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Subgradient sampling for nonsmooth nonconvex
minimization∗

Jérôme Bolte† Tam Le† Edouard Pauwels ‡

February 18, 2022

Abstract

Risk minimization for nonsmooth nonconvex problems naturally leads to first-
order sampling or, by an abuse of terminology, to stochastic subgradient descent.
We establish the convergence of this method in the path-differentiable case, and de-
scribe more precise results under additional geometric assumptions. We recover and
improve results from Ermoliev-Norkin [27] by using a different approach: conserva-
tive calculus and the ODE method. In the definable case, we show that first-order
subgradient sampling avoids artificial critical point with probability one and applies
moreover to a large range of risk minimization problems in deep learning, based
on the backpropagation oracle. As byproducts of our approach, we obtain several
results on integration of independent interest, such as an interchange result for con-
servative derivatives and integrals, or the definability of set-valued parameterized
integrals.

Keywords. Subgradient sampling, stochastic gradient, online deep learning, conserva-
tive gradient, path-differentiability
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1 Introduction

We consider possibly nonconvex and nonsmooth risk minimization problems of the form

min
w∈Rp

J (w) := Eξ∼P [f(w, ξ)] , (1)

where P is a probability distribution on some measurable space (S,A). This type of prob-
lems has many applications, we refer for instance to [44, 45] and references therein, for
various examples in several fields. Our specific interest goes in particular to online deep
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learning [46] and machine learning more broadly [16]. We consider a minimization ap-
proach through first-order sampling: our model is that of the stochastic gradient method1,
which in its classical form generates iterates (wk)k∈N through{

w0 ∈ Rp

wk+1 = wk − αkv(wk, ξk) for k ∈ N, (2)

where v(wk, ξk) is a descent direction at wk for the function f(·, ξk).
When f is smooth, v may be taken to be the gradient of f , so that, in expectation, the
search direction boils down to the gradient:

Eξ∼P [∇wf(·, ξ)] = ∇Eξ∼P [f(·, ξ)] = ∇J (3)

where the first equality follows under mild integrability conditions. This is a well known
case for which many convergence results are available, see e.g., [31].

In the nonsmooth nonconvex world it has become classical to consider Clarke subgradient
oracles. In that case the average update direction in (2) falls into Eξ∼P [∂cwf(·, ξ)]; but
contrary to (3), we merely have

Eξ∼P [∂cwf(·, ξ)] ⊃ ∂cEξ∼P [f(·, ξ)] = ∂cJ , (4)

see [20, Theorem 2.7.3]. Without additional convexity or regularity assumptions, as in
[32, 24], the inclusion is strict in general and unavoidable. In plain words, general sub-
gradient sampling is not a stochastic subgradient method: expected increments are not
necessarily subgradients of the loss. As a consequence, the very nature of a first-order
sampling method may generate undesired directions that could result in absurd behaviors,
such as sequences with occasionally erratic dynamics or artificial critical points which are
irrelevant steady states [14]. As we shall see also, the situation is even worse in deep learn-
ing since in that case the oracle is based on backpropagation [43] which in a nonsmooth
setting may add more artifacts to the dynamics, see e.g., [14] and references therein. De-
spite these issues, many real-world algorithms, are designed according to this model and
it is necessary to provide theoretical support and guarantees to the practical success of
these methods.

The goal of this paper is to study the first-order subgradient sampling method with vanish-
ing step size, and precisely address these problems. Our answer is built upon conservative
gradients and conservative calculus introduced in [13]. This approach makes rigorous the
use of formal subdifferentiation in a wide mathematical framework encompassing most
Lipschitz continuous nonconvex nonsmooth problems. One of the consequences is that
sum, composition of conservative gradients are conservative, and under mild assumptions,
we shall extend this property to parameterized integrals through the fact that expecta-
tion of conservative gradient is a conservative gradient. Another advantage in using this
approach is its full compatibility with one of the core modern algorithms of large scale
optimization: backpropagation [1, 39, 17].

An essential series of works on subgradient sampling are those developed in [27], followed
also by [44, 45], using the generalized derivatives and the calculus introduced in Norkin

1Also known under the generic acronym SGD.
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[35], see Section 6 for more details on this notion. These works address in particular
the question of the interplay between expectations and subgradients under various as-
sumptions, and provide as well convergence results to “generalized critical points”. The
approach relies on the notion of generalized derivatives in the sense of Norkin [35]. The
ideas of [27], and some follow-up research [37, 38], have been surprisingly overlooked by
the stochastic optimization and machine learning communities, at least until recently2.
There is a strong common point between the present article and Norkin’s research since,
key to our work, is a new first-order calculus. But there are also important differences
and additions that we highlight below:

— We follow the conservative approach of [13] instead of the generalized derivative
approach of [35], and we thus work with different techniques. Our focus on the
conservative case is motivated by a growing “theory” close to machine learning ap-
plications: implicit differentiation [12] with application to implicit neural networks
[4], nondifferentiable programming [10], bi-level programming [41, 7]), differential
equations [33] which are naturally connected to Neural ODEs [19, 26], or even par-
tial minimization [40]. Let us also mention that conservativity is more general than
differentiability in the sense of Norkin, see Section 6 — even though, both notions
coincide in the semialgebraic case as recently established in [23].

— We provide a general and simple result on the avoidance of artificial critical points.
First-order sampling and backpropagation create independently artificial critical
points that can swamp the method. Under adequate subanalyticity assumptions,
matching many practical problems, we establish that this does not occur, see Sec-
tion 4.

— Our theory is developed in close connection to semialgebraicity and subanalyticity
techniques. This allows for providing a “ready-to-use” flavor to our convergence
results for online deep learning, and also to obtain new results in the definable
world. We provide in particular conditions for set-valued integrands to result in
definable parametrized integrals or expectation as well.

— Another specificity of our work is to rely for its asymptotic analysis on the “ODE
approach” through the use of Benaim-Hofbauer-Sorin results [5] on stochastic ap-
proximations. The versatility and simplicity of this method allows for quite direct
extension to other type of first-order methods as, see e.g., [9, 30, 18]. Definability
allows to provide simple and explicit sufficient conditions for commonly used ab-
stract hypotheses in this framework, such as path-differentiability of the risk and
Sard’s condition.

The paper is organized as follows: we first present representative samples of our general
results in Section 2 with an emphasis on applications to online deep learning and the role
of semialgebraic, or definable optimization. In Section 3, we present our main theoretical
results with in particular a theorem of conservative differentiation for integral functions.
Section 4 gathers results from o-minimal geometry and provides set-valued improvement

2As for us, it came to our knowledge in the finalization stage of this paper.
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of Cluckers-Miller’s integration result [21] as well as avoidance result for artificial critical
points. Section 5 contains the proofs of the results presented in Section 2.

Notations For q ∈ N∗, B(Rq) denotes the Borel sigma algebra on Rq. ‖ · ‖ denotes the
Euclidean norm. For a subset A of a normed vector space, convA denotes the convex
hull of A and Ā its closure; dimA denotes its Hausdorff dimension. If in addition, A is
bounded then ‖A‖ := sup{‖y‖ | y ∈ A}. For x ∈ Rp r > 0, B(x, r) is the open ball of
center x and radius r with respect to the Euclidean norm.

Let f : Rp × Rm → R locally Lipschitz. f is differentiable almost everywhere, and we
denote difff its differentiability domain. Its Clarke subgradient is defined for x ∈ Rp×Rm

as

∂cf(x) = conv

{
lim

k→+∞
∇f(xk)

∣∣∣∣ xk ∈ difff , xk →
k→+∞

x

}
.

We denote ∂cwf the projection of ∂cf(x) on w, for (w, s) ∈ Rp × Rm,

∂cwf(w, s) = {A ∈ Rp | (A,B) ∈ ∂cf(w, s)} .

For F : Rp×Rm → Rq locally Lipschitz we can define as well the Clarke Jacobian and its
projection on w:

Jacc F (x) = conv

{
lim

k→+∞
JacF (xk)

∣∣∣∣ xk ∈ diffF , xk →
k→+∞

x

}
,

Jaccw F (w, s) =
{
A ∈ Rq×p | [A B] ∈ Jacc F (w, s)

}
.

2 Main results and online deep learning

This section provides simplified formulations of our results and also gives applications to
online deep learning.

2.1 Subgradient sampling method

Framework Let us consider the stochastic minimization problem (1)

where P is a fixed probability distribution, f is possibly nonsmooth and nonconvex such
that the risk function J is well defined. This problem is tackled through the first-order
sampling algorithm (2). (ξk)k∈N is a sequence of i.i.d. random variables with common
distribution P and the mapping v : Rp ×Rm → Rp is a selection of ∂cwf : Rp ×Rm ⇒ Rp,
i.e., for all (w, s) ∈ Rp × Rm, v(w, s) ∈ ∂cwf(w, s).

Assumption 1

1. For all compact sets K ⊂ Rp, ∃κ : Rm → R such that κ is square integrable with
respect to P and

∀x, y ∈ K, |f(x, s)− f(y, s)| ≤ κ(s)‖x− y‖

for all s ∈ Rm,
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2. For all k ∈ N, αk > 0,
∑

k∈N αk = +∞ and limk→+∞ αk = 0,

3. f and the selection v are semialgebraic,

4. There exists M > 0 such that supk∈N ‖wk‖ ≤M almost surely.

Observe that the first condition implies that J is locally Lipschitz so that ∂cJ is well
defined. We consider semialgebraicity for simplicity, many results of this work extends to
definable functions f and selections v, which encompasses the vast majority of machine
learning examples, using for example globally subanalytic sets (see Section 4.1 and [49]).

