lipschitz in x ∈ C and γ is absolutely continuous. Thus, ∀s ∈ M f (γ(•), s) is differentiable a.e. and the chain rule property [START_REF] Bolte | A mathematical model for automatic differentiation in machine learning[END_REF] holds for almost all t ∈ [0, 1], i.e.,

∀v ∈ D(γ(t), s), d dt f (γ(t), s) = v, γ(t) . (10) 
Let E ⊂ [0, 1] × S be the domain of existence of d dt f (γ(t), s). E is measurable and of full measure according to Lemma 3.8. We want to verify the measurability of the domain of validity of eq. ( 10), which is

E ∩ {(t, s) ∈ [0, 1] × S | ϕ(t, s) = 0}, where ϕ(t, s) = d dt f (γ(t), s) -D(γ(t), s), γ(t)
for all (t, s) ∈ E and ϕ(t, s) = 1 elsewhere. By Castaing's Theorem (see Remark 3.4) ϕ is measurable. The set {(t, s) ∈ [0, 1] × S | ϕ(t, s) = 0} is exactly the upper inverse of {0} by ϕ, ϕ u ({0}) hence it is jointly measurable in (R × S, B(R) ⊗ A). Similarly as in the proof of Lemma 3.8, by Fubini's Theorem, ϕ u ({0}) is of full measure and there exists I 1 ⊂ [0, 1] of full measure such that for all t ∈ I eq. ( 10) holds for almost all s ∈ S.

Let t ∈ I 1 . From eq. ( 10), we can say that, for any measurable selection v : s -→ R p of D(γ(t), •), we have for almost all s ∈ S

d dt f (γ(t), s) = v(s), γ(t) . (11) 
Integrating [START_REF] Rumelhart | Learning representations by back-propagating errors[END_REF] over s ∈ S we have for any a in the Aumann integral S D(γ(t), s) ds and measurable selection v such that a = S v(s) ds,

S d dt f (γ(t), s) dµ(s) = S v(s), γ(t) dµ(s) = a, γ(t) . (12) 
On the other hand, γ([0, 1]) is compact by continuity of γ. Let κ given by assumption 4 for the compact set C = γ([0, 1]). The Cauchy-Schwarz inequality gives for all (t, s)

∈ [0, 1] × S, | v(s), γ(t) | ≤ D(γ(t), s) γ(t) ≤ κ(s) γ(t) .
Since γ is absolutely continuous, γ is integrable on [0, 1] hence the function (t, s) → κ(s) γ(t) is locally integrable jointly in (t, s), and so is (t, s) → d dt f (γ(t), s) = v(s), γ(t) . Proposition 3.9 now applies to (t, s) → f (γ(t), s), hence there exists I 2 of full measure such that

∀t ∈ I 2 , S d dt f (γ(t), s) dµ(s) = d dt S f (γ(t), s) dµ(s). ( 13 
)
Combining eq. ( 12) which holds on I 1 and eq. ( 13) which holds on I 2 we have

∀t ∈ I 1 ∩ I 2 , ∀a ∈ S D(γ(t), s) dµ(s), d dt S f (γ(t), s) dµ(s) = a, γ (t) 
and I 1 ∩ I 2 is of full measure. Finally we have shown that S D(•, s) dµ(s) is nonempty, compact, valued graph closed, and verifies the chain rule property, hence it is a conservative gradient for S f (•, s) dµ(s).

Application to stochastic approximation

Let P be a probability measure on (S, A), denote supp P its support, and consider a jointly measurable set-valued map D : R p × S ⇒ R p such that for almost all s ∈ S, f (•, s) is locally Lipschitz and D(•, s) is a convex-valued conservative gradient for f (•, s). We consider the sequence (w k ) k∈N defined by [START_REF] Ruszczyński | Convergence of a stochastic subgradient method with averaging for nonsmooth nonconvex constrained optimization[END_REF] where v is now a measurable selection of D, i.e., for all (w, s) ∈ R p × S, v(w, s) ∈ D(w, s). For all k ∈ N * , the truncated random sequence (w 0 , . . . , w k ) is defined on the product probability space (S k , A ⊗N , P ⊗k ), and the whole trajectory (w k ) k∈N is defined on the countable product (S N , A ⊗k , P ⊗N ). When there is no ambiguity, the term "almost sure" implicitly refers to these spaces.

In order to study the sequence (w k ) k∈N , we use the nonsmooth ODE methods developed in [START_REF] Benaïm | Stochastic approximations and differential inclusions[END_REF][START_REF] Bianchi | A closed-measure approach to stochastic approximation[END_REF]. To this end, we consider the set-valued map

D J : w → E ξ∼P [D(w, ξ)]
and the differential inclusion ẇ ∈ -D J (w).

A solution to the differential inclusion [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF] with initial point w 0 ∈ R p is an absolutely continuous curve w : R + -→ R p such that w(0) = w 0 and for almost all t ∈ R + , ẇ(t) ∈ -D J (w(t)).

Remark 3.11 (Solution to the differential inclusion on R + ) Since our analysis is based on a nonsmooth ODE method, the differential inclusion ( 14) must admit solutions. Available theory [START_REF] Arscott | Differential Equations with Discontinuous Righthand Sides: Control Systems[END_REF][START_REF] Aubin | Differential Inclusions: Set-Valued Maps and Viability Theory[END_REF] requires a convex valued conservative gradient D, which is satisfied for D = ∂ c w f or replacing D by its convex hull. The flow of the differential inclusion ( 14) is then nonempty and well defined on R + as J in (1) is assumed to be bounded below. Indeed, consider a strict lower bound J * ∈ R. Fix T > 0 and w 0 ∈ R p , let D = [-T, T ] × B(w 0 , r) with r := 2T (J (w 0 ) -J * ) > 0, which is closed, bounded domain and contains w 0 and t = 0. Since D J is a conservative gradient, it is nonempty valued, and graph closed, locally bounded hence compact valued and upper semicontinuous. It is furthermore convex valued by convexity of D since setvalued integration preserves convexity. We are in the setting of [47, Chapter 2, Section 7], and by Theorem 1 in [47, Chapter 2, Section 7], there exists d > 0 with d < T such that ( 14) admits at least a solution on [0, d]. Let w with w(0) = w 0 be an arbitrary such solution. By Theorem 2 [47, Chapter 2, Section 7], w can be continued to the boundary of D, i.e., to t = T or w 0 -w(t) = r. Since D J is a conservative gradient for J , one has for all t ∈ [0, d],

1 t t 0 ẇ(s) ds 2 ≤ 1 t t 0 ẇ(s) 2 ds = - t 0 D J (w(s)), ẇ(s) ds = J (w 0 ) -J (w(t))
so that w 0 -w(t) ≤ t 0 ẇ(s) ds ≤ t (J (w 0 ) -J * ). However t (J (w 0 ) -J * ) < r, hence the solution w can be continued to t = T . Since w 0 , T and w were arbitrary, the flow of ( 14) is nonempty and well defined on R + .

We define the set-valued flow Φ t , given at all w 0 ∈ R p and t ∈ R + as Φ t (w 0 ) := {w(t) | w : R + → R p is a solution of ( 14) with w(0) = w 0 } .

