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ABSTRACT 

 

Deep learning based compressed video quality enhancement 

has raised lots of interest recently. To explore the information 

over multiple frames, deformable convolution has been used 

for temporal alignment. However, in the existing methods, 

the deformable convolution is used in a relatively naïve way, 

without differing the characteristics of offset and features, 

and their behavior in gradient backpropagation. In this paper, 

a multiscale gradient-backpropagation optimization 

framework is proposed for the deformable convolution based 

compressed video quality enhancement. By analyzing the 

gradient backpropagation mechanism of deformable 

convolution, a multi-scale deformable convolution alignment 

structure is developed to facilitate the gradient 

backpropagation at all scales. Moreover, a progressive offset 

prediction module is developed, which decouples the offset 

prediction from the feature up-sampling, thus reducing the 

noise flow over scales. Experimental results show that the 

proposed method achieves the state-of-the-art performance, 

with 25.6% BD-rate saving compared to the HEVC reference 

software (HM). 

 

Index Terms— Video coding, Quality enhancement, 

Deformable convolution 

 

1. INTRODUCTION 

 

With the popularity of online videos and high-resolution 

videos, video encoding standards are also evolving to achieve 

high compression ratio, including the High Efficiency Video 

Coding (HEVC/H.265) [1] and the newest Versatile Video 

Coding (VVC/H.266) [2]. These encoding standards are 

developed based on the hybrid block-based encoding 

architecture. While these compression methods greatly 

reduce bit rate, they also introduce various artifacts, such as 

blocking, blurring and ringing artifact, which deteriorates the 

quality of the compressed video. 

In order to reduce these artifacts, a large number of 

quality enhancement algorithms have emerged, especially 

methods based on deep learning [3-15] due to its great 

success in image/video denoising. While there are methods 

working on enhancing each frame solely based on the spatial 

information and treating video only as a collection of pictures, 

a large portion of the work directly focuses on enhancing the 

video with multiple frames considering the temporal 

information. One crucial step in the multi-frame enhancement 

algorithm is the temporal alignment, i.e., locating the relevant 

information for the current frame from the neighboring 

frames. Some earlier works proposed to use optical flow to 

align the reference frames to the current frame, such as the 

MFQE [12], SpyNet [16], TOFlow [17] and PWC-Net [18] 

etc. However, for the compressed video enhancement, it has 

been observed that the aligned frames warped by optical flow 

are usually not very accurate and even appear unwelcomed 

artifacts, damaging the performance. In addition, Kernel 

Prediction Network (KPN) [19] has also been used to deal 

with multi-frame offset without explicit alignment. It 

generates per-pixel filtering kernels, and registers, averages 

and denoises the sequence images at the same time. In [20], a 

spatio-temporal network based on filter adaptive 

convolutional (FAC) layers was proposed for video 

deblurring. The generated filters and FAC layers can achieve 

temporal alignment and deblurring. 

Inspired by the superior performance of deformable 

convolution [21] in alignment, many video enhancement and 

restoration tasks have utilized deformable convolution to 

align and fuse temporal information. For example, in [13], a 

novel Spatio-Temporal Deformable Fusion (STDF) scheme 

was proposed to aggregate temporal information. In STDF, 

Unet was employed in offset prediction network and the 

offset was predicted in one step. For videos with large motion, 

such simple architecture may not be able to locate the correct 

motion. In [22], a pyramid cascading structure based 

deformable convolution are introduced into the alignment 

module to effectively align videos with large motion. 

However, the offset residuals at each level are learned from 

original features, without the participation of any upper-level 

warped features. 

Underlying mechanism for effective alignment of 

deformable convolution is still unclear, especially 

considering its better performance over the optical flow. In 

[23], it is argued that the mechanism of deformable 

convolution is the same as that of optical flow, and its 



advantage lies in the diversity of offset. Accordingly, an 

offset-fidelity loss has been proposed to train deformable 

convolution alignment networks. Inspired by this, a flow-

guided deformable alignment module was proposed to 

overcome the training instability in [24]. It shows that the 

features of optical flow before alignment can be used to 

reduce the difficulty in predicting the offset of deformable 

convolution. As a result, the training is more stable and the 

predicted offset locates in a reasonable range. In order to 

stabilize the training of deformable convolution networks, 

these methods seek solutions from the correlation between 

the offset and optical flow, but not from the mechanism of 

deformable convolution itself. 