A glance at convergence results With this level of generality, we are not able to
guarantee the almost sure convergence of (wk)k∈N to the set of critical points of J , but
we can describe its limit behaviour in a weaker sense introduced in [6] and extended to
set-valued flows in [29]. This can be interpreted via the notion of essential accumulation
points.

Definition 1 (Essential accumulation point) An accumulation point w̄ ∈ Rp is called
essential if for every neighborhood U of w̄ one has

lim sup
k→+∞

∑k
i=0 αi1{wi∈U}∑k

i=0 αi
> 0 almost surely.

Intuitively, cluster points that are not essential accumulation points are hardly never seen.
This is made more precise in [15, Lemma 21], through the use of occupation measures.

A first result on the criticality of the essential accumulation points of (wk)k∈N is as follows:

Theorem 1 (Criticality of essential accumulation points) Let (wk)k∈N defined by (2).
Then under Assumption 1, the following hold:

(i) All essential accumulation points w̄ of (wk)k∈N satisfy the weak notion of criticality

0 ∈ Eξ∼P [∂cwf(w̄, ξ)] =

∫
Rm

∂cwf(w̄, s) dP (s) (5)

where the integral is taken in the sense of Aumann (Definition 3).

(ii) If P has a density with respect to Lebesgue, there exists a subset Γ ⊂ R whose
complement is finite such that if αk ∈ Γ for all k ∈ N, then, for all initialization
w0 chosen in a residual full-measure, and with probability 1, (wk)k∈N verifies for all
k ∈ N,

wk+1 = wk − αk (∇J (wk) + ηk)

where ηk := ∇wf(wk, ξk) − ∇J (wk) is a martingale increment. Moreover, the es-
sential accumulation points w̄ of (wk)k∈N are Clarke critical, i.e.,

0 ∈ ∂cJ (w̄). (6)
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Remark 1 (a)(Generalized criticality) Let us emphasize the fact that this criticality
notion is unavoidable and inherent to the very nature of subgradient sampling methods.
It is related to the notion of an artificial critical point as described in [14].
(b)(On proofs) In order to prove item (ii), we use stratification properties of f . The
intermediary results leading to item (ii) are gathered in Section 4.

Remark 2 (Extension to the conservative gradient formalism) Under the same as-
sumptions, Theorem 1 (i) holds, mutatis mutandis, by replacing the Clarke subgradient by
a conservative gradient: ∂cwf can be replaced by a semi-algebraic set-valued map D where
for all s ∈ Rm, D(·, s) is a conservative gradient for f(·, s). In this case, Theorem 1
(ii) also holds true as is. It states that most sequences generated by conservative gradi-
ent sampling are actually stochastic gradient sequences, so that any result holding true
for stochastic subgradient method (subgradient plus zero mean noise [24, 32]) also holds
true for conservative gradient sampling, Clarke criticality of essential accumulation point
being an example. This allows to generalize to the backpropagation implementation of the
algorithm (2) as done in Section 2.3.

With an additional assumption on (αk)k∈N and the distribution P all accumulation points
are Clarke critical and the risk function converges.

Assumption 2 P has a semialgebraic density with respect to Lebesgue.

Assumption 3
∑

k∈N α
2
k < +∞.

Theorem 2 (Criticality of accumulation points and convergence) Under Assump-
tion 1-2-3, Theorem 1 holds, and in addition, J (wk) converges almost surely while (5)
holds for all accumulation points. Furthermore, under the assumptions of Theorem 1,
Item (ii) on generic step sizes and initialization points, Clarke criticality (6) actually
holds for all accumulation points.

The proof of Theorem 2 uses results in [5]. In Section 3.3, we summarize the essential
theoretical results we use from [5] to prove the convergence of (2).

Remark 3 (On Assumption 2) The proofs leading to Theorem 1 and theorem 2 can
easily be adapted to the case when P is the joint distribution between a discrete and
a continuous random variable. This allows to take into account classification tasks in
online deep learning (see theorem 3). We limit ourselves to assumption 2 for the sake of
simplicity. Semialgebraic densities are extremely flexible: they approximate all continuous
densities on compact sets. Although assumption 2 relates to the unknown distribution P ,
this is a reasonable proxy for a large class of distributions. The main reason for this
assumption is that it provides enough rigidity to ensure a strong form of Sard’s theorem
for the risk function J . Beyond semialgebraicity, P can be assumed to be in certain
classes of definable sets, for example globally subanalytic sets, see Section 4.1, which
includes analytic densities with semialgebraic compact support, like truncated Gaussian
distributions.
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On calculus: chain rule for expectations A pivotal calculus result in our analysis
is the following:

Lemma 1 (Chain rule for expected risk functions) Under Assumption 1, J admits
a chain rule, i.e., for any absolutely continuous curve γ : [0, 1]→ Rp,

d

dt
(J ◦ γ)(t) = 〈a, γ̇(t)〉 for all a ∈ ∂cJ (γ(t)) for almost all t ∈ [0, 1].

Let us recall that, functions admitting a chain rule with respect to their Clarke subgradi-
ent, or equivalently to a conservative gradient, are called path-differentiable. Lemma 1 is
a consequence of the more general Theorem 4 which generalizes the outer sum rule [13,
Corollary 4] and extends [36, Theorem 1] to conservative gradients. This result allows
to interchange conservative gradient and integral operations: taking the expectation of
v(·, ξ) with respect to ξ ∼ P gives Eξ∼P [v(·, ξ)] which is a selection in a conservative
gradient for J .

2.2 Comparison with related works

Some recent works [24, 32] assume the Clarke subgradient and integral operations to be
interchangeable, which in practice requires regularity assumptions. Without such assump-
tions, as here, first-order sampling leads by nature to spurious critical points. This was
first observed in [27] and rediscovered in [13, 14]. To avoid converging to these undesirable
points [27, Remark 4.2] suggests to perturb iterates by a random noise. Instead, our The-
orem 2 ensures that “almost all” subgradient sampling sequences accumulates to Clarke
critical points. We thus justify the correctness of the algorithm as implemented in prac-
tice. The avoidance of spurious critical point is also obtained in [8] through probabilistic
initializations having a density with respect to the Lebesgue measure. The definable
framework allows for a much sharper description of the set of stepsizes and initializations
leading to spurious points. For instance, when we consider sequences with a finite horizon,
i.e., w0, . . . , wK with K ≥ 0, the set of bad initializations is a finite union of manifolds of
dimension strictly lower than p, while the set of bad stepsizes is finite.

Due to the role of the ODE method in the analysis of stochastic optimization methods,
considering risk functions that have a chain rule is not new in the literature, either as
an assumption [8] or using restrictive sufficient conditions [24, 32]. With Lemma 1, we
provide instead simple and explicit sufficient conditions for deriving this chain rule (see
also Theorem 4 for a general form). Similarly, our Assumption 2 is sufficient to obtain a
strong form of Sard’s condition. To the best of our knowledge, in former works on risk
minimization, Sard’s theorem is part of the hypotheses in a weak abstract form [27, 5, 8].

2.3 First-order sampling, backpropagation and deep learning

Deep learning model We consider a probability distribution P on Rd × RI called
population distribution. The goal of machine learning is to build a predicting function
h : Rd 7→ RI such that h(X) ' Y , in an average sense, when (X, Y ) is distributed accord-
ing to P , which we will write (X, Y ) ∼ P . In deep learning, this predictor is taken in a
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specific class: neural networks. The input X can be for instance an image, and Y can
either be discrete for a classification task or continuous for a regression task.

A feed-forward neural network is defined via a compositional structure involving L layers
and a parameters vector w = (w(1), . . . , w(L)) seen as a vector of Rp. For l = 0, . . . , L,
the l-th layer is represented by a real vector x(l) ∈ Rpl . We consider that layer 0 has the
same dimension as Rd, p0 = d. Given input x ∈ Rd the predicting function encoded by
the neural network with parameter w ∈ Rp is denoted by h(w, ·) and is defined by the
relations: 

x(0) = x,
x(l) = gl(w

(l), x(l−1)), for l = 1, . . . , L,
h(w, x) = x(L).

(7)

For l = 1, . . . , L, the function gl can take several forms. Such a function can be an affine
transformation composed with a nonlinear function σ(l) : Rpl → Rpl , i.e., gl(w

(l), x(l−1)) =
σ(l)(A(l)x(l−1) + b(l)) with weight-bias parameters w(l) = (A(l), b(l)) where A(l) ∈ Rpl×pl−1 ,
b(l) ∈ Rpl . For example, σl could be an activation function applied componentwise, well
known examples include the ReLU function, the sigmoid, or the softmax function. More
general block structured nonlinear functions can be considered, such as max pooling,
or less common nonlinearities such as “sorting”. We can impose a special structure on
the matrices A(l) and vectors b(l), for example constraining some of their entries to take
specific values. This allows to capture with model (7), convolutional layers, which are
sparse linear maps, parallel architectures or residual neural networks. With a slight abuse
of notation, we will consider that w is a vector in Rp, consisting of the concatenation of
all vectors (w(l))Ll=1.

Online deep learning Given a loss function ` : RI × RI → R, training is formulated
as a risk minimization problem:

min
w∈Rp

J (w) := E(X,Y )∼P [`(h(w,X), Y )] (8)

In general the expectation is unknown and only approximated through statistical sam-
pling. We consider the situation in which we have a sequence (xk, yk)k∈N of i.i.d. samples
generated from the distribution P and we tackle problem (8) with the first-order sampling
algorithm (2). In this setting the sequence (ξk)k∈N corresponds to (xk, yk)k∈N and f is the
function (w, x, y) 7→ `(h(w, x), y).

