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Abstract - Lacking information challenges the management 
of port operational uncertainty in estimating the situation to 
support a decision on reactivity planning. This paper applies 
Digital Twin (DT) to model a replicated virtual port operation 
from a real-world port of Thailand. The proposed DT model 
offers a tool to accelerate generating data of the port 
operation with configurable uncertainty. The model is 
validated by using generated data from the DT model 
compared with the real-world data. The result shows that the 
DT model produces the same behaviour as the real-world 
system. An outcome of this paper is a DT model eligible to 
generate port operation data for later application with 
machine learning to predict the port capacity under 
uncertainty to support reactivity planning. 

Keywords: Digital Twin; Uncertainty Management; Port 
Operation; Berth Allocation; Reactivity. 

1 INTRODUCTION 

In 2020, the coronavirus pandemic (COVID-19) brought 
several changes affecting maritime transport globally, 
including the port operation. Economic tensions drive the 
trade pattern to alternative markets and suppliers away from 
China e.g., South-East Asian countries. Flows of the container 
volume are changed according to changes on-demand, as 
well as the vessel capacity managed by carriers. Carriers 
control their costs during the situation by adjusting 
strategies such as service suspension and limiting container 
volume. In particular, carriers applied the policy of blanking 
scheduled sailing implying difficulties in the time controlling 
along its route (UNCTAD, 2020). Consequently, ports are 
impacted by these changes including additional operation 
policies for the COVID-19 outbreak. In further extreme 
conditions, several ports have to face challenges due to 

severe weather resulting in suspension of ports and the 
following of high container volume, the shortage of haulage 
and port congestion (The Loadstar, 2020a, 2020b). The 
environment of maritime logistics consists of various 
uncertainties, the most noteworthy of port functions is the 
ability to manage the port operation to accommodate cargos 
through fluctuations and unexpected circumstances (Burns, 
2018). 

During the period of port congestion, the vessel berthing 
time, including the estimated time to arrival (ETA) and the 
estimated time to departure (ETD) were rescheduled several 
times before the actual berthing. Even after the berthing, the 
ETDs were also updated. This implies an inaccuracy in the 
estimation for planning the berth allocation when the port is 
under an uncertain situation. Further, changes in the berth 
allocation have impacted to the port efficiency. Several 
activities of port and vessel operations depend on the berth 
schedule such as the scheduling of other port resources and 
the next vessel schedule on the berth. On each update of the 
ETA/ETD, all the following activities require rescheduling and 
this further accumulates uncertainty in the chain of port 
operations. Recent berth allocation models are in 
mathematical optimization. Several models considered 
uncertainty, such as the vessel arrival and vessel handling 
time. The uncertainty value is estimated by the probability 
distribution or by the port manager. However, the 
probability distribution is limited by the bounding range and 
port manager’s estimation can be limited by the experience. 
Therefore, in order to obtain information of uncertain port 
situation that is consistency to the real operation, this study 
proposes an approach of port digital twin model for 
supporting the uncertainty management. The model 
simulates the port operation with uncertainties and 
generates data necessary for further prediction of vessel’s 



2 

ETA and ETD under the uncertain circumstance to assist the 
planning decision of berth allocation by evaluating port 
capability to maintain the plan at each moment on a more or 
less in the long time horizon according to the new data 
available at each moment. 

This paper is structured as follows: Section 2 describes 
background of maritime container port and uncertainty. 
Section 3 justifies the management of berth allocation with 
uncertainty. Section 4 proposes the modelling of digital twin 
for port operation prediction. Section 5 presents results of 
digital twin validations and Section 6 concludes the paper. 

2 BACKGROUND 

2.1 MARITIME CONTAINER PORT 

The growth of global containerized logistics increased every 
year along the ten year of 2010-2019 at the rate of 1.6% to 
7.7% percents. Even in 2019, the growth rate was 3.1% lower 
than in 2018, it achieved 811 million TEUs of containers 
(twenty-foot equivalent unit). However, in 2020 the 
coronavirus pandemic influenced several changes of global 
consumption patterns in the whole supply chain, including 
the maritime containerized logistics. Resilience to changes 
became a focus in the industry perception (UNCTAD, 2020). 

The resilience of container port operation can affect its 
performance, global ports and shipping supply chain. 
Container port is the central spot switching containers 
among transportation modes (e.g., marine vessel, external 
truck, local barge and train). Since the handling operations 
are interconnected so during the operation, the container 
port has to interface impacts from disturbances and 
uncertainties from external factors and, also, internal 
factors. On another viewpoint, the resilience of port offers a 
chance to subsidize these impacts and prevents the impact 
size expansion to downstream of supply chain. 