We also recall the definition of a Lyapunov function for a set-valued flow from [START_REF] Benaïm | Stochastic approximations and differential inclusions[END_REF]: Definition 3.12 (Lyapunov function for a set) A continuous function F is a Lyapunov function for a set S ⊂ R p and for the dynamical system [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF] if

∀x ∈ R p \ S , ∀t > 0, ∀y ∈ Φ t (x), F(y) < F(x), ∀x ∈ S, ∀t ≥ 0, ∀y ∈ Φ t (x), F(y) ≤ F(x).
We define furthermore the critical set associated to D J , that is, crit D J := {x ∈ R p | 0 ∈ D J (x)}, and show the following property: Lemma 3.13 (Conservative gradient and Lyapunov function) Let D J a conservative gradient for J . Then J is a Lyapunov function for crit D J and the differential inclusion ẇ ∈ -D J (w).

Proof. Let x ∈ R p , t ≥ 0 and y ∈ Φ t (x). By definition of Φ t , there exists w : R + → R p a solution to the differential inclusion ẇ ∈ -D J (w) with initial value w(0) = x ∈ R p such that y = w(t). By definition of a conservative gradient and since w is absolutely continuous, we have:

J (w(t)) -J (w(0)) = t 0 D J (w(u)), ẇ(u) du. ( 15 
)
Since w is a solution of (1), ẇ(u) ∈ -D J (w(u)) for almost all u ∈ [0, t] and we have J (w(t)) -J (w(0)) = -t 0 ẇ(u) 2 du, hence J (w(t)) = J (y) ≤ J (x). Now we suppose that x ∈ R p \ crit D J and t > 0. By upper semicontinuity of

D J , ∃ > 0, ∃δ > 0, ∀y ∈ R p such that y -x ≤ δ, we have ∀v ∈ D J (y), v ≥ . By continuity of w, ∃t 0 > 0, ∀u ∈ [0, t 0 ] , w(u) -x ≤ δ hence ẇ(u) ≥ for almost all u ∈ [0, t 0 ]
. Thus, by integration, t 0 ẇ(u) 2 du is strictly positive and J (y) < J (x).

Assumption 6 Let P be a probability measure on (S, A), consider D : R p × S ⇒ R p such that for almost all s ∈ S, f (•, s) is locally Lipschitz continuous and D(•, s) is a convex-valued conservative gradient for f (•, s) and:

1. For all w ∈ R p , f (w, •) is integrable with respect to P .

2. D : R p × S ⇒ R p is jointly measurable in R p × S.

3. There exist a function κ : S -→ R + square integrable with respect to P , and q 0 ∈ N such that for P -almost all s ∈ S, for all w ∈ R p , D(w, s) ≤ κ(s)(1 + w q 0 ), where D(w, s) := sup y∈D(w,s) y .

Assumption 6 parallels assumptions of Theorem 3.10. In particular, Assumption 6 (3) implies (4) in Theorem 3.10. In Assumption 6 (3), the term (1 + w q 0 ) can be replaced by a locally bounded function ψ(w). For simplicity we assume a polynomial boundedness which also coincides with semialgebraicity of Assumption 1.

Consider furthermore the following assumption for the algorithmic recursion (2):

Assumption 7 In addition to Assumption 6, the sequence (α k ) k∈N is strictly positive, 

k∈N α k = ∞ and α k → 0 as k → ∞. v jointly measurable in B(R p ) × A is such that for all w ∈ R p ,
k ∈ N, a k = E[v(w k , ξ k )|w k ] and u k = v(w k , ξ k ) -a k , then 1. sup k∈N E[ u k 2 |w k ] is finite almost surely. 2. If k∈N α 2 k < ∞, then k i=0 α i u i converges almost surely as k → ∞. 3. If φ : w → sup s∈supp P v(w, s) is locally bounded and α k = o(1/ log(k)), then ∀T > 0, lim k→∞ sup m≥k m i=k α i u i , s.t. m i=k α i ≤ T = 0 a.s. (16) 
Proof. With these notations, (2) writes w k+1 = w k -α k (a k + u k ) for all k ∈ N, where we have by joint measurability of v, a k ∈ E ξ∼P [D(w k , ξ)] = D J (w k ).

As for the first statement, we have for all k ∈ N,

E u k 2 | w k = E ξ∼P v(w k , ξ) -a k 2 ≤ E ξ∼P ( v(w k , ξ) + a k ) 2 ≤ 4E ξ∼P D(w k , ξ) 2 ≤ 4E ξ∼P κ(ξ) 2 (1 + w k q 0 ) 2 , ( 17 
) so that sup k∈N E[ u k 2 |w k ] ≤ 4E ξ∼P [κ(ξ) 2 ] (1 + R q 0 ) 2
where κ given by Assumption 6 is square integrable and R := sup k∈N w k is almost surely finite by Assumption 7. This proves the first statement.

Toward a proof of the second statement, let k := α k u k and Z k := k i=0 i for k ∈ N. We want to prove Z k converges almost surely as k → ∞. Fix an arbitrary M > 0, and define

M k := α k u k 1 { w k ≤M } and Z M k := k i=0 M i . ( M k ) k∈N is a martingale difference sequence. Indeed, for k ∈ N, by independence of ξ k we have E [u k | w k ] = E ξ∼P [v(w k , ξ)] -a k = 0, hence E M k |w k = 0 and (Z M k )
k∈N is a martingale relatively to the filtration generated by (ξ k ) k∈N . We will apply a martingale convergence theorem [48, Theorem 4.5.2] on (Z M k ) k∈N . We have to verify

E[ Z M k 2 ] < ∞ and ∞ k=0 E M k 2 w k < ∞.
By the inequality ( 17), one has

E[ M k 2 |w k ] = α 2 k 1 { w k ≤M } E[ u k 2 |w k ] ≤ 4α 2 k 1 { w k ≤M } E ξ∼P κ(ξ) 2 (1 + w k q 0 ) 2 ≤ 4α 2 k E ξ∼P κ(ξ) 2 (1 + M q 0 ) 2 ,

and taking the expectation gives E[

M k 2 ] < ∞, hence E[ Z M k 2 ] < ∞ for all k ∈ N. We have furthermore ∞ k=0 E M k 2 w k ≤ 4E ξ∼P κ(ξ) 2 (1 + M q 0 ) 2 ∞ k=0 α 2 k < ∞
since we assumed ∞ k=0 α 2 k < ∞ for the second statement. Finally, [48, Theorem 4.5.2] applies and k i=0 M i converges almost surely as k → ∞. In particular,

P ⊗N ({ ∞ i=0 M i converges} ∩ {sup k∈N w k ≤ M }) = P ⊗N (sup k∈N w k ≤ M ). ( 18 
)
We can finally prove the almost sure convergence of Z k .