Backpropagation and conservative gradients In deep learning first-order informa-
tion is accessed using backpropagation [43]. It is an efficient application of the chain rule
of differentiable calculus which provides a numerical evaluation of the derivative of f .
We will consider differentiation with respect to the decision variable w in (8) and denote
the output of backpropagation by backpropw. The function f writes as a composition
f = fr ◦ . . . ◦ f1 where the functions f1, . . . , fr involve the functions ` and g1, . . . , gL from
(7) and (8). When applied to nondifferentiable functions f1, . . . , fr, backpropw can be
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considered as an oracle evaluating an element in the product of their Clarke Jacobians:

backpropw(f(w, x, y)) ∈ ∂cfr(fr−1 ◦ . . . ◦ f1(w, x, y))T

× Jacc fr−1(fr−2 ◦ . . . ◦ f1(w, x, y))× . . .× Jaccw f1(w, x, y).

With this definition in mind, we may define the backpropagation variant of (2).

Algorithm 1 First-order sampling with backpropagation
1: Inputs:
w0 ∈ Rp, (xk, yk)k∈N i.i.d. with distribution P , (αk)k∈N positive step sizes.

2: for k = 0, 1, . . . do
3: wk+1 = wk − αk backpropwk

(`(h(wk, xk), yk))
4: end for

As highlighted in introduction, backpropagation does not necessarily compute an element
of the Clarke subgradient. When f1, . . . , fr are path-differentiable, backpropagation com-
putes a selection of a conservative gradient of f . It is satisfied for instance if `, g1, . . . , gL
are locally Lipschitz and semialgebraic, or more generally, globally subanalytic. We hence
assume the following which is a condition satisfied by the vast majority of deep learning
applications:

Assumption 4 (Locally Lipschitz continuity and semialgebraicity) The neural net-
work training problem in (8) satisfies for l = 1, . . . , L, the functions gl : Rpl−1 → Rpl and
` : RI × RI → R are locally Lipschitz and semialgebraic functions.

In order to formulate our results, we further require an assumption on the distribution P .
This assumption is quite mild as it encompasses a large class of probability distributions
in classification or regression.

Assumption 5 (Semialgebraic distribution) The joint distribution P satisfies one of
the following:

– Regression: P has a semialgebraic density φ with respect to Lebesgue on Rd × RI .

– Classification: Y = (ei)
I
i=1 is finite, where for i = 1 . . . I, ei denotes the i-th element

of the canonical basis in RI . In this case the distribution P factorizes as P (X, Y ) =
P (Y )P (X|Y ). We then assume that PY is discrete over (ei)

I
i=1 and P (X|Y = ei)

has a semialgebraic density φi with respect to Lebesgue on Rd.

With this setting, a direct consequence of Theorem 2 is the following result:

Theorem 3 (First-order sampling and training for online deep learning) Under
Assumptions 4 and 5, let (wk)k∈N be generated by Algorithm 1. We suppose that the se-
quence (αk)k∈N is strictly positive and verifies

∑
k∈N αk = +∞,

∑
k∈N α

2
k < +∞. Assume

that there exists M > 0 such that supk∈N ‖wk‖ ≤M almost surely.

Then there exists a set Γ ⊂ R whose complement is finite, and W0 ⊂ Rp of full measure
and residual such that if ∀k ∈ N, αk ∈ Γ and w0 ∈ W0, J (wk) converges almost surely
as k → ∞ and all accumulation points w̄ of (wk)k∈N are Clarke critical, i.e., verify
0 ∈ ∂cJ (w̄).
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This theorem parallels [13, Theorem 9] for a general population distribution in the training
of deep learning models: assumptions are simple and widespread, it is fully compatible
with backpropagation and it shows that artificial critical points are avoided. Similar
models have been considered in the literature. Let us mention [45] which require many
stronger assumptions (in particular ruling out nonsmooth activation functions). Another
important contribution is given in [38], a discussion is given in the introduction.

3 Nonsmooth analysis for stochastic approximation

algorithms

3.1 Set-valued analysis and conservative gradients

Let (X,F) be a measurable space. Let us recall some results from set-valued analysis.

Definition 2 (Measurable set-valued maps) Denote Kp the set of compact subsets
of Rp. It is a measurable space considering the Borel σ-algebra BH(Kp) induced by the
topology of the Hausdorff distance. A nonempty compact valued map F : X ⇒ Rp is
called measurable if it is measurable from (X,F) to (Kp,BH(Kp)). In this case, for all
closed subset A ⊂ Rp the upper inverse F u(A) := {x ∈ X | F (x) ⊂ A} is measurable in
(X,F).

Proposition 1 (Measurable selection theorem [2]) Let F : X ⇒ Rp be a measur-
able nonempty and compact valued map. Then there exists a measurable selection of F ,
that is a measurable function v : X → Rp satisfying for all x ∈ X, v(x) ∈ F (x).

Corollary 1 (Castaing’s Theorem) Let F : X ⇒ Rp nonempty compact valued. Then
F is measurable if and only if there exists a sequence of measurable selections (Fn)n∈N such

that ∀x ∈ X,F (x) = {F1(x), F2(x), ...}.

Remark 4 (Measurability of set-valued composition) Corollary 1 can be used to
justify measurability of composed set-valued functions. For instance, given g : Rp → R
continuous and F : X ⇒ Rp compact valued and measurable, then g ◦ F is measurable.
Indeed, let (Fk)k∈N be a sequence of measurable selections given by Castaing’s Theorem,

such that ∀x ∈ X,F (s) = {F1(x), F2(x), ...}. Then by continuity of g, we have for all
x ∈ X, g(F (x)) = g({F1(x), F2(x), ...}) = {g(F1(x)), g(F2(x)), ...}. The functions g ◦ Fi
are all measurable and g ◦ F is compact valued by continuity of g hence by Castaing’s
corollary, g ◦ F is measurable.

Definition 3 (Aumann integral) Let (X,F , µ) be a measure space and F : X ⇒ Rp

a set-valued map. Then the integral of F with respect to the measure µ is∫
X

F (x) dµ(x) =

{∫
X

v(x) dµ(x)

∣∣∣∣ v is measurable and for all x ∈ X, v(x) ∈ F (x)

}
.

We also use the expectation notation Eξ∼P [F (ξ)] =
∫
X
F (x) dP (x) whenever (X,F , P ) is

a probability space and ξ is a random variable valued in X with distribution P .
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Definition 4 Let F : Rm ⇒ Rp be a set-valued map.

(i) (Graph closedness) F is graph closed or to have closed graph if its graph

GraphF := {(x, y) ∈ Rm × Rp | y ∈ F (x)}

is a closed subset of Rm × Rp.

(ii) (Local boundedness) F is locally bounded if for all x ∈ Rm, there exist a neighbor-
hood U of x and M > 0, such that for all z ∈ U and y ∈ F (z), ‖y‖ < M .

(iii) (Upper semicontinuity) F is upper semicontinuous at x ∈ Rm, if for each open
subset V containing F (x), there exists a neighborhood U of x such that for all
z ∈ U , F (z) ⊂ V .

Definition 5 (Conservative gradient) Let f : Rp → R be locally Lipschitz contin-
uous. A locally bounded and graph closed set-valued map D : Rp ⇒ Rp is called a
conservative gradient for f if for all absolutely continuous curve γ : [0, 1]→ Rp, f admits
a chain rule with respect to D along γ, i.e.,

d

dt
(f ◦ γ)(t) = 〈v, γ̇(t)〉, for all v ∈ D(γ(t)) and almost all t ∈ [0, 1].

Lipschitz continuous functions f : Rp → R admitting a conservative gradient are called
path-differentiable. They are central to our analysis.

3.2 Conservative gradient of integral functions

In this part (S,A, µ) is a complete measure space. We consider a function f : Rp×S −→ R
such that for almost all s ∈ S, f(·, s) is path-differentiable with conservative gradient
D(·, s). Our goal is to show a result of “conservative differentiation” under the integral
sign in order to get a conservative calculus for the parametrized integral

∫
S
f(·, s) dµ(s).

First, we provide a result of derivation under the integral sign when the integrand is
absolutely continuous in its first variable. We shall use the following lemma.

Lemma 2 (Measurability of partial derivatives) Let U an open subset of R and f :
U × S −→ R a (B(R) × A)-measurable function. We suppose that there exists M ⊂ S of
full measure such that for all s ∈ M , f(·, s) is absolutely continuous. Then ∂f

∂x
is jointly

measurable and its domain of existence E ⊂ U × S is measurable of full measure. Also,
for almost all x ∈ U we have for almost all s ∈ S, that ∂f

∂x
(x, s) exists.

Proof. Define the following quantities for all x ∈ U and s ∈M :

f ′u(x, s) = lim sup
h→0

f(x+ h, s)− f(x, s)

h
and f ′l (x, s) = lim inf

h→0

f(x+ h, s)− f(x, s)

h
.

11



By continuity of f both limit operators may operate only in Q without changing the value
of f ′u and f ′l . Whence f ′l and f ′u are measurable and so is ∂f

∂x
. Furthermore, the domain E

of ∂f
∂x

is {(x, s) ∈ U × S | f ′l (x, s) = f ′u(x, s), −∞ < fu(x, s) < +∞} which is measurable.
Applying Fubini’s Theorem yields∫

U×S
1Ec(x, s) d(λ× µ) (x, s) =

∫
S

∫
U

1Ec(x, s) dx dµ(s) =

∫
U

∫
S

1Ec(x, s) dµ(s) dx.

