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Abstract
In this paper, we consider a functional linear regression model, where both the covariate and the

response variable are functional random variables. We address the problem of optimal nonparametric
estimation of the conditional expectation operator in this model. A collection of projection estima-
tors over finite dimensional subspaces is first introduce. We provide a non-asymptotic bias-variance
decomposition for the Mean Square Prediction error in the case where these subspaces are generated
by the (empirical) PCA functional basis. The automatic trade-off is realized thanks to a model se-
lection device which selects the best projection dimensions: the penalized contrast estimator satisfies
an oracle-type inequality and is thus optimal in an adaptive point of view. These upper-bounds
allow us to derive convergence rates over ellipsoidal smoothness spaces. The rates are shown to be
optimal in the minimax sense: they match with a lower bound of the minimax risk, which is also
proved. Finally, we conduct a numerical study, over simulated data and over two real-data sets.

1 Introduction
Functional data analysis (Ramsay and Silverman, 2005; Ferraty and Vieu, 2006; Ferraty and Romain,
2011) has attracted a growing interest from the past decades. In this context, regression models involving
functional data as covariate are of particular interest. The case where the variable to predict is a real
variable, called functional linear model with scalar output or simply functional linear model has been
widely studied (see e.g. Cai et al. 2006; Cardot et al. 2007; Li and Hsing 2007; Hilgert et al. 2013; Cai
and Yuan 2012) and is now well understood. In particular, the minimax rates for the estimation of the
slope function in this model have been computed by Cardot and Johannes (2010) and adaptive estimators
have been built (Comte and Johannes, 2010, 2012; Brunel and Roche, 2015; Brunel et al., 2016). On the
contrary, the case of the functional linear model with functional output, where the variable to predict is
also a functional variable has been less studied. This paper is dedicated to minimax adaptive estimation
in this framework.

We assume here that we observe a sample {(Xi, Yi), i = 1, . . . , n}, n ∈ N\{0} of independent copies of
a couple of functional data (X,Y ). For simplicity, we assume that both X and Y are random variables
in the same functional space H = L2([0, 1]), the space of square integrable functions on the interval
[0, 1], equipped with its usual scalar product 〈·, ·〉 defined by 〈f, g〉 =

∫ 1
0 f(t)g(t)dt, f, g ∈ H and norm

‖ · ‖ =
√
〈·, ·〉. The link between the functional variable of interest Y ∈ H and the functional covariate

X ∈ H is linear: there exists an operator S ∈ L(H), the space of continuous linear operators on H, such
that

Y = SX + ε, (1)
∗gaelle.chagny@univ-rouen.fr
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where ε ∈ H stands for an (unobserved) noise. The functional variables X and ε are supposed to be both
centered, and independent. The noise ε satisfied σ2

ε = E‖ε‖2 < ∞. The slope operator S is an integral
operator and we denote by S ∈ L2([0, 1]2) its kernel:

S : H −→ H

f 7−→ Sf : t ∈ [0, 1] 7→ Sf(t) =
∫ 1

0
S(s, t)f(s)ds.

The aim is to estimate the unknown operator S (or its kernel S) from the sample (Xi, Yi)i∈{1,...,n}.
It seems that the first article about estimation in this model is the one of Cuevas et al. (2002). In the

fixed design case, they propose a histogram estimator and prove its consistency under strong assumption
on the design matrix. A wavelets estimator has been considered by Aguilera et al. (2008) and a splines
estimator by Antoch et al. (2010). The majority of the literature focus on estimators by projection onto
the basis of principal components of the covariate X (Chiou et al., 2004; Yao et al., 2005). The interest
of functional Principal Components Analysis (PCA in the sequel) may be seen in the Karhunen-Loève
decomposition of X that is to say the writing of X as a series (with convergence in H)

X =
∑
j≥1

√
λjξjϕj , (2)

where (λj)j≥1 is a non-increasing sequence of non-negative real numbers, (ξj)j≥1 is a sequence of
standardized random variables (the principal components scores) and (ϕj)j≥1 is an orthonormal ba-
sis of H (the principal components basis). It can be proved that, for a given dimension D, the space
span{ϕ1, . . . , ϕD} is the best approximation space for X in the sense of the L2-loss i.e.

span{ϕ1, . . . , ϕD} = arg min
{
E
[
‖X− projS(X)‖2

]
,S lin. sub. of H,dim(S) = D

}
where, for a linear subspace S of H, projS(X) is the orthogonal projection of X into S, see Ferraty
and Romain (2011, Chapter 8) or Hsing and Eubank (2015, Theorem 7.2.8). We also refer to Dauxois
et al. (1982); Mas and Ruymgaart (2015) for other reviews on PCA for functional data. A procedure to
estimate the ϕj ’s is described in Section 2.2.2.

To our knowledge, few articles investigate the theoretical properties of slope operator or kernel esti-
mators in Model (1). Crambes and Mas (2013) study an estimator of the slope operator S by projection
onto the principal components basis. They provide a bias-variance decomposition of the mean squared
prediction risk and compute optimal rates of convergence: such type of results can be stated only under
some smoothness assumptions on the target operator S (as usual in nonparametric estimation) but also
under assumptions of the process X, through the rate of decay of the eigenvalues (the λj ’s in (2)) of the
associated covariance operator. Crambes and Mas (2013) also derive weak convergence properties of their
estimator. In their procedure, the smoothness indices of the target operator and of the covariate X (the
decreasing rate of the covariance operator eigenvalues for example) are required to choose the projection
dimension that permits to achieve the optimal rate. Thus, the method is not adaptive. More recently,
Imaizumi and Kato (2018) study two estimation procedures called simple and double truncature. The
simple truncature estimator corresponds to the one of Crambes and Mas (2013). They obtain lower and
asymptotic upper-bounds on the estimation risk of the slope kernel S. As in Crambes and Mas (2013),
the procedure is not adaptive, and the results are valid only when the decay rate of the eigenvalues of
the covariance operator is a polynomial one.

In the present work, we propose a procedure which leads to an optimal estimate for the slope operator
in Model (1), both from the minimax and the adaptive estimation point of view, for the mean squared
prediction error. We first introduce a collection of projection estimators, by minimizing a least-squares
contrast function over subspaces of H spanned by the first elements of the PCA basis, corresponding to
the double truncature procedure of Imaizumi and Kato (2018). We focus on the mean squared prediction
error and compute a non-asymptotic upper-bound in Theorem 3. This bound exhibits a bias-variance
decomposition allowing us to derive rates of convergence, under some regularity assumption on the
operator SΓ1/2 (see Corollary 1). We then show that these bounds match with lower bounds that
we also proved in Theorem 2 (see also Corollary 2). One of the other main original contributions of
this paper is to propose an entirely data-driven procedure to automatically select the best projection
dimensions. The method relies on classical model selection tools (Massart, 2007), and takes advantage
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of the definition of the estimates as minimized-contrast estimators. A penalized version of the contrast
function permits to derive data driven estimate, which satisfies an oracle-type inequality, and achieves
the optimal minimax convergence rates. Our selection rule does not depend on smoothness parameters
of X and S. The procedure is then adaptive and minimax optimal.

The paper is organized as follows. Our least-squares estimators are constructed in Section 2. Upper
and lower-bounds for the risk we choose are established in Section 3, after the description of the main
hypotheses. Section 4 is devoted to adaptive estimation: the penalization strategy is described, and
the oracle inequality as well as adaptive convergence rates are stated. Numerical results illustrate the
theoretical properties in Section 5. We first calibrate our estimator and study its performances on
simulated data in Section 5.1. Then we apply our procedure on two real-data sets problems in Section
5.2: the prediction of the appliances electricity consumption of a day given the ones of the day before
(Candanedo et al., 2017), and the prediction of the evolution of the electricity prices from the wind power
in-feed (Liebl, 2013). Finally, the proofs are gathered in Section 6.

2 Estimation method
2.1 Notations
We introduce here some notations which will be used all along this document. We denote by L2(H) the
subspace of Hilbert-Schmidt operators on H equipped with its usual Hilbert-Schmidt norm defined for
any operator T ∈ L2(H) as follows

‖T‖HS =

 ∞∑
j=1
‖Tφj‖2

1/2

,

where (φj)j≥1 is a Hilbertian basis of H. Note that the Hilbert-Schmidt norm is independent of the
Hilbertian basis choice. It is also worth mentioning that an integral operator is Hilbert-Schmidt if and
only if the associated kernel is square integrable. This means that by assumptions, our target operator
S is Hilbert-Schmidt. We also need to define two operators that play a key role in the estimation
procedure, namely the covariance and cross-covariance operators. To do so, we first define the tensor
product between two elements a and b of H as

b⊗ a : H −→ H
f 7−→ 〈a, f〉b.

The covariance operator of X, denoted Γ is the operator defined by

Γ : H −→ H
f 7−→ E[X ⊗X(f)] = E[〈X, f〉X]. .

Note that the covariance operator is a natural extension of the covariance matrix, in the infinite di-
mensional framework. The (λj , ϕj)j involved in (2) are the eigenelements of Γ. We also introduce the
cross-covariance operator ∆ of (X,Y ) given by

∆ : H −→ H
f 7−→ E[Y ⊗X(f)] = E[〈X, f〉Y ].

Empirical counterparts of Γ and ∆, respectively denoted by Γn and ∆n will be useful in the definition
of our estimators. These operators are naturally defined on H by

Γn = 1
n

n∑
i=1

Xi ⊗Xi and ∆n = 1
n

n∑
i=1

Yi ⊗Xi.

In order to study the estimator behaviors, we use an optimality risk called the Mean Square Prediction
Error (MSPE). This criterion is also used in Crambes and Mas (2013); Cardot and Johannes (2010);
Crambes et al. (2009) or Brunel et al. (2016). The MSPE of a given estimator Ŝ of S is defined as

MSPE(Ŝn) = E‖Ŝn(Xn+1)− S(Xn+1)‖2,
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where Xn+1 is a new observation of X, independent of (Xi, εi), i = 1, . . . , n. This risk can also be written

MSPE(Ŝn) = E
[
‖Ŷn+1 − E [Yn+1|Xn+1] ‖2 |(Xi, Yi)i=1,...,n

]
, (3)

where Yn+1 = SXn+1 + εn+1, Ŷn+1 = ŜnXn+1, and E[·|Z] is the conditional expectation given a variable
Z. It is also linked with the Hilbert-Schmidt norm as follows,

E‖Ŝn(Xn+1)− S(Xn+1)‖2 = E‖(Ŝn − S)Γ1/2‖2HS, (4)

see Lemma 5 in the proof (Section 6.3).
For two sequences (aj)j≥1 and (bj)j≥1 of real numbers, we write aj � bj if there exists c ≥ 1 such

that c−1aj ≤ bj ≤ caj .

2.2 Least-squares estimation
2.2.1 Minimum contrast estimation

The main goal of statistical estimation is to build an estimate that leads to a small risk. Following the
model selection device introduced by Birgé et al. (1998), we minimize an empirical counterpart of the
risk, called the contrast function, over finite dimensional subspaces of L2(H), to build projection-type
estimators. Let (φj)j≥1 be an orthonormal basis of H = L2([0, 1]). We introduce a collection of finite
linear subspaces of L2(H), called the models and denoted Vm1,m2 for given m1,m2 in N\{0}. These
models are defined as

Vm1,m2 = Span{φk ⊗ φj , 1 ≤ j ≤ m1, 1 ≤ k ≤ m2}.

Note that Vm1,m2 only contains integral operators. Subsequently, for any T ∈ L2(H), let

γn(T ) = 1
n

n∑
i=1
‖Yi − T (Xi)‖2 .

The operator γn : L2(H)→ R is defined in the spirit of other regression contrast introduced for example
by Baraud (2002) and Brunel et al. (2016) and stands for an empirical version of the risk (3). Thus, we
set

Ŝm1,m2 ∈ arg min
T∈Vm1,m2

γn(T ). (5)

To compute Ŝm1,m2 , we introduce the matrices A and Yφ given by

A = (〈Γnφj , φk〉)j,k∈{1,...,m1} and Yφ = (〈∆nφj , φk〉)j∈{1,...,m1},k∈{1,...,m2}.

The following result, which proof can be found in Section 6.1.1, gives a condition for the existence of
Ŝm1,m2 .

Proposition 1. If the matrix A is invertible, then Ŝm1,m2 in (5) is uniquely defined, and

Ŝm1,m2 =
m1∑
j=1

m2∑
k=1

b̂j,kφk ⊗ φj ,

with b̂ = (̂bj,k)j∈{1,...,m1},k∈{1,...,m2} defined by b̂ = A−1Yφ.
Remark 1. Since S is an integral operator with kernel S, we could also have defined a contrast function
over the space of the kernel functions: for any T ∈ L2([0, 1]2), let

γ′n(T ) = n−1
n∑
i=1
‖Yi −

∫
[0,1]
T (s, ·)X(s)ds‖2.

If we denote by V ′m1,m2
= Span{(t, s) 7→ φj(s)φk(t), 1 ≤ j ≤ m1, 1 ≤ k ≤ m2}, we can set

Ŝm1,m2 ∈ arg minT ∈V ′m1,m2
γ′n(T ). The estimator Ŝm1,m2 is also uniquely defined under the assump-

tions of Proposition 1, and for any f ∈ H,

Ŝm1,m2f =
∫ 1

0
Ŝm1,m2(s, ·)f(s)ds. (6)
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Remark 2. Defined with (5), Ŝm1,m2 estimates the orthogonal projection Πop
m1,m2

S of the operator S
onto the operator space Vm1,m2 . This projection operator can be written, for any T ∈ L2(H),

Πop
m1,m2

T = Πm1TΠm2 , (7)

where, for any m ∈ N\{0}, Πm is the projection operator on the subspace Span{φk, k ∈ {1, . . . ,m}}.
The proof of (7) can be found in Section 6.1.2.