In order to solve the above problem, we propose a 

Multiscale Gradient-backpropagation Optimization 

framework for the deformable convolution based compressed 

Video Enhancement Network (MGO-VEN). The 

contributions can be summarized as: (1) A progressive offset 

prediction sub-network (POPN) is proposed to predict the 

offset of deformable convolution, which decouples the offset 

prediction from the feature up-sampling. (2) By analyzing the 

gradient backpropagation mechanism of deformable 

convolution, a multi-scale deformable convolution temporal 

alignment sub-network (MSTA) is proposed, which stabilizes 

the offset prediction through gradient propagation 

optimization. The multi-scale features are then used to 

progressively reconstruct the target frame from coarse to fine 

scales. (3) Experimental results, with ablation study on each 

module, have validated the effectiveness of the proposed 

method. 

 

2. PROPOSED METHOD 

2.1. Overview 

The overall framework of the proposed method is shown in 

Fig. 1. It is composed of three sub networks: feature 

extraction network (FEN), progressive offset prediction 

network (POPN), and multi-scale temporal alignment 

network (MSTA). 

For each frame 𝐼𝑡 at time t from compressed video I to be 

enhanced, its temporal adjacent frames in the neighborhood 

of length r from both forward and backward directions are 

used. In other words, the continuous frame 𝐼𝑡−𝑟-𝐼𝑡+𝑟  are used 

as input for the network while frame 𝐼𝑡  is to be enhanced. For 

simplicity, 𝑟 is set to 1 in Fig. 1. First, FEN is used to extract 

the multi-scale features: 𝑓𝑆1 , 𝑓𝑆2 , 𝑓𝑆3  of each frame, 

respectively, where 𝑓𝑆𝑛  represents the feature with 1/2𝑛−1 

size of the original scale (both height and width). The specific 

process of FEN is shown in Fig. 1(a) which use a six-layer 

convolution network to extract features, and convolution with 

stride 2 is used to achieve down-sampling. After FEN 

processing, features with three scales are obtained. 

Deformable convolution is then used to align temporal 

features, where POPN and MSTA are proposed to predict 

offset and perform temporal alignment, respectively. These 

two subnetworks are developed to optimize the gradient 

backpropagation in the deformable convolution. MSTA will 

output the enhanced target frame. The two subnetworks are 

described in detail in the following subsections. 

 

2.2. Progressive offset prediction network 

The proposed POPN is developed based on the classic 

pyramid and cascading structure to assist the prediction of 

offsets under scenes with large motions. In POPN, instead of 

up-sampling the aligned features, the generated offset is up-

sampled and progressively predicted. In the existing pyramid 

structure [22], the aligned features using the small-scale 

features and offsets are up-sampled for the final prediction. 

However, such procedure introduces noise and information 

loss in the up-sampled features considering the error in the 

small-scale offset and the distortion in the feature up-

sampling process. To address this problem, we propose to up-

sample the small-scale offset, and using the original large-

scale feature together with the up-sampled offset for the 

following prediction as shown in Fig. 1 (b). Offset is in the 

form of positions or geometric distances, and up-sampling 

offset introduces much less noise than up-sampling the 

features. More importantly, the loss in the offset up-sampling 

  

 
Fig. 1 Framework of the proposed MGO-VEN. (a) FEN: feature extraction network; (b) POPN: progressive offset prediction network; 

(c) MSTA: multi-scale temporal alignment network. 
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process do not affect the overall process, since the large-scale 

offset is the value to be predicted and the loss can be 

compensated in the prediction. Meanwhile, the input large-

scale features are obtained from the original input without 

any up-sampling noise and information loss. Additionally, 

only up-sampling the offset (with less channels) costs much 

less computation than up-sampling the whole features. 

There are three stages in the proposed POPN to predict 

the offsets from the small scales to the original scale. The 

input of each stage comes from the feature map of the 

corresponding scale generated by FEN. The deformable 

convolution alignment is performed on the input using the up-

sampled offset generated in the previous stage, and then the 

offset value of the next scale is predicted by OPN, together 

with the initial up-sampled offset. OPN uses a three-layer 

convolution to predict the offset. The specific offset 

prediction process of each stage is formulated as follows: 

𝑂𝑘 = 𝑈(𝑂𝑘+1) + 𝑂𝑃𝑁(𝐷𝐶𝑁(𝑓𝑆𝑘, 𝑈(𝑂𝑘+1)))       (1) 

where 𝑂𝑘  represents the offset predicted in stage 𝑘, and 𝑈 

represent the up-sampling process. 𝑓𝑆𝑘  represents the input 

feature map at the scale of the to-be-predicted offset. The 

prediction process of the smallest scale can be simply written 

as 𝑂𝑘 = 𝑂𝑃𝑁(𝑓𝑆𝑘). 
When predicting the offset in each stage, the input error 

only comes from the offset predicted in the previous stage, 

and the offset value can be progressively refined in the form 

of learning residuals in multiple stages. The offset of the 

original scale is generated at the final stage and used for the 

following MSTA module. 