Since f(·, s) is absolutely continuous for s ∈ M , it is differentiable a.e., thus ∀s ∈
M,
∫
U
1Ec(x, s) dx = 0 and the second integral is zero. The third integral vanishes, so

for almost all x ∈ U ,
∫
S
1Ec(x, s) dµ(s) = 0, i.e. ,∂f

∂x
(x, s) exists for almost all s, which

concludes the proof. �

Proposition 2 (Differentiation of absolutely continuous integral functions) Let
U be an open subset of R and f : U × S −→ R such that:

1. For all x ∈ U , f(x, ·) is integrable.

2. For almost all s ∈ S, f(·, s) is absolutely continuous.

3. ∂f
∂x

is locally integrable jointly in x and s. For any compact interval [a, b] ⊂ U∫
S

∫ b

a

∣∣∣∣∂f∂x (x, s)

∣∣∣∣ dx dµ(s) < +∞.

Then, the function g : x 7→
∫
S
f(x, s) dµ(s), is absolutely continuous, differentiable on

almost all x ∈ U with g′(x) =
∫
S
∂f
∂x

(x, s) dµ(s).

Proof. Let f : U × S −→ R verifying all the assumptions. We consider the function
g : x ∈ U 7→

∫
S
f(x, s) dµ(s) and a < b in U . From Lemma 2, ∂f

∂x
(x, s) and exists a.e.

in (x, s) ∈ U × S and admits a measurable extension. The a.e. defined function ∂f
∂x

is
identified with some measurable extension. Since for almost all s ∈ S f(·, s) is absolutely
continuous, the Fundamental theorem of calculus for Lebesgue integration (see Theorem
14 in Section 4, Chapter 5 of [42]) implies that

g(b)− g(a) =

∫
S

[f(b, s)− f(a, s)] dµ(s) =

∫
S

∫ b

a

∂f

∂s
(t, s) dt dµ(s).

Under Assumption 3, by measure completeness, Fubini-Lebesgue’s Theorem applies:

g(b)− g(a) =

∫ b

a

∫
S

∂f

∂s
(t, s) dµ(s) dt. (9)

The function x 7→
∫
S
∂f
∂x

(x, s) dµ(s) is integrable on [a, b] so g is absolutely continuous.
The Fundamental Theorem of Calculus states that for almost all x ∈ U , g′ exists with
g′(x) =

∫
S
∂f
∂x

(x, s) dµ(s). �

The following result is one of the cornerstones of this paper and allows to interchange
conservative gradient and integral operations.
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Theorem 4 (Path-differentiability of parametrized integrals) Let D : Rp × S ⇒
Rp and f : Rp × S −→ R such that:

1. For all x ∈ Rp, f(x, ·) is integrable.

2. For almost all s ∈ S, f(·, s) is locally Lipschitz continuous and D(·, s) is conservative
for f(·, s).

3. D : Rp × S ⇒ Rp is jointly measurable in B(Rp)×A.

4. For all compact subset C ⊂ Rp There exists an integrable function κ : S −→ R+ such
that

∀(x, s) ∈ C × S, ‖D(x, s)‖ ≤ κ(s)

where for (x, s) ∈ Rp × S, ‖D(x, s)‖ := sup
y∈D(x,s)

‖y‖.

Then
∫
S
f(·, s) dµ(s) is path-differentiable and

∫
S
D(·, s) dµ(s) is a conservative gradient

for
∫
S
f(·, s) dµ(s).

Proof. We shall use Proposition 2. Proceeding this way, we reduce the problem to a
simpler one and then, we can use Proposition 2 to conclude. Let f : Rp × S → R and
D : Rp ⇒ Rp verifying assumptions 1 to 4.

First, we verify
∫
S
D(·, s) dµ(s) is graph closed, nonempty valued and locally bounded.

From the Kuratowski–Ryll-Nardzewski measurable selection theorem [2, Theorem 18.13],∫
S
D(·, s) dµ(s) is nonempty valued. It is locally bounded by Assumption 4. For almost

all s ∈ S, D(·, s) is graph closed and locally bounded, hence it is upper semicontinuous
by [3, Corollary 1 in Chapter 1, Section 1]. By Aumann’s integral properties, see [48,
Theorem 2], and since D(·, s) is upper semicontinuous, compact valued for all s, we have
that

∫
S
D(·, s) dµ(s) is graph closed.

Now, we have to verify the chain rule property. Let γ : [0, 1] −→ Rp be any absolutely
continuous curve. By hypothesis, there exists a set of full measure M ⊂ S such that for all
s ∈M , f(·, s) has conservative gradient D(·, s). We have ∀s ∈M , f(γ(·), s) is absolutely
continuous because f is locally Lipschitz in x ∈ C and γ is absolutely continuous. Thus,
∀s ∈ M f(γ(·), s) is differentiable a.e. and the chain rule property (10) holds for almost
all t ∈ [0, 1], i.e.,

∀v ∈ D(γ(t), s),
d

dt
f(γ(t), s) = 〈v, γ̇(t)〉. (10)

Let E ⊂ [0, 1]× S be the domain of existence of d
dt
f(γ(t), s). E is measurable and of full

measure according to Lemma 2. We want to verify the measurability of the domain of
validity of eq. (10) which is

E ∩ {(t, s) ∈ [0, 1]× S | ϕ(t, s) = 0}

where ϕ(t, s) = d
dt
f(γ(t), s)−〈D(γ(t), s), γ̇(t)〉 for all (t, s) ∈ E and ϕ(t, s) = 1 elsewhere.

By Castaing’s Theorem (see Remark 4) ϕ is measurable. The set {(t, s) ∈ [0, 1]× S | ϕ(t, s) = 0}
is exactly the upper inverse of {0} by ϕ, ϕu({0}) hence it is jointly measurable in
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(R × S,B(R) ⊗ A). By the same arguments using Fubini’s Theorem in the proof of
Lemma 2, ϕu({0}) is of full measure and there exists I1 ⊂ [0, 1] of full measure such that
for all t ∈ I eq. (10) holds for almost all s ∈ S.

Let t ∈ I1. From eq. (10) we can say that for any measurable selection v : s −→ Rp of
D(γ(t), ·) we have for almost all s ∈ S

d

dt
f(γ(t), s) = 〈v(s), γ̇(t)〉. (11)

Integrating (11) over s ∈ S we have for any a in the Aumann integral
∫
S
D(γ(t), s) ds and

measurable selection v such that a =
∫
S
v(s) ds,∫

S

d

dt
f(γ(t), s) dµ(s) =

∫
S

〈v(s), γ̇(t)〉 dµ(s) = 〈a, γ̇(t)〉. (12)

In the other hand, by continuity of γ, γ([0, 1]) is compact so Cauchy-Schwarz inequality
gives us for all (t, s) ∈ [0, 1]× S

|〈v(s), γ̇(t)〉| ≤ ‖D(γ(t), s)‖‖γ̇(t)‖ ≤ κ(s)‖γ̇(t)‖.

Since γ is absolutely continuous, γ̇ is integrable on [0, 1]. Thus, the function (t, s) 7→
κ(s)‖γ̇(t)‖ is locally integrable and so is (t, s) 7→ d

dt
f(γ(t), s). Using Proposition 2, there

exists I2 of full measure such that

∀t ∈ I2,
∫
S

d

dt
f(γ(t), s) dµ(s) =

d

dt

∫
S

f(γ(t), s) dµ(s). (13)

Combining eq. (12) which holds on I1 and eq. (13) which holds on I2 we have

∀t ∈ I1 ∩ I2, ∀a ∈
∫
S

D(γ(t), s) dµ(s),
d

dt

∫
S

f(γ(t), s) dµ(s) = 〈a, γ̇(t)〉

and I1 ∩ I2 is of full measure. Finally we have shown that
∫
S
D(·, s) dµ(s) is nonempty

compact valued graph closed, and verifies the chain rule property, hence it is a conservative
gradient for

∫
S
f(·, s) dµ(s). �

3.3 Application to stochastic approximation

Let P be a probability measure on (S,A), and consider a set-valued map D : Rp×S → Rp

such that for almost all s ∈ S, f(·, s) is locally Lipschitz continuous and D(·, s) is a
conservative gradient for f(·, s). We consider the sequence (wk)k∈N defined by (2) where
v is now a selection of D, i.e., for all (w, s) ∈ Rp × S, v(w, s) ∈ D(w, s).

In order to study the sequence (wk)k∈N, we will use the nonsmooth ODE method developed
in [5]. To this end, one considers the set-valued map

DJ : w 7→ conv

(∫
S

D(w, s) dP (s)

)
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and the differential inclusion
ẇ ∈ −DJ (w). (14)

A solution to the differential inclusion (14) with initial point w0 ∈ Rp is an absolutely
continuous curve w : R+ −→ Rp such that w(0) = w0 and for almost all t ∈ R+, ẇ(t) ∈
−DJ (w(t)). It is known that for any initial condition, (14) has at least a solution whenever
DJ satisfies the following conditions (see Chapter 2, Theorem 3 in [3]):

– DJ is graph closed,

– DJ is nonempty and convex valued,

– DJ is locally bounded

Define Φt be the set-valued flow at t ∈ R+ defined for w0 ∈ Rp as

Φt(w0) := {w(t) | w : R+ → Rp is a solution of (14) with w(0) = w0} .

