Valeria Simoncini
email: valeria.simoncini@unibo.it

Yue Hao

ANALYSIS OF THE TRUNCATED CONJUGATE GRADIENT METHOD FOR LINEAR MATRIX EQUATIONS *

Keywords: Conjugate gradients, linear matrix equations, truncation strategies, low-rank methods AMS subject classifications. 65F30

The matrix-oriented version of the Conjugate Gradient (CG) method can be used to approximate the solution to certain linear matrix equations. To limit memory consumptions, low rank reduction of the factored iterates is often employed, possibly leading to disruption of the regular convergence behavior. We analyze the properties of the method in the matrix regime, and identify the quantities that are responsible for early termination, usually stagnation, when truncation is in effect. Moreover, we illustrate relations between CG and a projection technique directly applied to the same matrix equation.

Introduction. Multiterm matrix equations

(1.1)

A 1 XB 1 + A 2 XB 2 + . . . + A l XB l = C,
where A i ∈ R n×n , B i ∈ R m×m , and C ∈ R n×m of low rank r < min{m, n} have recently arisen as a natural algebraic formulation of an increasing number of application problems, from the discretization of partial differential equations, possibly involving time or stochastic variables, to the control of discretized dynamical systems, see [START_REF] Simoncini | Computational methods for linear matrix equations[END_REF] for a sample of these applications. The occurrence of more than two terms, that is l > 2, makes the numerical solution particularly challenging, and this has led authors to abandon this formulation in the early days ([START_REF] Bickley | Matrix and other direct methods for the solution of linear difference equation[END_REF]) or to approach the matrix equation (1.1) mainly from a purely theoretical view point [START_REF] Lancaster | Explicit solutions of linear matrix equations[END_REF]. In the past decade, numerical methods specifically tailored to the solution of (1.1) have successfully emerged, principally following two distinct directions. One class of methods aims to adapt vector approaches to the matrix setting, trying to exploit possible rank structure of the data:

these are Krylov subspace methods (see, e.g., [START_REF] Kressner | Krylov subspace methods for linear systems with tensor product structure[END_REF], [START_REF] Kressner | Low-rank tensor Krylov subspace methods for parametrized linear systems[END_REF], [START_REF] Stoll | A low-rank in time approach to PDE-constrained optimization[END_REF], [START_REF] Palitta | On the convergence of Krylov methods with low-rank truncations[END_REF] and their references), fixed point type iterations [START_REF] Ellner | New ADI model problem applications[END_REF], [START_REF] Kressner | On low-rank approximability of solutions to highdimensional operator equations and eigenvalue problems[END_REF], low rank updates [START_REF] Kressner | Truncated low-rank methods for solving general linear matrix equations[END_REF], etc. In the other direction, reduction techniques have been designed specifically for (1.1), trying to generalize successful methods recently developed for the case l = 2, see, e.g., [START_REF] Benner | Low Rank Methods for a Class of Generalized Lyapunov Equations and Related Issues[END_REF], [START_REF] Simoncini | Computational methods for linear matrix equations[END_REF]. Approaches that mix these two categories have also been explored, see, e.g., [START_REF] Damm | Direct methods and ADI-preconditioned Krylov subspace methods for generalized Lyapunov equations[END_REF], [START_REF] Matthies | Solving stochastic systems with low-rank tensor compression[END_REF], [START_REF] Shank | Efficient low-rank solutions of generalized Lyapunov equations[END_REF]. A convenient hypothesis when aiming at developing a structure-driven method is the fact that C is low rank. Krylov solvers can exploit low rank by including rank constraints.

Though methods relying on fixed rank constraints have been developed ([START_REF] Vandereycken | A Riemannian optimization approach for computing low-rank solutions of Lyapunov equations[END_REF]), most solvers impose these constraints dynamically, as the iterations proceed, by applying a truncation procedure to control rank growth.

Rank truncation immediately destroys mathematical properties such as global minimization and orthogonality relations. The amount of this damage depends on the type and strictness of the truncation criterion used. If truncation is based on some error norm associated with a specific tolerance, a practical rule of thumb consists in relating this tolerance to the final desired accuracy. However, the whole convergence history can be affected by truncation, especially when the properties of the original methods are not imposed explicitly, as is the case with the Conjugate Gradient (CG) method. For this algorithm, in exact arithmetic certain orthogonality properties among all generated vectors are satisfied once orthogonality is enforced only locally. Truncation destroys this orthogonality irreparably, eventually leading to stagnation of the whole process (we refer to this low-rank version of CG as "truncated CG" (TCG)). We aim to analyze this striking behavior. Indeed, for a perturbed problem one would expect convergence delay, whereas complete stagnation seems to occur. To this end, and to make the whole analysis more manageable, we consider the particular case of (1.1) given by (1.2)

AX + XA + M XM = C, C = c 1 c 1 ,
with A, M and C symmetric. Nonetheless, many of the presented results are applicable to (1.1) and to linear tensor equations; see, e.g., [START_REF] Kressner | Krylov subspace methods for linear systems with tensor product structure[END_REF]. To lighten the presentation we will focus on the case when c 1 is a column vector, so that C has rank one. The whole analysis can be generalized to C of (low) rank larger than one. In the following we denote with X the exact solution to (1.2) and refer to the left-hand side operator as L(X) = AX + XA + M XM , where L : R n×n → R n×n .

Classically, the problem has been treated by resorting to its Kronecker formulation (see (1.6) for its definition), giving rise to a standard (vector) linear system. More precisely, let A = A 0 + M where

A 0 = A ⊗ I + I ⊗ A, M = M ⊗ M. (1.3)
Then, (1.2) is equivalent to (1.4) Ax = c, c = vec(C),

where the vec operator stacks the columns of C one after the other into a single long vector. Throughout the paper we assume that A and M are such that A is symmetric and positive definite. We denote with x = vec(X) the exact solution to (1.4). Though the vector formulation (1.4) can take advantage of a large number of solution strategies, it is now recognized that this form may be unable to preserve some important structural properties of the original matrix equation. Indeed, in addition to possibly large memory requirements, the vector-oriented formulation does not take into account features of the solution matrix X such as numerical low rank and symmetry. These crucial arguments have motivated the large recent interest in developing tailored procedures that can control memory allocations while preserving structural features. This can be achieved by working directly with data in their original context, so that X is treated as a matrix throughout the computation, possibly in factored form.

For M = 0 the Lyapunov equation is obtained, and well established solution methods exist, see [START_REF] Simoncini | Computational methods for linear matrix equations[END_REF] for both the large and small scale problems. In particular, for modest matrix dimensions, the solution can be obtained in closed form using a Schur decomposition of A without resorting to the Kronecker formulation. Adding the term M XM with M = 0 to the matrix equation makes the solution extremely challenging.

Except for special cases, no methods exist in the current literature that generalize Schur-based decompositions available for the Lyapunov equation. Iterative methods thus gain a central role.

2

This manuscript is for review purposes only.

Little is known even on the properties of the solution X . For instance, the rank of the symmetric solution matrix X is not known a-priori. Estimates can be obtained on the decay of the singular values of X , that is, of the absolute values of its eigenvalues. Let λ i , i = 1, . . . , n be the eigenvalues of X , decreasingly ordered in absolute value. Thanks to the properties of the spectral norm, if X is a rank-m symmetric approximation to X , it follows that (1.5)

|λ m+1 | = min X∈R n×n rank(X)=m X -X ≤ X -X ,
where • is the matrix norm induced by the vector Euclidean norm. Hence, the error norm X -X provides a, not necessarily sharp, upper bound for the m + 1st eigenvalue of X . The bound in (1.5) was used in [START_REF] Penzl | Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case[END_REF] together with classical convergence results for the solution X k obtained after k iterations of the ADI method, see, e.g., [START_REF] Wachspress | Extended application of Alternating Direction Implicit iteration model Problem theory[END_REF], to derive upper bounds for the spectral decay behavior of X . On the other way round, given a rank-m matrix X, (1.5) indicates that the error norm X -X cannot go below |λ m+1 |, the best X being the one whose spectral decomposition matches that of the first m eigenpairs of X . In the following we assume that X can be well approximated by a low rank matrix. The existence of such low rank approximation has been analyzed, for instance, in [START_REF] Benner | Low Rank Methods for a Class of Generalized Lyapunov Equations and Related Issues[END_REF], under various hypotheses on the data.