2.2.2 Specific choice of the projection spaces : principal component basis

In the rest of this article, we focus on the basis of principal components. Recall that, by definition, the
empirical covariance operator Γn is self-adjoint. Moreover, since it is a finite-rank operator, it is also a
compact operator. Then Γn is diagonalisable in a Hilbertian basis, denoted by (ϕ̂j)j≥1. We also denote
by (λ̂j)j≥1 its eigenelements, which are sorted in a decreasing order. The (ϕ̂j)j≥1 is called the empirical
PCA basis of X. Notice that the operator Γn is not invertible, since it has finite rank at most equal to n.
This means that the eigenvalues (λ̂j)j≥1 are zero from a given rank. Let us introduce its pseudo-inverse,
Γ†n,m1

, defined for an index m1 ∈ N\{0} by

Γ†n,m1
=

m1∑
j=1

1
λ̂j
ϕ̂j ⊗ ϕ̂j ,

for m1 ≤ mmax, with mmax = maxm≥1{λ̂m > 0} is the rank from which the eigenvalues are equal to
zero, and Γ†n,m1

= Γ†n,mmax
for m1 > mmax.

We obtain the following expressions for the least-squares estimators of the linear operator S and its
kernel S . The proof can be found in Section 6.1.3.

Proposition 2. On the PCA basis, the least-squares estimator for the kernel S exists, and is uniquely
defined by

Ŝm1,m2(s, t) =
m1∑
j=1

m2∑
k=1

1
λ̂j
〈∆nϕ̂j , ϕ̂k〉ϕ̂j(s)ϕ̂k(t), (s, t) ∈ [0, 1]2. (8)

Moreover, the expression of the resulting estimator for the linear operator S is

Ŝm1,m2 = ∆nΓ†n,m1
+

∑
1≤j≤m1
1≤k≤m2
j 6=k

1
λ̂j
〈∆nϕ̂j , ϕ̂k〉ϕ̂j ⊗ ϕ̂k. (9)

Remark that our estimator can also be written Ŝm1,m2 = Π̂m2∆nΓ†n,m1
, where Π̂m2 is the projection

operator onto the finite dimensional subspace Span{ϕ̂k, k = 1, . . . ,m2}. Thus, Ŝm1,m2 can be compared
to the estimator of Crambes and Mas (2013) which writes ŜCMm1

= ∆nΓ†n,m1
. Our choice is based on

the fact that the initial regression problem comes down to estimate the kernel S ∈ L2([0, 1]2) of the
operator S, which brings out two projection dimensions. Our estimate is thus the same as the estimator
with “double truncation” of Imaizumi and Kato (2018) (see their equation (7) p.19), even if they do not
introduce it as a minimum of contrast estimator. The definition of Ŝm1,m2 as an operator that minimizes
a contrast allows us to derive non-asymptotic upper-bounds for the prediction error, and to propose a
data-driven way to select the best projection dimensions.

3 Upper and lower bounds of the estimation risk
In this section, we provide sharp upper bounds for the estimation risk of the estimator Ŝm1,m2 , for any
but fixed (m1,m2) ∈ (N\{0})2, after stating the main hypotheses. We also establish a lower bound for
the prediction risk, to ensure that the collection of estimates is reasonable.
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3.1 Assumptions
Classically, we need to make some assumptions for optimal theoretical results. We distinguish different
types of assumptions: regularity assumptions on SΓ1/2, regularity assumptions on X, moment assump-
tions on X and moment assumptions on the noise ε.

Assumption on SΓ1/2: We consider by analogy with Brunel et al. (2016), the regularity space of type
ellipsoid, defined for all positive α, β,R by

WR
α,β =

T ∈ L2(H),
+∞∑
j=1

+∞∑
r=1

ηα(j)ψβ(r)〈T (ϕj), ϕr〉2 ≤ R2

 ,

where α, β > 0 and for all γ > 0, the functions ηγ is defined such that

ηγ(j) � jγ or ηγ(j) � exp(jγ),

and the same for ψγ . We speak about the “polynomial case” or the “exponential case” in the sequel. These
regularity spaces are generalization of the ellipsoid sets in the finite dimensional framework. Moreover,
the regularity parameters α and β are respectively the convergence rates towards 0 of the operator
components in both directions.

A1 : We assume that SΓ1/2 belongs to WR
α,β for some positive regularity parameters α, β,R.

Asssumption A1 is a smoothness assumption on the operator S we want to recover. In nonparametric
estimation, it is classical, and permits to control the bias term of the risk and to derive convergence rates
(see e.g. Tsybakov (2008)). The kind of smoothness ball (ellipsoid space) we choose is also classical for
projection type estimation (again, see Tsybakov (2008), but also Barron et al. (1999), or Brunel et al.
(2016)).

The specificity of our assumption is that it is a joint regularity assumption both on S and on the
covariate X. This technical choice is related to the choice of the mean squared prediction error we
consider in this work: this risk is linked to the Hilbert-Schmidt norm of SΓ1/2, see (4), it is thus natural
that the smoothness assumption refers to this operator. This was also the case in the paper of Crambes
and Mas (2013) and was pointed out by Hilgert et al. (2013). In a similar but different way same
discussions appear in Comte and Johannes (2012): the link between the smoothness of S and X appears
in a “compatibility” assumption on the norms, see their section 3.1. If we replace the prediction risk
with a quadratic risk, the most appropriate choice would be to impose a regularity assumption only on
S, as done in Imaizumi and Kato (2018).

Assumptions on X: Requiring a regularity on X is tantamount to making assumptions on Γ and its
eigenvalues (λj)j≥1. In particular, we consider that the eigenvalues are all distincts. In addition, we
assume the following,

A2 : For all j in N\{0}, we have λjψβ(j) ≥ 1.
The previous assumption ensures a separability condition on the eigenvalues of Γ. Indeed, considering

that the model estimation is based on the estimation of the eigenfunctions of Γn, a separability condition
on the eigenvalues of Γ, ensuring that they are not too close to each others is needed. Separation
conditions on the eigenvalues of the covariance operator are usual in functional PCA regression. A usual
alternative is to consider assumptions on the gap between two consecutive eigenvalues, as in Imaizumi
and Kato (2018) or Hall and Horowitz (2007).

A3 : There exists a convex positive function x 7→ λ(x) such that, for all j in N\{0} : λj = λ(j).
A4 : There exists a constant γ > 0 for which the sequence

(
jλj max{ln1+γ(j), 1}

)
j≥1 decreases.

Assumptions A3 and A4 permits to obtain some decreasing rate of convergence of the eigenvalues
of Γ and are classical in obtaining the optimal convergence rate of estimation. Similar assumptions have
also been made in Crambes and Mas (2013) and Brunel et al. (2016).

Moment assumptions on X:
A5 : There exists a constant b > 0 such that, for all l in N\{0},

sup
j≥1

E

[
〈X,ϕj〉2l

λlj

]
≤ l!bl−1.
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Like Assumption A3, one can also find Assumption A5 in Crambes and Mas (2013) and Brunel
et al. (2016). The control of the moment of the random variables 〈X,ϕj〉, j ≥ 1 is required to apply
Bernstein’s exponential inequality.

A6 : For all j 6= k, 〈X,ϕj〉 and 〈X,ϕk〉 are independent.
Both assumptions A5 and A6 are satisfied when X is a Gaussian process (see Ash and Gardner

1975, Section 1.4). For general (non Gaussian) processes, we know that 〈X,ϕj〉 and 〈X,ϕk〉 are, at least,
uncorrelated since E[〈X,ϕj〉〈X,ϕk〉] = 〈Γϕj , ϕk〉 = λj1{j=k}.

Moment assumption on ε:
A7 : There exists p > 6 such that τp = E‖ε‖p < +∞.
The moment assumption A7 is classically needed to obtain adaptive estimators of the model S.

Indeed, when no assumption is imposed on the fluctuation of noise, it is not possible to construct
optimal estimator without knowing the regularity of the model. We can deduce easily, e.g. from Chagny
and Roche (2014, Lemma 8), that it is verified if E[‖ε‖2] < +∞ and E[〈ε, f〉p] < +∞, for all f ∈ H. As
particular cases, A7 is verified as soon as the noise is Gaussian, or bounded.

3.2 Upper bound of the Mean Square Prediction Error (MSPE)
Theorem 1 below gives a first sharp upper bound of the Mean Squared Prediction Error of the estimator
Ŝm1,m2 with respect to the projection dimensions m1 and m2. This permits to have (up to a positive
constant) an order of magnitude of the prediction error for each theoretical choice of m1 and m2. The
proof of the results of the section can be found in Section 6.3.

Theorem 1. Under Assumptions A1 to A6, the Mean Squared Prediction Error of the estimator Ŝm1,m2

is upper bounded by

MSPE(Ŝm1,m2) ≤ σ2
ε

m1

n
+3

+∞∑
j=m1+1

‖SΓ1/2(ϕj)‖2+3
m1∑
j=1
‖(I−Πm2)SΓ1/2(ϕj)‖2+An,m1+Bn,m1+Dn,m2+En,

(10)
where, for a constant C which does not depend on n, m1, m2,

An,m1 = σ2
ε

Cm2
1 ln2(m1)
n2 , Bn,m1 = Cm2

1λm1‖S‖HS

n
, En = C

n2 ‖SΓ1/2‖2HS

Dn,m2 = Cm2λm2

n
+ Cm2

2 ln(m2)
nψβ(m2) + Cm3

2
nψβ(bm2/2c)

+ C ln4(n)
n2

(
m2∑
k=1

k2 ln2(k)√
ψβ(k)

)2

.

In Theorem 1 appears a bias-variance trade-off. The first term in the right side of Equation (10) is
a variance term, which increases with m1. The two following terms are bias terms: one is decreasing
with m1, the other one with m2. Both are related to the smoothness of SΓ1/2. Notice right now that it
is not the smoothness of the target function S that influences the result, but the one of SΓ1/2. This is
consistent with the choice of the risk, since the prediction error we study can also be written

MSPE(Ŝm1,m2) = E‖(Ŝm1,m2 − S)Γ1/2‖2HS,

see Lemma 5 below. The same phenomenom occurs for Crambes and Mas (2013). Compared to their
result for the estimator ŜCMm1

(see Theorem 2 p.2633 in Crambes and Mas 2013), the first two terms of
the bias-variance decomposition (10) are the same, but we have an additional bias term (third term in
the right-hand-side of (10)), which depends on the index m2. We prove in Corollary 1 below that the
other terms are negligible.

Corollary 1. Assume that we are in the case where the function ψβ is polynomial with β > 6 or
exponential. Assume also that there exists ν > 0 such that λj ≤ j−1−ν , for any j ≥ 1. Under the
assumptions of Theorem 1, we have the following bound of the non-asymptotic maximal prediction risk
of Ŝm1,m2 .

inf
m1,m2∈N\{0}
m1≤n/ ln2(n)

sup
SΓ1/2∈WR

α,β

MSPE(Ŝm1,m2) ≤ inf
m1∈N\{0}

m1≤n/ ln2(n)

{
σ2
ε

m1

n
+ 3
ηα(m1)

}
+ c

n
, (11)
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where c is a positive constant.

Some comments are needed at this point. The dimension parameter m2 does not appear in the
upper-bound. A similar phenomenon has been observed by Imaizumi and Kato (2018). It is mainly due
to the fact that the variance is completely independent of it. Hence, since the bias decreases to 0 when
m2 → +∞, it is sufficient to choose m2 sufficiently large so that the bias is negligible (remind that the
estimator is well defined even in the case m2 = +∞).

Notice also that the additional assumption λj ≤ j−1−ν is very mild and useful only for technical
purpose (we recall that, since the operator Γ is trace-class,

∑
j≥1 λj < +∞). It is satisfied if the

eigenvalues decrease at a polynomial or exponential rate. It can also be relaxed to allow us to choose
λj = (j lnµ(j))−1 for some µ ≥ 1.

Corollary 1 gives the sharpest possible upper-bound of the prediction risk for the estimator we define
by projection onto the basis of principal components. In the next section, we show that the upper-bound
of Corollary 1 is optimal over the ellipsoidal regularity spaces we consider here.

3.3 Lower bound of the minimax Mean Square Prediction risk
In this section, we demonstrate that the upper-bound of the Mean Square Prediction risk obtained
in Corollary 1 is optimal in the minimax sense in a non-asymptotic framework. This result is stated
in Theorem 2 below. The demonstration of this result is based on a reduction scheme to a finite
number of hypotheses, as explained in Tsybakov (2008). We apply the Kullback-Leibler version of
Assouad’s Lemma, and the Cameron-Martin theorem (Lifshits, 2012). It permits to control the likelihood
expectation between different possible data distributions in the finite model collection.

Theorem 2. Let α > 0, β > 0 and R > 0, we have the following lower bound, for a constant C > 0,

inf
Ŝn

sup
SΓ1/2∈WR

α,β

MSPE(Ŝn) ≥ C inf
m1∈N\{0}

{
σ2
ε

m1

n
+ 3
ηα(m1)

}
,

where the infimum is taken over all estimators Ŝn calculated from a sample {(Xi, Yi), i = 1, . . . , n}
following model (1), under the assumption that the noise ε is a Gaussian process.

This lower bound permits to derive the minimax explicit convergence rates in the polynomial and
exponential cases.

Corollary 2. Under the assumptions of Theorem 2, we compute the two following convergence decay
for the minimax estimation risk, up to a constant C > 0.

1. If ηα(j) � jα (polynomial case) then,

inf
Ŝn

sup
SΓ1/2∈WR

α,β

MSPE(Ŝn) ≥ Cn− α
α+1 .

2. If ηα(j) � exp(jα) (exponential case) then,

inf
Ŝn

sup
SΓ1/2∈WR

α,β

MSPE(Ŝn) ≥ C (ln(n))1/α

n
.

From Corollaries 1 and 2, we deduce that the projection estimators onto the PCA bases achieve the
minimax rate for a suitable choice of the dimensionm1 andm2 = +∞. For example, it can be deduced in
the polynomial case, that the optimal sharp upper-bound in Corollary 1 is obtained for m1 = Cn1/(1+α)

andm2 →∞, where C is a universal positive constant. This leads to an upper-bound of order n−α/(α+1),
which effectively matches with the lower bound of Corollary 2. The latter estimation rate is known to
be optimal in many other nonparametric estimation problems, see for example Tsybakov (2008). It can
also be remarked that, in both polynomial and exponential cases, the rates we get are very similar to the
minimax rates obtained by Brunel et al. (2016, Theorem 4) or Cardot and Johannes (2010, Proposition
3.1) in the functional linear model with scalar outputs.
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Although minimax optimal if the projection dimensions m1 and m2 are well choosen, the projection
estimates are not adaptive at this stage. Indeed, the optimal dimension m1 depends on the regularity
α of the operator SΓ1/2, which is generally unknown. In the next section, we focus on the construction
of an adaptive estimator of the model, meaning that is does not imply any knowledge of the unknown
model regularity and achieves the optimal required estimation rate.