The maritime containerized logistics involves three 
major actors; Vessel liners, container ports and hinterland 
transportation. When an unexpected event occurs externally 
out of port such as vessel delay, port has an ability to adjust 
its resource configuration in order to accelerate/decelerate 
in responding to the situation. Ultimately, the port gets the 
vessel schedule continuing as planned and no effect 
influences the next vessels. However, the adjustment of port 
operations on the seaside can affect the other part of port 
operations due to the interdependency of container flows 
within the port. 

Container port logistics transfers both import, export 
and transshipment containers between seaside and 
hinterland accesses in bidirectional flow using the same set 
of port resources consisting of berth space, quay cranes, 
internal trucks, yard cranes, reach stackers and yard storage 
space. Container is the microscopic element performing port 
operation activities to achieve its logistics purpose. On each 
operation activity, a container requires port resource(s) for a 
moving or storing activity. Figure 1 illustrates three 
connecting flows of containers in the chain of port 
operations as follows: 

 

Figure 1: Flows of containers on port operation 

1. Vessel-Berth loading/unloading: on vessel arrival 
(a marine vessel or local barge), berth space, a number of 
quay cranes and a number of internal truck were allocated. 
The vessel stowage plan provides the list of container 
sequences for loading/unloading at the specific position on 
the vessel. Quay cranes are scheduled according to the 
stowage plan to transfer containers onto/from internal 
trucks. 

2. Berth-Yard transferring: internal trucks transfer 
containers between the quay crane (Qcrane on Figure 1) and 
the yard crane/stacker (Ycranes on Figure 1). At the 
transferring points that carrier resources are switched, the 
container and the resource have to wait for each other. In 
addition, The yard crane processes the container at the 
specific point in the yard stack. The reshuffling of containers 
may be required and cause additional operation time. 

3. Yard-Hinterland pickup/discharging: external 
truck or train comes into the port through the hinterland 
gate to pick up/discharge the container. Once the external 
truck arrives the yard, it waits for the yard crane/ stacker to 
transfer the container to/from the specific point in the yard 
stack. The reshuffling of containers may be required and 
caused additional operation time. 

The port operation is a complex system involving three 
container flows connected by the interdependency of 
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resource sharing. When a container is holding a resource, the 
other containers from the same or the connecting flow have 
to wait. The time of resource holding influences the 
performance of all container flows. In particular, when the 
port is affected by impacts of disturbance and uncertainty 
from both external and internal, performance of the 
container logistics on the port can become vague due to the 
interdependency of operation. 

2.2 PORT OPERATIONAL UNCERTAINTY 

Threat and uncertainty exist in the supply chain including the 
port operation. Port has challenges in economic crises, heath 
crises, natural disasters, terrorist attacks and unexpected 
events in operation. Their impacts can disrupt port 
infrastructure and operation performance. Ports require to 
manage various kinds of unforeseen uncertainties to level up 
their performance to the position of competitive excellence. 
Efficiency, effectiveness and resilience to disruptions are 
three major components for achieving the port 
performance. Efficiency represents the operation 
performance such the output productivity under a limited 
resource. Effectiveness represents the fulfilling of customer 
expectations. Resilience represents the port capability in 
managing threats (Notteboom, Pallis, & Rodrigue, 2022). 
Efficiency rarely distinguishes the situation with or without 
an interference. Its purpose aims to achieve a service level. 
While, the resilience proposes abilities that directly interact 
with disruptions and uncertainty. 

Since this study focuses in managing uncertainty during 
the operation, therefore, we scope to approaches that 
support the operation to maintain its efficiency level by 
performing activities derived from resilience abilities when 
the port is interfered with by uncertainty/threat. Resilience 
is commonly defined as an ability to recover the situation 
from disruptions or disturbance and usually focuses in 
strategic solving. In engineering or physical sciences, 
resilience focuses on the resistance to the shocks or negative 
impact and the ability in returning to or resuming the 
stability. In ecological sciences, resilience is the ability to 
absorb the disturbance and to adapt to another stability. 
Another definition for complex adaptive systems theory, 
resilience is the ability to anticipate, to reactivity or to 
reorganization in order to minimize impact from disturbance 
(Notteboom et al., 2022). Port is a complex system involving 
several stakeholders and interdependence of sub-operations 
in the port system. Therefore, under the environment with 
various kinds of uncertainty/threat, the port resilience 
should have the ability to mitigate impacts resulting from 

uncertainty/threat in order to minimize the lost and to 
prevent the dispersing of negative impact to downstream 
operations. 

Vugrin, Warren, and Ehlen (2011) and Notteboom et al. 
(2022) defined three major abilities to maintain port 
resilience as absorptive, adaptive and restorative: 

• absorptive: Strength of negative impact is absorbed at 
a capacity level while the port operates with normal 
activities. Infrastructure and assets strategically are 
installed for handling with uncertainty in advance. 