Taking into account our previous discussion and assuming A symmetric and positive definite, a matrix-oriented version of the Conjugate Gradient (CG) method can be considered [START_REF] Kressner | Low-rank tensor Krylov subspace methods for parametrized linear systems[END_REF]. The approach minimizes the error X -X in a suitable norm, where vec(X) belongs to a Krylov subspace of growing dimension. This constrained minimization tries to comply with (1.5), though the approximate solution is not designed to have a prescribed numerical rank1 . In fact, for a zero initial guess it has been observed (see, e.g., [START_REF] Kressner | A preconditioned low-rank cg method for parameter-dependent Lyapunov equations[END_REF]) that the numerical rank of the CG approximate solution X tends to increase, as the iterations proceed, and then to decrease to the final numerical rank as convergence takes place. Hence, how CG behaves as "matrix-oriented" algorithm provides a new, different perspective, compared to well established results for the vector setting [START_REF] Liesen | Krylov Subspace Methods. Principles and Analysis[END_REF].

Our first aim is to deepen our understanding of the numerical rank evolution of the CG approximate solution X, and to characterize the approximation spaces where X lives. In particular, this analysis is relevant in the understanding of truncation strategies applied to matrix-oriented CG, in which all matrix iterates are explicitly kept low rank, thus stored in factored form, by truncating the terms that would lead to the rank increase. Moreover, we study loss of orthogonality among computed quantities such as residuals: we derive an inverse proportionality relation between the (perturbed) orthogonality angle and the current residual norm at each iteration, showing that stagnation will occur as soon as the residuals loose their linear independence.

Our second aim is to compare the matrix-oriented CG (without truncation) for (1.2) with a method that explicitly and iteratively builds a low rank matrix, of increasing rank, and minimizes the error norm in some approximation space by means of a Galerkin condition. We show that a specific choice of approximation space allows one to relate this approximation problem with that of CG, highlighting the (dis)advantages of either approach.

1.1. Notation and main definitions. In the following real matrices will be used, and A will denote the transpose of a matrix A. The Frobenius norm of an

n × m matrix, A 2 F = n i=1 m j=1 A 2
i,j will be used, together with the matrix norm induced by the Euclidean vector norm, namely A = max x∈R m , x =1 Ax . Given a symmetric and positive definite n × n matrix A, the A-norm or energy norm is defined as x 2 A = x Ax, where 0 = x ∈ R n . An operator-based energy norm will also be introduced. Exact arithmetic will be assumed throughout.

We will continuously rely on the correspondence between matrix-matrix and vector operations, obtained via the Kronecker product and vec operator. For given

matrices A ∈ R n A ×m A , A = (a ij) i=1,...,n A ,j=1,...,m A and B ∈ R n B ×m B , the Kronecker
product is defined as

A ⊗ B =      a 11 B a 12 B • • • a 1m A B a 21 B a 22 B • • • a 2m A B a n A 1 B a n A 2 B • • • a n A m A B      ∈ R n A n B ×m A m B ; (1.6)
the vec operator stacks the columns of a matrix X = [x 1 , . . . , x m] ∈ R n×m one after the other as

vec(X) =    x 1 . . . x m    ∈ R nm×1 .
We will freely make use of properties of the Kronecker product, as reported for instance in [START_REF] Horn | Topics in Matrix Analysis[END_REF]. We also define the matrix inner product of two matrices Y, Z ∈ R n×m as Y, Z = trace(Y Z), and we observe that this corresponds to the vector inner product, that is Y, Z = vec(Y) vec(Z). In case the two matrices have low rank (here

n = m), that is Y = U Y V Y , Z = U Z V Z with U Y , V Y ∈ R n×k Y and U Z , V Z ∈ R n×k Z ,
this inner product can be computed by

trace(Y Z) = trace(V Y U Y U Z V Z) = trace((U Y U Z)(V Z V Y)).
In finite precision arithmetic, this operation should be used with care, as it might lead to loss of accuracy due to round-off errors.

We end this section with a note on the matrix problem we have chosen to analyze.

Problem (1.2) is strictly related to the following form

A 1 ZB 1 + A 2 ZB 2 + Z = F, (1.7)
with A i , B i , i = 1, 2 symmetric. Indeed, for M nonsingular and positive definite, (1.2) can be brought to this form for

A 1 = M -1/2 AM -1/2 = B 2 , B 1 = M -1 = A 2 , F = M -1/2 CM -1/2 and Z = M 1/2 XM 1/2
. However, the seemingly harmless shift term makes the problem very different from the well known generalized Sylvester equation A 1 ZB 1 + A 2 ZB 2 = F . This form does not seem to provide more insight than the form we consider, hence unless explicitly stated we will focus on (1.2).

2. Matrix-oriented CG method. The matrix oriented conjugate gradient (CG) method simply transforms all vector computations associated with (1.4) into matrix operations, using the vec and Kronecker operators. So, for instance, for the classical approximate solution update (see, e.g., [7, section 10.2] for the vector CG algorithm), it holds that

x k+1 = x k + α k p k ⇔ X (k+1) = X (k) + α k P (k)
where x k = vec(X (k)), p k = vec(P (k)) and

α k = r k p k p k Ap k = trace((R (k)) P (k)) trace((P (k)) L(P (k))) , r k = vec(R (k)),
where r k = c -Ax k is the residual vector associated with x k . A complete description of the algorithm is postponed to section 3.

The two formulations are mathematically equivalent, though some care in the implementation of the matrix inner product is required to avoid unnecessary operations. There may be some computational advantages in the matrix iteration in a high performance computing environment, however, the main reason for pursuing a matrix-oriented version is to maintain the possible low rank structure of the iterates, by using a factorized form. For instance, if

X (k) = X (k) 1 (X (k) 1) with X (k) 1
low rank, and similarly for P (k) , then

X (k+1) = X (k) 1 (X (k) 1) + α k P (k) 1 (P (k) 1) ,
which is also low rank, with a rank that is in general larger than that of X (k) ; in the following a more precise structure will be given. In case the rank is enforced to remain low, truncation can be implemented by taking the best approximation to

[X (k) 1 , P (k)
1] of fixed rank, for instance. Clearly, the factored form is meaningful only if the right-hand side C is either low rank, or can be well approximated by a low rank matrix. Indeed, even assuming a zero initial approximation X (0) , the residual R (0) = C -L(X (0)) will only be low rank if C is. To appreciate the cost relevance of CG applied to (1.2), we notice that without truncation, each multiplication with A entails 2n multiplications with either A or M . The low-rank matrix implementation of CG that takes into account the symmetry of the iteration matrices allows one to significantly reduce this computation, as long as low rank in the iterates is maintained.

On the other hand, truncation is not without side effects.

To better understand the impact of truncation, we first need to linger over the analysis of the space generated during the matrix recurrence. More precisely, we identify redundant information, that can be purged with no harm, and key vector elements whose elimination determines a degradation of the method performance.

2.1. Analysis of the error matrix. As TCG iterations proceed, two facts have been experimentally observed in the literature (see, e.g., [START_REF] Kressner | A preconditioned low-rank cg method for parameter-dependent Lyapunov equations[END_REF]): i) Singular triplets of X (k) seem to converge in an orderly fashion to those of X;

ii) The numerical rank of X (k) increases up to some point, then it decreases.