P ⊗N ({ ∞ i=0 i converges}) = P ⊗N ({ ∞ i=0 i converges} ∩ {sup k∈N w k < ∞}) = lim M →∞ P ⊗N ({ ∞ i=0 i converges} ∩ {sup k∈N w k ≤ M }) = lim M →∞ P ⊗N ({ ∞ i=0 M i converges} ∩ {sup k∈N w k ≤ M }) = lim M →∞ P ⊗N (sup k∈N w k ≤ M ) = P ⊗N (sup k∈N w k < ∞) = 1.
The first and the last equalities follow from sup k∈N w k < ∞ in Assumption 7. The fourth equality follows from [START_REF] Bolte | Nonsmooth implicit differentiation for machine-learning and optimization[END_REF]. The third equality follows from the fact that for i ∈ N, M i = i whenever sup k∈N w k ≤ M . The second and fifth equalities are obtained by monotone convergence since the event sup k∈N w k ≤ M is increasing with respect to M , and ∞ M =0 {sup k∈N w k ≤ M } = {sup k∈N w k < ∞}. For the third statement, let for all k ∈ N, c k = 2 max {1, max i=0,...,k φ(w k )}, almost surely increasing and convergent, such that u k /c k ≤ 1 almost surely. Note that u k /c k are martingale increments: for k ∈ N, u k /c k is integrable and 1/c k is measurable with respect to w 0 , . . . , 

w k hence E[u k /c k |w 0 , . . . , w k ] = E[u k |w 0 , . . . , w k ]/c k = 0, see [48, Theorem 4.1.14]. Fix c > 0, we have 2 log(k) = o(c/α k ) so that as k → ∞, exp (-c/α k ) k 2 = exp(-c/α k + 2 log(k)) → 0 and exp(-c/α k ) = o(1/k 2 )
≤ m ≤ m k m i=k α i u i c i - 1 c k m i=k α i u i = m i=k 1 c i - 1 c k α i u i ≤ 1 c k - 1 c m k m i=k α i c i ≤ 1 c k - 1 c m k c m k m k i=k α i ≤ 1 c k - 1 c m k c m k T,
and the result follows because c k converges almost surely.

As in [START_REF] Benaïm | Stochastic approximations and differential inclusions[END_REF], see also [START_REF] Shikhman | Topological Aspects of Nonsmooth Optimization[END_REF]Section 6], let us consider a Morse-Sard assumption in order to state the central contribution of this work in terms of stochastic approximation.

Assumption 8 (Morse-Sard) J (crit D J ) has empty interior.

Theorem 3.15 (Convergence of the subgradient sampling method) Let Assumption 7 holds, then almost surely all essential accumulation points w of (w k ) k∈N satisfy 0 ∈ D J ( w). If in addition Assumption 8 and Lemma 3.14 (2) or (3) hold, then, almost surely, J (w k ) converges as k → ∞ and all accumulation points w of (w k ) k∈N satisfy 0 ∈ D J ( w). Furthermore, the set of accumulation points is connected.

Proof. The first statement is a consequence of [29, Corollary 4.9] with D J . Indeed, Assumptions 4.1 and 4.3 of [29, Corollary 4.9] obviously hold, and Assumption 4.2 is the first point of Lemma 3.14. Under Assumption 6, Theorem 3.10 applies and D J is a conservative gradient for J . Lemma 3.13 applies and J is Lyapunov for crit D J and the result follows. Note that it would suffice to merely ensure that α k → 0 to obtain this result.

Let us now prove the second statement. In case 2 or 3 of Lemma 3.14, identity [START_REF] Norkin | Generalized-differentiable functions[END_REF] holds which is (i) in [START_REF] Benaïm | Stochastic approximations and differential inclusions[END_REF]Proposition 1.3], and (ii) also holds by Assumption 7. Let w : R + → R p be the affine interpolation of (w k ) k∈N (see [28, Definition IV] for its formal construction, this is a central object, also used for example in [START_REF] Benaïm | Ergodic properties of weak asymptotic pseudotrajectories for semiflows[END_REF][START_REF] Faure | Ergodic properties of weak asymptotic pseudotrajectories for set-valued dynamical systems[END_REF][START_REF] Bolte | Long term dynamics of the subgradient method for lipschitz path differentiable functions[END_REF][START_REF] Bianchi | A closed-measure approach to stochastic approximation[END_REF]). [START_REF] Benaïm | Stochastic approximations and differential inclusions[END_REF]Proposition 1.3] ensures that w is a perturbed solution to ( 14) almost surely. By [START_REF] Benaïm | Stochastic approximations and differential inclusions[END_REF]Theorem 4.2] w satisfies [28, Theorem 4.1 (ii)] for [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF] which implies by [START_REF] Benaïm | Stochastic approximations and differential inclusions[END_REF]Theorem 4.3] that the limit set of w is internally chain transitive with probability 1. Furthermore, J is a Lyapunov function for crit D J and the differential inclusion [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF]. By Assumption 8, J (crit D J ) has empty interior. All the conditions are then satisfied to apply [28, Proposition 3.27], hence almost surely the limit set of w is contained in crit D J and J is constant on the limit set of w. We remark that the limit set of w is equal to the set of accumulation points of (w k ) k∈N , which gives the desired result.

If Lemma 3.14 ( 2) or (3) holds, then w k+1 -w k → 0 almost surely as k → ∞ hence, in this case, accumulation points of (w k ) k∈N is a connected subset of crit D J .

4 On the geometry of stochastic optimization problems 

If O = (O p ) p∈N is an o-minimal structure, a subset A of R n with n ≥ 1 is said to be definable in O if A ∈ O n .
A function f : R p → R q and a set-valued map F : R p ⇒ R q are called definable (in an o-minimal structure) if their graphs are definable, as sets of R p+q .

The definition allows in particular to prove definability through the use of first-order formula (see [START_REF] Coste | An introduction to o-minimal geometry[END_REF] for more details). We now present the main examples of o-minimal structures we use in this paper. The following definitions apply by extension to functions through their graph as above.

The class of semialgebraic sets is the smallest o-minimal structure.

Definition 4.3 (Semialgebraic sets)

A subset A ⊂ R n is semialgebraic if there exist polynomial functions P ij and Q ij with i = 1, . . . , l and j = 1, . . . , k such that A =

l i=1 k j=1 {x ∈ R n | P ij (x) < 0, Q ij (x) = 0}.
Globally subanalytic sets, R an An important o-minimal structure containing analytic functions is that of globally subanalytic sets, denoted R an . In order to define it, we first recall the definitions of semianalytic and subanalytic sets Definition 4.4 (Semianalytic sets [START_REF] Van Den Dries | Geometric categories and o-minimal structures[END_REF])

(i) (Semianalyticity) A subset A of R n is semianalytic if for any point x ∈ R d , there exists a neighborhood U of x such that U ∩ A has the form l i=1 k j=1 {x ∈ R n | g ij (x) < 0, h ij (x) = 0
, where the g ij and h ij are real analytic. (ii) (Subanalyticity) A subset A of R n is subanalytic if there exists m ∈ N such that A is the projection of a semianalytic set M ⊂ R n+m on R n .

Definition 4.5 (Globally subanalytic sets

) A ⊂ R n is globally subanalytic if τ n (A) is subanalytic, where τ n : x → x 1 √ 1+x 2 1 , . . . , xn √ 1+x 2 n .
O-minimal structure R an,exp The exponential function, yet widely used in machine learning, is not globally subanalytic. It is however definable in an o-minimal structure called R an,exp which also contains R an , see [START_REF] Dries | On the real exponential field with restricted analytic functions[END_REF].

We now recall important properties of definable sets and functions.