 

2.3. Multi-scale temporal alignment network 

Deformable convolution adds a learnable offset to the 

standard convolution kernel, which makes the block to-be-

convolved deformed. In deformable convolution, offset and 

features are of different natures, position indicated by 

distance, versus feature values coming from the color value. 

The offset relates to the feature values via the bilinear 

interpolation process, thus enabling the gradient 

backpropagation from color values to geometric distance. As 

shown in Fig. 2, the value of the current sampling point (𝑃) 

is obtained by bilinear interpolation from the values of the 

surrounding four integer pixels (𝑃1 , 𝑃2 , 𝑃3 , 𝑃4 ), which is 

formulated as follows: 

𝑥(𝑃) = 𝛿 ∙ ∑
𝑥(𝑃𝑘)

𝑑(𝑃,𝑃𝑘)
4
𝑘=1                          (2) 

where 𝑃 represents the value of the sampling point, and 𝑃𝑘 ∈
{1,2,3,4} represents the value of the corresponding integer 

pixel point. 𝑑(𝑃, 𝑃𝑘) represents the distance between 𝑃 and 

𝑃𝑘 . 𝛿 represents the normalization coefficient. After all the 

sampling point values are obtained, the convolution operation 

can be carried out. Deformable convolution can be 

formulated as follows: 

𝑦(𝑝) = ∑ 𝑤(𝑝𝑖) ∙ 𝑥(𝑝 + 𝑝𝑖 + ∆𝑝𝑖)
𝑛2

𝑖=1           (3) 

  𝑃𝑖 = 𝑝 + 𝑝𝑖 + ∆𝑝𝑖 , 𝑖 ∈ 1~𝑛2                 (4) 

where y represents the output of the convolution, and x 

represents the input feature value. 𝑝 represents the current 

convolution position, and 𝑝𝑖 ∈ {(−1,−1), (0, −1),⋯ , (1,1)} 
is the offset of conventional convolution. ∆𝑝𝑖is the predicted 

offset in the deformable convolution. 𝑃𝑖  is the sampling point 

with offset, and its value can be obtained via Eq. (2). 

In the process of training the network, the current 

sampling point indicated by the current offset is moved 

according to the gradient of the offset. The gradient of the 

offset is backpropagated through the features, then via the 

distance-value relationship in the bilinear interpolation, 

finally to the offsets. That is to say, for the offset that interacts 

with the feature values via the bilinear interpolation, its 

update is only determined by the values of the surrounding 

four pixels. Therefore, in relatively smooth regions, the offset 

may be stuck without updating to the desired location. 

Specifically, as shown in Fig. 2, assume the desired 

groundtruth sampling point is 𝑃𝑡 . When the network 

parameters are updated, the current sampling point is updated 

along the gradient direction, that is, the direction where the 

value close to the value of the groundtruth sampling point. 

The updated sampling point will be shifted to the direction of 

𝑃4, which results to a larger error of the predicted offset. 

To alleviate this problem and optimize the gradient 

backpropagation for the offset, a multi-scale alignment 

module is proposed in this paper. The features to be aligned 

and the offsets are synchronously down-sampled using 

average pooling to one-half and one-quarter of the original 

size. Then the features at each scale are processed to produce 

the enhanced image at different scales. As shown in Fig.2, at 

a smaller scale, the groundtruth information can be largely 

incorporated in the interpolation and thus the gradient can be 

greatly optimized.  

Since the offsets of the three scales are obtained from the 

same source, the gradients can be backpropagated to larger 

scales. While the multiscale output images can be supervised 

individually, in this paper, they are progressively combined 

in a similar way as in POPN for simplicity. A shortcut 

connection is added from the input to the output as in Fig. 1 

 
Fig. 2 Gradient-backpropagation optimization for deformable 

convolution. 
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and thus the MSTA only needs to produce a residual image 

to the original one. 

The specific implementation is shown in the subgraph 

MSTA of Fig. 1(c). The offset to be optimized is 𝑂, and the 

output residual image is 𝑅. The output can be obtained as 

follows: 

𝑅 = 𝑅1 + 𝑈(𝑅2 + 𝑈(𝑅3))                     (5) 

𝑅𝑘 = 𝐶𝑀(𝐶𝑀−1(⋯𝐶1(𝐷𝐶𝑁(𝑂𝑘 , 𝑓𝑘)⋯ )         (6) 

{𝑂𝑘 , 𝑓𝑘} = 𝑃𝑜𝑜𝑙({𝑂𝑘−1, 𝑓𝑘−1}), 𝑘 ∈ {2,3}         (7) 

where 𝐶𝑚 represents the m-th convolution layer, and 𝑃𝑜𝑜𝑙 
represents pooling.  𝑂1 is 𝑂 , and 𝑓1  is 𝑓𝑆1 .The overall 

network can be trained end-to-end using MSE as the 

objective function. 