In the following we analyze the CG optimality properties in the matrix context, and how they influence the above two phenomena. We start by recalling that the direction vectors {p k } k≥0 determined during the CG recursion iteratively generate the following Krylov subspace (assuming x (0) = 0),

K k = span{c, Ac, . . . , A k-1 c}. (2.1)
The same space is spanned by the residuals, {r k } k≥0 . Moreover, the error norm is minimized in the energy norm associated with the coefficient matrix, that is min

x∈K k x -x A , (2.2)
so that a non-increasing energy norm of the error is ensured [7, section 10.2].

5

This manuscript is for review purposes only.

In matrix terms, we first write the norm equivalence

(2.3) X 2 L = trace X L(X) = x 2 A .
Setting E (k) = X -X (k) we can write

E (k) 2 L = x -x (k) 2 A ≥ λ min (A) x -x (k) 2 = λ min (A) E (k) 2 F .
Therefore,

λ max (A) -1 2 min x∈K k-1 x -x A ≤ E (k) F ≤ λ min (A) -1 2 min x∈K k-1 x -x A .
Although this inequality does not imply that the quantity E (k) F is minimized, it is clear that as k increases, we expect this Frobenius norm to decrease. In light of (1.5) and the fact that

E (k) ≤ E (k)
F , this explains that the approximation of X (k) to the matrix X occurs in terms of singular values. As convergence takes place the norm of X -X (k) decreases, that is the leading singular values of X (k) tend to match those of X. On the other hand, below the level of the error norm the singular values of the two matrices X and X (k) can vary significantly. We next make this argument more rigorous.

Let X = U ΣW and X (k) = Ũ Σ W be the singular value decompositions (SVDs) of the given matrices2 . Consider the partitionings

X = [U 1 , U 2] Σ 1 Σ 2 W 1 W 2 , X (k) = [Ũ1 , Ũ2] Σ1 Σ2 W 1 W 2 ,
with Σ 1 , and Σ1 of size × . Then E

(k) = X -Ũ1 Σ1 W 1 -Ũ2 Σ2 W 2 , so that (2.4) X -Ũ1 Σ1 W 1 -Ũ2 Σ2 W 2 ≤ E (k) .
Therefore, the distance between the leading singular triplets of X (k) and those of X is not larger than E (k) from Σ2 . We stress here that the SVD of X (k) is computable, so that one can monitor Σ2 . Moreover, X (k) is not assumed to be of rank , therefore the analysis based on this partitioning can also be used for increasing rank of X (k) .

If the partitioning is selected so that Σ2 E (k) then the inequality above shows that the approximation of the leading triplets of X (k) must be of the order of E (k) .

We next formalize this intuition by using a result of Wedin (see, e.g., [START_REF] Stewart | Matrix Perturbation Theory[END_REF]Theorem V.4.4]). To this end, let ρ r,k = X W1 -Ũ1 Σ1 and ρ l,k = X Ũ1 -W1 Σ1 . Clearly,

ρ r,k = E (k) W1 ≤ E (k) and ρ l,k = E (k) Ũ1 ≤ E (k)
, hence, both quantities decrease as the error norm does.

Theorem 2.1. [33, Theorem V.4.4] If there exist δ, α > 0 such that max σ(Σ 2) ≤ α and min σ(Σ1) ≥ δ + α then max{ sin Φ F , sin Θ F } ≤ max{ρ r,k , ρ l,k } δ ,
where Φ and Θ are the matrices of canonical angles between range(U 1) and range(Ũ1), and between range(W 1) and range(W1), respectively.

The quantity δ measures how the gap between the converging singular values and the remaining ones influences the actual convergence. This result explains the orderly convergence to the singular triplets of X in item i) above, as E (k) decreases.

Example 2.2. Let c 1 be the vector of all ones normalized to have unit norm,

let 3 A = toeplitz(-1, 2, -1) ∈ R n×n , M = toeplitz(-0.5, -0.5, 2.5, -0.5, -0.5) ∈
R n×n , and n = 25. Matrix-oriented PCG is employed, with M ⊗ M as preconditioner, so that the Kronecker structure of the preconditioned problem is maintained. For each of the first 12 PCG iterations, Figure 1 displays the singular values of X and of k) , and also the level corresponding to E (k) . As expected, the singular values of X (k) above the error norm level tend to match the corresponding singular values of X . What is more noteworthy is that below the error norm level, the discrepancy between the singular values of X (k) and of X is significant, and in practice, clusters of slowly varying singular values can occur for X (k) . Below the error level we do not expect the approximate singular values to have the same decay as the exact ones. In fact, since the approximation space generating X (k) is increased by several vectors at the time (see section 2.2), the number of nonzero singular values quickly increases, and the singular values have sizable magnitude until E (k) is sufficiently small. The previous example illustrates the phenomenon in the item ii) above. Numerous singular values with magnitude below the error threshold but above the unit roundoff emerge as iterations proceed, so that the numerical rank of X (k) grows. As more and more singular values of small magnitude converge, the remaining smaller singular values are necessarily constrained to go towards zero, so that the numerical rank of X (k) decreases towards its final value.

X (
2.2. The CG matrix approximation space. In this section we characterize the matrix approximation space associated with the matrix-oriented CG method.

For the case M = 0 the matrix problem becomes the Lyapunov equation, and the following result holds. Proposition 2.3. Assume M = 0 and let q ∈ K k . Then for some α 0 , . . . , α k ∈ R,

q = k i=0 α i i j=0 i j (A j ⊗ A i-j)c = 0≤j≤i≤k α i i j (A j ⊗ A i-j)c. Proof. Let A = I ⊗ A + A ⊗ I =: A 1 + A 2 with A 1 , A 2 commuting. We have that q = k i=0 α i A i c. It holds A i = (A 1 + A 2) i = i j=0 i j A i-j 1 A j 2 , with A i-j 1 A j 2 = (I ⊗ A) i-j (A ⊗ I) j = (I ⊗ A i-j)(A j ⊗ I). The result follows.
For general nonzero symmetric M the description is more complex. In the following we consider the generic case, where M is full rank and its norm is large enough to make the contribution of the term M XM relevant for the discussion. The matrix A in (1.4) can be written as

A = A 1 + A 2 + M with M = M ⊗ M .
Clearly, M does not commute with either other matrix, except in special circumstances.

Assume that

X (0) = 0 := X (0) 1 X (0) 1 , R (0) := R (0) 1 R (0) 1 with R (0) 1 = c 1 and
R (0) = P (0) =: P (0) 1 P (0) 1
, and that at the kth iteration X (k) , R (k) and P (k) can be written as

X (k) = X (k) 1 G (k) X (k) 1 , R (k) = R (k) 1 S (k) R (k) 1
and

P (k) = P (k) 1 D (k) P (k) 1
, respectively. Then for the (k + 1)-th iteration, there hold (see, e.g., [START_REF] Benner | Low Rank Methods for a Class of Generalized Lyapunov Equations and Related Issues[END_REF] for similar expressions)

(2.5)

X (k+1) = X (k) + α k P (k) = X (k) 1 G (k) X (k) 1 + α k P (k) 1 D (k) P (k) 1 = [X (k) 1 P (k) 1] G (k) 0 0 α k D (k) [X (k) 1 P (k) 1] =: X (k+1) 1 G (k+1) X (k+1) 1 ; R (k+1) = C -L(X (k+1)) = c 1 c 1 -AX (k+1) 1 G (k+1) X (k+1) 1 -X (k+1) 1 G (k+1) X (k+1) 1 A -M X (k+1) 1 G (k+1) X (k+1) 1 M = [c 1 AX (k+1) 1 X (k+1) 1 M X (k+1) 1]     I 0 0 0 0 0 -G (k+1) 0 0 -G (k+1) 0 0 0 0 0 -G (k+1)     • [c 1 AX (k+1) 1 X (k+1) 1 M X (k+1) 1] =: R (k+1) 1 S (k+1) R (k+1) 1
;

P (k+1) = R (k+1) + β k P (k) = [R (k+1) 1 P (k) 1] S (k+1) 0 0 β k D (k) [R (k+1) 1 P (k) 1] =: P (k+1) 1 D (k+1) P (k+1) 1 .
.