4 Adaptive estimation
4.1 Model selection
The objective is to perform adaptive model selection, which does not depend on the unknown smoothness
of the model S, but only on the available data. As a reminder, for given projection dimensions m1 and
m2, we estimate the operator S by Ŝm1,m2 = Π̂m2∆nΓ†n,m1

, where the operators Π̂m2 , ∆n and Γ†n,m1
are

defined in Section 2.2.
The idea is to propose a procedure which automatically selects the best projection dimensionsm1 and

m2, that is the best estimator in the collection (Ŝm1,m2)m1,m2 . According to the result of Corollary 1, we
choose m2 → +∞ and we select m1 in a collection Mn = {1, . . . , Nn}, where the size of the collection
Nn statisfied Nn ≤ bn/ ln2(n)c where b·c is the floor function, associating to each x in R the largest
integer less or equal to x. Thus, the issue we consider now is the choice of an estimator in the collection
(Ŝm1,∞)m1∈Mn

, where Ŝm1,∞ = ∆nΓ†n,m1
corresponds in fact to the estimator of Crambes and Mas

(2013). The method we use is derived from the model selection tools developed by Barron et al. (1999),
as in Brunel et al. (2016) or Comte and Johannes (2012). A clear and detailed account is given in Massart
(2007). We want to select the ”best” estimator in the collection (Ŝm1,∞)m1∈Mn

, that is the one which has
the smaller risk. Since the risk is unknown in practice, the oracle m∗1 = arg minm1∈Mn

MSPE(Ŝm1,∞)
is also unknown, and the risk MSPE(Ŝm1,∞) should be replaced by an empirical counterpart. Since the
contrast function is an empirical version of the risk, the first idea is to choose arg minm1∈Mn

γn(Ŝm1,∞).
However, since the contrast function decreases when m1 grows, the choice of arg minm1∈Mn

γn(Ŝm1,∞)
will lead to the selection of the largest index in the collection Mn. One of the main idea of model
selection theory is to introduce a penalty to balance this decrease, usually of the order of the variance.
The dimension parameter m1 is choosen as the one which minimizes a penalized contrast function,

m̂1 = arg min
m1∈Mn

(
γn(Ŝm1,∞) + pen(m1)

)
, (12)

where γn is defined in Section 2.2 and pen is the penalty function defined as pen : m1 7→ 8(1+δ)σ2
εm1/n,

with δ > 0 a numerical constant that will be tuned in practice, see Section 5.
Remark that, when m1 is fixed, γn(Ŝm1,m2) decreases with m2 by definition and pen(m1) does not

depend on m2. Thus, (m̂1,+∞) is also a solution of the minimization problem

min
(m1,m2)∈Mn×N\{0}∪{+∞}

(
γn(Ŝm1,m2) + pen(m1)

)
.

With this writing, the selection procedure has strong similarities with the usual model selection pro-
cedures when two dimensions have to be selected (see e.g. Plancade 2013; Lacour 2007). Here, the
specificity is that the penalty criterion does not depend on m2 (since the variance term only depends on
m1). This makes it possible to consider, in an equivalent way, the criterion (12) we have defined, which
focuses on m1 only.

4.2 Oracle-type inequality
Theorem 3 proves that the penalty term introduced above has the good order of magnitude to automati-
cally realize the best bias-variance trade-off. In the statement of the result, and in the sequel, ‖ ·‖n is the
empirical norm defined for all operator T as ‖T‖2n = 1/n

∑n
i=1 ‖T (Xi)‖2 and Π̂op

m1,∞ is the orthogonal
projection onto the closure of Vm1,∞ = Span{ϕ̂k ⊗ ϕ̂j , 1 ≤ j ≤ m1, m2 ≥ 1}. The proof can be found
in Section 6.4.
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Theorem 3. Under Assumption A7, we have the following upper bounding, for all ζ > 0,

E‖S − Ŝ
m̂1,∞‖

2
n ≤ (1 + ζ) inf

m1∈Mn

{
E‖S − Π̂op

m1,∞S‖
2
n + c(ζ) pen(m1)

}
+ C ′

n
,

for a constant C ′ > 0 which does not depend neither on n, nor on m1 and c(ζ) = (2 + ζ)/(1 + ζ).

Theorem 3 proves that the selected estimator achieves the best bias-variance compromise, up to
a multiplicative constant, and the addition of the term C ′/n, which is negligible. Then it achieves the
minimax rate and, since the dimension selection procedure does not require the knowledge of the unknown
regularity α, it is adaptive. A similar result could be obtained for the risk MSPE, but at the price of
additional technicalities. Indeed, to obtain such result it is necessary to prove that, with sufficiently large
probability, the quantity ‖S‖2n/MSPE(S) is lower bounded by a constant, for all S ∈ Vm1,m2 which is
a random space (depending on the data X1, . . . , Xn). We could draw inspiration e.g. from the proof of
Brunel et al. (2016, Lemma 6).

5 Numerical study
The aim of this section is to assess the performance of the adaptive estimation method presented in
Section 4. In Section 5.1, we perform simulation studies for various functional models. Subsequently, we
apply the estimation method on two real data cases, in Section 5.2. All the study has been carried out
with the free software R.

5.1 Simulation study
5.1.1 Simulated data

To implement our estimation method, we consider three data generating mechanisms (i), (ii) and (iii).
Each model is defined by the equation

Y (`) =
∫ 1

0
S`(s, ·)X(`)(s) ds+ ε(`), (13)

where ` = 1, 2, 3. We also denote S(`) the integral operator with kernel S`. The analytical expressions
of the kernels and noises are given below.

(i) The kernel is defined as S1 : (s, t) 7→ s2 + t2 and the noise ε(1) is generated according to a
standard Brownian motion divided by 20. In addition, the Karhunen–Loève decomposition of
the covariate X(1) is written as X(1) =

∑k0
j=1

√
λjξjϕj , where k0 = 8, λj = 1/(π2(j − 0.5)2),

ϕj : t 7→
√

2 sin ((j − 0.5)πt), j = 1, . . . , k0, and (ξj)j are independent standard Gaussian random
variables.

(ii) The implementation of this simulation case is the same as (i) with only one difference, the error
ε(2) is a Brownian motion divided by 2.

(iii) The model kernel is given by the equation S3 : (s, t) 7→
∑k1
j,l=1 bj,lϕl(s)ϕj(t), where k1 = 50, for all

j, l in N\{0}, ϕj : u 7→
√

2 cos(jπu) and bj,l = 4(−1)j+lj−γ l−β , with β = 3 and γ = 2.5. The input
is the random function X(3) =

∑k1
j=1 j

−α/2Ujϕj , where α = 1.2 and Uj are independent uniform
distributions over [−

√
3,
√

3]. Finally, the noise is defined as ε(3) =
∑k1
j=1 j

−δ/2ξjϕj , with δ = 1.1
and (ξj)j≥1 are independent standard Gaussian random variables.

The simulation cases (i) and (ii) are drawn from Crambes and Mas (2013), while the model (iii) is
studied in Imaizumi and Kato (2018) with slight modifications.
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5.1.2 Implementation of the method

To perform the model selection strategy for the examples described above, a first step is to compute the
penalty term of the procedure in (12). For simulation purposes, we keep the true value of σε (it will
be replaced by an empirical counterpart for real data analysis in Section 5.2). But we have to wisely
choose the calibration parameter κ = 8(1 + δ), according to Section 4 notations. Unlike the theoretical
framework and for practical reasons, the chosen values of κ are not necessarily greater than 8, as it is usual
in model selection. More precisely, we compare the choices of κ values in the range [0.2, 2], with a step
of 0.2 between each two successive values. For every κ value and for each model, we generate N = 500
independent samples of inputs/outputs (Xi, Yi)i∈{1,...,n} of size n = 600 each. We estimate the three
models N times and for each iteration, we measure the prediction error by generating a new observation
of the input/output pair. Thus, for any value of κ, and any ` = 1, 2, 3, we simulate (X(`)

i,k , Y
(`)
i,k ) for

i = 1, . . . , n, k = 1, . . . , N from Model (13), we compute the Empirical Mean Square Prediction error

EMSPE(`,κ) = 1
N

N∑
k=1

∥∥∥Ŝ(`,k)
m̂1,∞

(X(`)
n+1,k)− S(`)(X(`)

n+1,k)
∥∥∥2

where Ŝ(`,k)
m̂1,∞

is the penalized contrast estimator computed from (X(`)
i,k , Y

(`)
i,k )i=1,...,n and X(`)

n+1,k is dis-

tributed like X(`) and independent of the (X(`)
i,k )i.

Note also that numerically, we discretize the input Xi (respectively the output Yi) realizations on a
[0, 1] uniform grid of size p (respectively q). The sizes of the grids are chosen to be p = q = 100. Figure 1
represents the Empirical Mean Square Prediction Error with respect to κ value, while Figure 2 shows the
mean optimal selected dimension for each κ choice. A first general observation of curve shapes in Figure
1 is a tendency of decrease then increase. This reflects the fact that it is not recommended to choose
neither too small nor too big calibration parameters. Indeed, small values favor the contrast term, while
big values give the advantage to the penalty term, and in both cases the bias/variance compromise is
missed. Another intuitive comment when comparing (i) and (ii) curves in Figure 1 is that the Empirical
Mean Square Prediction Error of the second model is much bigger than the first one, which is consistent
with the fact that the only difference between these models is that the second one is too noisy compared
to the first one. Similar arguments can be used in the comparison of the Mean Prediction Error of
the model (iii) with the two other ones. It is also worthwhile to point out that the optimal value is
not necessarily unique, which can be suggested by the curve of (iii) in Figure 1. Moreover, the exact
numerical values of the optimal parameters for the three models are respectively 0.6, 1.8 and 0.6. In
the sequel, κ is set to the value 0.6. Furthermore, a simple overview of the graphics shows a systematic
decrease of the Mean Optimal Dimension with respect to κ. This is due to the fact that high κ values
amplify the penalty, which induce small selected dimensions. Also, by comparison of (i) and (ii) curves,
the selected dimensions for the last model are much smaller than the first one. This is also a result of
the noise variance magnitude. The numerical values of the Mean Optimal Dimension in the three cases
are respectively 7.482, 2.886 and 39.95.

5.1.3 Simulation results

Now, we focus on the dispersion of the estimated prediction errors for different sample sizes. To do so,
we consider three sample sizes n = 200, 400, 600 and we re-estimate N = 500 times the prediction errors
for each model and n value. As mentioned before, κ is set to the value 0.6. The boxplots corresponding
to each model are represented in Figure 3. As expected, as the sample sizes increase, the boxplots
become tighter, the mean prediction errors get closer to zero and the outlier values decrease. This shows
an improvement of the estimation accuracy with respect to the sample size, as expected. It is also
noticeable that for equal sample sizes, the boxplots of the three models have the same form and a similar
distribution of the outliers. This seems to suggest that the prediction quality is robust to the choice of
the model and the noise magnitude.

To illustrate the prediction quality of the proposed adaptive estimators, we assume that for each model
(i), (ii), and (iii), an input/output sample (X(`)

i , Y
(`)
i )i=1,...,n of size n = 600 is available (` = 1, 2, 3).

These samples are used to estimate the operators S`, ` = 1, 2, 3 and we predict the model output for 10
new independent inputs, denotedX(`)

n+1, . . . , X
(`)
n+10. Figure 4 shows the obtained graphs for S`(X(`)

n+j) and
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Figure 1: Empirical Mean Square Prediction Error (EMSPE) with respect to κ values for the models (i),
(ii) and (iii).

0.5 1.0 1.5 2.0

6.
5

7.
0

7.
5

Model (i)

Value of κ

M
ea

n 
O

pt
im

al
 D

im
en

si
on

0.5 1.0 1.5 2.0

3
4

5
6

7

Model (ii)

Value of κ

M
ea

n 
O

pt
im

al
 D

im
en

si
on

0.5 1.0 1.5 2.0

39
.5

39
.6

39
.7

39
.8

39
.9

40
.0

Model (iii)

Value of κ

M
ea

n 
O

pt
im

al
 D

im
en

si
on

Figure 2: Mean Optimal Dimension with respect to κ values for the models (i), (ii) and (iii).

Ŝ`(X(`)
n+j), with ` = 1, 2, 3 and j = 1, . . . , 10, while S`, Ŝ` respectively denote the real and estimated slope

operators. In general, the prediction is quite accurate. Once again, a large noise magnitude deteriorates
the prediction quality, which can be observed by comparing the graphs of the first two models.

5.2 Real data case
5.2.1 Application to the prediction of electricity consumption

The data we study are the electricity consumption of appliances curve of a low energy house located
in Stambrudge (Belgium). The dataset is freely available on UCI Machine Learning Repository https:
//archive.ics.uci.edu/ and has been studied by Candanedo et al. (2017). It consists on measurements
on 24 variables every 10 minutes from 11th january, 2016, 5pm to 27th may, 2016, 6pm. The variable
of interest is the consumption of appliances, which is the main source of energy consumption. The data
consists of a d-dimensional times series, with d = 24. It is first transformed into a sample of functional
data by splitting the data day by day. We can deduce from the variable selection study conducted in
Roche (2021) that the most important variable to predict appliances electricity consumption of day i is
the appliances electricity consumption of day i− 1, and that a ln-transformation of the covariates seems
to lead to better results. Then, in our study, the variable to predict Yi is the log of the appliances energy
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Figure 3: Boxplots of the Mean Square Prediction Errors for the models (i), (ii) and (iii) for κ = 0.6.
The mean values are represented in red dashed lines.
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lines) for ` = 1, 2, 3, j = 1, . . . , 10, and where Ŝ` is computed from a sample of size n = 600.

consumption of day i and Xi is the log of appliances energy consumption of day i− 1. The data are also
recentered. We present in Figure 5 the original and transformed data.

The incorporation of other functional covariates could be of great interest for the application but is
out of the scope of the paper.

Another difficulty for the estimation procedure is that it requires the knowledge of the trace of the
noise operator σ2

ε , which is unknown in practice. To get around this difficulty, we adapt the method
proposed in Brunel et al. (2016), consisting in replacing the unknown quantity σ2

ε in criterion (12) by the
contrast γn(Ŝm1,∞). In model selection in regression contexts, this method shows strong similarities with
the one of Baraud et al. (2014). In the context of the functional linear model with scalar output, it has
been proven in Brunel et al. (2016) that the estimator selected by this fully data-driven criterion verifies
an oracle-type inequality, achieves the same minimax rates as the estimator selected by the criterion
depending on the noise variance and that it does not change significantly the practical performances of
the estimator.