• adaptive: port has ability in anticipating negative 
impact from uncertainty and respond by adjusting 
operation activities to mitigate the strength of impact 
during the interference. 

• restorative: port performs activities to recover the 
operation to its service level acceptance. 

Even these strategic approaches offer the prevention 
and absorptive of negative impact, however, uncertainty and 
negative impact still exist to be managed in all areas of the 
port operation. We examined studies in the port operational 
problems with concerning in operational uncertainty in order 
to explore types of uncertainty interfering the port and 
approaches of resilience ability applied to the problem. 

Several studies in port resilience measured cause-effect 
of threats and assessed how these impacted to the port in 
the dimension of resilience capacity. Hossain et al. (2019) 
assessed cause-effect of the tornado to the resilience of the 
port capacity integrating with capacity enhanced factors 
such as maintenance, cyber infrastructure, additional 
equipment, and etc. They quantified resilience capacity in 
absorptive, adaptive and restorative using Bayesiam in order 
to suggest leading factors that potentially improve port 
flexibility in case of the tornado. Russell, Ruamsook, and 
Roso (2020) examined uncertainty factors around port areas; 
seaside access, yard platform, hinterland access and port 
system-wide. They classified levels of capacity that impacted 
to each uncertainty factors as static asset, adjustable 
operation or logistics partner interaction. They proposed 
strategies to improve flexibility in the fluctuation of 
container capacity, for example, committing contract 
agreements with shipping partners, applying digitalization to 
obtain transparency in logistics platform and extending 
infrastructure. These studies show that uncertainty factors 
and container capacity have significant relation to the port 
operational uncertainty. However, these studies focused on 
the handling with uncertainty at strategic level while the 
management of uncertainty in the level of port operational 
system is rarely derived. 
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Operational resilience was conceptualized in a complex 
network consisting of nodes and links representing the 
functional ability of each node and relationships in dispersing 
negative impact to related nodes, respectively. System 
functionality acted for the resilience of the network system. 
Ganin et al. (2016) adopt activities of operational resilience 
with system functionality and time dependency as illustrated 
in Figure 2. 

Activities were adopted from the National Academy of 
Sciences (NAS) for managing the disaster resilience. Critical 
functionality is changed on each phase depending on the 
weight of negative impact and system activity performing 
against the impact. Interpreting this concept to the port 
operational system in each phase as follows: 

 

Figure 2: Operational resilience and critical functionality 
during disruption cycle (Ganin et al., 2016) 

• Plan activity: To anticipate uncertainty and negative 
impact reaching to the port. Also, to estimate critical 
functionality such as the port capacity in the next 
phase of absorbing activity. Aiming to plan the 
operation to be consistent with the estimated 
situation with minimized impact. 

• Absorb activity: To perform the operation within a 
negative impact environment based on infrastructure 
and asset strategically installed for handling with 
uncertainty. 

• Recover activity: To recover port operational service 
level back to normal state. 

• Adapt activity: To apply the new activity 

Resilience requires port capabilities in anticipation, 
preparation for, responding to and recovering from 
threat/uncertainty. Adaptive forecasting is still limited. 

Various factors cause uncertainty to the global supply 
chain network. A major is internationalization trading e.g., 
exchange rate, trading barriers, competition and etc. 
resulting in uncertain to demand, product pricing, costs and 
lead times. The other factors such as natural disasters and 

terrorist attacks cause uncertain to operation capability as 
well. 

Several studies consider each factor in its behaviour and 
impact to the port capacity. However, the port has a chance 
to confront several kinds of uncertainty at a time. 
Considering the conditions of each factor one by one seems 
to be a huge task for managing the port at the operational 
level. Therefore, we consider from the viewpoint of port 
operation and classify uncertainty factors into 3 kinds: 

• Uncertain to demand 

• Uncertain to resource availability 

• Uncertain to operation interdependency 

Uncertain to demand includes any possible changes of 
container capacity from the external to be serviced by the 
port, specifically to the number of container 
arriving/departing the port and their arrival/departure time. 
Uncertain to resource availability and uncertain to operation 
dependency effect to the internal productivity. Uncertain to 
resource availability considers the capability of port facilities 
performing the operation, e.g., breakdown, in maintenance 
and etc. Uncertain to operation interdependency includes 
any situation circumstance effecting the cooperation of 
facilities in the port operation network. 

The port operation faces various kinds of uncertainty. 
Table 1 shows studies of the port operation in various 
functions concerned in uncertainty and its impact on the 
performance of the port function. On the berth allocation 
and quay crane (QC) assignment, several studies concerned 
in the punctual of vessel arrival time as it affects the start 
time of berthing and uncertainty of vessel operation time 
caused by the internal truck operation (Xiang & Liu, 2021), 
container volume (Zhen, 2015) or weather condition (Liming, 
Jun, & Jianfeng, 2021). In reverse, the internal truck is 
affected by the quay crane queue and also the yard crane 
(YC) queue (Huang, Wang, & Shi, 2014). Further, YC is 
impacted by uncertainty to the external truck arrival and 
uncertainty to the vessel stowage sequence (H. Yu, Ning, 
Wang, He, & Tan, 2021). 