Definition 6 (Lyapunov function for a set) A function F is a Lyapunov function for
a set S ⊂ Rp and for the dynamical system (14) if

∀x ∈ Rp \ S ,∀t > 0, ∀y ∈ Φt(x), F(y) < F(x)

∀x ∈ S, ∀t ≥ 0,∀y ∈ Φt(x), F(y) ≤ F(x).

Lemma 3 (Conservative gradient and Lyapunov function) Let DJ a conservative
gradient for J . J is a Lyapunov function for critDJ and the differential inclusion (14)

Proof. Let x ∈ Rp, t ≥ 0 and y ∈ Φt(x). By definition of Φt, there exists w : R+ → Rp

a solution to the differential inclusion ẇ ∈ −DJ (w) with initial value w(0) = x ∈ Rp

such that y = w(t). By definition of a conservative gradient and since w is absolutely
continuous we have:

J (w(t))− J (w(0)) =

∫ t

0

〈DJ (w(u)), ẇ(u)〉 du. (15)

Since w is a solution of (1), ẇ(u) ∈ −DJ (z(u)) for almost all u ∈ [0, t] and we have
J (w(t))− J (w(0)) = −

∫ t
0
‖ẇ(u)‖2 du, hence J (w(t)) = J (y) ≤ J (x).

Now we suppose that x ∈ Rp \ critDJ and t > 0. By upper semicontinuity, ∃ε > 0, ∃δ >
0,∀y ∈ Rp such that ‖y − x‖ ≤ δ, we have ∀v ∈ DJ (y), ‖v‖ ≥ ε. By continuity of w,
∃t0 > 0,∀u ∈ [0, t0] , ‖w(u)− x‖ ≤ δ hence ‖ẇ(u)‖ ≥ ε for almost all u ∈ [0, t0]. Thus, by
integration,

∫ t
0
‖ẇ(u)‖2 du is strictly positive and J (y) < J (x). �

Assumption 6 The following hold for D and f :

1. For all w ∈ Rp, f(w, ·) is integrable.

2. D : Rp × S ⇒ Rp is jointly measurable in Rp × S.
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3. For all compact subset K ⊂ S, there exists a measurable function κ : S −→ R+ such
that κ is square integrable with respect to P and:

∀(w, s) ∈ K × S, ‖D(w, s)‖ ≤ κ(s)

where for (w, s) ∈ Rp × S, ‖D(w, s)‖ := sup
y∈D(w,s)

‖y‖.

Remark 5 Assumption 6.3 is sufficient to apply Theorem 4 because if κ is square inte-
grable with respect to the probability measure P , it is also P -integrable.

We have shown in Section 3 that DJ is a conservative gradient for J . Following the work
of Benaim-Hofbauer-Sorin [5], let us make a Morse-Sard assumption:

Assumption 7 (Morse-Sard) J (critDJ ) has empty interior.

We now arrive to one of the central theorems of this work

Theorem 5 (Convergence of the subgradient sampling method) Let (wk)k∈N given
by (2). Suppose Assumption 6, Assumption 7. Assume furthermore that (αk)k∈N is strictly
positive,

∑
k∈N αk = +∞,

∑
k∈N α

2
k < +∞ and sup

k∈N
‖wk‖ = M < +∞ almost surely. Then

almost surely, J (wk) converges as k → +∞ and all accumulation point w̄ of (wk)k∈N sat-
isfies 0 ∈ DJ (w̄).

Proof.

We set for all k ∈ N the quantities

ak =

∫
S

v(wk, s) dP (s) and εk = v(wk, ξk)− ak.

With these notations, (2) writes

wk+1 = wk − αk(ak + εk) for all k ∈ N,

where we have ak ∈
∫
S
D(wk, s) dP (s) ⊂ DJ (wk). By independence of the ξk, k ∈ N, we

have for all k ∈ N∗, E [εk | ε0, . . . , εk−1] =
∫
S
v(wk, s) dP (s)−ak = 0. We have to verify the

sequence (εk)k∈N is bounded in second order moment. By assumption sup
k∈N
‖wk‖ = M <

+∞ almost surely, whence by Assumption 6, we have almost surely ‖D(wk, ξ)‖ ≤ κ(ξ)
where ξ ∼ P . It follows that

E
[
‖εk‖2 | ε0, . . . , εk−1

]
= Eξ∼P

[
‖v(wk, ξ)− ak‖2

]
≤ Eξ∼P

[
(‖v(wk, ξ)‖+ ‖ak‖)2

]
≤ 4Eξ∼P

[
‖D(wk, ξ)‖2

]
≤ 4Eξ∼P

[
κ(ξ)2

]
< +∞ almost surely,

hence sup
k∈N

E [‖εk‖2] < +∞ and by [5, Remark 1.5 (i)] (wk)k∈N satisfies [5, Definition (II)],

i.e., is a perturbed solution to (14) with probability 1. We can now combine several
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results from [5] to deduce our convergence result. By [5, Theorem 4.2] (wk)k∈N satisfies
[5, Theorem 4.1 (ii)] for (14) which implies by [5, Theorem 4.3] since sup

k∈N
‖wk‖ = M <

+∞, that the set of accumulation points of (wk)kinN is internally chain transitive with
probability 1. Then by Lemma 3 J is a Lyapunov function for critDJ and the differential
inclusion (14). By Assumption 7, J (critDJ ) has an empty interior. All the conditions
are satisfied to apply [5, Proposition 3.27] hence almost surely the set of accumulation
points of (wk)k∈N is contained in critDJ and J (wk) converges. �

4 On the geometry of stochastic optimization pro-

blems

4.1 Definable sets

Definition 7 (o-minimal structure) LetO = (Op)p∈N be a collection of sets such that,
for all p ∈ N, Op is a set of subsets of Rp. O is an o-minimal structure on (R,+, ·) if it
satisfies the following axioms:

1. For all p ∈ N, Op is stable by finite intersection and union, complementation, and
contains Rp.

2. If A ∈ Op then A× R and R× A belong to Op+1.

3. Denoting by π the projection on the p first coordinates, if A ∈ Op+1 then π(A) ∈ Op.

4. For all p ∈ N, Op contains the algebraic subsets of Rp, i.e., sets of the form
{x ∈ Rp : P (x) = 0}, where P : Rp → R is a polynomial function.

5. The elements of O1 are exactly the finite unions of intervals.

The definition allows in particular to prove definability through the use of first-order
formula (see [22] for more details). We also recall a few useful results below.

Proposition 3 (Definable choice [22]) Let A ⊂ Rp×Rq a definable set. Denote Pp the
projection on the p first coordinates. Then there exists a definable function h : PpA→ Rq

such that for all x ∈ PpA, (x, h(x)) ∈ A.

Definition 8 (Semianalytic sets and functions [49]) (i) (Semianalyticity) A subset
A of Rn is semianalytic if for any point x ∈ Rd, there exists a neighborhood U of x such
that U ∩ A has the form

l⋃
i=1

k⋂
j=1

{x ∈ Rn | gij(x) < 0, hij(x) = 0} where the gij and hij are real analytic.

(ii) (Subanalyticity) A subset A of Rn is called a subanalytic set if there exists m ∈ N
such that A is the projection of a semianalytic set M ⊂ Rn+m on the n first coordinates.
A function f : Rl → Rk is subanalytic if its graph is a subanalytic set of Rl × Rk.
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A useful notion to get an o-minimal structure containing “compactly defined” subanalytic
functions is global subanalyticity. Let

τn : x 7→

(
x1√

1 + x21
, . . . ,

xn√
1 + x2n

)
and define the globally subanalytic sets of Rn as the subsets of Rn whose images by τn are
subanalytic.

The collection of globally subanalytic sets on the spaces Rn, n ≥ 1 forms an o-minimal
structure denoted Ran. Also, there exists an o-minimal structure denoted Ran,exp contain-
ing Ran and the graph of the exponential function (see [25]).

4.2 Definability and set-valued integration

The following result is a set-valued version of [21, Theorem 1.3].

Theorem 6 (Definable set-valued integrals) Let φ a globally subanalytic density func-
tion on Rm, D : Rp × Rm ⇒ Rp globally subanalytic, graph closed, locally bounded and
convex valued. Then the set-valued map DJ : w 7→

∫
Rm D(w, s)φ(s) ds is definable in

Ran,exp.

Proof. In order to prove the definability of DJ using Theorem 1.3 in [21], we use a
property of the support function. For a compact convex subset C ⊂ Rp define the support
function as hC : q 7→ max

v∈C
〈v, q〉. Then by duality, we have

C =

{
z ∈ Rp

∣∣∣∣ sup
v∈Rp

〈v, z〉 − hC(v) = 0

}
.

By assumption D is definable in Ran, so the set-valued map (w, q, s) 7→ 〈D(w, s), q〉 is
definable. Denote G its graph. The function

H : Rp × Rp × Rm → R
(w, q, s) 7→ max

v∈D(w,s)
〈v, q〉

is definable in Ran because its graph can be written as a first-order formula:

GraphH = {(w, q, s, y) ∈ G | ∀(w′, q′, s′, y′) ∈ G, (w′, q′, s′) = (w, q, s) =⇒ y ≥ y′} .

By definition of the Aumann integral, we have for all w ∈ Rp

DJ (w) =

{∫
Rm

g(s)φ(s) ds

∣∣∣∣ g is a measurable selection of D(w, ·)
}
.