By replacing the factors in the recurrence, we obtain

X (k+1) = [X (k-1) 1 P (k-1) 1 R (k) 1 P (k-1) 1]blkdiag(G (k-1) , α k-1 D (k-1) , α k S (k) , β k-1 α k D (k-1))• [X (k-1) 1 P (k-1) 1 R (k) 1 P (k-1) 1] ,
which shows that X (k+1) , and thus, X

, is naturally rank-deficient in this form.

Similarly, we obtain that P (k+1) 1

is also naturally rank-deficient. Moreover, we have

X (1) 1 = [X (0) 1 P (0) 1] = c 1 ; R (1) 1 = [c 1 AX (1) 1 X (1) 1 M X (1) 1] = [c 1 Ac 1 c 1 M c 1]; P (1) 1 = [R (1) 1 P (0) 1] = [c 1 Ac 1 c 1 M c 1 c 1] X (2) 1 = [X (1) 1 P (1) 1] = [c 1 c 1 Ac 1 c 1 M c 1 c 1]; so that range(R (1) 1), range(P (1) 1), range(X (2) 1) ⊆ span{c 1 Ac 1 M c 1 }, and R (2) 1 = [c 1 AX (2) 1 X (2) 1 M X (2) 1], P (2) 1 = [R (2) 1 P
(1)

1] = [R (2) 1 c 1 Ac 1 c 1 M c 1 c 1], so that range(R (2)
1), range(P

(2) 1) ⊆ span{c 1 Ac 1 M c 1 A 2 c 1 AM c 1 M Ac 1 M 2 c 1 }. By induction, we could see that the rank of X (k+1) 1
is the same as that of

P (k)
1 , and the rank of

P (k) 1
is the same as that of R

(k)

1 . The relations above also show that R

1 , P

(2) 1 are all rank deficient. In other words, although the number of columns grows in the block, the actual rank of the block is lower than the number of computed columns in this form.

Let Q (1) = [c 1] and define the matrix sequence

Q (k+1) = [Q (k) , AQ (k) , M Q (k)], so that Q (2) = [c 1 , Ac 1 , M c 1] and Q (3) = [c 1 , Ac 1 , M c 1 , A 2 c 1 , AM c 1 , M Ac 1 , M 2 c 1]. Hence, R (k)
1 , P

∈ range(Q (k+1)). As k increases, the columns of Q (k) increasingly build the space4

Q =span c 1 , Ac 1 , M c 1 , A 2 c 1 , AM c 1 , M Ac 1 , M 2 c 1 , A 3 c 1 , A 2 M c 1 , AM Ac 1 , AM 2 c 1 , M A 2 c 1 , M AM c 1 , M 2 Ac 1 , M 3 c 1 , • • • , (2.6)
and we denote with Q k the smallest subspace of Q containing the range of Q (k) . Thus,

we have dim(Q k+1) ≤ dim(Q k) + 2 k ,
that is, the space dimension grows exponentially, until its maximum dimension n 2 .

Let the columns of

Q (k) span Q k . Then we can write X (k) 1 = Q (k) G(k) for some G(k) , so that (2.7) X (k) = Q (k) G(k) G (k) (G(k)) (Q (k)) =: Q (k) G (k) (Q (k)) .
This decomposition provides the most genuine low rank approximation from the generated space. However, it should be stressed that X (k) is not any linear combination of the columns of Q (k) . Indeed, for instance, the product Ac yields a special linear combination of {c 1 , Ac 1 , M c 1 }, enforcing a constraint on the approximation. This

argument generalizes what we have seen for the vector q in Proposition 2.3 to the case of M = 0. In other words, X

belongs to a proper subspace of Q (k) , with a possibly much smaller dimension.

We also mention that the CG iteration is unable to capture the underlying matrix

Q (k)
, so that any truncation strategy directly performed on the next iterate X (k+1)

or its factor

X (k+1) 1 in (2.5) is bound to lose part of the information contained in Q k .
The important role played by Q (k) leads one to consider ways to exploit this matrix in a more effective way, without the redundancy created by Q k . This is possible by using approximation methods directly applied to the original matrix equation, which consists of projecting the solution matrix onto an appropriate subspace. In section 4 we show that an appropriate space is indeed the one generated by Q (k) .

The effect of preconditioning. To speed up convergence, the system Ax = c is usually preconditioned; this was done in Example 2.2, for instance. Hence, a matrix/operator P is selected and the problem P -1 Ax = P -1 c solved; see, e.g., [7, section 10.3] for a symmetry preserving implementation in the vector case. The operation performed to obtain (1.7) corresponds to preconditioning by

P = M = M ⊗ M .
In this case, and assuming M positive definite, the matrix sequence becomes

Q (1) = [M -1 2 c 1], Q (k+1) = [Q (k) , M -1 2 AM -1 2 Q (k) , M -1 2 Q (k)], k = 0, 1,
Our analysis still holds as long as the preconditioning operator maintains the Kronecker structure in the preconditioned matrix P -1 A. Following corresponding analyses performed for fixed point iterations (see, e.g., [START_REF] Damm | Direct methods and ADI-preconditioned Krylov subspace methods for generalized Lyapunov equations[END_REF]), a natural preconditioned problem is given as

X + L -1 A (M XM) = L -1 A (C), L A = AX + XA.
This procedure is clearly equivalent to the preconditioned problem

A -1 0 Ax = A -1 0 c with A -1 0 A = I + A -1 0 M
, where A 0 and M are as in (1.3).

The truncated CG method.

In this section, we analyze TCG for solving the matrix equation (1.2). The formal algorithm with truncation, already presented in [18, Alg.2], is reported in Algorithm 3.1, where T is the truncation operator. Truncation is performed at lines 5 and 8, whereas for the residual and operator-products they are optional. We did not adopt this option in our numerical experiments, to ensure the accurate computation of the residual and the application of the coefficient matrices. Following the discussion in the previous section, matrices are kept in factored form, so that truncation is performed by reducing the rank of the factors X (k+1) 1

and

P (k+1) 1
, respectively.

It is experimentally evident that the final attainable accuracy, in terms of relative residual norm, is strictly related to the truncation tolerance. It particular, it may well occur that the method stagnates at a level above the desirable accuracy. For these reasons, stopping criteria in addition to the relative residual norm should be considered, such as maximum number of iterations and maximum approximation rank. 1:

X (0) = 0, R (0) = C, P (0) = R (0) , Q (0) = L(P (0)) 2: ξ 0 = P (0) , Q (0) , k = 0 3: while ||R k || F > tol do do 4: α k = R (k) , P (k) /ξ k 5: X (k+1) = X (k) + α k P (k) , X (k+1) ← T (X (k+1)) 6:
R (k+1) = C -L(X (k+1)), Optionally: R (k+1) ← T (R (k+1))

7:

β k = -R (k+1) , Q (k) /ξ k 8: P (k+1) = R (k+1) + β k P (k) , P (k+1)
← T (P (k+1))

9:

Q (k+1) = L(P (k+1)), Optionally: Q (k+1) ← T (Q (k+1))
10:

ξ k+1 = P (k+1) , Q (k+1)
11:

k = k + 1 12: end while 13: X = X (k)
deteriorate the approximation (see section 2.1), unless the sought after solution can be well approximated by a rank-k matrix.

An error-aware truncation strategy consists of selecting

Y = Y 1 (Y 2) , with Y 1 , Y 2 ∈
R n×r such that the error matrix Y -Y is smaller than a threshold, in some relative norm. Nonetheless, a maximum rank value can also be included, so as to limit memory consumptions. Let σ 1 , . . . , σ r be the singular values of Y . The truncation rank r ≤ r is the smallest integer satisfying a specified truncation criterion.