It is noticed that the port may have to face all of these 
kinds of uncertainty at the same time under the 
interdependency of back and forth operation relations. Not 
only the container is transferred between the facility linkage, 
but also the influence of uncertainty is transferred as well. 
However, solutions proposed to handle uncertainty include 
only some specific kinds of uncertainties while the impact of 
uncertainty can travel through the chain of port operations. 
Therefore, in order to manage uncertainty affecting the 
chain of port operation, we propose that the port operation 
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management should consider uncertainty in the viewpoint of 
port operation as the proposed three classified types of 
uncertainty mentioned above. 

Table 1: Port operations concerning in uncertainty 
and its potential impact 

Port operation Uncertainty Impact 

Tugboat - vessel arrival time shifting of others 

 - handling time operations 

Berth and QC - vessel arrival time shifting of others 

 - handling time 
- container volume 
- internal truck 

operations 

Internal truck - QC long queue extending 

 - YC long queue operation time 

Storage space 
and YC 

- ex-truck arrival 
- container sequence 
- container volume 
- container weight 
- info of stowage 

extra YC moves 

Intermodal  
(land gate) 

- arrival punctuality 
of transportation 

uncertain task for 
YC 

Intermodal 
(waterway) 

deep-sea vessel arrival 
and departure time 

barge scheduling 
and congestion 

2.3 PORT OPERATIONAL MANAGEMENT 

According to the flow of port resource management 
proposed by Bierwirth and Meisel (2010) as shown in Figure 
3, port management is separated into three areas; the 
seaside, yard and hinterland. At the operational level, 
resource planning on the seaside and on the hinterland side 
have impacted the resources planning on the yard. Both the 
seaside and the hinterland side receive demand from the 
external, therefore, the port resources are managed the plan 
accordingly to demand. 

On the seaside, before a vessel trip, liner schedules port 
visits on its route trip. Port makes agreements on a plan of 
vessel visit, including the estimated of vessel arrival 
time(ETA), the estimated of vessel departure time(ETD), an 
approximated number of containers with container 
descriptions. Information is then used for the berth 
allocation. The liner and the port then make an agreement 
on the initial schedule of vessel visits. Planning of the other 
resources as connected along the resource management 
flow on the Figure 3 such the workforce, quay crane and yard 
crane scheduling is later planned according to the berth 
allocation. 

On the hinterland side, external transportation such as 
external truck and train are serviced by the schedule and 
non-schedule(stochastic arrival) depending on the port 
policy. Yard crane and internal transportation are reserved 
based on the gate policy with a condition that seaside vessels 
usually have a higher priority in holding port resources. 

 

Figure 3: Flow of port resource management, Bierwirth and 
Meisel (2010) 

Based on the flow of resource management, the berth 
allocation seems to be the critical point. During the operation 
when there are changes that shift the schedule of the berth, 
plans of the other resources can be impacted through the 
flow. On the uncertain about demanding such as vessel 
delay, it directly impacts the start time of berthing. On the 
uncertain to resource availability such as machine 
breakdown, this can affect the vessel operation time 
resulting in a long time of berth allocation. Even the high 
traffic of external truck arrival with uncertain to operational 
dependency can also influence the vessel operation time. 

The other resources and the other vessels may or may 
not be impacted by the change of berth allocation. However, 
acknowledging of how much time the berth allocation will be 
changed from the plan in advance allows a spare time for the 
port to make a decision and prepare for the reactivity of port 
resources. 

3 RELATED WORK: BERTH ALLOCATION 

MODEL 

Berth allocation models perform majorly in two approaches. 
First, the proactive planning is performed before the actual 
berthing e.g., the rolling-time horizon (Zhen, 2015) and/or 
the robust buffer time (Iris & Lam, 2019). Second, the 
reactive planning is performed after an incident disrupted 
the original plan e.g., delay of vessel arrival, to search for the 
re-planning solution of all affected vessels by minimizing the 
change impact in delay time and recovery cost comparing to 
the baseline (Xiang, Liu, & Miao, 2018). However, the 
information used for the reactivity seems to be limited of 
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uncertainty type and static, not actually from the recent 
operation situation where uncertain factors can be different 
by the nature of uncertainty. It is difficult for the planning in 
the abnormal situation with unknown dynamic uncertainty 
such as congestion. The incapacity to apply the current 
planning is the trigger event for the reactivity. Our goal is to 
predict this incapacity as early as possible. 