Proposition 4.6 (Definable choice [START_REF] Coste | An introduction to o-minimal geometry[END_REF]) Let A ⊂ R p × R q a definable set. Denote P p the projection on the p first coordinates. Then there exists a definable function h : P p A → R q such that for all x ∈ P p A, (x, h(x)) ∈ A.

Definition 4.7 (C r -stratification [START_REF] Van Den Dries | Geometric categories and o-minimal structures[END_REF]) Given A ⊂ R p definable set, (M i ) i=1,...,n is a C r -stratification if (M i ) i=1,...,n is a partition of A, and for all i, j in {1, . . . , r}, M i ∩M j = ∅ implies that M j is included in the boundary of M i .

Definable sets admits a C r -stratification for all r ∈ N. Take for instance the graph of the absolute value | • |, which is a semialgebraic set. It admits as a stratification

{M 1 , M 2 , M 3 } where M 1 = {(x, -x) | x ∈] -∞, 0[}, M 2 = {(x, x) | x ∈]0, +∞[}, and M 3 = {(0, 0)}.
This stratification property has several useful consequences for our work. For a definable function F : R p → R, one may consider a stratification (M i ) i=1,...n of R p in which for all i = 1, . . . , n , the restriction of F to M i is C r . Taking the union of the manifolds M i of dimension p gives a dense open subset in R p on which F is C r . We use this property with r = 2, for instance in the proof of Claim 4.10. The stratification property also implies that definable dense sets have full measure. This is a property we repeatedly use in section 4.3.

Definability and set-valued integration

The following result is a set-valued version of [START_REF] Cluckers | Stability under integration of sums of products of real globally subanalytic functions and their logarithms[END_REF]Theorem 1.3]. Proof. Let D be as in the theorem. We will apply [START_REF] Cluckers | Stability under integration of sums of products of real globally subanalytic functions and their logarithms[END_REF]Theorem 1.3] to prove the definability of D J in R an,exp . D is definable in R an hence the set-valued map (w, q, s) → D(w, s), q is definable in R an as well. Let G be its graph. The function H : (w, q, s) → max v∈D(w,s) v, q is clearly definable in R an as its graph writes Graph H = {(w, q, s, y) ∈ G | ∀(w , q , s , y ) ∈ G, (w , q , s ) = (w, q, s) =⇒ y ≥ y } .

By definition of the Aumann integral, we have for all w ∈ R p

D J (w) = R m g(s)φ(s) ds g is a measurable selection of D(w, •) ,
For C ⊂ R p compact convex, define the support function h C : q → max v∈C v, q . Then by linearity of the integral, for (w, q) ∈ R p × R p , it holds that

h D J (w) (q) = max v∈D J (w) v, q = max R m g(s), q φ(s) ds g is a measurable selection of D(w, •) .
By [START_REF] Aliprantis | Infinite Dimensional Analysis[END_REF]Theorem 18.19], there exists a measurable selection g : R m → R p of D(w, •) such that ∀s ∈ R m , g(s), q = max v∈D(w,s) v, q = H(w, q, s), and thus, g achieves the maximum h D J (w) (q), i.e., h D J (w) (q) = R m H(w, q, s)φ(s) ds. Furthermore, by duality, for all convex compact set C ⊂ R p it holds that

C = {z ∈ R p | sup v∈R p v, z -h C (v) = 0}. Applying this property with C = D J (w) for each w ∈ R p gives Graph D J = {(w, z) ∈ R p × R p | z ∈ D J (w)} = (w, z) ∈ R p × R p sup q∈R p q, z -h D J (w) (q) = 0 = (w, z) ∈ R p × R p sup q∈R p q, z - R m H(w, q, s)φ(s) ds = 0 . (19) 
By [32, Theorem 1.3], (w, q) ∈ R p × R p → R m H(w, q, s)φ(s) ds is definable in R an,exp , hence by equality (19) D J is also definable in R an,exp .

Consequences in stochastic optimization

Preliminary results Before providing our stochastic results, let us establish some technical lemmas. For a definable set L ⊂ R p × R m , we define for all (w, s

) ∈ R p × R m , L w := {s ∈ R m | (w, s) ∈ L} and L s := {w ∈ R p | (w, s) ∈ L}.
Lemma 4.9 Let (r, q) ∈ N * × N * , and L ⊂ R r × R q be a definable set. Then L is dense if and only if there is a dense definable set Z ⊂ R r such that for all w ∈ Z, L w is dense in R q .

Proof. Let us start with the direct implication. Set Z = {w ∈ R r | ∀z ∈ R q , ∀ > 0, ∃s ∈ R q , (w, s) ∈ L, s -z < }. This set is definable and is precisely the set of w such that L w is dense in R q . Assume that Z c has a nonempty interior. This means that there is a nonempty open set U ⊂ R r , such that for all w ∈ U ∃z ∈ R q , ∃ > 0, ∀s ∈ R q , (w, s) ∈ L ⇒ s -z ≥ .

By definable choice, see Proposition 4.6, there are definable functions z : U → R q and : U → R * + , such that for all w ∈ U , we have

{(w, v) ∈ U × R q | v -z(w) < (w)} ⊂ L c
. By stratification, see Definition 4.7, reducing U if needed, z and can be chosen continuous hence L c has nonempty interior which contradicts the density of L.

As for the reverse implication, fix any ( w, s) ∈ R r × R q and > 0. Since Z is dense there is w ∈ Z such that w -w < / √ 2. Since L w is dense, there is s ∈ L w such that s -s < / √ 2. Overall, we have (w, s) ∈ L such that (w, s) -( w, s) < which shows that L is dense as ( w, s) ∈ R r × R q and > 0 were arbitrary. 

⊂ R p × R m , a subset Γ ⊂ R which complement is finite as well as a definable dense set ∆ ⊂ Γ × R m , such that g is C 2 on L, for every α ∈ Γ, the definable set {s ∈ R m | (α, s) ∈ ∆} is dense open in R m and for all (α, s) ∈ ∆, L s is dense and open. Furthermore, denoting Φ α,s = Id -α∇ w g(•, s) from L s dense open to R p , we have ∀Z ⊂ R p definable, dim Z ≤ p -1 ⇒ dim Φ -1 α,s (Z) ≤ p -1.
Proof. Denote by L a definable dense open set such that g is C 2 on L (such sets exist by stratification, see Definition 4.7). Let λ : L ⊂ R p ×R m → R p be a definable representation of the eigenvalues of ∇ 2 w g, where ∇ 2 w g denotes the partial Hessian of g with respect to the variable w. Refine L so that λ is jointly differentiable in (w, s). L is open and dense by definability of g. We further set S 0 ⊂ R m the definable dense set obtained from Lemma 4.9 such that for all s ∈ S 0 the set L s is open dense in R p .

Let F be the complement of the critical values of the function λ i , for i = 1, . . . , p on L. The set of critical values F c is finite by the definable Sard's theorem [START_REF] Bolte | Clarke subgradients of stratifiable functions[END_REF].