The following standard criteria based on singular values can be considered:

1. F-norm: σ 2 r+1 + • • • + σ 2 r 1 2 ≤ trunc σ 2 1 + • • • + σ 2 r 1 2 ;
2. Schatten norm:

σ r+1 + • • • + σ r ≤ trunc (σ 1 + • • • + σ r).
The second criterion appears to be less strict, yielding a larger r, and this is what we adopted in our experiments.

To determine the singular values and the new factors, we first compute the reduced (skinny) QR factorization of Y 1 and Y 2 , that is such that

Y 1 = Q 1 R 1 , Y 2 = Q 2 R 2 with
upper triangular matrices R 1 , R 2 ∈ R r×r . Then the singular value decomposition

R 1 R 2 = U diag(σ 1 , • • • , σ r)V is computed. Let Σ r = diag(σ 1 , • • • , σ r).
Using MATLAB notation, we then set

Y 1 = Q 1 U :,1: r Σ 1 2 r , Y 2 = Q 2 V :,1: r Σ 1 2
r , and then obtain the compressed low-rank matrix Y = Y 1 (Y 2) .

Denoting by X

(k) ex , P (k)
ex the (exact, in exact arithmetic) matrices before truncation, we can write

X (k) = T (X (k) ex) = X (k) ex + E (k) X , P (k) = T (P (k) ex) = P (k) ex + E (k)
P , where, by using for instance the first truncation strategy, we obtain

(3.1) ||E (k) X || F ||X (k) || F < trun , and
||E (k) P || F ||P (k) || F < trun . 11
This manuscript is for review purposes only.

Moreover, in the following we assume that the residual is computed explicitly and not by a recurrence, and is not truncated, so that it holds

R (k) = C -L(X (k)) = C -L(X (k-1) + α k-1 P (k-1) + E (k) X) = R (k-1) -α k-1 L(P (k-1)) -L(E (k) X).
In the following section we deepen our understanding of this loss of orthogonality, and provide insight into how the convergence of the truncated version of the method can behave in practice.

Finally, we observe that the truncation strategy may be viewed as a way to reduce the approximation space Q k associated with the space in (2.6). However, this truncation strategy is not based on spectral information typically employed in classical subspace enhancements associated with the standard Krylov subspace, such as those in [START_REF] Sturler | Truncation Strategies for Optimal Krylov Subspace Methods[END_REF], [START_REF] Morgan | A restarted GMRES method augmented with eigenvectors[END_REF], for instance. By specifically focussing on the use of this space, it may be possible to derive more effective truncation strategies.

Effects of truncation in the CG recurrence. In this section we analyze

the effect of truncation on the iterates of the CG recurrence. We are able to identify the quantities involved in the determination of the final attainable residual norm of the method. For the sake of the presentation, we are going to switch to the vector formulation, which in addition makes the derivation more familiar to anyone who has seen the standard properties of CG. We also stress that the results of this section apply to the more general equation (1.1) and to tensor linear equations, as only references to the whole matrix A are made.

We start by introducing some notation. Let r

(k) ex = c -Ax (k)
ex be the residual computed by the exact (untruncated) solution iterate x (k) ex , and r (k) = c -Ax (k) be the residual computed by the truncated iterate. Here and in the following, the subscript "ex" denotes vectors before (or without) truncation. At iteration k, the exact vector CG recurrences are given by

x (k+1) ex = x (k) + α k p (k) , α k = (r (k)) p (k) /((p (k)) Ap (k)), p (k+1) ex = r (k+1) + β k p (k) , β k = -(r (k+1)) Ap (k) /((p (k)) Ap (k)).
Then, ≤ (k+1) . The error vector corresponds to the matrix truncation X (k+1) = X (k+1) ex + E (k+1) X described in the previous section; analogously for the recurrence in p (k+1) . With this notation, r (k+1) = r

x (k+1) = x (k+1) ex + e (k+1) X , p (
(k+1) ex -Ae (k+1) X .
The CG exact iterate minimizes the convex function

(3.3) f (x) = 1 2
x Ax -c x in the generated Krylov subspace. At each iteration k the coefficient α k is determined so as to minimize the function f along the direction determined by p (k) . The corresponding value is obtained by imposing that df dα (x (k) + αp (k)) = 0. Truncation clearly destroys this minimization. The iterate

x (k+1) = x (k+1) ex + e (k) X is such that df dα (x (k+1)) = (x (k+1) ex + e (k+1) X) Ap (k) -c p (k) = (e (k+1) X) Ap (k) , | df dα (x (k+1))| ≤ (k+1) A p (k) .
The relation shows that at least locally, loss of minimization is controlled by the truncation tolerance. Analogously, without truncation the computation of β k ensures that (p (k+1) ex

) Ap (k) = 0, whereas for the truncated vector p (k+1) it holds that (p (k+1)) Ap (k) = (e

(k+1) P) Ap (k) , |p (k+1)) Ap (k) | ≤ (k+1) A p (k) .
Hence, at first sight, local A-orthogonality seems to be controlled by the truncation tolerance. However, what matters when discussing loss of orthogonality is the angle between the two vectors, not just the magnitude of the inner product. Indeed, this and related quantities are more severely affected by truncation, and the angles between these vectors (directions and residuals) play a crucial role. For the iterates with no truncation at iteration k (that is, e) ∇f (x

(k+1) ex) = -(p (k+1) ex) r (k+1) ex = -r (k+1) ex 2 < 0, that is, the new direction is a descent direction;
iii) Assuming no truncation for all k's,

β k = r (k+1) ex) r (k+1) ex (r (k) ex) r (k) ex and β k > 0, that is, the next p (k+1) ex moves along the (positive) direction of p (k) ex .
Property (i) ensures that the space keeps growing. None of these relations continues to hold after truncation of x . In particular, the positivity of

β k is crucial for convergence.
We start by making more explicit the influence of the truncation in the vector recurrences.

Lemma 3.1. After k iterations of the truncated CG, it holds that

i) (p (k)) r (k+1) = -(p (k)) Ae (k+1) X ; ii) (p (k+1)) r (k+1) = r (k+1) 2 -β k (p (k)) Ae (k+1) X + (e (k+1) P) r (k+1) ; iii) (r (k+1)) r (k) = (-p (k) + β k-1 p (k-1)) Ae (k+1) X + β k-1 (p (k-1)) Ae (k) X +(e (k) P) (β k-1 α k Ap (k-1) -r (k+1)).
Proof. To obtain i), we recall that the definition of α k ensures that (p (k)) r

(k+1) ex = (p (k)) (r (k) -α k Ap (k)) = 0.
On the other hand, the residual r (k+1) = r

(k+1) ex -Ae (k+1) X satisfies (3.4) (p (k)) r (k+1) = 0 -(p (k)) Ae (k+1) X .
To prove ii), we write

(p (k+1)) r (k+1) = (r (k+1) + β k p (k) + e (k+1) P) r (k+1) = (r (k+1)) r (k+1) -β k (p (k)) Ae (k+1) X + (e (k+1) P) r (k+1) ,
where we used the relation (p (k)) r

(k+1) ex = 0.
The proof of iii) is a little more elaborate. Indeed,

(r (k+1)) r (k) = (r (k+1)) (p (k) -β k-1 p (k-1) -e (k) P) = (r (k+1)) p (k) -β k-1 (r (k+1)) p (k-1) -(r (k+1)) e (k) P = -(p (k)) Ae (k+1) X -β k-1 (r (k+1) ex -Ae (k+1) X) p (k-1) -(r (k+1)) e (k) P (3.4) = -(p (k)) Ae (k+1) X -β k-1 (r (k) -α k Ap (k)) p (k-1) + β k-1 (Ae (k+1) X) p (k-1) -(r (k+1)) e (k) P 13
This manuscript is for review purposes only.