To our best knowledge, few studies address the use of 
data based on dynamic characteristics of uncertainty in the 
berth allocation model. The actual plan of vessel arrival and 
handling time may deviate from the estimation and disrupt 
the baseline schedule. For the vessel arrival, J. Yu et al. (2018) 
predicts uncertainty from data mining to learn the ship 
arrival based on dynamic tracking of vessel AIS data. 

The estimation of handling time is limited, Umang, 
Bierlaire, and Erera (2017) used a finite set of the dynamic 
model which has not yet reflected the actual operation 
situation. Cahyono, Flonk, and Jayawardhana (2020) use the 
actual states of vessel arrival and operational status 
concerning uncertainty in the operational constraints but the 
collected dataset is still limited in a range of time. In addition, 
as mentioned in the section 2.3, the port operation functions 
cooperate and are interdependent. The trace of 
uncertainties is connected to the operational performance. 

The proposed approaches in literature integrate only 
some parts of uncertainties. Given the numbers of 
uncertainties presented above, it is obviously very difficult to 
develop a model integrating all these uncertainties. 
Moreover, not all uncertainties are directly observable (e.g., 
human error) and, therefore very difficult to model. 

For uncertainties that cannot be directly observed, we 
can, however, observe their effects on the performance of 
port operations. Thus, in order to predict the incapacity to 
apply the planning, we propose to develop a digital twin 
allowing to generate in an accelerated way a sufficient 
volume of data to apply machine learning for the prediction 
of congestion. The following section aims at introducing the 
notion of a digital twin and our approach to creating this 
digital twin. 

4 DIGITAL TWIN OF PORT OPER- 

ATION 

4.1 DIGITAL TWIN 

The term Digital Twin(DT) was defined as a mirroring space 
model or mirroring product in the context of product life 
management (PLM) by the University of Michigan in 2002 

(Grieves & Vickers, 2017). The model represents the vision of 
the physical object through its lifecycle. DT model facilitates 
the creation, building, testing, and monitoring the product or 
process in ‘virtual’, offering the exploration into the 
product/process without risk in operation. The model is 
composed of a real space containing physical object(s), a 
virtual space containing virtual object(s) and a linkage of data 
flow between the real space to the virtual space. Later, the 
term focus is shifted to the area of complex systems such as 
aerospace, manufacturing, and production. 

In the industry of port management, leading ports have 
implemented smart sensors and communication technology, 
such as 5G network, camera, AR, VR and etc. to support the 
digital twin of virtual port operation in real-time. The digital 
twin offers a visual view similar to the satellite with the real-
time update elements in the port spacing area, promoting 
the accuracy in positioning the cargo element. 

Among literature work in DT for the port operation, a few 
works were studied using information from the DT to 
support a decision in the operation. Hofmann and Branding 
(2019) proposed a DT to support truck dispatching operators. 
The IoT platform acquired input data for the database. The 
simulate-based DT was then updated and provided 
information of the current system status to the integrated 
algorithm. The algorithm evaluated and suggested the 
dispatching solution for the operator. Zhou et al. (2021) used 
information of DT as a realistic prediction of port 
performance when the port was under possible disruptive 
events and the post-event recovery actions were taken. This 
work claimed to be the first study applying granularity of 
uncertainties to the port operation digital twin. 

4.2 MODELLING OF DIGITAL TWIN 

The digital twin proposes abilities to visualize the port 
operation, to generate/estimate information and to input 
uncertainty factors that might occur as scenarios in the 
operation. These abilities not only perform in the real-time 
manner, but information further promotes an accuracy of 
the operation estimation in a nearly coming time. However, 
we have not yet found the study of digital twin replicating 
the port operation system during the confronting to 
uncertainty factors. 

The virtual system of the DT generally represents the 
vision of physical object(s) similar to the simulation. 
However, in addition to the simulation capability, the virtual 
system must have the same behavior as the real system. 
They must be synchronized in all its life under two trading of 
data/information. First, on changes to the physical system, 
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the virtual system must be able to calibrate with the real 
situation. Second, the virtual system should be able to 
generate useful output to act on the physical system. 
Modelling a DT model should consider these 
synchronizations between the physical-virtual systems. 

This research is interested in the impact of uncertainty 
factors resulting on the berth allocation, specifically in the 
deviation of vessel berthing time and the deviation of vessel 
departure time. DT is used to represent the port operation 
with uncertainty factors in the future time-space. By using 
data of a real port system, the virtual environment of port 
operation is modelled. Data of container arrivals is used as 
input to proceed the operation. The uncertainty factors are 
used to trigger operational interference. DT then fast-
forwards the operation with these settings to the future 
space. Finally, the vessel berthing time and departure time 
are observed as the output of DT. 

On the first synchronization of physical-to-virtual, the 
validation for ensuring virtual operation behavior is 
conducted through operation output. By applying the same 
set of input captured from the physical operation, the virtual 
system should produce the same behavior of output 
comparing to the physical output. 