As suggested by the simulation study, the value of κ is also fixed to κ = 0.6. To study the selected
dimension, the risk of the estimators and their stability, we perform cross-validation of the sample:
for each day i, we calculate the selected dimension m̂(−i)

1 and the L2-prediction error of the estimator
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Figure 5: Evolution of electric consumption of appliances during n = 136 days (original data, thin gray
lines) and functions of the sample (transformed data : centered version of the logarithm of the original
data, thin blue lines). The dashed red lines are the empirical mean of each sample.
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m̂

(−i)
1 ,∞

calculated from the sample {(Xj , Yj), j 6= i}. The results are presented in Figure 6. The
dimension selection procedure is quite stable, selecting more than 80% of time the dimension m̂1 = 11
and the L2-prediction error does not explode for some observations.

Dimension selected L2 prediction error of selected estimator

10 11 12 14

Dimension selected

F
re

qu
en

cy

0.
0

0.
2

0.
4

0.
6

0.
8

L^2 prediction error

D
en

si
ty

0.4 0.6 0.8 1.0 1.2

0.
0

1.
0

2.
0

Figure 6: Dimension selected and L2 prediction error ‖Yi − Ŷ (−i)
i ‖ of the estimator calculated from

each cross-validated sample.

We also plot in Figure 7, for three well-chosen days i (i = 104 is the day for which the distance
‖Yi − Ŷ −ii ‖ is minimal, i = 4 corresponds to the median prediction error and i = 83 to the maximal
prediction error), the true value of Yi and its prediction Ŷ −ii = Ŝ−i

m̂
(−i)
1 ,∞

(Xi).
Figure 8 represents, for the same days, the prediction of appliances energy consumption (after adding

the mean and taking the exponential).
We see in Figure 8 that prediction captures trends well and that the worst prediction seems to be due

to a brutal change of behavior of the appliances electricity consumption which is quite hard to predict
and may be due to external factors (hence unavoidable with our model).
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Figure 7: Cross-validated prediction Ŷ −ii made for three days (the days where the prediction is best,
median and worst).
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Figure 8: Prediction of appliances energy consumption.

5.2.2 Application to the prediction of prices from wind power infeed

We also apply now our estimation method to another, and more difficult prediction problem. The aim
here is to predict the evolution of electricity prices in Germany from the wind power in-feed. This
dataset has been extensively studied by Liebl (2013); Imaizumi and Kato (2018) and can be found at
https://www.dliebl.com/#publications. We first remark that some observations exhibit non stan-
dard behaviors, in particular some prices are particularly elevated. Then, we start be removing the
outliers that deserves a particular study which is out the scope of the paper. We consider a day to be
an outlier if the maximal value of the price of the day is larger than Q3 + 1.5(Q3 −Q1) where Q1 (resp.
Q3) corresponds to the first (resp. third) quartile of the maximal prices of each day. Then the data are
also centered. We present in Figure 9 the original and transformed data.

As in the previous section, we set κ = 0.6 and replace the unknown quantity σ2
ε be γn(Ŝm1,∞). We

also performed a cross-validation of selected dimensions and associated prediction risk. The results are
presented in Figure 10.

We also plot in Figure 11, for three well-chosen days i the true value of Yi and its prediction Ŷ −ii =
Ŝ−i
m̂

(−i)
1 ,∞

(Xi) : i = 133 is the day for which the distance ‖Yi − Ŷ −ii ‖ is minimal, i = 379 corresponds to
the median prediction error and i = 43 to the maximal prediction error.

Similarly to what happen in the previous real data problem (see Figure 8 above), we see in Figure 12
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Figure 9: First line: evolution of wind power in-feed during n = 516 days (original data, thin gray lines)
and functions of the sample (transformed data : centered version of the original data, thin blue lines).
Second line: evolution of prices (original data, thin gray lines) and functions of the sample (transformed
data : centered version of the log the original data+1, thin blue lines). The dashed red lines are the
empirical mean of each sample.

Dimension selected L2 prediction error of selected estimator

7 11

Dimension selected

F
re

qu
en

cy

0.
0

0.
2

0.
4

0.
6

0.
8

L^2 prediction error

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.
0

1.
0

2.
0

3.
0
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Figure 11: Cross-validated prediction Ŷ −ii made for three days.
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Figure 12: Cross-validated prediction Ŷ −ii made for three days taken randomly in the initial sample.

that the trends of each day is well captured and that the difficulty remains to predict the prices when
there are brutal changes of behavior in the curves.
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6 Proofs
All along the proofs, we denote by C a positive constant which does not depend on S, n or m and whose
value may change from line to line. Many proofs are based on technical results from the perturbation
theory of bounded operators. A short account of the preliminary results we need is given in Section 6.2
below. For more details, the reader can refers to Dunford and Schwartz (1965) and Kato (2013).

6.1 Proof of the results of Section 2
6.1.1 Proof of Proposition 1

The remark following Proposition 1 implies that it is equivalent to reason either on γn, or on γ′n. We
choose γ′n. We have

arg min
T ∈V ′m1,m2

γ′n(T ) = arg min
T ∈V ′m1,m2

γ′n,1(T ) + arg min
T ∈V ′m1,m2

γ′n,2(T ),

where for any T ∈ V ′m1,m2
,

γ′n,1(T ) = 1
n

n∑
i=1

∥∥∥∥∫ 1

0
T (s, ·)Xi(s)ds

∥∥∥∥2

, γ′n,2(T ) = − 2
n

n∑
i=1
〈Yi,

∫ 1

0
T (s, ·)Xi(s)ds〉.

For any T ∈ V ′m1,m2
, there also exists a unique sequence b = (bj,k)j=1,...,m1, k=1,...m2 ∈ Rm1m2 such that

T (s, t) =
m1∑
j=1

m2∑
k=1

bj,kφj(s)φk(t),

with (s, t) ∈ [0, 1]2. Thus,

min
T ∈V ′m1,m2

γ′n(T ) = min
b∈Rm1m2

γ̃n(b) with γ̃′n = γ̃′n,1 + γ̃′n,2,

and

γ̃′n,1(b) = 1
n

n∑
i=1

m2∑
k=1

m1∑
j=1

bj,k〈φj , Xi〉

2

, γ̃′n,2(b) = − 2
n

n∑
i=1

m1∑
j=1

m2∑
k=1

bj,k〈φj , Xi〉〈Yi, φk〉.

Thus, we look for a minimum of the function γ̃n. The functions γ̃n,`, ` = 1, 2, are differentiable and for
any (j0, k0) ∈ {1, . . . ,m1} × {1, . . . ,m2},

∂γ̃n,1(b)
∂bj0,k0

= 2
m1∑
j=1

bj,k0〈Γnφj0 , φj〉,
∂γ̃n,2(b)
∂bj0,k0

= −〈∆nφj0 , φk0〉.

This leads to ∇(γ̃)(b) = 2Ab − 2Yφ, with b = (bj,k)j,k ∈ Rm1m2 . We have proved that b = A−1Yφ is a
critical point. Moreover, the Hessian matrix can be computed as follows:

∂γ̃n(b)
∂b`,r∂bj0,k0

= δr,k0〈Γnφj0 , φk0〉,

where δr,k0 = 1 only if r = k0, δr,k0 = 0 otherwise. By considering the indices (j, k) ∈ {1, . . . ,m1} ×
{1, . . . ,m2} of a vector b ∈ Rm1m2 , in the order b = (b1,1, . . . , bm1,1, b1,2, . . . , bm1,2, . . . , . . . , bm1,m2), we
obtain that the Hessian matrix of γ̃n on b is a block diagonal matrix, with m2 blocks equal to 2A. Thus,
its determinant is 2m2(det(A))m2 . Since A is the Gram matrix of a symmetric bilinear form, if it is
invertible, the critical point is a global minimum, which proves Proposition 1.
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6.1.2 Proof of Equality (7)

For any T ∈ L2(H),

Πop
m1,m2

T =
m1∑
j=1

m2∑
k=1
〈T, ϕk ⊗ ϕj〉HSϕk ⊗ ϕj ,

with 〈·, ·〉HS the scalar product associated to the Hilbert-Schmidt norm. Then, for any r ∈ N\{0},

Πop
m1,m2

T (ϕr) =
m1∑
j=1

m2∑
k=1
〈T, ϕk ⊗ ϕj〉HSϕk ⊗ ϕj(ϕr),

=
m1∑
j=1

m2∑
k=1
〈T, ϕk ⊗ ϕj〉HSδj,rϕk, since the basis is orthonormal,

= δr≤m1

m2∑
k=1
〈T, ϕk ⊗ ϕr〉HSϕk,

= δr≤m1

m2∑
k=1

∞∑
`=1
〈Tϕ`, ϕk ⊗ ϕr(ϕ`)〉ϕk, by definition of the scalar product,

= δr≤m1

m2∑
k=1
〈Tϕr, ϕk〉ϕk = δr≤m1

m2∑
k=1

ϕk ⊗ ϕk(Tϕr) = δr≤m1Πm2T (ϕr),

= Πm2TΠm1(ϕr).

This ends the proof.

6.1.3 Proof of Proposition 2

Let us start with the proof of (8). Considering the result of Proposition 1, we begin with the computation
of the elements of the matrix A, when we consider the PCA basis. We write

〈Γnϕ̂j , ϕ̂k〉 = 〈λ̂jϕ̂j , ϕ̂k〉 = δj,kλ̂j ,

with δj,k = 0 if j 6= k, δj,k = 1 otherwise. Thus, A is a diagonal matrix, and in this case, if λ̂j > 0,
for any j = 1, . . . ,m1, we obtain the existence and uniqueness of the least-squares estimator, since A−1

exists and is equal to the diagonal matrix with diagonal elements λ̂−1
j . The coefficients of the estimators

are
b̂j,k = 1

λ̂j
〈∆nϕ̂j , ϕ̂k〉, j ∈ {1, . . . ,m1}, k ∈ {1, . . . ,m2}.

This ends the proof of (8).
To prove (9), we start from (6), and the previous expression for Ŝm. We immediatly get

Ŝm1,m2 =
m1∑
j=1

m2∑
k=1

1
λ̂j
〈∆nϕ̂j , ϕ̂k〉ϕ̂k ⊗ ϕ̂j ,

=
m1∑
j=1

1
λ̂j
〈∆nϕ̂j , ϕ̂j〉ϕ̂j ⊗ ϕ̂j +

∑
1≤j≤m1
1≤k≤m2
j 6=k

1
λ̂j
〈∆nϕ̂j , ϕ̂k〉ϕ̂k ⊗ ϕ̂j .

It remains to apply the following lemma to the operator T = ∆nΓ†n,m1
of the first part of the right-hand-

side of the last equality, and to remark that Γ†n,m1
ϕ̂j = 0 as soon as j ≥ m.

Lemma 1. Let T be a linear operator of a separable Hilbert space (H, 〈·, ·〉), self-adjoint and compact.
Let (ej)j≥1 be an orthonormal basis of eigenvectors of T . Then,

T =
∞∑
j=1
〈Tej , ej〉ej ⊗ ej .
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Proof of Lemma 1
For any Hilbertian basis (ej)j≥1, it is well known that any operator T can be written

T =
∞∑

j,k=1
〈Tej , ek〉ek ⊗ ej .

Now, if the ej ’s are orthonormal eigenfunctions of T , there exist eigenvalues θj such that

〈Tej , ek〉 = θj〈ej , ek〉 = θjδj,k,

with δj,k = 1 if j = k, δj,k = 0 otherwise. This proves the result.

6.2 Perturbation theory background
We provide here a digest of some key results of the perturbation theory, which will be helpful within the
proofs. These results are largely sourced from Roche (2014); Brunel et al. (2016); Mas and Ruymgaart
(2015), but also from Crambes and Mas (2013) and Cardot et al. (2007). In a nutshell, the aim of the
perturbation theory is to control the proximity between the eigenfunctions of Γ and those of the random
operator Γn. We remind that the operator Πm (resp. Π̂m) stands for the orthonormal projector onto
Span(ϕ1, . . . , ϕm) (resp. Span(ϕ̂1, . . . , ϕ̂m)).

Let us denote by Bj the oriented circle of the complex plane of center λj and radius δj/2, where
δj = λj−λj+1.We also define Cm =

⋃m
j=1 Bj which is a union of disjoint circles since, by Assumption A2,

we also have δj = min{λj − λj+1, λj−1 − λj}. Let also aj = λj
δj

+
∑
r 6=j

λr
|λr − λj |

, for all j ≥ 1, we define

the set

An =
m⋂
j=1

{
|λ̂j − λj | <

δj
2

}⋂{
sup

z∈supp(Cm)
‖Tn(z)‖∞ <

aj√
n

ln(n)
}
.

The following lemma is the keystone of the results related to perturbation theory. It provides a link
between the difference of the empirical and theoretical projectors Π̂m − Πm, which we want to control,
and the difference between empirical and theoretical covariance operators Γn−Γ, which can be controlled
with the Bernstein inequality.

Lemma 2. Under Assumption A5, there exists a set An such that

P
(
A{
n

)
≤ exp(−c∗ ln(n)2),

where c∗ is some positive constant depending on (λj)j≥1 and

(Π̂m−Πm)1An = 1
2iπ

m∑
k=1

∫
Bk
R(z)(Γn−Γ)R(z)dz1An+ 1

2iπ

m∑
k=1

∫
Bk
R1/2(z)[I−Tn(z)]−1Tn(z)2R1/2(z)dz1An ,

with Tn(z) = R1/2(z)(Γn − Γ)R1/2(z) and R(z) = (zI − Γ)−1.

Lemma 2 is proved in Brunel et al. (2016) (see Lemma 12 and Remark 4, p.224).
Throughout the proofs, we will also need some results on the behavior of the eigenvalues (λj)j≥1.

Lemma 3 and Lemma 4 the main results we will need.

Lemma 3. (Cardot et al., 2007, Lemma 1) Assume that Assumption A3 is satisfied. Then, for all
positive integers j and k, such that k > j, we have

jλj ≥ kλk and λj − λk ≥
(

1− j

k

)
λj .

In addition, ∑
r≥k

λr ≤ (k + 1)λk.