Now, (r (k)) p (k-1) = -(p (k-1)) Ae (k) X , (Ap (k)) p (k-1) = (Ae (k) P) p (k-1) , so that (r (k+1)) r (k) = -(p (k)) Ae (k+1) X + β k-1 (p (k-1)) Ae (k) X +β k-1 α k (Ae (k) P) p (k-1) + β k-1 (Ae (k+1) X) p (k-1) -(r (k+1)) e (k) P . Theorem 3.2. Let ∆ k = max{ e (k) P , e (k)
X , e

η 1 A -1 δ k r (k+1) ≤ |r (k+1)) p (k) | r (k+1) p (k) ≤ A ∆ k r (k+1) ,
and (k) .

β k = - (r (k+1) ex) Ap (k) -(Ae (k+1) X) Ap (k) (p (k)) Ap
Moreover, for γ = Ap (k) + (2|β k-1 | + |β k-1 α k |) Ap (k-1) + r (k+1))/ r (k) , it holds |r (k+1)) r (k) | r (k+1) r (k) ≤ γ ∆ k r (k+1) .
Proof. The first upper bound is a direct consequence of Lemma 3.1(i). For the lower bound,

|p (k)) r (k+1) | p (k) r (k+1) = |(p (k)) Ae (k+1) X | p (k) r (k+1) ≥ |(p (k)) Ae (k+1) X | A -1 Ap (k) r (k+1) = |(Ap (k)) e (k+1) X | Ap (k) e (k+1) X e (k+1) X A -1 r (k+1) ≥ η 1 A -1 δ k r (k+1) .
Recalling the definition of β k , that is,

β k = -(r (k+1)) Ap (k) /((p (k)) Ap (k)), the equality for β k simply follows from substituting r (k+1) = r (k+1) ex -Ae (k+1) X in the numerator.
Finally, using Lemma 3.1(iii) we obtain

|(r (k+1)) r (k) | ≤ (Ap (k)) e (k+1) X + |β k-1 | Ap (k-1) e (k) X + |β k-1 α k | Ap (k-1) e (k) P +|β k-1 | e (k+1) X Ap (k-1) + r (k+1) e (k) P ≤ (Ap (k)) + |β k-1 | Ap (k-1) + |β k-1 α k | Ap (k-1) + |β k-1 | Ap (k-1) + r (k+1) ∆ k .
from which the value of γ and the final bound follow.

The theorem above shows that the cosine of the angle between the direction vector and the next residual grows in a way that is inversely proportional to the current residual norm. The same property holds for the cosine of the angle between two consecutive residuals, with the caveat for γ not to be much greater than O(1). We emphasize that with no truncation, both inner products should be zero, as the vectors in both pairs are orthogonal to each other. Whenever the cosine of the angle reaches a value close to one, the next residual vector is almost parallel to the previous direction vector, and it thus unlikely to contribute to the expansion of the approximation space.

As a result, stagnation of the whole process occurs (see Example 3.3). In addition, and for any number of iterations, for large enough truncation tolerance, the residual and direction vectors build significantly different subspaces.

The expression for β k shows that for a small residual r (k+1) ex , the second term at the numerator may become significant, and if the sign of the two terms is the same, the coefficient β k may become negative. As soon as β k becomes negative, the whole conjugate gradient framework breaks down, with the next direction vector continuing in the previous direction but backwards. Apparently, the procedure is unable to recover (see the example below), leading to overall residual norm stagnation. In fact, from then on the sign of β k starts to alternate, according to small corresponding modifications in the value of the residual norm; see Figure 3.

(k) = X (k) 1 (X (k)
2) as the iterations proceed, for different values of the truncation parameter, in the runs of Figure 2. with the discussion of section 2.1, as long as the truncation threshold does not affect the action of the error norm decay. Finally, for a selection of truncation tolerance values, Figure 5 shows the singular values of the final basis generated by the residual vectors [r (0) , . . . , r (k)] (normalized to have unit Euclidean norm). For the largest truncation tolerance, these plots illustrate that as the cosine of the angle gets close to one (cf.

Figure 2), the residual vectors become linearly dependent, and not only non-orthogonal, leading to a large loss of rank.

/ r (1) , . . . , r (k) / r (k)], for a selection of truncation tolerance values in the runs of Figure 2.

The previous experiments illustrate that as long as the residual vectors remain independent, the space keeps growing, and convergence may continue to improve in a way similar to what occurs without truncation. More precisely, preserved local orthogonality seems to be sufficient for the method to advance the approximation with linear convergence -we expect superlinear convergence to be lost, as it occurs in finite precision CG; see, e.g., [START_REF] Meurant | The Lanczos and conjugate gradient algorithms in finite precision arithmetic[END_REF] and references therein. The importance of local orthogonality has been stressed in the past to enhance convergence properties of inexact preconditioned CG, see, e.g., [START_REF] Golub | Inexact preconditioned conjugate gradient method with inner-outer iteration[END_REF], [START_REF] Notay | Flexible conjugate gradients[END_REF], [START_REF] Gratton | Minimizing convex quadratics with variable precision conjugate gradients[END_REF] and their references. Similar pictures can also be observed in analyzing round-off effects in the GMRES orthonormal basis -constructed with the modified Gram-Schmidt algorithm, in which the residual norm stagnates at the level where all linear independence is lost [START_REF] Greenbaum | Numerical behavior of the Modified Gram-Schmidt GMRES implementation[END_REF].

The following example partially taken from [START_REF] Meurant | The Lanczos and conjugate gradient algorithms in finite precision arithmetic[END_REF] shows that the eigenvalue distribution can in fact play a role in the convergence when truncation is applied. Example 3.4. For n = 100, we consider A = diag(λ 1 , . . . , λ n) with

λ i = λ 1 + (i -1) (n -1) (λ n -λ 1)ρ n-i , λ 1 = 0.1, λ n = 100, ρ ∈ {0.4, 0.8}.
Moreover, M is taken to be the diagonal matrix with elements logarithmically distributed in the interval [10 -2 , 10 0], and c 1 with all equal components. The value of ρ influences the eigenvalue distribution -but not the conditioning of A -with more evenly distributed eigenvalues for larger values of ρ. The plots in Figure 6 show the convergence history of TCG for two truncation tolerances, with ρ = 0.4 (left) and ρ = 0.8 (right). We can appreciate that a more severe truncation influences the convergence curve well above the truncation tolerance level. Though the observed delay is not dramatic, this experiment illustrates that different truncation tolerances not only

17
This manuscript is for review purposes only.

influence the final stagnation level, but they may also influence the whole convergence history; see [START_REF] Kressner | Low-rank tensor Krylov subspace methods for parametrized linear systems[END_REF] for other examples where convergence is affected before stagnation level. An intuitive explanation on the modification in the convergence history is that the approximation space changes, as soon as truncation takes place. Our analysis does not provide a rigorous description of this convergence delay, which can perhaps be analyzed borrowing tools from finite precision arithmetic; see, e.g., [START_REF] Greenbaum | Behavior of slightly perturbed Lanczos and Conjugate-Gradient recurrences[END_REF], [START_REF] Liesen | Krylov Subspace Methods. Principles and Analysis[END_REF]. This fascinating connection deserves further study.

4. The Galerkin method. The aim of this section is to make a tight connection between the matrix-oriented CG method (with no truncation), and projection methods on (1.2), by showing that they essentially play with the same approximation spaces, but with different solution strategies.