Then by linearity, for (w, q) ∈ Rp × Rp we have

hDJ (w)(q) = max
v∈DJ (w)

〈v, q〉

= max

{∫
Rm

〈g(s), q〉φ(s) ds

∣∣∣∣ g is a measurable selection of D(w, ·)
}
.
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Using Theorem 18.19. in [2], there exists a measurable selection g̃ : Rm 7→ Rp of D(w, ·)
such that ∀s ∈ Rm, 〈g̃(s), q〉 = max

v∈D(w,s)
〈v, q〉 = H(w, q, s), and thus, g̃ achieves the maxi-

mum hDJ (w)(q), i.e., hDJ (w)(q) =
∫
Rm H(w, q, s)φ(s) ds.

Using the property of the support function, we can finally write the graph of DJ :

GraphDJ = {(w, z) ∈ Rp × Rp | z ∈ DJ (w)}

=

{
(w, z) ∈ Rp × Rp

∣∣∣∣ sup
q∈Rp

〈q, z〉 − hDJ (w)(q) = 0

}
=

{
(w, z) ∈ Rp × Rp

∣∣∣∣ sup
q∈Rp

〈q, z〉 −
∫
Rm

H(w, q, s)φ(s) ds = 0

}
.

Using [21, Theorem 1.3], the function (w, q) ∈ Rp×Rp 7→
∫
S
H(w, q, s)φ(s) ds is definable

in Ran,exp, hence DJ is definable in Ran,exp (see [25]). �

4.3 Consequences in stochastic optimization

Preliminary results Before providing our stochastic results, let us establish some tech-
nical lemmas:

Lemma 4 Let (r, q) ∈ N∗ × N∗, and L ⊂ Rr × Rq a dense definable set. Then for all
w ∈ Rr setting Lw := {s ∈ Rq | (w, s) ∈ L}, there is a dense definable set W ⊂ Rr such
that for all w ∈ W , Lw is dense in Rq.

Proof. Set W = {w ∈ Rr | ∀z ∈ Rq, ∀ε > 0,∃s ∈ Rq, (w, s) ∈ L, ‖s− z‖ < ε}. This set is
definable and is precisely the set of w such that Lw is dense in Rq. Assume that W c has
non empty interior. This means that there is an open set U ⊂ Rr, such that for all w ∈ U

∃z ∈ Rq,∃ε > 0,∀s ∈ Rq, (w, s) ∈ L, ‖s− z‖ ≥ ε.

By definable choice, there are definable functions z : U → Rq and ε : U → R∗+, such that
for all w ∈ U , we have

{(w, v) ∈ U × Rq | ‖v − z(w)‖ < ε(w)} ⊂ Lc.

By stratification, reducing U if necessary, z and ε can be chosen Lipschitz continuous and
thus Lc has nonempty interior which contradicts the density of L. �

Claim 1 Let g : Rp × Rm → Rp be a definable function. Then there exists a definable
dense open sets L ⊂ Rp × Rm a subset Γ ⊂ R which complement is finite as well as a
definable dense set ∆ ⊂ Γ × Rm, such that g is C2 on L, for every α ∈ Γ, the definable
set {s ∈ Rm | (α, s) ∈ ∆} is dense open in Rm and for all (α, s) ∈ ∆, denoting by
Φα,s = Id−α∇wg(·, s) from Ls := {w ∈ Rp | (w, s) ∈ L}, dense open, to Rp, we have

∀Z ⊂ Rp definable, dimZ ≤ p− 1 =⇒ dim Φ−1α,s(Z) ≤ p− 1.
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Proof. Denote by L a definable dense open set such that g is C2 on L (such sets exist by
stratification). Let λ : L ⊂ Rp×Rm → Rp be a definable representation of the eigenvalues
of ∇2

wg, where ∇2
wg denotes the partial Hessian of g with respect to the variable w. Refine

L so that λ is jointly differentiable in (w, s). L is open and dense by definability of g.
We further set S0 ⊂ Rm the definable dense set obtained from Lemma 4 such that for all
s ∈ S0 the set Ls := {w ∈ Rp | (w, s) ∈ L} is open dense in Rp.

Set F to be the complement of the critical values of the function λi, for i = 1, . . . , p
on L. The critical values set F c is finite by the definable Sard’s theorem [11]. Set
Γ := {α ∈ R | α 6= 0, α−1 ∈ F}. For i = 1, . . . , p set

Ei := {(α, s) ∈ Γ× S0 | ∃w ∈ L, αλi(w, s) = 1,∇wλi(w, s) = 0} .

This set is definable because it is defined by a first-order formula involving definable
functions and L, F , S0 which are definable sets. Let us fix an arbitrary α ∈ Γ, and show
that the set Eα,i := {s ∈ Rm | (α, s) ∈ Ei} has empty interior. By [22, Theorem 3.1]
there exists a definable function w̃ : Eα,i → Rp such that ∀s ∈ Eα,i, αλi(w̃(s), s) = 1 and
∇wλi(w̃(s), s) = 0. Suppose by contradiction that there exists a nonempty open subset
U ⊂ Eα,i. By definability of w̃ and a stratification argument, U can be chosen so that
w̃ is continuously differentiable on U . Then denoting λ̃i : s 7→ λi(w̃(s), s) we have for all
s ∈ U , ∇λ̃i(s) = 0. The chain rule applied on λ̃i yields

∀s ∈ U, ∇λ̃i(s) = Jac w̃(s)T∇wλi(w̃(s), s) +∇sλi(w̃(s), s) = ∇sλi(w̃(s), s) = 0.

Hence we have or all s ∈ U , ∇λi(w̃(s), s) = 0. In other words since λi(w̃(s), s) = α−1, for
all s ∈ U then α−1 is a critical value of λi which contradicts the fact that α ∈ Γ. This
shows that Eα,i has empty interior for all α in Γ therefore Ei also has empty interior.

Set ∆ = (
⋃p
i=1Ei)

c
, ∆ is the complement of a finite union of definable sets with empty

interiors so it is definable and dense. Lemma 4 implies that there are only finitely many
values α such that {s ∈ Rm | (α, s) ∈ ∆} is not dense in Rm. Therefore, we may refine
further Γ by removing finitely many points, and refine ∆ accordingly such that it satisfies
the desired projection property: for every α ∈ Γ, the set {s ∈ Rm | (α, s) ∈ ∆} is dense
in Rm.

Now, fix α ∈ Γ and s such that (α, s) ∈ ∆. Consider the set

Kα,s =
{
w ∈ Ls | Φ′α,s(w) = Ip − α∇2

wg(w, s) is not invertible
}

where Ip is the identity matrix of size p. Diagonalizing ∇2
wg(w, s), the determinant of

Φ′α,s(w) is
∏p

i=1(1−αλi(w, s)). It is equal to zero if and only if there exists i ∈ {1, . . . , p}
such that αλi(w, s) = 1 hence

Kα,s =

p⋃
i=1

{w ∈ Ls | αλi(w, s) = 1} .

Since α ∈ Γ and (α, s) ∈ ∆, by construction of ∆, α−1 is a regular value for the functions
w 7→ λi(w, s), defined for w ∈ Ls, for all i = 1, . . . , p. So the set Kα,s is a union of p− 1
dimensional submanifolds in Ls and Kc

α,s is open and dense set in Ls. Then, let Z ⊂ Rp
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definable and such that dimZ ≤ p − 1. Suppose by contradiction that there exists a
nonempty open set V ⊂ Φ−1α,s(Z). The intersection V ∩ Kc

α,s is open and nonempty
because Kc

α,s is dense and both sets are open. Since Φα,s is a local diffeomorphism on
Kc
α,s, the image Φα,s(V ∩Kc

α,s) has a nonempty interior but is included in Z of dimension
p− 1, which is a contradiction. The claim is proved. �

The following claim is a consequence of Lemma 4.

Claim 2 Let g : Rp × Rm → R be a definable function and v : Rp × Rm → Rp × Rm be a
definable map such that ∇g = v on a definable dense open set C ⊂ Rp ×Rm. Then there
is a definable set Z ⊂ Rp, dense, such that for all w ∈ Z, ∇g(w, s) = v(w, s) for all s in
a definable dense open set in Rm.

Theorem 7 (Most subgradient sequences are gradient sequences) Let g a defin-
able function and (sk)k∈N a sequence of Rm. Consider the sequence generated by

wk+1 = wk − αkv(wk, sk) for all k ∈ N (16)

where v : Rp × Rm → Rp is a definable map such that there exists a definable dense open
set C ⊂ Rp × Rm, where for all (w, s) ∈ C, ∇wg(w, s) = v(w, s). Then there exist a set
W0 ⊂ Rp of full measure and residual, and a set Γ ⊂ R whose complement is finite such
that if w0 ∈ W0 and αk ∈ Γ for all k ∈ N, then for all k ∈ N

– wk+1 = wk − αk∇wg(wk, sk) for sk in a definable dense open set.

– g(·, sk) is C2 in a neighborhood of wk for sk in a definable dense open set.

Proof. Let L ⊂ Rp × Rm, Γ ⊂ R, ∆ ⊂ Γ × Rm, given by Claim 1. g is C2 on L which
is definable dense open, and for every α ∈ Γ, the definable set {s ∈ Rm | (α, s) ∈ ∆} is
dense open in Rm.

L is definable and dense, therefore by Lemma 4 there exists a definable dense set W ⊂ Rp

such that for all w ∈ W , {s ∈ Rm | (w, s) ∈ L} is dense in Rm. By Claim 2 there exist
definable dense and open subsets V ⊂ Rp, such that for all w ∈ V , ∇wg(w, s) = v(w, s)
for all s in {s ∈ Rm | (w, s) ∈ C} definable and dense. For all w ∈ V ∩W the following
are satisfied:

– ∇wg(w, s) = v(w, s) for s in {s ∈ Rm | (w, s) ∈ C}, definable and dense.