Lemma 4. (Hilgert et al., 2013, Lemma 10.1) Under Assumptions A4 and A6, we have

ak ≤ Ck ln(k).
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6.3 Proofs of the results of Section 3
In order to achieve the bias-variance decomposition for the prediction risk presented in Section 3, we will
need to formulate Ŝm1,m2 in terms of S. We remind that

Ŝm1,m2 = Π̂m2∆nΓ†n,m1
. (14)

Due to the linearity of S, it is straightforward that

∆n = SΓn + 1
n

n∑
i=1

εi ⊗Xi.

Now, given that Γ†n,m1
is self-adjoint, one can easily see that

∆nΓ†n,m1
= SΠ̂m1 + Un, (15)

where Un = n−1∑n
i=1 εi ⊗ Γ†n,m1

(Xi). Combining Equations (14) and (15) allows us to write

Ŝm1,m2 = Π̂m2SΠ̂m1 + Π̂m2Un. (16)

Besides, Lemma 5 stated just below will be very helpful for onward proofs.

Lemma 5. Let V and W be random bounded linear operators, independent of Xn+1. We assume that
V and W are Hilbert-Schmidt operators. Then,

E〈V (Xn+1),W (Xn+1)〉 = E〈V Γ1/2,WΓ1/2〉HS,

where 〈·, ·〉HS refers to the Hilbert-Schmidt scalar product and

E‖V (Xn+1)‖2 = E‖V Γ1/2‖2HS.

Proof of Lemma 5. We start by

E〈V (Xn+1),W (Xn+1)〉 =
+∞∑
j=1

E〈Xn+1, ϕj〉〈V (ϕj),W (Xn+1)〉

=
+∞∑
j=1

E 〈V (ϕj),W (〈Xn+1, ϕj〉Xn+1)〉 .

From here, we first compute the expectation with respect to Xn+1. Given both the linearity of W and
that Xn+1 is independent of V and W , we obtain

E〈V (Xn+1),W (Xn+1)〉 =
+∞∑
j=1

E 〈V (ϕj),WΓ(ϕj)〉

=
+∞∑
j=1

λjE 〈V (ϕj),W (ϕj)〉 .

Therefore,

E〈V (Xn+1),W (Xn+1)〉 =
+∞∑
j=1

E
〈
V Γ1/2(ϕj),WΓ1/2(ϕj)

〉
= E〈V Γ1/2,WΓ1/2〉HS.

This proves the first equality of Lemma 5, and the second one is a direct consequence, taking V = W .
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6.3.1 Proof of Theorem 1

The starting point of the proof is to achieve a first bias-variance decomposition of the prediction risk.
As a result of Lemma 5, we note

E‖Ŝm1,m2(Xn+1)− S(Xn+1)‖2 = E‖(Ŝm1,m2 − S)Γ1/2‖2HS.

In addition, from Equation (16), we write

E‖Ŝm1,m2(Xn+1)− S(Xn+1)‖2 = E‖(Π̂m2SΠ̂m1 − S)Γ1/2 + Π̂m2UnΓ1/2‖2HS

= E‖(S − Π̂m2SΠ̂m1)Γ1/2‖2HS + E‖Π̂m2UnΓ1/2‖2HS

− 2E〈(S − Π̂m2SΠ̂m1)Γ1/2, Π̂m2UnΓ1/2〉HS. (17)

The last right-side expectation of Equation (17) is null. Indeed, recall that

E〈(S − Π̂m2SΠ̂m1)Γ1/2, Π̂m2UnΓ1/2〉HS =
+∞∑
j=1

λjE〈(S − Π̂m2SΠ̂m1)(ϕj), Π̂m2Un(ϕj)〉.

Notice that, Π̂m2SΠ̂m1 only depends on (X1, . . . , Xn). It remains then to show that the expectation of
Π̂m2Un(ϕj) conditionally to (X1, . . . , Xn) is zero. We write,

E[Π̂m2Un(ϕj)|X1, . . . , Xn] = 1
n

n∑
i=1

E[〈Γ†n,m1
(Xi), ϕj〉Π̂m2(εi)|X1, . . . , Xn]

= 1
n

n∑
i=1

m2∑
r=1
〈Γ†n,m1

(Xi), ϕj〉E[〈εi, ϕr〉ϕr|X1, . . . , Xn]

= 1
n

n∑
i=1

m2∑
r=1
〈Γ†n,m1

(Xi), ϕj〉〈E[εi], ϕr〉ϕr

= 0H.

In other words,
E〈(S − Π̂m2SΠ̂m1)Γ1/2, Π̂m2UnΓ1/2〉HS = 0.

Therefore,

E‖Ŝm1,m2(Xn+1)− S(Xn+1)‖2 = E‖(S − Π̂m2SΠ̂m1)Γ1/2‖2HS + E‖Π̂m2UnΓ1/2‖2HS. (18)

In Equation (18), we recognize the common decomposition of the estimation risk as a compromise of a
bias and variance terms. The bias, namely the first term in the right side, is decreasing with respect
to m1 and m2 and is related to the regularity of the regression model S. While the variance term is
increasing with respect to m2 and depending in particular on the observation errors ε1, . . . , εn. In the
following propositions 3 and 4, we give sharp upper bounds of these two terms, which ends the proof.
Proposition 3. The variance term of Equation (18) can be upper bounded as

E‖Π̂m2UnΓ1/2‖2HS ≤ σ2
ε

m1

n
+An,m1 ,

where σε = E‖ε‖2 and An,m1 = σ2
ε

Cm2
1 ln2(m1)
n2 .

Proposition 4. The bias term of Equation (18) can be upper bounded as

E‖(S − Π̂m2SΠ̂m1)Γ1/2‖2HS ≤ 3
+∞∑

j=m1+1
λj‖S(ϕj)‖2 + 3

m1∑
j=1

λj‖(I−Πm2)S(ϕj)‖2 +Bn,m1 +Dn,m2 + En.

where

Bn,m1 = Cm2
1λm1‖S‖HS

n
, En = C

n2 ‖SΓ1/2‖2HS

Dn,m2 = Cm2λm2

n
+ Cm2

2 ln(m2)
nψβ(m2) + Cm3

2
nψβ(bm2/2c)

+ C ln4(n)
n2

(
m2∑
k=1

k2 ln2(k)√
ψβ(k)

)2

.
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Proof of Proposition 3. It is obvious that

E‖Π̂m2UnΓ1/2‖2HS =
+∞∑
j=1

m2∑
r=1

λjE〈Un(ϕj), ϕr〉2

= 1
n2

+∞∑
j=1

m2∑
r=1

λjE

[
n∑
i=1
〈Γ†n,m1

(Xi), ϕj〉〈εi, ϕr〉
]2

.

Then,

E‖Π̂m2UnΓ1/2‖2HS = 1
n2

+∞∑
j=1

m2∑
r=1

n∑
i=1

λjE〈Γ†n,m1
(Xi), ϕj〉2〈εi, ϕr〉2

+ 1
n2

+∞∑
j=1

m2∑
r=1

∑
i 6=i′

(i,i′)∈[[1,n]]2

λjE〈Γ†n,m1
(Xi), ϕj〉〈Γ†n,m1

(Xi′), ϕj〉〈εi, ϕr〉〈εi′ , ϕr〉.

All the terms of the second right-side sum are null. Indeed, by independence of (ε1, . . . , εn) and
(X1, . . . , Xn), we have for i 6= i′,

E
[
〈Γ†n,m1

(Xi), ϕj〉〈Γ†n,m1
(Xi′), ϕj〉〈εi, ϕr〉〈εi′ , ϕr〉|X1, . . . , Xn

]
= 〈Γ†n,m1

(Xi), ϕj〉〈Γ†n,m1
(Xi′), ϕj〉E [〈εi, ϕr〉〈εi′ , ϕr〉|X1, . . . , Xn] .

Thus, knowing that ε1, . . . , εn are independent and centered, we have

E
[
〈Γ†n,m1

(Xi), ϕj〉〈Γ†n,m1
(Xi′), ϕj〉〈εi, ϕr〉〈εi′ , ϕr〉|X1, . . . , Xn

]
= 〈Γ†n,m1

(Xi), ϕj〉〈Γ†n,m1
(Xi′), ϕj〉〈E[εi], ϕr〉〈E[εi′ ], ϕr〉 = 0.

Therefore, the variance term is simply given by

E‖Π̂m2UnΓ1/2‖2HS = 1
n2

n∑
i=1

+∞∑
j=1

λjE〈Γ†n,m1
(Xi), ϕj〉2E‖Πm2(εi)‖2

≤ σ2
ε

n2

n∑
i=1

+∞∑
j=1

λjE〈Γ†n,m1
(Xi), ϕj〉2,

where σ2
ε = E‖ε‖2. Furthermore, giving that Γ†n,m1

is self-adjoint, we get

1
n

n∑
i=1

+∞∑
j=1

λjE〈Γ†n,m1
(Xi), ϕj〉2 = 1

n

n∑
i=1

+∞∑
j=1

λjE〈Xi,Γ†n,m1
(ϕj)〉2

= 1
n

n∑
i=1

+∞∑
j=1

λjE
〈
〈Xi,Γ†n,m1

(ϕj)〉Xi,Γ†n,m1
(ϕj)

〉
=

+∞∑
j=1

λjE〈ΓnΓ†n,m1
(ϕj),Γ†n,m1

(ϕj)〉.

Yet, it is easy to see that Γ†n,m1
ΓnΓ†n,m1

= Γ†n,m1
Π̂m1 = Γ†n,m1

. Thus,

E‖Π̂m2UnΓ1/2‖2HS ≤
σ2
ε

n

+∞∑
j=1

λjE〈Γ†n,m1
(ϕj), ϕj〉.

Now, it is fairly easy to show the following equation. This can be done by diagonalization of the self-
adjoint operator Γ†n,m1

in the orthonormal basis of its eigenfunctions, we write

〈Γ†n,m1
(ϕj), ϕj〉 = Tr

(
Γ†n,m1

· ϕj ⊗ ϕj
)
,
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where the notation ’·’ refers to the Hadamard product for operators (i.e. for two operators S, T ∈ L(H),
S · T =

∑
j,k≥1〈S, ϕj〉〈T, ϕk〉ϕj ⊗ ϕk). Then,

E‖Π̂m2UnΓ1/2‖2HS ≤
σ2
ε

n
E
[
Tr
(
Γ†n,m1

· Γ
)]

= σ2
ε

n

[
Tr
(
E
[
(Γ†n,m1

− Γ†) · Γ
])

+ Tr
(
Γ† · Γ

)]
.

Moreover, based on Crambes and Mas (2013, Lemma 19), we have

Tr
(
E
[
(Γ†n,m1

− Γ†) · Γ
])
≤ Cm2

1 ln2(m1)
n

.

At last, remark that Tr
(
Γ† · Γ

)
= Tr (Πm1) = m1, which finishes the proof.

Proof of Proposition 4. To achieve a sharp upper bound for the bias term, we intensively rely on the
perturbation theory for bounded operators presented in Section 6.2. We also use some results already
established in Crambes and Mas (2013). We begin with the following plain decomposition,

S − Π̂m2SΠ̂m1 = S −Πm2SΠm1 − Π̂m2S(Π̂m1 −Πm1)− (Π̂m2 −Πm2)SΠm1 .

Then,

E‖(S − Π̂m2SΠ̂m1)Γ1/2‖2HS ≤ 3E‖(S −Πm2SΠm1)Γ1/2‖2HS + 3E‖Π̂m2S(Π̂m1 −Πm1)Γ1/2‖2HS

+ 3E‖(Π̂m2 −Πm2)SΠm1Γ1/2‖2HS. (19)

In the remainder of the proof, we upper bound each term of Equation (19). We have

E‖(S −Πm2SΠm1)Γ1/2‖2HS = E‖S(I−Πm1)Γ1/2 + (I−Πm2)SΠm1Γ1/2‖2HS

= E‖S(I−Πm1)Γ1/2‖2HS + E‖(I−Πm2)SΠm1Γ1/2‖2HS

+ 2E〈S(I−Πm1)Γ1/2, (I−Πm2)SΠm1Γ1/2〉HS.

The last right-side term of the equation just above is zero. Indeed,

〈S(I−Πm1)Γ1/2, (I−Πm2)SΠm1Γ1/2〉HS =
+∞∑
j=1

λj〈S(I−Πm1)(ϕj), (I−Πm2)SΠm1(ϕj)〉

= 0.

Besides,

E‖S(I−Πm1)Γ1/2‖2HS =
+∞∑
j=1

λj‖S(I−Πm1)(ϕj)‖2

=
+∞∑

j=m1+1
λj‖S(ϕj)‖2.

In addition,

E‖(I−Πm2)SΠm1Γ1/2‖2HS =
+∞∑
j=1

λj‖(I−Πm2)SΠm1(ϕj)‖2

=
m1∑
j=1

λj‖(I−Πm2)S(ϕj)‖2.

This means that

E‖(S −Πm2SΠm1)Γ1/2‖2HS =
+∞∑

j=m1+1
λj‖S(ϕj)‖2 +

m1∑
j=1

λj‖(I−Πm2)S(ϕj)‖2. (20)
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We now upper bound the second right-side term of Equation (19). It is easy to see that

E‖Π̂m2S(Π̂m1 −Πm1)Γ1/2‖2HS ≤ E‖S(Π̂m1 −Πm1)Γ1/2‖2HS.

An upper bound of the right expectation in the previous equation is given in Crambes and Mas (2013,
Proposition 15). However, we believe that following the article notations, a ’k’ is missing in the upper
bound. This happens on the page 2644, in the equation block below Formula (17), while switching from
the second to the third equation. We would like to point out that this error does not alter the optimality
of the results demonstrated in the paper, but it constrains the regularity of X. We also believe that
thanks to Assumption A6, this loss can be avoided. This make it possible to replace the square of the
sum by the sum of squares. We then obtain,

E‖Π̂m2S(Π̂m1 −Πm1)Γ1/2‖2HS ≤
Cm2

1λm1‖S‖HS

n
. (21)

Upper-bounding the last term of (19) requires a wide use of perturbation theory. Lemma 6 gives such
an upper bound. The proof of Proposition 4 is then a direct result of Equations (19), (20), (21) and
Lemma 6.