Following well established procedures for the Lyapunov and Sylvester equations [START_REF] Simoncini | Computational methods for linear matrix equations[END_REF], it is possible to directly attack the original matrix equation (1.2), thus bypassing the Kronecker formulation. The idea is to seek an approximate solution in the form

X k = V k Y k V k
where the orthonormal columns of V k span a specifically selected approximation space of low dimension, and Y k is a small size matrix, determined by imposing some conditions on the approximations. The procedure is iterative, and the space is expanded if the approximation is not good enough; the parameter k accounts for the number of iterations. A popular strategy for the Sylvester equation (M = 0), especially in the symmetric and positive definite case, considers a matrixorthogonality condition on the residual R k = C -(AX k + X k A) with respect to the approximation space, the so-called Galerkin condition. For M = 0 and defining

R k = C -(AX k + X k A + M X k M),
in our setting this condition can be formalized as

V T k R k V k = 0.
Substituting the symmetric form

X k = V k Y V T k for some Y , we obtain (V T k AV k)Y + Y (V T k AV k) + (V T k M V k)Y (V T k M V k) = V T k CV k . (4.1)
Therefore, Y k can be obtained as the solution to the (reduced) matrix equation above, which has the same structure as the original problem, but much smaller dimensions. This idea has been successfully generalized in the recent literature for solving multiterm matrix equations, see, e.g., [START_REF] Henning | Matrix oriented reduction of spacetime Petrov-Galerkin variational problems[END_REF], and in particular [12, sec.7], where the same reduction strategy is analyzed for (1.2) and M low rank.

The fundamental step for the effectiveness of this Galerkin procedure is the choice of the approximation space. This choice characterizes all projection methods employed in the approximation of linear system solutions, eigenpairs or matrix functions. For M = 0, a particularly effective choice has been shown to be the rational Krylov subspace, defined as span{c 1 , (A + σ 1 I) -1 c 1 , . . . , k j=1 (A + σ j I) -1 c 1 }, where the parameters σ j , j = 1, . . . , k can be selected beforehand or adaptively during the space generation; see, e.g., [START_REF] Simoncini | Computational methods for linear matrix equations[END_REF] and references therein.

The presence of several distinct coefficient matrices, here A and M = 0, provides a major challenge in the generation of a good approximation space. In the current literature, combinations of rational Krylov subspaces with the involved coefficient matrices have shown to be effective in certain applications, resulting in the generation of a satisfactory approximate solution in a small dimensional space; see section 4.1.

Once again, a crucial hypothesis for the overall effectiveness of this approximation method is that the solution can be well approximated by a low rank matrix; if this is not the case, the expansion of V k may have to proceed for very many iterations to obtain a good approximation, giving rise to an excessively large approximation space and a large reduced problem (4.1).

It was shown in [START_REF] Palitta | Optimality properties of Galerkin and Petrov-Galerkin methods for linear matrix equations[END_REF] that if the generalized Sylvester operator associated with the problem is symmetric and positive definite, then the Galerkin projection is optimal, in the sense that it minimizes the error in the corresponding norm. More precisely, the following result holds. Proposition 4.1. [START_REF] Palitta | Optimality properties of Galerkin and Petrov-Galerkin methods for linear matrix equations[END_REF] For X ∈ R n1×n2 let L : X → j=1 A j XB j be a symmetric and positive definite operator 5 , with A j ∈ R n1×n1 , B j ∈ R n2×n2 . Let X be the exact solution to the problem L(X) = C, and let range(V k), range(W k) be the constructed approximation spaces, so that

X k = V k Y k W T k is the Galerkin approximate solution. Then X -X k L = min Z=V k Y W T k Y ∈R k×k X -Z L ,
where the norm is defined as

X 2 L = trace j=1 X T A j XB j .
This error minimization property is analogous to (2.2) for the conjugate gradient, with the major difference that the approximation space changes. A more precise relation is given in the following.

For M = 0 in (1.2), the Lyapunov equation is recovered. As approximation space we can consider (see, e.g., [START_REF] Simoncini | Computational methods for linear matrix equations[END_REF])

K k = K k ⊗ K k , K k = span{c 1 , Ac 1 , . . . , A k-1 c 1 }, (4.2)
and the optimality property simplifies to min

x∈K k x * -x A ,
where the equivalence (2.3) was used. The following result describes the vectors of this space; see also [START_REF] Kressner | Krylov subspace methods for linear systems with tensor product structure[END_REF]Lemma 3.2]. Proposition 4.2. Assume M = 0 and let p ∈ K k . Then for some β j,i ∈ R, i, j = 0, . . . , k -1, p = 0≤j,i≤k-1 β j,i (A i ⊗ A j)c. 5 The operator L is symmetric and positive definite if and only if its Kronecker form matrix j=1 B T j ⊗ A j is so. 19

This manuscript is for review purposes only.

Proof. We have that p

= (K k ⊗ K k)β, β ∈ R (k+1) 2 so that p = [c 1 ⊗ c 1 , c 1 ⊗ Ac 1 , . . . , c 1 ⊗ A k-1 c 1 , Ac 1 ⊗ c 1 , Ac 1 ⊗ Ac 1 , . . .]β = k-1 i,j=0 (A i c 1 ⊗ A j c 1)β i+j+i = k-1 i,j=0 (A i ⊗ A j)(c 1 ⊗ c 1)β j+i+1
and the result follows, for appropriately ordered β j,i , the elements of the vector β, once reshaped.

We note that p ∈ K k can be written as p = vec(P) with

P = [c 1 , Ac 1 , . . . , A k c 1]B[c 1 , Ac 1 , . . . , A k c 1] T ,
where B is the matrix containing the coefficients in the linear combination. In particular, each iteration requires a single matrix-vector product with A, so that after k iterations only k -1 matrix-vector products with A have been carried out. This is in contrast with CG, where after k iterations, up to O((k -1)n) matrix-vector products with A may have been performed, depending on the numerical rank reached by the iterates.

The description of the spaces generated by CG and the Galerkin approach for M = 0 allows us a natural comparison between the two spaces, in terms of the respective minimization problems.

Theorem 4.3. Let K k be the Krylov subspace (2.1) generated by CG, and let K k be the space defined in (4.2). For M = 0 it holds that K k ⊂ K k , so that

min x∈K k x * -x A ≤ min x∈K k x * -x A .
Proof. Comparing vectors in Proposition 2.3 and in Proposition 4.2, we see that for nonzero η 1 , η 2 ∈ R, η 1 = η 2 , the vector q = η 1 (I ⊗ A)c + η 2 (A ⊗ I)c cannot be presented in K k , while it can in K k . More generally, inspecting the vector representation of Proposition 2.3, we see that the space K k allows for fewer powers of A in the index j, and the coefficients α i need to be the same in the j terms, putting a constraint onto the space dimension.

In summary, for the Lyapunov equation, after k iterations the error of the Galerkin method is not greater than that obtained with CG, in the same energy norm. We refer to [32, sec.3] for a comparison in terms of asymptotic convergence rate.

In the next section we focus on our setting, that is M = 0, reaching similar conclusions.

4.1. Approximation space for the Galerkin method. For general nonzero symmetric M , consider the space K k = range(V k) generated as

V 0 = c 1 , V k = [V k-1 , Av k , M v k], k = 1, 2, . . . , where v k is the kth vector of V k-1 , that is 6 V 0 = c 1 =: v 1 V 1 = [v 1 , Av 1 , M v 1] =: [v 1 , v 2 , v 3] V 2 = [V 1 , Av 2 , M v 2] =: [v 1 , v 2 , v 3 , v 4 , v 5] V 3 = [V 2 , Av 3 , M v 3] =: [v 1 , v 2 , v 3 , v 4 , v 5 , v 6 , v 7]
... 6 The vector used to expand the space in the next iteration is underlined.

20

This manuscript is for review purposes only.

Assuming full rank of the computed matrix, the generated subspace has dimension dim(range(V k)) = 2k + 1, k = 0, 1, . . . Without orthogonalization, the matrix generated by this procedure grows as

V ∞ = [c 1 , Ac 1 , M c 1 , A 2 c 1 , M Ac 1 , AM c 1 , M 2 c 1 , A 3 c 1 , M A 2 c 1 , AM Ac 1 , M 2 Ac 1 , . . .]
Recalling the definition of Q k in section 2.2, the following relation holds

(4.3) Q k = range(V 2 k-1).
As a consequence, as the iterations proceed the dimension of the approximation space grows significantly less in the Galerkin case. Nonetheless, according to Proposition 4.2, an optimal low rank approximation is obtained in that subspace. This is not the case for CG, where the subspace actually employed is a constrained subset of Q k (see section 2.2).