– g(·, s) is C2 in a neighborhood of w for s in {s ∈ Rm | (w, s) ∈ L} definable and
dense.

Set for all k ∈ N ∆k := {s ∈ Rm | (αk, s) ∈ ∆}, Ck := {s ∈ Rm | (wk, s) ∈ C} and Lk :=
{s ∈ Rm | (wk, s) ∈ L} which are definable and dense. Suppose for all k ∈ N αk ∈ Γ and
ξk ∈ ∆k∩Ck∩Lk. We have to show for each k ∈ N, wk defined by (16) belongs to V ∩W .

Denote for (α, s) ∈ Γ× Rm Φα,s := Idp−α∇wg(·, s) and Ψk :=
k∏
i=0

Φαi,ξi and remark that

Ψk(w0) = wk+1 for all k ∈ N.
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For all k ∈ N, by definition of ∆k, if ξk ∈ ∆k ∩ Ck ∩ Lk then (αk, ξk) ∈ ∆. Following
Claim 1 the function Φαk,ξk := Idp−αk∇wg(·, ξk) from {w ∈ Rp | (w, ξk) ∈ L}, dense and
open, to Rp verifies

∀Z ⊂ Rp definable, dimZ ≤ p− 1 =⇒ dim Φ−1αk,ξk
(Z) ≤ p− 1. (17)

Define the sequence N0 := (V ∩ W )c and Nk+1 := Φ−1αk,ξk
(Nk) for k ∈ N and remark

that for k ∈ N, Nk+1 = Ψ−1k ((V ∩ W )c). Furthermore, the set of initialization points
w0 such that for all k ∈ N, wk ∈ V ∩ W is W0 :=

⋂
k∈NN

c
k . Since by definability of

V ∩W we have dim(V ∩W )c ≤ p− 1, we can apply the property (17) recursively on the
(Nk)k∈N and obtain for all k ∈ N dimNk+1 = dim Ψ−1k ((V ∩W )c) ≤ p − 1 provided that
ξk ∈ ∆k ∩ Ck ∩ Lk. For all k ∈ N, Nk is a definable closed set with empty interior so
it has zero measure. W0 =

⋂
k∈NN

c
k is a countable intersection of dense open sets with

empty interiors so by Baire’s theorem it is also a dense open set. It is a residual set by
countable intersection of residual sets, and it has full measure as a countable intersection
of full measure sets.

If w0 ∈ W0 which is of full measure and residual, if for all k ∈ N, αk ∈ Γ whose complement
is finite and ξk ∈ ∆k ∩ Ck ∩ Lk which is definable dense, then the following hold for all
k ∈ N:

– ∀k ∈ N, wk+1 = wk − αk∇wg(wk, ξk).

– g(·, ξk) is C2 in a neighborhood of wk.

�

5 Proofs of Section 2

Proof of Lemma 1. Since f is semialgebraic, for all s ∈ S the function f(·, s) is path-
differentiable [13, Proposition 2] with conservative gradient ∂cwf(·, s). By Assumption 1,
for all compact set K ⊂ Rp there exists a square P -integrable (hence P -integrable) func-
tion κ : Rm → R such that ∀(x, y) ∈ K, |f(x, s) − f(y, s)| ≤ κ(s)‖x − y‖ for all s ∈ Rm

which implies ‖∂cwf(x, s)‖ ≤ κ(s) for all (x, s) ∈ K ×Rm. All the conditions are satisfied
to apply Theorem 4 hence J admits a chain rule. �

Proof of Theorem 1. According to Lemma 1 J is path-differentiable with respect to
the set-valued map Eξ∼P [∂cwf(·, ξ)]. (i) is a consequence of [15, Lemma 21], [29, Theorem
3.2] and [8, Proposition 9] which apply to the setting of conservative gradients. We rewrite
the sequence (2) as

wk+1 = wk − αk(a(wk) + ηk),

where a = Eξ∼P [v(·, ξ)] and ηk = v(wk, ξk) − a(wk). By joint measurability of v, a is a
measurable selection of the Aumann integral Eξ∼P [∂cwf(·, ξ)], see Definition 3. (ηk)k∈N
verifies for all k ∈ N,

E [ηk+1|ξ0, . . . , ξk] = E [v(wk+1, ξk+1)− a(wk+1)|ξ0, . . . , ξk]
= Eξ∼P [v(wk+1, ξ)]− a(wk+1) = 0.
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Following [29, Remark 4.6], see also [6], we have to verify

lim
R→+∞

sup
k∈N

E
[
‖ηk+1‖1{‖ηk‖≥R}|ξ0, . . . , ξk

]
= 0.

By Assumption 1 there exists an integrable function κ : Rm → R+ with respect to
P such that ∀x, y ∈ B(0,M), |f(x, s) − f(y, s)| ≤ κ(s)‖x − y‖. It implies that for
all (w, s) ∈ B(0,M) × Rm, ‖∂cwf(w, s)‖ ≤ κ(s), where we recall that ‖∂cwf(w, s)‖ :=

sup
y∈∂cwf(w,s)

‖y‖. By assumption, there exists M > 0 such that sup
k∈N
‖wk‖ ≤ M almost surely.

Since ∀(w, s) ∈ Rp × Rm, v(w, s) ∈ ∂cwf(w, s), we have for all w ∈ B(0,M), ‖a(w)‖ ≤
Eξ∼P [‖v(w, ξ)‖] ≤ Eξ∼P [κ(ξ)] < +∞. On the event sup

k∈N
‖wk‖ ≤M we have for all k ∈ N,

‖ηk‖ = ‖v(wk, ξk)− a(wk)‖ ≤ ‖∂cwf(wk, ξk)‖+ ‖a(wk)‖
≤ κ(ξk) + ‖a(wk)‖
≤ κ(ξk) + Eξ∼P [κ(ξ)] . (18)

Now set for ξ ∈ Rm u(ξ) := κ(ξ) + Eξ∼P [κ(ξ)]. Then we have for all k ∈ N,

E
[
u(ξk+1)1{u(ξk+1)≥R}|ξ0, . . . , ξk

]
=Eξ∼P

[
u(ξ)1{u(ξ)≥R}

]
+ Eξ∼P [κ(ξ)]Eξ∼P

[
1{u(ξ)≥R}

]
.

Finally,

sup
k∈N

E
[
‖ηk+1‖1{‖ηk+1‖≥R}|ξ0, . . . , ξk

]
≤ Eξ∼P

[
u(ξ)1{u(ξ)≥R}

]
+ Eξ∼P [κ(ξ)]Eξ∼P

[
1{u(ξ)≥R}

]
(19)

where we used the inequality (18) which implies 1{‖ηk+1‖≥R} ≤ 1{u(ξk+1)≥R}. By the Dom-
inated Convergence Theorem, the right side in (19) converges to 0, hence

lim
R→+∞

sup
k∈N

E
[
‖ηk+1‖1{‖ηk‖≥R}|ξ0, . . . , ξk

]
= 0.

and [29, Theorem 3.2] applies. Combining [15, Lemma 21] (see Remark 2 for its validity
in this setting), [29, Theorem 3.2] and [8, Proposition 9], item (i) is proved.

In order to prove item (ii) we first apply Theorem 7 which gives a set W0 ⊂ Rp of full
measure and residual, and a set Γ ⊂ R whose complement is finite such that if w0 ∈ W0

and αk ∈ Γ for all k ∈ N, then with probability 1 we have for all k ∈ N:

– wk+1 = wk − αk∇wf(wk, ξk).

– f(·, ξk) is C2 in a neighborhood of wk.

Let k ∈ N, h ∈ Rp. By assumption there exists a square integrable function κ : Rm → R+

such that for all a ∈ [−1, 1], |f(wk + ah, s) − f(wk, s)| ≤ κ(s)|a|‖h‖ for P -almost all
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s ∈ Rm. We can apply the Dominated Convergence Theorem to obtain

lim
a→0

J (wk + ah)− J (wk)

a
= lim

a→0

1

a

∫
S

f(wk + ah, s)− f(wk, s) dP (s)

=

∫
S

lim
a→0

f(wk + ah, s)− f(wk, s)

a
dP (s)

=

∫
S

〈∇wf(wk, s), h〉 dP (s)

= 〈
∫
S

∇wf(wk, s) dP (s), h〉.

Thus, for all k ∈ N, with probability 1, J is differentiable at wk with the equality
∇J (wk) = Eξ∼P [∇wf(wk, ξ)]. (wk)k∈N hence verifies with probability 1

wk+1 = wk − αk (∇J (wk) + ηk+1) for all k ∈ N,

where ηk := ∇wf(wk, ξk) − ∇J (wk) is a martingale increment. The result then follows
from [15, Lemma 21], [29, Theorem 3.2] and [8, Proposition 9]. �

Proof of Theorem 2. Under Assumption 2, the function J is definable using [21,
Theorem 1.3]. From Theorem 6 the set-valued map DJ = convEξ∼P [∂cf(·, ξ)] is definable
and it is a conservative gradient for J by Lemma 1. By definable Sard’s theorem the set of
DJ -critical values of J which is J (critDJ ) is definable. Assuming for all k ∈ N αk > 0,∑

k∈N α
2
k < +∞, all conditions are satisfied to apply Theorem 5 hence all accumulations

points w̄ satisfy 0 ∈ DJ (w̄) and J (wk) converges.