Lemma 6. The following inequality holds

E‖(Π̂m2 −Πm2)SΠm1Γ1/2‖2HS ≤
Cm2λm2

n
+ Cm2

2 ln(m2)
nψβ(m2) + Cm3

2
nψβ(bm2/2c)

+ C ln2(n)
n2

(
m2∑
k=1

k2 ln2(k)√
ψβ(k)

)2

+ C

n2 ‖SΓ1/2‖2HS.

Proof of Lemma 6. According to Lemma 2, we have

(Π̂m2 −Πm2)1An = Hn(z) + Gn(z),

where the operators Hn(z) and Gn(z) are defined as

Hn(z) = 1
2iπ

m2∑
k=1

∫
Bk
R(z)(Γn − Γ)R(z)dz1An ,

Gn(z) = 1
2iπ

m2∑
k=1

∫
Bk
R1/2(z)[I − Tn(z)]−1Tn(z)2R1/2(z)dz1An ,

with Tn(z) = R1/2(z)(Γn − Γ)R1/2(z) and R(z) = (zI − Γ)−1. Then,

E‖(Π̂m2 −Πm2)SΠm1Γ1/2‖2HS ≤ 2E‖Hn(z)SΠm1Γ1/2‖2HS + 2E‖Gn(z)SΠm1Γ1/2‖2HS

+ E‖(Π̂m2 −Πm2)SΠm1Γ1/21A{
n
‖2HS. (22)

Upper bounding the expectations of Equation (22) is technical and the remainder of the proof is quite
long. Since Hn(z) is self-adjoint, we write

E‖Hn(z)SΠm1Γ1/2‖2HS =
m1∑
j=1

+∞∑
l=1

λjE〈Hn(z)S(ϕj), ϕl〉2

=
m1∑
j=1

+∞∑
l=1

λjE〈S(ϕj),Hn(z)(ϕl)〉2. (23)

Furthermore, for j, l in N\{0}, we have

〈S(ϕj),Hn(z)(ϕl)〉 =
+∞∑
r=1
〈S(ϕj), ϕr〉〈Hn(z)(ϕl), ϕr〉

=
+∞∑
r=1
〈S(ϕj), ϕr〉 ×

1
2iπ

m2∑
k=1

∫
Bk
〈R(z)(Γn − Γ)R(z)(ϕl), ϕr〉dz1An .
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Now, it is straightforward to show that R(z)(ϕ`) = (z − λ`)−1ϕ`. This together with the fact that R(z)
is self-adjoint, gives

〈S(ϕj),Hn(z)(ϕl)〉 =
+∞∑
r=1
〈S(ϕj), ϕr〉〈(Γn − Γ)(ϕl), ϕr〉 ×

1
2iπ

m2∑
k=1

∫
Bk

(z − λl)−1(z − λr)−1dz1An

=
+∞∑
r=1
〈S(ϕj), ϕr〉〈(Γn − Γ)(ϕl), ϕr〉Im2,l,r1An ,

where Im2,l,r = 1
2iπ

m2∑
k=1

∫
Bk

(z − λl)−1(z − λr)−1dz. The integral sum Im2,l,r can be computed using

Cauchy’s integral formula (Rudin, 1987). Indeed,

Im2,l,r = 1
λl − λr

× 1
2iπ

m2∑
k=1

∫
Bk

[
1

z − λl
− 1
z − λr

]
dz

= 1
λl − λr

m2∑
k=1

[IndBk(λl)− IndBk(λr)] ,

where IndBk is an integer-valued function, taking 1 if its argument belongs to the surface drawn by Bk
and 0 otherwise. Then,

Im2,l,r = 1
λl − λr

[
1l∈{1,...,m2} − 1r∈{1,...,m2}

]
.

We turn back to Equation (23). Since 〈Γϕj , ϕr〉 = 0 if j 6= r, we can write

E‖Hn(z)SΠm1Γ1/2‖2HS = E [A1An ] + E [B1An ] ,
where A and B are defined as

A =
m1∑
j=1

λj

m2∑
l=1

[ +∞∑
r=m2+1

〈Γn(ϕl), ϕr〉
λl − λr

〈S(ϕj), ϕr〉
]2

,

B =
m1∑
j=1

λj

+∞∑
l=m2+1

[
m2∑
r=1

〈Γn(ϕl), ϕr〉
λr − λl

〈S(ϕj), ϕr〉
]2

.

This implies that
E‖Hn(z)SΠm1Γ1/2‖2HS ≤ E[A] + E[B]. (24)

Thanks to Assumption A6, while developing the sum squares in A and B, the expectation of the cross
terms equals zero. In fact, for r, r′ in N\{0} and ` in N\{0, r, r′}, we write

E〈Γn(ϕl), ϕr〉〈Γn(ϕl), ϕr′〉 = 1
n2

n∑
i=1

n∑
i′=1

E〈Xi ⊗Xi(ϕl), ϕr〉〈Xi′ ⊗Xi′(ϕl), ϕr′〉

= 1
n2

n∑
i=1

E〈Xi, ϕr〉〈Xi, ϕr′〉E〈Xi, ϕl〉2

= 1{r=r′}
λrλl
n

.

Therefore,

E [A] = 1
n

m1∑
j=1

m2∑
l=1

+∞∑
r=m2+1

λlλr
(λl − λr)2 〈SΓ1/2(ϕj), ϕr〉2. (25)

From here, we split the sum above in two parts as follows

E [A] = 1
n

m1∑
j=1

m2∑
l=1

2m2∑
r=m2+1

λlλr
(λl − λr)2 〈SΓ1/2(ϕj), ϕr〉2

+ 1
n

m1∑
j=1

m2∑
l=1

+∞∑
r=2m2+1

λlλr
(λl − λr)2 〈SΓ1/2(ϕj), ϕr〉2. (26)
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To upper bound the first right-side term of Equation (26), we begin with

1
n

m1∑
j=1

m2∑
l=1

2m2∑
r=m2+1

λlλr
(λl − λr)2 〈SΓ1/2(ϕj), ϕr〉2

≤ 1
n

m2∑
l=1

2m2∑
u=m2+1

λlλu
(λl − λu)2 ×

m1∑
j=1

2m2∑
r=m2+1

〈SΓ1/2(ϕj), ϕr〉2. (27)

Now, according to Lemma 3, we obtain

m2∑
l=1

2m2∑
u=m2+1

λlλu
(λl − λu)2 =

m2∑
l=1

2m2∑
u=m2+1

λ2
l

(λl − λu)2 ×
λu
λl

≤
m2∑
l=1

2m2∑
u=m2+1

ul

(u− l)2

≤
m2∑
l=1

2m2∑
u=m2+1

2m2
2

(u− l)2 .

By making in the last sum the substitution v := u− l, we get

m2∑
l=1

2m2∑
u=m2+1

1
(u− l)2 =

m2∑
l=1

m2∑
u=1

1
(m2 + u− l)2 =

m2−1∑
v=1−m2

m2 − |v|
(m2 + v)2 ≤

m2∑
v=1

1
v

+
m2−1∑
w=1

m2 − w
(m2 + w)2

≤
m2∑
v=1

1
v

+ 1 ≤ 1 + ln(m2).

We turn back to Equation (27) and we write

1
n

m1∑
j=1

m2∑
l=1

2m2∑
r=m2+1

λlλr
(λl − λr)2 〈SΓ1/2(ϕj), ϕr〉2 ≤

Cm2
2 ln(m2)
n

m1∑
j=1

2m2∑
r=m2+1

〈SΓ1/2(ϕj), ϕr〉2

≤ Cm2
2 ln(m2)
n

m1∑
j=1

2m2∑
r=m2+1

ψβ(r)
ψβ(m2) 〈SΓ1/2(ϕj), ϕr〉2.

In other words,
1
n

m1∑
j=1

m2∑
l=1

2m2∑
r=m2+1

λlλr
(λl − λr)2 〈SΓ1/2(ϕj), ϕr〉2 ≤

Cm2
2 ln(m2)

nψβ(m2) . (28)

We now deal with the second term of Equation (26). From Lemma 3, for l ≤ m2 and r ≥ 2m2 + 1, we
have

λ2
l

(λl − λr)2 ≤ 1
(1− l/r)2 ≤

1
[1−m2/(2m2 + 1)]2

≤ 4. (29)

Thus,

1
n

m1∑
j=1

m2∑
l=1

+∞∑
r=2m2+1

λlλr
(λl − λr)2 〈SΓ1/2(ϕj), ϕr〉2 ≤

4
n

m2∑
l=1

m1∑
j=1

+∞∑
r=2m2+1

λr
λl
〈SΓ1/2(ϕj), ϕr〉2

≤ Cm2

n

m2∑
l=1

1
λl

+∞∑
u=2m2+1

λu ×
m1∑
j=1

+∞∑
r=2m2+1

〈SΓ1/2(ϕj), ϕr〉2

≤ Cm2

n

m2∑
l=1

λ2m2+1

λl
×

m1∑
j=1

+∞∑
r=2m2+1

〈SΓ1/2(ϕj), ϕr〉2,
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where the latter inequality is achieved thanks to Lemma 3. Subsequently,

1
n

m1∑
j=1

m2∑
l=1

+∞∑
r=2m2+1

λlλr
(λl − λr)2 〈SΓ1/2(ϕj), ϕr〉2 ≤

Cm2
2

n

m1∑
j=1

+∞∑
r=2m2+1

〈SΓ1/2(ϕj), ϕr〉2

≤ Cm2
2

nψβ(m2)

m1∑
j=1

+∞∑
r=2m2+1

ψβ(r)〈SΓ1/2(ϕj), ϕr〉2.

Simply put that
1
n

m1∑
j=1

m2∑
l=1

+∞∑
r=2m2+1

λlλr
(λl − λr)2 〈SΓ1/2(ϕj), ϕr〉2 ≤

Cm2
2

nψβ(m2) . (30)

As a result of Equations (26), (28) and (30), we get

E[A] ≤ Cm2
2 ln(m2)

nψβ(m2) . (31)

We now upper bound the second right-side term of Equation (24). Similarly to Equation (25), we write

E[B] = 1
n

+∞∑
l=m2+1

m2∑
r=1

λrλl
(λr − λl)2

m1∑
j=1
〈SΓ1/2(ϕj), ϕr〉2.

Next, we break the equation down into two parts as shown below

E [B] = 1
n

+∞∑
l=m2+1

bm2/2c∑
r=1

λrλl
(λr − λl)2

m1∑
j=1
〈SΓ1/2(ϕj), ϕr〉2

+ 1
n

+∞∑
l=m2+1

m2∑
r=bm2/2c

λrλl
(λr − λl)2

m1∑
j=1
〈SΓ1/2(ϕj), ϕr〉2. (32)

We now focus on the first right-side term of Equation (32). From the assumption λrψβ(r) ≥ 1, we obtain

1
n

+∞∑
l=m2+1

bm2/2c∑
r=1

λrλl
(λr − λl)2

m1∑
j=1
〈SΓ1/2(ϕj), ϕr〉2

≤ 1
n

+∞∑
l=m2+1

λl

bm2/2c∑
r=1

λ2
r

(λr − λl)2

m1∑
j=1

ψβ(r)〈SΓ1/2(ϕj), ϕr〉2.

Similarly to Equation (29), one can show that for l > m2 and r ≤ m2/2, we have

λ2
r

(λr − λl)2 ≤ C.

According to Lemma 3, we obtain

1
n

+∞∑
l=m2+1

bm2/2c∑
r=1

λrλl
(λr − λl)2

m1∑
j=1
〈SΓ1/2(ϕj), ϕr〉2 ≤

Cm2λm2

n
. (33)

We next deal with the second term of Equation (32). We start with

1
n

+∞∑
l=m2+1

m2∑
r=bm2/2c

λrλl
(λr − λl)2

m1∑
j=1
〈SΓ1/2(ϕj), ϕr〉2

≤ 1
nψβ(bm2/2c)

+∞∑
l=m2+1

λl ×
m2∑

r=bm2/2c

λr
(λr − λm2+1)2

m1∑
j=1

ψβ(r)〈SΓ1/2(ϕj), ϕr〉2

≤ Cm2

nψβ(bm2/2c)

m2∑
r=bm2/2c

λrλm2+1

(λr − λm2+1)2

m1∑
j=1

ψβ(r)〈SΓ1/2(ϕj), ϕr〉2.
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Still using Lemma 3, for l > m2 and bm2/2c ≤ r ≤ m2 we have that

λrλm2+1

(λr − λm2+1)2 ≤ Cm
2
2.

Consequently,
1
n

+∞∑
l=m2+1

m2∑
r=bm2/2c

λrλl
(λr − λl)2

m1∑
j=1
〈SΓ1/2(ϕj), ϕr〉2 ≤

Cm3
2

nψβ(bm2/2c)
. (34)

From Equations (33) and (34), we conclude that

E[B] ≤ Cm2λm2

n
+ Cm3

2
nψβ(bm2/2c)

. (35)

Subsequently, from Equations (24), (31) and (35), we write

E‖Hn(z)SΠm1Γ1/2‖2HS ≤
Cm2λm2

n
+ Cm2

2 ln(m2)
nψβ(m2) + Cm3

2
nψβ(bm2/2c)

. (36)

To upper bound the second right-side term of Equation (22), we draw inspiration from the proof of
Lemmma 15 of Brunel et al. (2016). We write

‖Gn(z)SΠm1Γ1/2‖2HS = 1
4π2

m1∑
j=1
‖Gn(z)SΓ1/2(ϕj)‖2

≤ 1
4π2

m1∑
j=1

(
m2∑
k=1

∫
Bk
‖R1/2(z)[I − Tn(z)]−1Tn(z)2R1/2(z)SΓ1/2(ϕj)‖

)2

We introduce the diagonal operator Pβ defined for all j in N\{0} by

Pβ(ϕj) = ψβ(j)1/2ϕj .

Then,

‖Gn(z)SΠm1Γ1/2‖2HS

≤ 1
4π2

m1∑
j=1

(
m2∑
k=1

∫
Bk
‖R1/2(z)‖∞‖[I − Tn(z)]−1‖∞‖Tn(z)‖2∞‖R1/2(z)P−1

β ‖∞‖PβSΓ1/2(ϕj)‖
)2

From here we use some results of Brunel et al. (2016), page 226. In particular, on the set An and for z
in Bk, we write

‖[I − Tn(z)]−1‖∞ < 2 and ‖Tn(z)‖∞ ≤
ak√
n

ln(n).