3. EXPERIMENTS 

Extensive experiments are conducted to demonstrate the 

effectiveness of the proposed MGO-VEN method. 

Experiment setup. The dataset used in MFQE [12], 

containing 108 videos, is used for training and evaluation. 

Among them, 100 videos are used for training and the other 

8 videos are used for evaluation. The reconstructed video is 

obtained using HM16.9 with LDP configuration under QP 

∈{22,27,32,37}. The common test conditions suggested by 

JVT is used for test [23].  Blocks of size 128x128 are used as 

the input, that is, for each group of inputs of the training set, 

the image block of a 128 * 128 area in the same position is 

randomly drawn from multiple consecutive frames for 

training. Adam is used as the optimizer with an initial 

learning rate of 10−4. The learning rate is reduced according 

to the result of the validation set. M in Fig. 1, the number of 

convolutional layers in MSTA, is set to 8. 

Ablation study. Firstly, in order to verify the 

effectiveness of the proposed POPN and MSTA modules, a 

group of ablation studies were conducted, as shown in Table 

1. The first group replaced POPN with the conventional OPN 

network. The second group removed the multi-scale branches 

of MSTA and retained only the original scale branch. The 

third group retains all proposed modules. The number of 

frames is set to 3 for simplicity and the experiments are 

conducted under QP=37. As can be seen from the results in 

Table 1, the proposed POPN and MSTA modules are both 

effective and the proposed method with both of them 

performs the best. 

Comparison with the state-of-the-art methods. 

Experiments on the compressed videos under common test 

conditions are also conducted. In this experiment, the number 

of reference frames is set to 6, that is, r = 3, to explore more 

temporal reference information, which also applied to STDF. 

Table 2 shows the results comparison between the proposed 

method and other state-of-the-art methods. It can be seen that 

the proposed method achieves the best performance on all test 

sequences, and provides 25.6% BD-rate saving on average. 

4. CONCLUSION 

In this paper, we have presented a multiscale gradient-

backpropagation optimization framework for the deformable 

convolution based compressed video quality enhancement 

network. First, a progressive offset prediction network is 

developed to predict the offset more accurately without 

introducing the distortion in up-sampling the features with 

low-scale offsets. Then, by analyzing the gradient 

backpropagation mechanism of deformable convolution, a 

multi-scale deformable convolution alignment network is 

proposed, where the gradients of the offsets are optimized. 

Experiments, with ablation study on each module, have 

demonstrated the effectiveness of the proposed method, and 

the proposed method achieves the state-of-the-art 

performance with a BD-rate reduction of 25.6% on average 

compared with HM.  
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Table 2. BD-BR reduction (%) of the proposed method compared 

with the state-of-the-art methods 

Sequence 
ARCNN 

[3] 

MFQE 

2.0[12] 

STDF 

[13] 

MGO-

VEN 

A 
Traffic 7.4 17.0 20.9 24.9 

PeopleOnStreet 7.0 15.1 18.0 23.2 

B 

Kimono 6.1 13.3 18.6 26.7 

ParkScene 4.5 13.7 20.2 24.7 

Cactus 6.2 14.8 23.0  28.6 

BasketballDrive 5.8 11.9 15.6 23.7 

BQTerrace 6.9 14.7 26.2 30.5 

C 

BasketballDrill 4.7 12.6 15.0 19.5 

BQMall 5.6 13.5 21.1 25.2 

PartyScene 1.9 11.3 20.5 25.0 

RaceHorses 5.2 9.6 11.1 16.8 

D 

BasketballPass 5.1 13.4 20.0 24.6 

BQSquare 0.7 11.0 31.1 36.9 

BlowingBubbles 3.2 15.2 19.5 24.9 

RaceHorses 5.6 11.6 14.2 21.3 

E 

FourPeople 8.4 17.5 21.2 24.8 

Johnny 7.7 18.6 25.0 30.8 

KristenAndSara 8.9 18.3 23.3 27.3 

        Average 5.6 14.1 20.4 25.6 

 

Table 1. Ablation study under three frames 

Groups PSNR (dB) 

STDF [13] 0.65 

MGO-VEN w/o POPN 0.75 

MGO-VEN w/o MSTA 0.80 

MGO-VEN 0.84 
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