On the second synchronization of virtual-to-physical, this 
model generates output of the vessel berthing time and 
departure time in the future hours. They can be compared to 
the berth allocation plan to specify the time deviation and 
further impact on other vessels/resource plans. The 
generated information is the feedback to the physical 
operation by supporting the reactivity decision, which 
includes the impact of recent uncertainty factors into 
consideration. 

Modelling the DT for port operational uncertainty 
management proceeds in four steps, 1)Data acquisition, 
2)Simulation modelling, 3)Generation of simulation data and 
4)Model validation. Three operational uncertainty factors 
are included; uncertainty due to the external demand, 
uncertainty due to the internal resource availability and 
uncertainty due to the operational interdependency. 

4.2.1 Data acquisition 

Four areas of data collection are required from the physical 
operation. The first dataset is for constructing the port 
operation environment including, the physical layout, the 
number of port facilities, their capabilities and operation 
policy. The second dataset is data of container inputting the 
port operation. The third dataset is uncertainty factors for 
triggering changes to the port operation. Finally, the fourth 

dataset is the output of port operation consisting of the 
deviation of vessel berthing time and departure time. 

1. Port operation environment consists of the following 
of data elements: 

• Port physical layout: travel time of a container 
between operation stations depends on distance. The 
virtual distance space should be the same as the 
physical space. 

• Port facility: includes the number of facilities and their 
capability. 

• Port operation policy: policies of operation task are 
different on each port e.g., the sequence of vessel 
loading/unloading or yard allocation. This data 
supports the operation time of DT to work similarly to 
the physical operation. 

2. Container input for the port operation on each 
transportation mode arrival concerns on both data of the 
time and the number. The arrival of motor vessels is based 
on schedule plans, while local barges usually depend on the 
arrival of motor vessels. The transferring rate of vessel 
containers depends on the committed speed/number of 
quay crane. The arrival rate of external truck is various by the 
time of the day. 

3. Uncertainty factors triggering the operation 
assuming that the first and second dataset are used to 
construct a fundamental structure for DT execution at 
normal scenarios. This dataset is for executing operation 
scenarios with uncertainty. Only data of the vessel arrival 
pattern which contains changes to the original arrival plan is 
required on this dataset for external demand uncertainty. 
For the internal resource uncertainty, the 
availability/capability of port facility is configured by the 
number decreasing/increasing. While the operational 
interdependency depends on the whole operation 
condition, not direct configurable. 

4. Output of the port operation towards the 
research interest, the vessel berthing time and the vessel 
departure time are the output. Collecting this data from 
physical system to compare with the virtual system for DT 
model verification. 

4.2.2 Simulation modelling 

The DT is modelled in microscopic discrete event-based 
simulation by considering containers as the microscopic 
object. Simulation transfers a container between two port 
facilities creating a linkage of operation time between them. 
This facility-facility link bonds a numeric information. 
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Simulation can apply uncertainty as an event interfering 
operation time so assuming that a container is also a carrier 
transmitting an impact of uncertainty. Through its travel on 
port facilities, the simulation output of vessel operation time 
and departure time is then interpreted as the accumulated 
result of an uncertainty impact through a time-space. 

4.2.3 Generation of simulation data 

According to two physical-virtual synchronizations 
mentioned earlier in this section, two sets of output 
generated for 1)validating the physical-to-virtual 
synchronization and 2)making use of output to feedback on 
the virtual-to-physical synchronization. 

To validate the DT model, the simulated output is used 
to compare with the output of physical system under the 
condition that they must be from the same timing or the 
same event. This experiment captured output for validation 
on events of vessel arrival and departure. 

For further analysis of virtual-to-physical, the pattern of 
simulated output depends on the purpose of data usage. This 
DT model purposes to support the reactivity and to be aware 
the upcoming of uncertainty impact beforehand, the 
simulated output should be executed continually in advance. 
Periodical data is chosen. 

4.2.4 Model validation 

Ensuring that the virtual and the physical port operation 
generate the same behavior. After the operation with the 
same set of input, the process behavior and system output 
are expected to be similar. The validation is separated to 
input and output validations. 

• Input validation: inputs (’truck arrival rates’ and 
’vessel arrival deviation’) are based on distributions, 
the validation ensures simulation input is similar to 
the physical system. 

• Output validation: to compare ’vessel operation 
deviation’ and ’vessel departure deviation’ validating 
the final output of the port system processing under 
an uncertain environment. 