Also, remark that for z in Bk, we have

‖R1/2(z)P−1
β ‖∞ = sup

l∈N\{0}
ψβ(l)−1/2|z − λl|−1/2

= ψβ(k)−1/2
√

2/δk.

Hence,

‖Gn(z)SΠm1Γ1/2‖2HS ≤
C ln4(n)
n2

m1∑
j=1
‖PβSΓ1/2(ϕj)‖2

(
m2∑
k=1

a2
kψβ(k)−1/2

)2

= C ln4(n)
n2 ‖PβSΓ1/2‖2HS

(
m2∑
k=1

a2
kψβ(k)−1/2

)2

.
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Besides, according to Lemma 4, under Assumptions A2 and A6, we have ak ≤ Ck ln(k). Furthermore,

‖PβSΓ1/2‖2HS =
+∞∑
j=1

+∞∑
l=1

ψβ(l)〈SΓ1/2(ϕj), ϕl〉2 < +∞.

Therefore,

E‖Gn(z)SΠm1Γ1/2‖2HS ≤
C ln4(n)
n2

(
m2∑
k=1

k2 ln2(k)√
ψβ(k)

)2

. (37)

To end this proof, we provide an upper bound for the remaining term of Equation (22). It is plain that

E‖(Π̂m2 −Πm2)SΠm1Γ1/21A{
n
‖2HS ≤ 4‖SΓ1/2‖2HSP(1A{

n
).

It follows from Lemma 2 that

E‖(Π̂m2 −Πm2)SΠm1Γ1/21A{
n
‖2HS ≤

C

n2 ‖SΓ1/2‖2HS. (38)

At last, combining Equations (22), (36),(37) and (38) leads to the required result.

6.3.2 Proof of Corollary 1

From Equation (10), the minimax prediction rate is lower than the infimum of the right-side term with
respect to m1 and m2. Let us consider the terms of the upper-bound successively.

• We keep the first one, σ2
εm1/n.

• For the second term, under Assumption A1, we obtain

+∞∑
j=m1+1

‖SΓ1/2(ϕj)‖2 =
+∞∑

j=m1+1

+∞∑
r=1
〈SΓ1/2(ϕj), ϕr〉2

≤
+∞∑

j=m1+1

+∞∑
r=1

ηα(j)
ηα(m1) 〈SΓ1/2(ϕj), ϕr〉2

≤ c/ηα(m1),

where c is some positive constant.

• The third term,
∑m1
j=1 ‖(I −Πm2)SΓ1/2(ϕj)‖2 goes to zero when m2 goes to +∞.

• We have An,m1 ≤ σ2
εm1/n under the constraint m1 ≤ n/ ln2(n).

• The additional assumption λm1 ≤ m−1−ν
1 permits to obtain that Bn,m1 is negligible with respect

to σ2
εm1/n.

• The term En is immediately negligible with respect to 1/n.

• From the convergence of
∑
m2≥1 λm2 , the first term of Dn,m2 goes to 0 when m2 goes to +∞. The

same result applies to the second and third terms of Dn,m2 in view of the assumptions on ψβ .

• The last term of Dn,m2 is lower to c ln4(n)/n2 (and thus to c/n). Indeed, from the assumptions on
ψβ , the serie

∑
k≥1 k

2 ln2(k)/
√
ψβ(k) is convergent.
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6.3.3 Proof of Theorem 2

To lower bound the minimax risk, we follow the general scheme of reduction to a finite hypotheses
number, as described in Tsybakov (2008). Our approach is similar to the one applied in Crambes and
Mas (2013), but the regularity assumption differs, making it necessary to adapt the proof significantly.
We start by considering a family of hypothesis Sθ of S, indexed by θ in Ωm∗1 = {0, 1}m∗1 . More precisely,
for all θ = (ω1, . . . , ωm∗1 ) in Ωm∗1 , we define

Sθ =
m∗1∑
j=1

µjωjϕ1 ⊗ ϕj ,

where (µj)1≤j≤m∗1 are chosen in such a way that SθΓ1/2 belongs to WR
α,β . Elementary computations

show that we can set for all j in Ωm∗1 ,

µ2
j = R2/e× [λjm∗1ηα(m∗1)]−1

.

Besides, it is straightforward to see that

inf
Ŝn

sup
SΓ1/2∈WR

α,β

E‖Ŝn(Xn+1)− S(Xn+1)‖2 ≥ inf
Ŝn

max
θ∈Ωm∗1

E‖Ŝn(Xn+1)− Sθ(Xn+1)‖2. (39)

For a given estimator Ŝn, let θ̂(Ŝn) be a random vector verifying that

θ̂(Ŝn) ∈ arg min
θ∈Ωm∗1

E‖Ŝn(Xn+1)− Sθ(Xn+1)‖2.

The model S θ̂(Ŝn) is one of the nearest to Ŝn, among the collection
{
Sθ; θ ∈ Ωm∗1

}
. Then, for all θ in

Ωm∗1 ,

E‖S θ̂(Ŝn)(Xn+1)− Sθ(Xn+1)‖2 ≤ 2E‖Ŝn(Xn+1)− S θ̂(Ŝn)(Xn+1)‖2 + 2E‖Ŝn(Xn+1)− Sθ(Xn+1)‖2

≤ 4E‖Ŝn(Xn+1)− Sθ(Xn+1)‖2.

Therefore, using Equation (39), we get

inf
Ŝn

sup
SΓ1/2∈WR

α,β

E‖Ŝn(Xn+1)− S(Xn+1)‖2 ≥ 1
4 inf
Ŝn

max
θ∈Ωm∗1

E‖S θ̂(Ŝn)(Xn+1)− Sθ(Xn+1)‖2

≥ 1
4 inf

θ̂

max
θ∈Ωm∗1

E‖S θ̂(Xn+1)− Sθ(Xn+1)‖2, (40)

where the infimum in the last line is taken over the all the estimators with values in Ωm∗1 . From here,
we aim to apply Assouad’s Lemma with Kullback version, see Tsybakov (2008, pages 117 to 119). For
the sake of completeness, we recall below this lemma.

Lemma 7 (Assouad version Kullback-Leibler). Let ρ denotes the Hamming distance, defined for all
θ = (ω1, . . . , ωm) and θ′ = (ω′1, . . . , ω′m) in Ωm = {0, 1}m by

ρ(θ, θ′) =
m∑
j=1

1{ωj 6=ω̂j}.

We also denote by P⊗nθ the distribution of (Xi, Yi)1≤i≤n under Sθ. Assume that for all θ, θ′ such that
ρ(θ, θ′) = 1, we have the following upper bound of the Kullback-Leibler divergence between P⊗nθ and P⊗nθ′ ,
KL(P⊗nθ ,P⊗nθ′ ) ≤ α <∞. Then,

inf
θ̂

max
θ∈Ωm

E[ρ(θ, θ̂)] ≥ m

2 max
(

1
2 exp(−α), 1−

√
α/2

)
,

where the infimum is taken over all the estimators θ̂ with values in Ωm.
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Now, for all estimator θ̂ = (ω̂1, . . . , ω̂m∗1 ) and θ = (ω1, . . . , ωm∗1 ) both with values in Ωm∗1 , we write

E‖S θ̂(Xn+1)− Sθ(Xn+1)‖2 = E‖
m∗1∑
j=1

µj(ω̂j − ωj)ϕ1 ⊗ ϕj(Xn+1)‖2

= E‖
m∗1∑
j=1

µj(ω̂j − ωj)ϕ1 ⊗ ϕjΓ1/2‖2HS,

where the last equation stems from Lemma 5. Thus,

E‖S θ̂(Xn+1)− Sθ(Xn+1)‖2 =
m∗1∑
j=1

λjµ
2
jE
[
(ω̂j − ωj)2]

= R2/e× [m∗1ηα(m∗1)]−1E[ρ(θ, θ̂)].

We then get from Equation (40) that

inf
Ŝn

sup
SΓ1/2∈WR

α,β

E‖Ŝn(Xn+1)− S(Xn+1)‖2 ≥ R2

4e [m∗1ηα(m∗1)]−1 inf
θ̂

max
θ∈Ωm∗1

E[ρ(θ, θ̂)]. (41)

In order to apply Assouad’s Lemma, we now upper bound KL(P⊗nθ ,P⊗nθ′ ) for θ, θ′ such that ρ(θ, θ′) = 1.
We are aware that the definition of the last Kullback-Leibler divergence requires that P⊗nθ is absolutely
continuous with respect to P⊗nθ′ . This point will be clarified later. Furthermore, it is well known that

KL(P⊗nθ ,P⊗nθ′ ) = nKL(Pθ,Pθ′),

where Pθ is the distribution of (X,Y θ), with Y θ = SθX + ε. Then,

KL(P⊗nθ ,P⊗nθ′ ) = n

∫
ln
(

dPθ
dPθ′

)
dPθ

= n

∫ [∫
ln
(

dPY θ|X
dPY θ′ |X

)
dPY θ|X

]
dPX .

The absolute continuity of PY θ|X with respect to PY θ′ |X and the upper bound of the Kullback-Leibler
divergence are provided by Cameron–Martin Theorem (Lifshits, 2012), which is stated below.

Theorem 4 (Cameron–Martin). Let Z be a centered Gaussian random variable in a Hilbert space
(X , 〈·, ·〉, ‖ · ‖), with a distribution measure P and a covariance operator ΓZ . We consider the subset
HP ⊂ X defined as

HP =
{
h ∈ X such that ‖Γ−1/2

Z (h)‖2 < +∞
}
.

For all h in HP , we denote by Ph the distribution mesure of Z + h. Then, Ph is absolutely continuous
with respect to P and the density dPh/dP is given by

dPh/dP : x 7→ exp
{
〈x,Γ−1

Z (h)〉 − 1
2‖Γ

−1/2
Z (h)‖2

}
.

The next step is to apply Cameron-Martin Theorem to upper bound KL(P⊗nθ ,P⊗nθ′ ). Before this,
there are some points to specify. We denote for the remaining of the proof Γε, the covariance operator
of ε. It is quite easy to see that conditionally to X, the distribution of Yθ is Gaussian with mean SθX
and covariance operator ΓYθ = Γε. Let us set hθ = SθX, for all θ in Ωm∗1 . Then, conditionally to
X, the random variable Y θ is a shift of Y θ′ with a shift equal to hθ − hθ

′ . Therefore, according to
Cameron-Martin Theorem, we have

KL(P⊗nθ ,P⊗nθ′ ) = nEXEε〈Y θ,Γ−1
ε (hθ − hθ

′
)〉 − n

2EX‖Γ
−1/2
ε (hθ − hθ

′
)‖2

= nEX〈hθ,Γ−1
ε (hθ − hθ

′
)〉 − n

2EX‖Γ
−1/2
ε (hθ − hθ

′
)‖2,
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where EX and Eε respectively designate the expectations with respect to the distributions of X and ε.
Then, according to Lemma 5, we get

KL(P⊗nθ ,P⊗nθ′ ) = n〈SθΓ1/2,Γ−1
ε (Sθ − Sθ

′
)Γ1/2〉HS −

n

2 ‖Γ
−1/2
ε (Sθ − Sθ

′
)Γ1/2‖2HS.

Now, from ρ(θ, θ′) = 1, we know that there exists j in {1, . . . ,m∗1} such that ωj 6= ω′j and for all l 6= j,
ωl = ω′l. Thus,

KL(P⊗nθ ,P⊗nθ′ ) = nλjµ
2
jωj(ωj − ω′j)〈ϕ1,Γ−1

ε (ϕ1)〉 − n

2λjµ
2
jω

2
j ‖Γ−1/2

ε (ϕ1)‖2

= R2

2eσ1
ωj(ωj − 2ω′j)×

n

m∗1ηα(m∗1)

≤ R2

2eσ1
× n

m∗1ηα(m∗1) ,

where 1/σ1 = ‖Γ−1/2
ε (ϕ1)‖2. Bearing in mind that m∗1ηα(m∗1) ≥ n/c0, for some positive constant c0.

By fitting c0 value with respect to R, σ1 and α, we set the condition R2/(2eσ1)× 1/c0(R, σ1, α) ≤ 1/2.
Consequently, from Assouad’s Lemma and Equation (41), we get

inf
Ŝn

sup
SΓ1/2∈WR

α,β

E‖Ŝn(Xn+1)− S(Xn+1)‖2 ≥ C(R, σ1, α)
ηα(m∗1) ,

where C(R, σ1, α) is some positive constant only depending on its arguments. In other words,

inf
Ŝn

sup
SΓ1/2∈WR

α,β

E‖Ŝn(Xn+1)− S(Xn+1)‖2 ≥ C(R, σ1, α) inf
m1∈N\{0}

{
σ2
ε

m1

n
+ 3
ηα(m1)

}
.

6.3.4 Proof of Corollary 2

In both cases (polynomial and exponential) we have to compute infm1∈N\{0}{σ2
εm1/n+ 3/ηα(m1)}. We

distinguish the two cases.

1. If ηα(x) � xα, the dimensionm1 minimizing the minimax risk is up to a multiplicative constant, the
solution x∗n = arg minx≥1Rα(x) with Rα(x) = x/n+x−α. we easily derive the result, x∗n = cn1/α+1,
for a constant c which only depends on α, and Rα(x∗n) = cn−α/(α+1), for another constant c.

2. If ηα(x) � exp(xα), we reason in a similar way with Rα(x) = x/n + exp(−xα). The solution x∗n
of the minimization problem of Rα verifies the equation α(x∗n)α−1e−(x∗n)α = n−1 which cannot be
written explicitly except in the case α = 1 where x∗n = ln(n) leading to a minimax rate of order
ln(n)/n. In the case α 6= 1, we can upper-bound the risk as follows, for n ≥ e1

Rα(x∗n) = x∗n
n

+ e−(x∗n)α ≤ Rα
(

(ln(n))1/α
)

= ln(n)1/α

n
+ 1
n
≤ 2(ln(n))1/α

n

implying that there exists c > 0 such that, for n large enough, e−(x∗n)α ≤ 2(ln(n))1/α/n, which
implies

x∗n ≥ (ln(n)− ln((ln(n))1/α − ln(2))1/α
+ ,

= (ln(n))1/α
(

1− 1
α

ln(ln(n))
n

− ln(2)
ln(n)

)1/α
,

≥ c(ln(n))1/α.

Moreover,

Rα(x∗n) = x∗n
n

+ e−(x∗n)α ≥ x∗n
n
≥ c (ln(n))1/α

n
.