Set Γ := {α ∈ R | α = 0, α -1 ∈ F }. For i = 1, . . . , p, set E i := {(α, s) ∈ Γ × S 0 | ∃w ∈ L, αλ i (w, s) = 1, ∇ w λ i (w, s) = 0} .
This set is definable because it is defined by a first-order formula involving definable functions and L, F , S 0 which are definable sets. Let us fix an arbitrary α ∈ Γ, and show that the set E α,i := {s ∈ R m | (α, s) ∈ E i } has empty interior. By definable choice, Proposition 4.6, there exists w : E α,i → R p definable, such that ∀s ∈ E α,i , αλ i ( w(s), s) = 1 and ∇ w λ i ( w(s), s) = 0. Assume for the sake of contradiction that there exists a nonempty open subset U ⊂ E α,i . By definability of w and stratification, U can be chosen so that w is continuously differentiable on U . Then denoting λi : s → λ i ( w(s), s) we have for all s ∈ U , ∇ λi (s) = 0. The chain rule applied on λi yields ∀s ∈ U, ∇ λi (s) = Jac w(s) T ∇ w λ i ( w(s), s) + ∇ s λ i ( w(s), s) = ∇ s λ i ( w(s), s) = 0, hence we have for all s ∈ U , ∇λ i ( w(s), s) = 0. In other words, since λ i ( w(s), s) = α -1 for all s ∈ U , then α -1 is a critical value of λ i which contradicts α ∈ Γ. This shows that E α,i has empty interior for all α in Γ, therefore E i also has empty interior.

Set ∆ = ( p i=1 E i ) c
, ∆ is the complement of a finite union of definable sets with empty interiors so it is definable and dense. Lemma 4.9 implies that there are only finitely many values α such that {s ∈ R m | (α, s) ∈ ∆} is not dense in R m . Therefore, we may refine further Γ by removing finitely many points, and refine ∆ accordingly such that it satisfies the desired projection property: for every α ∈ Γ, the set

{s ∈ R m | (α, s) ∈ ∆} is dense in R m . Now, fix α ∈ Γ and s such that (α, s) ∈ ∆. Consider the set K α,s = w ∈ L s | Φ α,s (w) = I p -α∇ 2
w g(w, s) is not invertible where I p is the identity matrix of size p. Diagonalizing ∇ 2 w g(w, s), the determinant of Φ α,s (w) is p i=1 (1 -αλ i (w, s)). It is equal to zero if and only if there exists i ∈ {1, . . . , p} such that αλ i (w, s) = 1 hence K α,s = p i=1 {w ∈ L s | αλ i (w, s) = 1}. Since α ∈ Γ and (α, s) ∈ ∆, by construction of ∆, α -1 is a regular value for the functions w → λ i (w, s), defined for w ∈ L s , for all i = 1, . . . , p. So the set K α,s is a union of p -1 dimensional submanifolds in L s and K c α,s is open and dense set in L s . Then, let Z ⊂ R p definable and such that dim Z ≤ p -1. Assume for the sake of contradiction that there exists a nonempty open set V ⊂ Φ -1 α,s (Z). The intersection V ∩K c α,s is open and nonempty because K c α,s is dense and both sets are open. Since Φ α,s is a local diffeomorphism on K c α,s , the image Φ α,s (V ∩ K c α,s ) has a nonempty interior but is included in Z of dimension p -1, which is a contradiction. The claim is proved.

The following claim is a consequence of Lemma 4.9.

Claim 4.11 Let g : R p × R m → R be a definable function and v : R p × R m → R p × R m be a definable map such that ∇ w g = v on a definable dense open set C ⊂ R p × R m . Then there is a definable set Z ⊂ R p , dense, such that for all w ∈ Z, ∇ w g(w, s) = v(w, s) for all s in a definable dense open set in R m . Theorem 4.12 (Genericity of gradient sequences) Let g : R p × R m → R and v : R p × R m → R p definable functions. Assume there is a definable dense open set C ⊂ R p × R m such that for all (w, s) ∈ C, ∇ w g(w, s) = v(w, s). Let R ⊂ R p be the definable dense set such that for all w ∈ R, -v(w, s) = ∇ w g(w, s) for all s in a dense definable set.

-g(•, s) is C 2 in a neighborhood of w, for all s in a dense definable set.

Given an arbitrary sequence (s k ) k∈N in R m and an arbitrary w 0 ∈ R p , consider the recursion

w k+1 = w k -α k v(w k , s k ) for all k ∈ N. ( 20 
)
Then there is Γ ⊂ R which complement is finite such that if {α k } k∈N ⊂ Γ, then for each k ∈ N, there exists a dense definable subset Σ k ⊂ R p × (R m ) k such that if (w 0 , s 0 , . . . , s k-1 ) ∈ Σ k , then w i ∈ R, for all i = 0, . . . , k. In particular there is a full measure residual set, W ⊂ R p such that if w 0 ∈ W and (s 0 , . . . , s k-1 ) belongs to some definable dense set, then Recall that L ∩ C ⊂ R p × R m is definable dense. By Lemma 4.9 there exists a definable dense set Σ 0 ⊂ R p such that for all w ∈ Σ 0 , the set {s ∈ R m |(w, s) ∈ L ∩ C} is dense. It satisfies the desired property, that is Σ 0 ⊂ R. Indeed for any w ∈ Σ 0 , the set {s ∈ R m |(w, s) ∈ L ∩ C} is dense and for each such s, (w, s) ∈ L ∩ C, that is g is C 2 at (w, s) and v(w, s) = ∇ w g(w, s) so that w ∈ R.

w k ∈ R. Proof. Let L ⊂ R p × R m , Γ ⊂ R, ∆ ⊂ Γ × R m ,
We set for all k, 

∆ k = {s ∈ R m | (α k , s) ∈ ∆}.
∀Z ⊂ R p definable, dim Z ≤ p -1 =⇒ dim Φ -1 α,s (Z) ≤ p -1. ( 21 
)
Remark that w k+1 = Φ α k ,s k • . . . • Φ α 0 ,s 0 (w 0 ), as long as s i ∈ ∆ i for i = 0, . . . , k.

Let us proceed by induction, fix k ∈ N and assume that we have Σ k ⊂ R×∆ 0 ×. . .×∆ k-1 , definable dense, such that for all (w 0 , s 0 , . . . , s k-1 ) ∈ Σ k , w i ∈ R for all i = 0, . . . , k. Note that for k = 0, Σ 0 constructed above satisfies the desired hypothesis with the convention that the product set from 0 to -1 is empty.

Let us construct Σ k+1 . Remark that s i ∈ ∆ i for i = 0, . . . , k so that

w k+1 = Φ α k ,s k • . . . • Φ α 0 ,s 0 (w 0 ), as long as (w 0 , s 0 , . . . , s k ) ∈ Σ k × ∆ k .
Consider the set-valued map N k : s k ⇒ Φ -1 α k ,s k (R) and by backward recursion for i = k -1, . . . , 0, N i : (s i , . . . , s k ) ⇒ Φ -1 α i ,s i (N i+1 (s i+1 , . . . , s k )). Set Σ k+1 = {(w, s 0 , . . . , s k ) ∈ Σ k × ∆ k |w ∈ N 0 (s 0 , . . . , s k )}.