5 EXPERIMENTATION 

5.1 CONTEXT 

The experiment used the case of a port in Thailand. The port 
is a cargo seaport service, both container and breakbulk 

shipments. For the container ships, the port facilitates ten 
quay cranes on 1,000 meters hybrid berths for motor vessels 
and local barges, transferring 20-25 container moves per 
hour. On the yard, it consists of 23 blocks with 24 rubber 
tyred gantry cranes (RTGs) for transferring export containers 
at the rate of 18 container moves per hour and 21 blocks with 
25 reach stackers (RS) for stacking import containers. The 
port provides 131 units of the internal truck for transferring 
containers between the berth quay and the yard via a 3,000-
meter connecting bridge. On the land connecting side, five 
entrances and three exits are for external truck carriers of 
export containers. Three entrances and three exits are for 
external truck carriers of import containers. 

5.2 DATA ACQUISITION 

Data used for this study was mainly collected under the 
collaboration with a port of Thailand. 

1. Data for virtual operation environment: the 
inquiry of information regarding the physical layout, the 
number of facilities, capabilities of facilities and operational 
policy such as berthing allocation, container 
loading/unloading, yard allocation, and etc., are gathered on 
an interview. Additional information of port physical 
dimension is collected by the Google Earth. The Figure 4 
shows the layout of port yard configured on the port 
application (left) and the physical yard layout (right). 

 

Figure 4: Port yard layout 

2. Container input for the port operation: the port 
connects external access to the seaside and to hinterland 
trucks. The historical transaction of container arrival and 
departure in the year 2018 is provided. The information 
related to the flows of containers are extracted e.g., the ratio 
of each container type, the number of import/export 
containers accessing on each transportation modes, 
frequency of transportation arrival/departure and etc. 

Additional information of vessel visits is collected 
through the port website. It provides information of the 
vessel plan and visiting status such as the estimated time to 



9 

arrival (ETA), the estimated time to departure (ETD), the 
actual time to arrival (ATA), the actual time to departure 
(ATD) and berth number. Patterns of vessel visits are 
collected based on the information as illustrated in the 
Figure 5. 

Further, the input number of containers generated into 
the virtual operation should have the similar pattern with the 
physical operation as well. Then, data distributions are fitted 
to acquire statistics of external truck arrival rate and vessel 
transferring rate. 

Note for the input of vessel information for executing the 
DT model on this experiment, the vessel arrival time is based 
on raw historical data while the number of containers carried 
by the vessel is calculated based on the statistics of vessel 
transferring rate due to the limit of data acquisition. 
Therefore, the result of the operation time and departure 
time of each vessel from the virtual operation cannot be 
compared directly to the vessel result in the physical 
operation. The comparison is made on the deviation of vessel 
operation time and the deviation of vessel departure time 
instead. 

3. Uncertainty factors triggering the operation: the 
vessel arrival pattern shown in the Figure 5 representing the 
berthing plan of vessels on the top of the figure and the 
actual berthing period of vessel on the bottom of the figure. 
Each box represents a vessel, its left edge is arrival time and 
its right edge is departure time. The same box id on the top 
section and the bottom section are compared to visual the 
difference of the plan of vessel berthing and the actual of 
vessel berthing. Based on this information, the deviation 
times to the plan of all vessels are specified and fitted into 
distributions. 

 

Figure 5: A pattern of vessel visits (Plan vs. Actual) 

4. Output of port operation: as noted in ’2. Container 
input for the port operation’ above, the output of ’vessel 
operation time’ and ’vessel departure time’ produced from 
the virtual operation should be compared to the physical 
operation in order to validate the DT model. Due to the 
limitation, the deviation of results should be used for the 
model validation instead. Therefore, dataset of the vessel 
information from the physical system is calculated for the 
deviation of vessel operation time and the deviation of 

vessel departure time (shown in the Figure 6) for later to 
compare with the virtual operation output. 

 

Figure 6: Distribution of vessel operation time deviation 
(left) and vessel departure time deviation (right) 

5.3 SIMULATION MODELLING 

DT operation environment is programmed to the AnyLogic 
simulation based on data collected from 5.2. First, data for 
the virtual operation environment is used to construct the 
port infrastructure consisting port layout, position of 
facilities, instance of internal transportation and etc. The 
physical port layout is transformed to fit in the grid-based 
layout of simulation with the same dimension as illustrated 
in the Figure 7. 

 

Figure 7: Draft of port layout for the simulation 

Then, discrete events of container operation activities 
are implemented in four major operation flows; vessel 
unloading to import/export yard, vessel loading from the 
export yard, external truck unloading to export yard and 
external truck loading from import yard, as shown in the 
Figure 8. Vessels and external trucks are input sources of the 
model. Vessels are generated into the berth in the virtual 
space at the time of ETA plus an uncertainty of arrival time. 
While the external trucks are generated at an arrival rate 
depending on the day and the hour. Containers are then 
processed through the port operations as programmed in 
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the flows until loading and unloading of containers to/from 
the vessel are complete. The vessel is then departed and the 
next vessel comes to the port on its ETA schedule. Note that 
uncertainty is configurable to entities of the simulation such 
external truck and port facility. The Figure 9 shows the 3D 
model of port operation simulation. 