Then the minimax rate is larger than (ln(n))1/α/n.
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6.4 Proof of the results of Section 4
6.4.1 Proof of Theorem 3

Starting from the definition of m̂1, we have for all m1 inMn that

γn(Ŝ
m̂1,∞) ≤ γn(Ŝm1,∞) + pen(m1)− pen(m̂1). (42)

Moreover, Ŝm1,∞ is the limit, in the sense of the Hilbert-Schmidt norm of Ŝm1,m2 when m2 goes to
infinity. Since the contrast function γn : L2(H) → R is continuous (where we recall that L2(H) is the
space of Hilbert-Schmidt operators of H = L2([0, 1])), then

γn(Ŝm1,∞) = lim
m2→∞

γn(Ŝm1,m2) ≤ lim
m2→∞

γn(Π̂m1,m2S) = γn(Π̂m1,∞S),

where the inequality is a consequence of the definition of the estimators (Ŝm1,m2)m1,m2 , see (5), and where
Π̂m1,m2 (resp. Π̂m1,∞) stands for the projection operator onto the space Span{ϕ̂k⊗ϕ̂j , j = 1, . . . ,m1, k =
1, . . .m2} (resp. onto Span{ϕ̂k ⊗ ϕ̂j , j = 1, . . . ,m1, k ∈ N\{0}}). Thus, since Π̂m1,∞S = SΠ̂m1

(where we recall that Π̂m1 is the projection operator of functions onto Span{ϕ̂j , j = 1 . . . ,m1}, see (7)),
Inequality (42) becomes

γn(Ŝ
m̂1,∞) ≤ γn(SΠ̂m1) + pen(m1)− pen(m̂1). (43)

We now seek for the link between the contrast function and the empirical norm. Let T1 and T2 be
two linear operators. Then,

γn(T1)− γn(T2) = 1
n

n∑
i=1
‖Yi − T1(Xi)‖2 −

1
n

n∑
i=1
‖Yi − T2(Xi)‖2

= 1
n

n∑
i=1
‖[S − T1](Xi) + εi‖2 −

1
n

n∑
i=1
‖[S − T2](Xi) + εi‖2

= ‖S − T1‖2n − ‖S − T2‖2n + 2νn(T2 − T1),

where the empirical process νn is defined for any linear operator T by νn(T ) = n−1∑n
i=1〈T (Xi), εi〉.

Back to Equation (42), for all m1 inMn we write

‖S − Ŝ
m̂1,∞‖

2
n ≤ ‖S − SΠ̂m1‖2n + 2νn(Ŝ

m̂1,∞ − SΠ̂m1) + pen(m1)− pen(m̂1)

≤ ‖S − SΠ̂m1‖2n + 2‖Ŝ
m̂1,∞ − SΠ̂m1‖n sup

T∈V
m∨m̂1,∞
‖T‖n=1

νn(T ) + pen(m1)− pen(m̂1),

where for all m in N\{0}, Vm,∞ = Span{ϕ̂k ⊗ ϕ̂j , j = 1, . . .m and k ∈ N\{0}}. Let, ζ > 0 and
ζ̃ = 4ζ−1 + 2. Since ζ̃ > 0, we remark that for all x, y in R, 2xy ≤ ζ̃x2 + ζ̃−1y2. Then,

‖S − Ŝ
m̂1,∞‖

2
n ≤ ‖S − SΠ̂m1‖2n + ζ̃−1‖Ŝ

m̂1,∞ − SΠ̂m1‖2n + ζ̃ sup
T∈V

m1∨m̂1,∞
‖T‖n=1

νn(T )2 + pen(m1)− pen(m̂1).

We define for all m,m′ in Mn, p(m,m′) = 8ζ̃−1(1 + δ)σ2
ε(m ∨ m′)/n such that pen(m) + pen(m′) ≥

ζ̃p(m,m′). Therefore,

‖S−Ŝ
m̂1,∞‖

2
n ≤ ‖S−SΠ̂m1‖2n+ζ̃−1‖Ŝ

m̂1,∞−SΠ̂m1‖2n+2 pen(m1)+ζ̃

 sup
T∈V

m1∨m̂1,∞
‖T‖n=1

νn(T )2 − p(m1, m̂1)


+

,

where (·)+ is the positive part, defined for all x in R as x+ = x ∨ 0. Next, since

‖Ŝ
m̂1,∞ − SΠ̂m1‖2n ≤ 2‖Ŝ

m̂1,∞ − S‖
2
n + 2‖S − SΠ̂m1‖2n
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and ζ̃ > 2

(1−2ζ̃−1)‖S−Ŝ
m̂1,∞‖

2
n ≤ (1+2ζ̃−1)‖S−SΠ̂m1‖2n+2 pen(m1)+ ζ̃

 sup
T∈V

m1∨m̂1,∞
‖T‖n=1

νn(T )2 − p(m1, m̂1)


+

.

(44)
The upper-bound of the expectation of the last right-sided term in Equation (44) stems from Lemma
8. This upper-bound does not depend on the selected dimension m in Mn. Hence, denoting c(ζ) =
2(1 + 2ζ̃−1)−1 = (2 + ζ)/(1 + ζ) we have,

E‖S − Ŝ
m̂1,∞‖

2
n ≤

1 + 2ζ̃−1

1− 2ζ̃−1
inf

m1∈Mn

{
E‖S − SΠ̂m1‖2n + c(ζ) pen(m1)

}
+ C(δ, p)

n

and the result comes from the fact that 1+2ζ̃−1

1−2ζ̃−1 = 1 + ζ.

Lemma 8. Under Assumption A7, the following inequality holds for all m inMn,

∑
m′∈Mn

E


 sup
T∈Vm∨m′,∞
‖T‖n=1

ν2
n(T )− p(m,m′)


+

 ≤ C(δ, p)
n

,

where p(m,m′) = 2(1 + δ)m∨m′n σ2 and for all x in R, x+ = x ∨ 0.

Proof of Lemma 8. The main ideas of this proof are inspired from Brunel et al. (2016, Lemma 5), with
an extension of the demonstrated results in the infinite dimensional frame of this paper. Denote by
T̄X = (T (X1), . . . , T (Xn)) ∈ Hn and ε̄ = (ε1, . . . , εn) ∈ Hn. Then,

νn(T ) = 1
n
〈T̄X , ε̄〉⊗n,

where 〈·, ·〉⊗n is the scalar product on Hn induced by 〈·, ·〉, which is defined for all x = (x1, . . . , xn) and
y = (y1, . . . , yn) in Hn as 〈x, y〉⊗n =

∑n
i=1〈xi, yi〉. The associated norm is denoted ‖ · ‖⊗n. Subsequently,

sup
T∈Vm,∞
‖T‖n=1

νn(T ) = sup
z∈Ṽm,∞
‖z‖⊗n=

√
n

1
n
〈z, ε̄〉⊗n,

where Ṽm,∞ is the linear subspace of Hn defined as

Ṽm,∞ =
{
z ∈ Hn,∃T ∈ Vm,∞ such that z = T̄X

}
.

Therefore, denoting by Π⊗n
Ṽm,∞

the orthogonal projection onto Ṽm,∞, we get

sup
T∈Vm,∞
‖T‖n=1

νn(T ) = 1√
n

sup
z∈Ṽm,∞
‖z‖⊗n=1

〈z, ε̄〉⊗n = 1√
n
‖Π⊗n

Ṽm,∞
(ε̄)‖⊗n.

From here, we use the Talagrand-type inequality stated in Lemma 9, which is an adaptation of (Baraud,
2000, Corollary 5.1) in our setting. For all x > 0, we write

P

n sup
T∈Vm,∞
‖T‖n=1

ν2
n(T ) ≥ mσ2

ε + 2σ2
ε

√
mx+ σ2

εx

 ≤ C(p)σpετp
m

xp/2
,

35



where τp = E‖ε‖p. Now, for all θ > 0, notice that 2
√
mx ≤ θm+ θ−1x, this means that

P

 sup
T∈Vm,∞
‖T‖n=1

ν2
n(T ) ≥ (1 + θ)mσ

2
ε

n
+ (1 + θ−1)σ

2
εx

n

 ≤ C(p) m

xp/2
,

We set,

Qm∨m′ =

 sup
T∈Vm∨m′,∞
‖T‖n=1

ν2
n(T )− p(m,m′)


+

.

We write for all m,m′ inMn,

E [Qm∨m′ ] =
∫ +∞

0
P (Qm∨m′ ≥ t) dt

≤ C(δ, p)m ∨m
′

np/2

∫ +∞

0

dt
(t+ σ2

εm ∨m′/n(1 + δ))p/2
≤ C(δ, p)(m ∨m′)2−p/2/n.

Knowing that p > 4, we have that (m ∨m′)2−p/2 ≤ 1 which gives the desired result.

Lemma 9. Let L be a linear subspace of Hn and m ∈ N\{0} such that dim(L) ≤ m. Denote by ζ the
map defined on Hn as

ζ : s 7→ ‖Π⊗nL (s)‖⊗n,

where Π⊗nL designates the orthogonal projection onto L with respect to 〈·, ·〉⊗n. Then, for all p ≥ 2 such
that τp = E‖ε‖p < +∞ and for all x > 0, we have

P
(
ζ2(ε̄) ≥ mσ2

ε + 2σ2
ε

√
mx+ σ2

εx
)
≤ C(p) m

xp/2
.

Proof of Lemma 9. Let (ψ1, . . . , ψ
¯
m) be an orthonormal basis of L, with

¯
m ≤ m. Denote by Bn the unit

ball of Hn with respect to the norm ‖ · ‖⊗n, we have

ζ2(ε̄) =
[

sup
u∈Bn

〈Π⊗nL (ε̄), u〉⊗n
]2

=
[

sup
u∈Bn

〈ε̄,Π⊗nL (u)〉⊗n
]2

=

 sup
u∈Bn

¯
m∑
j=1
〈ε̄, ψj〉⊗n〈u, ψj〉⊗n

2

.

Let υi be the n-tuple of Hn composed by εi in the ith position and 0H elsewhere. By construction, (υi)i
are independent and ε̄ =

∑n
i=1 υi and if we denote for u in Bn, gu : x 7→

∑
¯
m
j=1〈x, ψj〉⊗n〈u, ψj〉⊗n, we get

ζ2(ε̄) =
[

sup
u∈Bn

n∑
i=1

gu(υi)
]2

.

Now, we rely on Baraud (2000, Theorem 5.2) and we write for all t > 0,

P (ζ(ε̄) ≥ E [ζ(ε̄)] + t) ≤ t−pE|ζ(ε̄)− E [ζ(ε̄)] |p

≤ C(p)t−p
(
E1 + Ep/22

)
, (45)

where E1 and E2 are defined as

E1 = E
[

max
i=1,...,n

sup
u∈Bn

|gu(υi)|p
]

and E2 = E

[
sup
u∈Bn

n∑
i=1

g2
u(υi)

]
.
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By Cauchy-Schwarz, it is quite straightforward to see that

E1 = E

 max
i=1,...,n

sup
u∈Bn

|
¯
m∑
j=1
〈εi, ψj,i〉〈u, ψj〉⊗n|p


≤ E

 n∑
i=1
‖εi‖p sup

u∈Bn
‖

¯
m∑
j=1
〈u, ψj〉⊗nψj,i‖p

 ,
where ψj = (ψj,1, . . . , ψj,n) for all j in {1, . . . ,

¯
m}. Notice that, ‖

∑
¯
m
j=1〈u, ψj〉⊗nψj,i‖2 ≤ 1 for all u in

Bn and i in {1, . . . , n}. This leads to

E1 ≤ τp ×
n∑
i=1

sup
u∈Bn

‖
¯
m∑
j=1
〈u, ψj〉⊗nψj,i‖2

≤ τp ×
n∑
i=1

sup
u∈Bn

 ¯
m∑
l=1
|〈u, ψl〉⊗n|2

¯
m∑
j=1
‖ψj,i‖2


≤ τp ×

n∑
i=1

¯
m∑
j=1
‖ψj,i‖2

≤ mτp. (46)

To upper bound E2, we start with

E2 = E

 sup
u∈Bn

n∑
i=1
|

¯
m∑
j=1
〈εi, ψj,i〉⊗n〈u, ψj〉⊗n|2


≤ E

 sup
u∈Bn

n∑
i=1
‖εi‖2‖

¯
m∑
j=1
〈u, ψj〉⊗nψj,i‖2


≤ E2,1 + E2,2, (47)

where E2,1 and E2,2 are defined below

E2,1 = E

 sup
u∈Bn

n∑
i=1
‖εi‖2‖

¯
m∑
j=1
〈u, ψj〉⊗nψj,i‖21‖εi‖≤c

 ,
E2,2 = E

 sup
u∈Bn

n∑
i=1
‖εi‖2‖

¯
m∑
j=1
〈u, ψj〉⊗nψj,i‖21‖εi‖>c

 ,
with c > 0 will be set latter. It is clear that

E2,1 ≤ c2. (48)

On the flip side,

E2,2 ≤ c2−p × E

 sup
u∈Bn

n∑
i=1
‖εi‖p‖

¯
m∑
j=1
〈u, ψj〉⊗nψj,i‖2


≤ c2−pmτp, (49)

where the last inequality holds with the same arguments when upper bounding E1. Taking cp = mτp
and combining Equations (47), (48) and (49) yields

Ep/22 ≤ mτp. (50)
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From Equations (45), (46) and (50), we get for all t > 0 that

P (ζ(ε̄) ≥ E[ζ(ε̄)] + t) ≤ C(p)mτp/tp.

Now, the well-known inequality E[ζ(ε̄)]2 ≤ E[ζ2(ε̄)] gives

P
(
ζ2(ε̄) ≥ E[ζ2(ε̄)] + 2

√
E[ζ2(ε̄)]t2 + t2

)
≤ C(p)mτp/tp.

Starting from the last inequality, showing that E[ζ2(ε̄)] ≤ mσ2
ε and taking t2 = x ends the proof. Indeed,

knowing that the (εi)i are independent and centered, we have

E[ζ2(ε̄)] =
¯
m∑
j=1

E

( n∑
i=1
〈εi, ψj,i〉

)2


≤
¯
m∑
j=1

n∑
i=1

E〈εi, ψj,i〉2

≤ mσ2
ε ,

where the last upper-bound stems from Cauchy-Schwarz inequality.
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