Let us verify that Σ k+1 satisfies the desired properties. We have Σ k+1 ⊂ Σ k × ∆ k so that for any (w 0 , s 0 , . . . , s k ) ∈ Σ k+1 , (w 0 , s 0 , . . . , s k-1 ) ∈ Σ k and w i ∈ R for i = 0, . . . , k by induction hypothesis. Furthermore, s i ∈ ∆ i for all i = 0, . . . , k so that w k+1 = Φ α k ,s k • . . . • Φ α 0 ,s 0 (w 0 ). Note that by construction, w 0 ∈ N 0 (s 0 , . . . , s k ) if and only if Φ α k ,s k • . . . • Φ α 0 ,s 0 (w 0 ) ∈ R which is the desired property. It remains to show that Σ k+1 is dense, and the induction will be complete. Note that Σ k+1 = Σ k × ∆ k ∩ {(w, s 0 , . . . , s k )|((s 0 , . . . , s k ), w) ∈ Graph(N 0 )}. Since Σ k × ∆ k is definable dense and Graph(N 0 ) is definable, it suffices to check that Graph(N 0 ) is dense. This is done by backward induction.

Let us first check that Graph(N k ) is dense. We have (s

k , w k ) ∈ Graph(N k ) if and only if (w k , s k ) ∈ L (Φ α k ,s k is not defined at w k ), or w k ∈ Φ -1 α k ,s k (R c ) so that Graph(N k ) c = L c ∪{(s k , w k )|(w k , s k ) ∈ L, w k ∈ Φ -1 α k ,s k (R c )}.
Recall that R c is definable and is the complement of a dense set, therefore it has at most dimension p -1 so that if s k ∈ ∆ k , Φ -1 α k ,s k (R c ) also has dimension at most p -1. On the other hand, the set {w k ∈ R p |(w k , s k ) ∈ L c } is the complement of L s k (with the notation of Claim 4.10) definable and dense for s k ∈ ∆ k . Therefore for all s k ∈ ∆ k , the set {w k ∈ R p |(s k , w k ) ∈ Graph(N k )} has dimension at most p -1 and the set {w k ∈ R p |(s k , w k ) ∈ Graph(N k )} is dense so that Graph(N k ) is dense by Lemma 4.9. This extends by backward induction. Assume that Graph(N i+1 ) is dense for some i ∈ {0, . . . , k -1}. We have (s i , . . . , s k , w i ) ∈ Graph(N i ) if and only if (w i , s i ) ∈ L (Φ α i ,s i is not defined at w i ) or w i ∈ Φ -1 α i ,s i (N i+1 (s i+1 , . . . , s k ) c ). As N i+1 has a dense graph, then by Lemma 4.9, for all (s i+1 , . . . , s k ) in a dense definable set R i , N i+1 (s i+1 , . . . , s k ) is dense and N i+1 (s i+1 , . . . , s k ) c has dimension at most p -1. Therefore, similarly as above, for all s i ∈ ∆ i and (s i+1 , . . . , s k ) ∈ R i , the set {w i |(s i , . . . , s k , w i ) ∈ Graph(N i )} is dense and Graph(N i ) is dense. By induction, Graph(N 0 ) is dense and this shows that Σ k+1 has the correct property. This proves the first statement. Now by Lemma 4.9, for each k ∈ N, there is W k ⊂ R p definable dense such that for each w 0 ∈ W k , for all (s 0 , . . . , s k-1 ) in a dense definable set, w i ∈ R for all i = 0, . . . , k. We set W = ∩ k∈N W k , W is a residual set by countable intersection of residual sets (with dense interior), and it has full measure as a countable intersection of full measure sets. Remark 4.13 With the notation of Theorem 4.12, if (s i ) i∈N are independent and identically distributed with a density with respect to Lebesgue measure, w 0 ∈ W and α k ∈ Γ for all k ∈ N, then almost surely, w k ∈ R for all k ∈ N.

Proofs of Section 2

Proof of Lemma 2.7. Let us show that Theorem 3.10 applies. 1: measurability of f follows from semialgebraicity in Assumption 1 (3) and integrability follows from Assumption 1 (1). 2: these also entail that for all s ∈ R m , f (•, s) is locally Lipschitz and path-differentiable [12, Proposition 2] with conservative gradient ∂ c w f (•, s). 3: by semialgebraicity of f , the set-valued map ∂ c w f is semialgebraic, hence jointly measurable. Toward 4, let K ⊂ R p compact and M > 0 such that K ⊂ B(0, M ). Let κ be given by Assumption 1 (1), we have ∂ c w f (x, s) ≤ κ(s)(1 + M q 0 ) for all x ∈ K, for almost all s ∈ R m which implies 4 because κ is integrable. By Theorem 3.10, E ξ∼P [∂ c w f (•, ξ)] is a conservative gradient for J and J is path-differentiable and in particular admits a chain rule with respect to ∂ c J .

Proof of Theorem 2.3.

We first show 1 which is an application of the first part of Theorem 3.15. We need to verify that Assumption 1 is sufficient for Assumption 7 to hold. We let

D J (•) = E ξ∼P [∂ c w f (•, ξ)]
which is convex valued because integration in Definition 3.5 preserves convexity. Furthermore, for all s ∈ R m , ∂ c w f (•, s) is a conservative gradient for f (•, s), because f is semialgebraic, hence path differentiable. We are therefore in the setting of Assumption 7. 1: measurability of f follows from semialgebraicity in Assumption 1 (3) and integrability follows from Assumption 1 (1). 2: by semialgebraicity of f , (w, s) → ∂ c w f (w, s) is also semialgebraic and therefore jointly measurable. Assumption 1 implies that for all s and all w, f (•, s) is κ(s)(1 + w q 0 ) Lipschitz for on B(0, w ), so that ∂ c w f (w, s) satisfies the same bound which is Assumption 6.3. The rest of Assumption 7 follows from Assumption 1 and Item 1 follows from Theorem 3.15.

We now turn to item 2. The arguments are the same, except that a smaller set-valued field drives the dynamics thanks to Theorem 4.12 and an interchanging of integral and derivative. As above, the function f is semialgebraic. Let

C := {(w, s) ∈ R p × R m | ∂ c w f (w, s) = {∇ w f (w, s)}} .
By Assumption 1, for almost all s ∈ R m , ∂ c w f (•, s) is a conservative gradient for f (•, s), so that {w ∈ R p |(w, s) ∈ C} is a full measure definable set [12, Theorem 1] hence dense definable. By Lemma 4.9, C is also dense. Since for all (w, s), v(w, s) ∈ ∂ c f (w, s), for all (w, s) ∈ C ⊂ R p × R m , ∇ w f (w, s) = v(w, s) and we can apply Theorem 4.12 and Remark 4.13. There is a full measure residual set W ⊂ R p , and Γ ⊂ R whose complement is finite such that if w 0 ∈ W and α k ∈ Γ for all k ∈ N, almost surely, for all k ∈ N, we have v(w k , s k ) = ∇ w f (w k , s k ) and w k ∈ R, where R ⊂ R p is a dense definable set such that for all w ∈ R:

-v(w, s) = ∇ w g(w, s) for all s in a dense definable set.

-f (•, s) is C 2 in a neighborhood of w, for all s in a dense definable set.