Theorem 1 gives us Γ ⊂ R whose complement is finite, W0 ⊂ Rp of full measure and
residual, such that if αk ∈ Γ for all k ∈ N then for all initialization w0 in W0 we have with
probability 1 the relation

wk+1 = wk − αk(∇J (wk) + ηk) for all k ∈ N

where ∇J (wk) = Eξ∼P [∇wf(wk, ξk)] and ηk = ∇wf(wk, ξk) −∇J (wk). Under Assump-
tion 1.1, as in (18) we have ‖ηk‖ ≤ κ(ξk)+Eξ∼P [κ(ξ)] for all k ∈ N, hence supk∈N E[‖ηk‖2] <
+∞ by square integrability of κ. Since the function J is definable, ∂cJ is also defin-
able. Then by definable Sard’s theorem the Clarke critical values of J are finite. By
Lemma 1 and Lemma 3 J is a Lyapunov function for crit ∂cJ and the differential inclu-
sion ẇ ∈ −∂cJ (w). Assume furthermore that for all k ∈ N αk > 0,

∑
k∈N α

2
k < +∞.

Then all conditions are satisfied to apply the results in [5] as in the proof of Theorem 5
and deduce that with probability 1, the sequence (J (wk))k∈N converges as k → +∞ and
all accumulation points w̄ of (wk)k∈N are Clarke critical, i.e.,verify 0 ∈ ∂cJ (w̄). �

Proof of Theorem 3. The regression case, when P has a semialgebraic density with
respect to the Lebesgue measure, is a direct application of Theorem 2 which holds with
the backpropagation oracle, see Remark 2. The classification case uses similar arguments
as mentioned in Remark 3. �

24



6 Generalized gradients of Norkin and conservativity

6.1 Definitions

Throughout this section, f : Rp → R is Lipschitz continuous and D : Rp ⇒ Rp is locally
bounded nonempty convex valued and upper semicontinuous. Convex values are indeed
required by Norkin in [34, 35, 36].

Definition 9 (Semismooth generalized gradients) The set-valued mapping D is a
generalized gradient of f if for all x ∈ Rp, we have

lim sup
y→x, g∈D(y)

f(y)− f(x)− 〈g, y − x〉
‖y − x‖

= 0.

The lim sup property in the definition is referred to as the semismoothness property of the
generalized gradients. On the other hand, conservative gradients can be defined through
the chain rule along absolutely continuous curves as in Definition 5. In both cases, the
corresponding set-valued gradient maps have to be singletons almost everywhere while
containing the Clarke subgradient of f everywhere [34, 13]. Functions with generalized
gradient are called differentiable in the generalized sense. Recall that functions with
conservative gradients are called path-differentiable.

6.2 Relations between the two notions

The following strenghtens [44, Theorem 1] which shows a chain rule with respect to a class
of semismooth curves, strictly smaller than the class of absolutely continuous curves.

Proposition 4 If D is a generalized gradient of f in the sense of Definition 9, then it is
a conservative gradient of f .

Proof. We shall use the chain rule along absolutely continuous path characterization
of conservative gradients in Definition 5. Let D be a generalized gradient of f as in
Definition 9, and γ : [0, 1]→ Rp be an absolutely continuous path. Then both γ and f ◦ γ
are absolutely continuous, hence differentiable almost everywhere. Therefore, there exists
a full measure subset R ⊂ [0, 1] such that both are differentiable at every point on R.

Suppose, toward a contradiction, that the chain rule is not valid along γ, that is, there
exists a non zero set E1 ⊂ R such that for all t ∈ E1, there is g ∈ D(γ(t)) such that
d
dt

(f ◦ γ)(t) 6= 〈g, γ̇(t)〉. Note that this implies that γ̇(t) 6= 0 for all t ∈ E1, since if
γ̇(t) = 0 then 0 = d

dt
(f ◦ γ)(t) = 〈g, γ̇(t)〉. Reducing E1 and changing sign if necessary,

we may assume without loss of generality that for all t ∈ E1, there is g ∈ D(γ(t)) such
that d

dt
(f ◦ γ)(t) < 〈g, γ̇(t)〉.

Consider the measurable function (measurability is justified in [13]), g : [0, 1] → Rp, de-
fined for all t ∈ R by g(t) = arg max

v∈D(γ(t))

〈γ̇(t), v〉 and g(t) = 0 otherwise.
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We have for all t ∈ E1, 0 < 〈γ̇(t), g(t)〉 − d
dt

(f ◦ γ)(t). This means that there is ε > 0 and
a nonzero set E2 ⊂ E1 such that ε ≤ 〈γ̇(t), g(t)〉− d

dt
f ◦ γ(t) for all t ∈ E2 (otherwise, one

would have 〈γ̇, g〉 − d
dt

(f ◦ γ) = 0 almost everywhere on E1).

Let us apply Lusin’s theorem (see, e.g., [42, Section 3.3]), fix an arbitrary α > 0, such that
λ(E2) > α, there is a closed subset E3 ⊂ E2 such that λ(E2 \E3) < α and g restricted to
E3 is continuous. The set E3 has positive measure since λ(E3) = λ(E2) − λ(E2 \ E3) >
α−α = 0. Let us summarize, E3 ⊂ [0, 1] is closed with positive measure and we have the
following on E3:

– Both f ◦ γ and γ have derivatives and γ̇ 6= 0.

– d
dt

(f ◦ γ) + ε ≤ 〈γ̇, g〉.

– g restricted to E3 is continuous.

Lebesgue density theorem (see, e.g., [28, Theorem 1.35]) ensures that almost all t ∈ E3

have density 1, that is,
λ([t− δ, t+ δ] ∩ E3)

λ([t− δ, t+ δ])
→
δ→0

1.

Since E3 has positive measure, there exists t̄ ∈ E3, a point of density 1 in E3. We have
for all t 6= t̄, such that γ(t) 6= γ(t̄),

f(γ(t))− f(γ(t̄))

(t− t̄)

=
‖γ(t)− γ(t̄)‖

t− t̄
f(γ(t))− f(γ(t̄))

‖γ(t)− γ(t̄)‖

=
‖γ(t)− γ(t̄)‖

t− t̄

(
f(γ(t))− f(γ(t̄))− 〈g(t), γ(t)− γ(t̄)〉

‖γ(t)− γ(t̄)‖
+
〈g(t), γ(t)− γ(t̄)〉
‖γ(t)− γ(t̄)‖

)
=
‖γ(t)− γ(t̄)‖

(t− t̄)

(
f(γ(t))− f(γ(t̄))− 〈g(t), γ(t)− γ(t̄)〉

‖γ(t)− γ(t̄)‖

)
+
〈g(t), γ(t)− γ(t̄)〉

t− t̄
.

Letting t→ t̄ with t ∈ E3, t 6= t̄ and γ(t) 6= γ(t̄), which is possible because t̄ has density
1 in E3 and γ̇(t̄) 6= 0, we have

f(γ(t))− f(γ(t̄))

(t− t̄)
→ d

dt
(f ◦ γ)(t̄)

‖γ(t)− γ(t̄)‖
(t− t̄)

→ ‖γ̇(t̄)‖

f(γ(t))− f(γ(t̄))− 〈g(t), γ(t)− γ(t̄)〉
‖γ(t)− γ(t̄)‖

→ 0

〈g(t), γ(t)− γ(t̄)〉
t− t̄

→ 〈g(t̄), γ̇(t̄)〉 ,

where the first two identities follow from the differentiability of f ◦ γ and γ at t̄ ∈ E3, the
third equality stems from the semismooth property of generalized gradients (Definition 9)
while the last one is by differentiability of γ and continuity of g restricted to E3 at t̄. We
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obtain that d
dt

(f ◦ γ)(t̄) = 〈g(t̄), γ̇(t̄)〉 ≥ d
dt

(f ◦ γ)(t̄) + ε, where the equality follows by the
previous limit and the inequality is because t̄ ∈ E3. This is contradictory since ε > 0,
which concludes the proof. �

Whence the class of functions differentiable in the generalized sense is contained in the
class of path-differentiable functions. In the semialgebraic case, both notions coincide
[23], but in general the inclusion is strict as the following example shows.

Proposition 5 Consider the closed set C ⊂ [−1, 1] defined through C = {1/k | k ∈
Z, k 6= 0}∪{0}. Then the distance function to C is path-differentiable but not differentiable
in the generalized sense.

Proof. First let us recall a substitution formula for absolutely continuous function [47,
Corollary 7]. If g : R → R is absolutely continuous and f : R → R is measurable and
bounded, then for all α, β ∫ g(β)

g(α)

f(x)dx =

∫ β

α

f(g(s))ġ(s)ds.

It is clear that ∂cF is locally constant (+1 or −1) out of a closed countable set (the
set C and its cut locus). Therefore, choosing f to be any measurable selection in ∂cF ,
the previous formula allows to conclude that F is path-differentiable. Indeed F is path-
differentiable if and only it satisfies the change of variable formula for any absolutely
continuous g, which is the case, because F is 1-Lipschitz so that |f | ≤ 1.

On the other hand, F (0) = 0 and for all k ∈ N∗, F (1/k) = 0 and ∂cF (1/k) = [−1, 1] so
that −1 ∈ ∂cF (1/k). The equality

F (1/k)− F (0)− 〈−1, 1/k − 0〉
‖1/k − 0‖

= 1,

contradicts the semismoothness property for the Clarke subgradient of F . Since F is
differentiable in the generalized sense if and only if its Clarke subgradient is a generalized
gradient, we conclude that F is not differentiable in the generalized sense at 0. �
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