 

Figure 8: Event-based simulation flow of containers in the 
port operation 

 

Figure 9: Simulation of port operation 

5.4 RESULT: GENERATION OF SIMULATION DATA 

A set of 28 input vessels was simulated for 16 days of the port 
operation. On the arrival of each vessel to the virtual berth, 
the actual arrival time was recorded. Once the loading and 
unloading operations were complete and vessel departed, 
the actual departure time was recorded as the example 
shown in Table 2. The plan of the first vessel arrival was Feb 
12, 20:00:00, but it actually arrived the berth on the same 
day 20:58:38 with 58 minutes delay. The vessel finished the 
operation of container transferring and departed on Feb 13, 
12:02:17. 

The vessel operation time was calculated from ’actual 
departure’ - ’actual arrival’, the first vessel operation time 
was 15 hours and 3 minutes. The vessel departure time was 
the ’actual departure’. These two data parameters are the 
output of simulation performed based on the port input such 

arrivals of vessels and external trucks and the port operation 
process flows. 

Table 2: Simulation output of vessel arrival and 
departure 

Plan Arrival Actual Arrival Actual Departure 

Feb12 20:00:00 Feb12 20:58:38 Feb13 12:02:17 

Feb13 08:00:00 Feb13 16:39:22 Feb13 20:25:16 
Feb14 00:30:00 Feb14 00:47:18 Feb14 04:09:41 
Feb14 04:12:00 Feb14 04:28:00 Feb14 12:22:00 
Feb14 11:18:00 Feb14 12:36:34 Feb14 15:31:25 
Feb14 15:24:00 Feb14 15:48:20 Feb15 01:04:44 
Feb15 08:06:00 Feb15 08:21:39 Feb15 10:11:21 
Feb17 09:18:00 Feb17 09:32:35 Feb17 15:14:04 
Feb17 15:00:00 Feb17 15:30:41 Feb18 01:10:14 
Feb17 19:42:00 Feb18 01:28:03 Feb18 03:12:32 

5.5 SIMULATION VALIDATION 

The source of model input (’truck arrival rates’, ’vessel arrival 
deviation’) and model output (’vessel operation deviation’, 
’vessel departure deviation’) are historical data from the 
physical operation that are validated. 

Each model input constructs its statistic distribution. By 
comparing among distribution shapes using Q-Q plot, the 
most fitted shape is selected, e.g., truck arrival rate is in 
Weibull(19.271, 1.847) for weekdays and in Normal 
distribution(34.22, 14.266) for the weekend. On virtual 
arrival of vessels, the schedule is based on historical data 
with a deviation time. The vessel arrival deviation is 
Gamma(0.7,5). The number of vessel loading/unloading 
containers are calculated from the vessel transferring rate of 
each vessel type. Simulation applies selected distributions 
into the model. Output data generated by the simulation are 
later compare with the distribution shape such as the Figure 
10. 

 

Figure 10: Input validation of vessel arrival deviation 

Different from the output validation, simulation output 
data records are compared directly with historical data. 
Generally, about 43.5% of results, the difference of vessel 
operation time are about ±	1 hour. In Figure 11, the average 
of operation deviation time from the historical data and the 
simulated data are slightly different. The local barge with the 
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less number of containers (about 1-200 containers) spent 
less operation time than the physical system. While the 
motor vessel with a larger number of containers (about 200-
2000 containers) spent more operation time than the 
physical system, as shown in Figure 11. 

 

Figure 11: Output validation of vessel operation time 

6 DISCUSSION AND CONCLU- 

SIONS 

Adjusting the port operation plan under the uncertain 
circumstance is challenged. Estimating an uncertain situation 
of a complex environment involving various stakeholders 
and operation interdependency is limited. Currently, it is 
lacking of the model to acquire information of port operation 
with uncertainty for operational decision. Therefore, it is 
difficult for the port to manage uncertainty and make a 
precise decision of the plan reactivity such the time when the 
original plan becomes incapacitated. 

The presented digital twin model was constructed based 
on the real physical port infrastructure and the 
synchronization run was executed using historical data as 
input to the model. The Results of the virtual and the physical 
system have similar behavior except in the case of high 
volume of container arrival. The expansion of the difference 
in the two systems could be wider than the small volume of 
container arrival. The operation tuning in the virtual system 

may improve this. In addition, the port consists of several 
operation components. This model did not use data of the 
whole operation in the same time horizon. 

The model is validated for physical-to-virtual 
synchronization. The usage of virtual data for virtual-to-
physical applications can be explored. We aim at using 
periodic data of port facility status to observe the ability to 
maintain the berth planning by predicting the estimated time 
to departure (ETD) of vessel in the future time horizon. 
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