Fix w ∈ R and let κ be as in Assumption 1. For all a ∈ [-1, 1] and h ∈ R p , |f (w + ah, s) -f (w, s)| ≤ κ(s)(1 + ( w + h ) q 0 ) h for P -almost all s ∈ R m . The right-hand side is integrable, and we may apply the dominated convergence theorem,

lim a→0 J (w + ah) -J (w) a = lim a→0 1 a R m f (w + ah, s) -f (w, s) dP (s) = R m lim a→0 f (w + ah, s) -f (w, s) a dP (s) = R m ∇ w f (w, s), h dP (s) = R m ∇ w f (w, s) dP (s), h ,
where the limit under the integral is because for all s in a dense definable set (hence almost all s), f (•, s) is C 2 in a neighborhood of w. This shows, in particular, that J is differentiable at w.

We set DJ = ∂ c J , v a measurable selection in DJ such that v(w) = ∇J (w) whenever J is differentiable at w. This means that for all w, there is v w : R m → R p integrable such that v w (s)dP (s) = v(w) and for all s, v w (s) = ∇J (w) ∈ ∂ c w f (w, s). Set ṽ(w, s) = v w (s) for all (w, s) and let L be as in Claim 4.10 definable, open and dense. We have that for all (w, s) ∈ L, g(•, s) is C 2 in a neighborhood of w so that ṽ(w, s) = ∇ w f (w, s). Since ṽ agrees with ∇ w f (w, s) (definable, measurable) on the full measure set L (definable, dense), it is therefore jointly measurable [44, Proposition 3, Section 18.1] and satisfy for all w, ṽ(w, s)dP (s) ∈ DJ (w).

Now, since for all

k ∈ N, w k ∈ R almost surely, it holds that almost surely, J is dif- ferentiable at w k with ∇J (w k ) = E [∇ w f (w k , ξ k )|w k ] = E [v(w k , ξ k )|w k ] and v(w k , s k ) = ∇ w f (w k , s k ) = ṽ(w k , s k ). We actually have for all k ∈ N w k+1 = w k -α k ṽ(w k , s k ), R m ṽ(w k , s) dP (s) = ∇J (w k ), and R m ṽ(w, s) dP (s) ∈ ∂ c J (w), ∀w ∈ R p
which is equivalent to the recursion given in Item 2. To obtain the desired convergence result we may apply Theorem 3.15 similarly as above, with DJ = ∂ c J in place of D J and ṽ in place of v and the result follows.

Proof of Theorem 2.5. We have already shown that Assumption 1 is sufficient to ensure that Assumption 7 holds so that Theorem 3.15 applies. The claimed statement is indeed the second statement of Theorem 3.15 which holds Assumption 3. So we simply need to check that Assumption 8 holds.

As for the first statement, under Assumption 2, the function J is definable using [32, Theorem 1.3]. From Theorem 4.8 the set-valued map

D J = E ξ∼P [∂ c f (•, ξ)
] is definable and it is a conservative gradient for J by Lemma 2.7. By definable conservative Sard's theorem [START_REF] Bolte | Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning[END_REF], the set of D J -critical values of J which is J (crit D J ) is finite, hence Assumption 8 is satisfied. The result is then a consequence of the second statement of Theorem 3.15 under hypothesis 2 of Lemma 3.14.

Regarding the second statement, Theorem 2.3 gives us Γ ⊂ R whose complement is finite, W ⊂ R p of full measure and residual, such that if α k ∈ Γ for all k ∈ N then for all initialization w 0 in W we have with probability 1 the recursion holds with ṽ = ∇ w f in place of v and DJ := ∂ c J in place of D J . Hence, almost surely, one has an actual stochastic subgradient sequence so that the result follows as above from Theorem 3.15 applied to ṽ and DJ which are both semialgebraic.

Proof of Theorem 2.8. We prove the regression case, i.e., when P has a compactly supported semialgebraic density φ with respect to the Lebesgue measure. The classification case uses similar arguments, see Remark 2.6 (2) We apply Theorem 2.3, which holds replacing the Clarke subgradient by a general conservative gradient D, see Remark 2.4 (2) and Theorem 3.15 similarly as above. We verify that in the setting of section 2.3, Assumptions 1, 2 and hypothesis 3 of Lemma 3.14 are satisfied. Under Assumption 4, let D : R p × R d × R I ⇒ R p be the product of Clarke Jacobians in [START_REF] Davis | Stochastic subgradient method converges on tame functions[END_REF], it is semialgebraic, for almost all s ∈ R d × R I , backprop w f (•, s) is a semialgebraic selection of D(•, s), and D(•, s) is a conservative gradient for f (•, s). As D is semialgebraic, it is polynomially bounded hence there exist K > 0, p 0 ∈ N, q 0 ∈ N such that for all w ∈ R p and almost all s ∈ R d ×R I , D(w, s) ≤ K(1+ s p 0 )(1+ w q 0 ). Let κ(s) := K(1+ s p 0 ) for s ∈ R d ×R I . Since P has compact support, then the function κ is square integrable with respect to P . Assumption 1 (1) is satisfied. f and backprop w are semialgebraic by assumption, hence Assumption 1 (3) is satisfied. The other assumptions are directly satisfied by assumptions of Theorem 2.8. Note that for any w, sup s∈supp P backprop w f (w, s) ≤ K(1 + w q 0 ) which is locally bounded so that we may apply Theorem 3.15 under the hypothesis 3. of Lemma 3.14 similarly as in the proof of Theorem 2.5.

6 Generalized gradients of Norkin and conservativity The lim sup property in the definition is referred to as the semismoothness property of the generalized gradients. On the other hand, conservative gradients are defined in Definition 3.7. In both cases, the corresponding set-valued gradient map is a singleton almost everywhere and contains the Clarke subgradient of f everywhere [START_REF] Norkin | Nonlocal minimization algorithms of nondifferentiable functions[END_REF][START_REF] Bolte | Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning[END_REF]. Functions with generalized gradient are called differentiable in the generalized sense, and those with conservative gradients are called path-differentiable.

Relations between the two notions

The following strengthens the chain rule along semismooth curves given in [2, Theorem 1]. Proposition 6.2 If D is a generalized gradient of f in the sense of Definition 6.1, then it is a conservative gradient of f .

Proof. We shall use the chain rule characterization of conservative gradients, Definition 3.7. Let D be a generalized gradient of f as in Definition 6.1, and γ : [0, 1] → R p be an absolutely continuous path. Then both γ and f • γ are absolutely continuous, hence differentiable almost everywhere. Therefore, there exists a full measure subset R ⊂ [0, 1] such that both are differentiable at every point on R.

Suppose, toward a contradiction, that the chain rule is not valid along γ, that is, there exists a non zero measure set E 1 ⊂ R such that for all t ∈ E 1 , there is g ∈ D(γ(t)) such that d dt (f • γ)(t) = g, γ(t) . Note that this implies that γ(t) = 0 for all t ∈ E 1 , since if γ(t) = 0 then 0 = d dt (f • γ)(t) = g, γ(t) . Reducing E 1 and changing sign if necessary, we may assume without loss of generality that for all t ∈ E 1 , there is g ∈ D(γ(t)) such that d dt (f • γ)(t) < g, γ(t) . Consider the measurable function (measurability is justified in [START_REF] Bolte | Conservative set valued fields, automatic differentiation, stochastic gradient methods and deep learning[END_REF]), g : [0, 1] → R p , defined for all t ∈ R by g(t) = arg max v∈D(γ(t)) γ(t), v and g(t) = 0 otherwise.