After k iterations V k appears to contain all terms of (A + M) j c 1 , with j ≤ k.

However, the space is richer than the space generated by powers of A + M . In other words, there exist vectors p ∈ range(V k) that cannot be written as p = k j=0 α j (A + M) j c 1 . For instance, p = γ 0 c 1 + γ 1 Ac 1 + γ 2 M c 1 with γ 1 = γ 2 cannot be written using only powers of (A + M). The following proposition gives an explicit representation of vectors in range(V k).

Proposition 4.4. Let p ∈ range(V k). Then there exist γ i , α i, and β i, such that

p = k i=0 γ i i =0 (α i, A + β i, M)c 1 .
In a more compact way, letting ϕ i (ξ, η) = i =0 (α i, ξ + β i, η) be the bivariate polynomial of degree not greater than i, it holds that p = k i=0 γ i ϕ i (A, M)c 1 .

Proof. We simply need to observe that for any i ≤ k, the vector 0 = w = ϕ i (A, M)c 1 is a linear combination of elements in range(V k) of exact degree i in at least A or M .

We stress that the coefficients γs, αs and βs are not necessarily independent.

The discussion associated with item i) of section 2.1 carries over to the low rank matrix X k = V k Y k V T k obtained by the Galerkin method. The rank of X k is at most equal to the dimension of Y k , and it can thus be monitored. Moreover, the energy norm of the error X -X k is minimized, and this implies that convergence is focused on matching the leading singular values, while rank remains under control. We remark that it may happen that Y k is not full rank, so that the rank of X k is lower than the dimension of Y k . This occurrence is related to the fact that not all vectors in V k are used in the approximation, that is V k is not minimal, and contains redundant information.

Another immediate choice of space is

V k = [V k-1 , M -1 Av k , M -1 v k],
which is a natural generalization of the previous selection, after multiplication by M -1 of both sides of the equation; see equation (1.7). This is the space constructed in the next example. This manuscript is for review purposes only.

dimension n = 400. Here M = toeplitz(-1, 2.1, -1) and c 1 has random entries uniformly distributed in (0, 1). The equation is multiplied from the left and from the right by M -1 . In CG this amounts to applying M ⊗ M as preconditioner.

The Galerkin method requires 65 iterations and a subspace of dimension 131 to reach a relative residual norm less than 10 -3 . TCG with a truncation tolerance 10 -6

requires 80 iterations to reach the same residual tolerance, with the final X 1 , P 1 having 92 and 219 columns, respectively. Throughout the iteration, however, matrices X with up to n columns were generated. TCG with a truncation tolerance 10 -4

did not reach the requested accuracy, stagnating much earlier. In Figure 7 we report the number of matrix-vector multiplies with A and M as iterations proceed, for all methods. While the more restrictive truncation allows TCG to retain fewer vectors, so that fewer matrix-vector products are performed, the total number of products with

A and M remains largely superior to that of the Galerkin procedure. In the previous experiment we have used an approximation space that is related to the one generated by CG, to illustrate the previous arguments. Results are not always in favor of the Galerkin method when this space is employed. Indeed, if the approximation space grows too much, the reduced dense equation may become too large to be solved efficiently at each iteration. Different, more effective approximation spaces for the given problem can thus be considered, see, e.g., [START_REF] Buenger | A low-rank matrix equation method for solving pde-constrained optimization problems[END_REF], [START_REF] Henning | Matrix oriented reduction of spacetime Petrov-Galerkin variational problems[END_REF].

Conclusions. The matrix version of CG provides a new theoretical and com-

putational framework for the iterative solution of linear matrix equations via Krylov subspaces. We have described some of the relations that influence the actual behavior of the method. In particular, we have characterized how convergence takes place, in terms of the error matrix, and in which way loss of orthogonality plays a role when rank truncation is in action. In addition, a tight connection to Galerkin methods applied to the original problem has been devised. Our analysis can provide new insights for possible future improvements over the basic implementation of TCG, such as local orthogonality imposition or truncation criterion selection.

Fig. 1 .

 1 Fig. 1. Example 2.2. Singular values of X and of X (k) and error threshold for each of the first 12 iterations.

 Low-rank truncation. Different ways to truncate the factorized representation of a matrix Y = Y 1 Y 2 can be considered. A simple strategy amounts to fixing a maximum rank equal to k. In this case, the most relevant subspace of dimension k spanned by the columns of Y 1 and Y 2 will be kept. This, however, may dramatically 10 This manuscript is for review purposes only. Algorithm 3.1 TCG algorithm for the matrix equation (1.2) Input: Matrix function L: R n×n → R n×n , right-hand side C ∈ R n×n in low-rank format. Truncation operator T . Output: Matrix X ∈ R n×n approximating exact X * .

 k+1) = p (k+1)

 p (k)) r (k+1) ex = 0, enforced by the choice of α k ; ii) (p (k+1) ex

 Then there exists η ∈ [0, 1] such that

Fig. 2 .

 2 Fig. 2. Example 3.3. Convergence history of truncated CG residual norm (dashed thick blue line) for different values of truncation parameter (thin solid line, • 1 is used). Loss of orthogonality (cosine of the angles) between consecutive residuals and residual and directions is also reported.

Figure 2 Fig. 3 .

 23 Fig. 3. Example 3.3. Values of the computed β k as the iterations proceed, for different values of truncation tolerance in the runs of Figure 2.

Fig. 4 .

 4 Fig. 4. Example 3.3. Rank of approximate solution X (k) = X

Figure 3

 3 Figure3reports the value of β k during the whole convergence history, for the same truncation tolerances as in Figure2. We highlight the oscillation of β k around zero in correspondence with stagnation, as opposed to the strictly positive values obtained in the untruncated case. For completeness, in Figure4we also report the approximate solution rank after truncation as the iterations proceed. The rank growth is consistent[START_REF] Kressner | Truncated low-rank methods for solving general linear matrix equations[END_REF]

Fig. 5 .

 5 Fig. 5. Example 3.3. Singular values of the matrix [r (0)/ r (0) , r(1) / r(1) , . . . , r (k) / r (k)], for a selection of truncation tolerance values in the runs of Figure2.

Fig. 6 .

 6 Fig. 6. Example 3.4. Convergence history of TCG for ρ = 0.4 (left) and ρ = 0.8 (right) for different truncation tolerances tol.

Example 4 . 5 .

 45 The matrix A stems from the centered finite difference discretization of the operator (-exp(-xy)u x) x -(exp(xy)u y) y in the unit square with homogeneous Dirichlet boundary conditions. The discretization leads to a matrix A of 21

Fig. 7 .

 7 Fig. 7. Example 4.5. Number of matrix-vector multiplies with A and M as iteratios proceed for the Galerkin method and for TCG, using different truncation tolerances.

The numerical rank of a matrix is given by the number of singular values that are above the unit round-off of the considered computational environment.

Since X and X (k) are symmetric but not necessarily semidefinite, we shall work with singular values rather than eigenvalues.

The notation toeplitz indicates a Toeplitz matrix whose diagonal element is underlined.

This manuscript is for review purposes only.

Brackets indicate the block of (independent) newly added vectors at each iteration.

Acknowledgments. The first author is a member of Indam-GNCS. Its support is gratefully acknowledged. The second author was partially funded by the China Scholarship Council (Contract No. 201906180033), the National Natural Science This manuscript is for review purposes only. Foundation of China (Grant Nos. 11471150, 12161030), and by Hainan Provincial Natural Science Foundation of China (Grant No. 121RC537). This work started during the second author's visit at the Università di Bologna, Italy, August 2019 to February 2021.