We have for all t ∈ E 1 , 0 < γ(t), g(t) -d dt (f • γ)(t). This means that there is > 0 and a nonzero set E 2 ⊂ E 1 such that ≤ γ(t), g(t) -d dt f • γ(t) for all t ∈ E 2 (otherwise, one would have γ, g -d dt (f • γ) = 0 almost everywhere on E 1 ).

Let us apply Lusin's theorem (see, e.g., [START_REF] Royden | Real Analysis[END_REF]Section 3.3]) and fix an arbitrary α > 0, such that λ(E 2 ) > α. There is a closed subset E 3 ⊂ E 2 such that λ(E 2 \ E 3 ) < α and g restricted to E 3 is continuous. The set E 3 has positive measure since λ(E 3 ) = λ(E 2 ) -λ(E 2 \ E 3 ) > α -α = 0. Let us summarize, E 3 ⊂ [0, 1] is closed with positive measure and we have the following on E 3 :

-Both f • γ and γ have derivatives and γ = 0.

d dt (f • γ) + ≤ γ, g . -g restricted to E 3 is continuous.

Lebesgue density theorem (see, e.g., [START_REF] Lawrence | Measure theory and fine properties of functions[END_REF]Theorem 1.35]) ensures that almost all t ∈ E 3 have density 1, that is, λ([t -δ, t + δ] ∩ E 3 )/λ([t -δ, t + δ]) → 1 as δ → 0. Since E 3 has positive measure, there exists t ∈ E 3 , a point of density 1 in E 3 . We have for all t = t, such that γ(t) = γ( t), where the two identities on the first line follow from the differentiability of f • γ and γ at t ∈ E 3 , the third one stems from the semismooth property of generalized gradients (Definition 6.1) while the last one is by differentiability of γ and continuity of g restricted to E 3 at t. We obtain that d dt (f • γ)( t) = g( t), γ( t) ≥ d dt (f • γ)( t) + , where the equality follows by the previous limit and the inequality is because t ∈ E 3 . This is contradictory since > 0, which concludes the proof.

f (γ(t)) -f (γ( t
Functions differentiable in the generalized sense are path-differentiable. In the semialgebraic case, both notions coincide [START_REF] Davis | Conservative and semismooth derivatives are equivalent for semialgebraic maps. Set-Valued and Variational Analysis[END_REF], but the inclusion is strict in general. It is clear that ∂ c F is locally constant (+1 or -1) out of a closed countable set (the set C and its cut locus). Therefore, choosing f to be any measurable selection in ∂ c F , the previous formula allows concluding that F is path-differentiable. Indeed F is pathdifferentiable if and only it satisfies the change of variable formula for any absolutely continuous g, which is the case because F is 1-Lipschitz so that |f | ≤ 1.

On the other hand, F (0) = 0 and for all k ∈ N * , F (1/k) = 0 and ∂ c F (1/k) = [-1, 1] so that -1 ∈ ∂ c F (1/k). The equality F (1/k)-F (0)--1,1/k-0 1/k-0 = 1 contradicts the semismoothness property for the Clarke subgradient of F . Since F is differentiable in the generalized sense if and only if its Clarke subgradient is a generalized gradient, we conclude that F is not differentiable in the generalized sense at 0.

3 .

 3 The integrand f and the selection v are semialgebraic, 4. sup k∈N w k < ∞ almost surely.

Theorem 3 .

 3 10 (Path-differentiability of parametrized integrals) Let D : R p × S ⇒ R p and f : R p × S -→ R such that:

S

  D(•, s) dµ(s) is graph closed, nonempty valued and locally bounded. By the measurable selection theorem, see Proposition 3.2, S D(•, s) dµ(s) is nonempty valued. It is locally bounded by item 4. For almost all s ∈ S, D(•, s) is graph closed and locally bounded, hence it is upper semicontinuous by [45, Corollary 1 in Chapter 1, Section 1]. By Aumann's integral properties, see [46, Theorem 2], and since D(•, s) is upper semicontinuous, compact valued for all s, then S D(•, s) dµ(s) is graph closed. Now, we have to verify the chain rule property. Let γ : [0, 1] -

  for almost all s ∈ S, v(w, s) ∈ D(w, s). The event sup k∈N w k < ∞ occurs almost surely. Lemma 3.14 (Noise extinction) For the recursion (2) under Assumption 7, set for all

4. 1

 1 Definable sets and functionsDefinition 4.1 (o-minimal structure) Let O = (O p ) p∈N be a collection of sets such that, for all p ∈ N, O p is a set of subsets of R p . O is an o-minimal structure on (R, +, •) if it satisfies the following axioms, for all p ∈ N: 1. O p is stable by finite intersection, union, complementation, and contains R p . 2. If A ∈ O p then A × R and R × A belong to O p+1 . 3. If A ∈ O p+1 then π(A) ∈ O p , where π projects on the p first coordinates,. 4. O p contains all sets of the form {x ∈ R p : P (x) = 0}, where P is a polynomial. 5. The elements of O 1 are exactly the finite unions of intervals. Definition 4.2 (Definable set, function and set-valued map)

Theorem 4 . 8 (

 48 Definable set-valued integrals) Let φ a globally subanalytic density function on R m , D : R p × R m ⇒ R p globally subanalytic, graph closed, locally bounded and convex valued. Assume D J : w → R m D(w, s)φ(s) ds is well defined, then D J is definable in R an,exp .

Claim 4 . 10

 410 Let g : R p × R m → R p be a definable function. Then there exists a definable dense open set L

6. 1 Definitions

 1 Throughout this section, f : R p → R is Lipschitz continuous and D : R p ⇒ R p is locally bounded nonempty convex valued and upper semicontinuous. Convex values are indeed required by Norkin in[START_REF] Norkin | Nonlocal minimization algorithms of nondifferentiable functions[END_REF][START_REF] Norkin | Generalized-differentiable functions[END_REF][START_REF] Norkin | Stochastic generalized-differentiable functions in the problem of nonconvex nonsmooth stochastic optimization[END_REF]. Definition 6.1 (Semismooth generalized gradients) The set-valued mapping D is a generalized gradient of f if for all x ∈ R p , we have lim sup y→x, g∈D(y) f (y) -f (x) -g, y -x y -x = 0.

Proposition 6 . 3

 63 Consider the closed set C ⊂ [-1, 1] defined through C = {1/k | k ∈ Z, k = 0} ∪ {0}.Then the distance function F to C is path-differentiable but not differentiable in the generalized sense.Proof. First let us recall a substitution formula for absolutely continuous function[START_REF] Serrin | A general chain rule for derivatives and the change of variables formula for the lebesgue integral[END_REF] Corollary 7]. If g : R → R is absolutely continuous and f : R → R is measurable and bounded, then for all α, β, g(β) g(α) f (x)dx = β α f (g(s)) ġ(s)ds.

  given by Claim 4.10. g is C 2 on L which is definable dense and open, and for every α ∈ Γ, the definable set {s∈ R m | (α, s) ∈ ∆} is dense open in R m .

  By Claim 4.10, for any (α, s) ∈ ∆, Φ α,s := Id p -α∇ w g(•, s) from {w ∈ R p | (w, s) ∈ L}, dense and open, to R p verifies

Also known under the generic acronym SGD.

As for us, it came to our knowledge in the finalization stage of this paper.