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Absolutely summing weighted composition operators
on Bloch spaces

Tonie Fares∗ , Pascal Lefèvre†

Abstract

We characterize p-summing composition operators Cϕ(f) = f ◦ϕ from a Bloch space Bµ
to another such space Bβ , where µ, β > 0. The corresponding result on little Bloch-type
spaces is also proved. In addition, we construct an example of a conformal mapping of the
unit disk D into itself which has a contact point with the unit circle T, and induces a compact
composition operator, that fails to be p-summing for any p ≥ 1. We also detail the case of lens
maps. Moreover we explore the case of weighted composition operators uCϕ(f) = u.(f ◦ ϕ)
and characterize such nuclear operators, and p-summing ones for a class of weights. We also
show that compactness of a composition operator on Bβ and Bβ0 implies its compactness on
Bergman spaces. Moreover when β > 1 the converse is also true for composition operators
on Bβ0 .

1 Introduction and background

This paper is interested in composition operators, i.e. mapping f 7→ Cϕ(f) = f ◦ ϕ, where
ϕ : D → D (the symbol) is analytic, between Banach spaces of analytic functions over the unit
disk D. A major purpose of this field of investigation is to understand the link between the
properties of the operator Cϕ and the properties of the function ϕ. Of course it also depends on
the spaces involved.

In this paper we focus on two features: the p-summing property for the operator Cϕ (see
below for the details and [7] or [22] for good references on this operator property); and, for the
underlying space, the classical Bloch space (and its standard weighted generalization, as well as
the little Bloch spaces). This problem was completely open except in the case p = 1: indeed
in [10], we characterized nuclear composition operators Cϕ on the classical Bloch spaces B and
B0 and it turns out that nuclear composition operators on Bloch spaces are exactly 1-summing
composition operators on these spaces.

It is then natural to wonder whether we can extend this in three natural directions: from 1
to p-summingness, adding (standard) weights to the spaces, and consider weighted composition
operators. Nevertheless, according to us, the main point is to get a characterization of p-summing
composition operators on the classical Bloch space. This problem is solved (among other things)
in our paper.

More precisely, we obtain: the characterization of p-summing composition operators, for any
1 ≤ p < +∞, on Bloch-type spaces; for weighted composition operators, we characterize nuclear
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ones on Bloch-type spaces. For the case p > 1, the computations are more delicate. We present a
necessary condition and some sufficient ones that are unfortunately slightly different, except for a
certain class of weights. Whereas the extension is fairly easy to get concerning the weight for the
space, it turns out that managing the weight for the operator and extending the characterization
from 1-summing to arbitrary p-summing is more difficult and requires more work. Actually, once
our work was already completed, we discoreved that recently, using similar methods as in [10],
Bonet & al. [3] extended the result on nuclearity to the case Bβ with β ≥ 1. However the results
of the present paper are more general than [3] and [10] in many ways.

Throughout this paper, we will denote by Apα = Apα(D) = Hol(D) ∩ Lp(D, Aα), 1 ≤ p < ∞
and −1 < α < +∞, the (weighted) Bergman space consisting of analytic functions f on the
open unit disk D satisfying

‖f‖Apα =
(∫

D
|f(z)|pdAα(z)

)1/p
< +∞ ,

where dAα(z) = (α+1)(1−|z|2)αdA(z) and A denotes the normalized area measure on D. When
α = 0, Ap0 is simply denoted Ap.

For 1 ≤ p < ∞, Hp = Hp(D) is the Hardy space consisting of analytic functions f on D
satisfying

‖f‖Hp = sup
0≤r<1

(∫
T
|f(rz)|pdλ

)1/p
< +∞ ,

where λ denotes the Haar measure on T.

The space H∞ = Hol(D) ∩ L∞(D) is the Hardy space of the bounded analytic functions f
on the open unit disk D. It is equipped with its usual norm

‖f‖∞ = sup
z∈D
|f(z)|.

The classical Bloch space B is defined as the space of analytic functions f on D which satisfy

sup
z∈D

(1− |z|2)|f ′(z)| < +∞.

See monographs [9], [13] for a classical background, [5] for a survey and [1] for more recent results
on B. One can also see [30] for more details on Bloch-type spaces.

In this paper we study composition operators on a class of generalized Bloch spaces. More
precisely, for each β > 0, we let Bβ denote the space of analytic functions f on D which satisfy

sup
z∈D

(1− |z|2)β|f ′(z)| < +∞.

When β = 1, we recover the classical Bloch space B1 = B.
We will also be interested in the generalization of the little Bloch space B0 consisting of functions
f in B such that

lim
|z|→1−

(1− |z|2)|f ′(z)| = 0.
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Thus, for each β > 0, we let Bβ0 denote the subspace of Bβ consisting of functions f such that

lim
|z|→1−

(1− |z|2)β|f ′(z)| = 0.

It is well known that the Bloch-type space Bβ is a Banach space when equipped with the norm

‖f‖Bβ = |f(0)|+ sup
z∈D

(1− |z|2)β|f ′(z)|

and that Bβ0 is a closed subspace of Bβ (see [30] for instance).
An important tool in functional analysis is the duality, and it will play once again a key role

below. Here the situation is well known and there is a natural description of the duality between
Bloch-type spaces and the Bergman space A1. Actually, we have (A1)∗ ≈ Bβ . More precisely,
given h ∈ A1 and f ∈ Bβ , we use the integral pairing

〈h, f〉 = lim
r→1−

∫
D
h(rw)f(rw) dAβ−1(w)

and, for some c > 0 and every Φ ∈ (A1)∗, there exists f ∈ Bβ satisfying Φ = 〈·, f〉 with
‖f‖ ≤ c‖Φ‖ (see [30, Theorem 14]).
In the same spirit, we have (Bβ0 )∗ ≈ A1 under the same integral pairing

(1) 〈h, f〉 = lim
r→1−

∫
D
h(rw)f(rw) dAβ−1(w)

where h ∈ Bβ0 and f ∈ A1 (see [30, Theorem 15]).
When h ∈ H∞ ∩ Bβ0 , we can simplify the preceding formula and write

〈h, f〉 =

∫
D
h(w)f(w) dAβ−1(w).

Note that, when 0 < β < 1, the space Bβ is contained in H∞(D). More specifically f belongs to
Bβ if and only if it satisfies the following Lipschitz condition

sup

{
|f(z)− f(w)|
|z − w|1−β

; z 6= w

}
< +∞.

In particular, when 0 < β < 1, the space Bβ is contained in the disk algebra (see [30, Prop. 9]).
When β ≥ 1, it is easy to see by the Schwarz-Pick lemma that H∞(D) ⊂ Bβ (see [13, p.13]).

Another important tool is the point evaluation functional. Let a ∈ D, the point evaluation
functional δa is defined by δa(f) = f(a). This functional is bounded on Bβ for all β > 0 and on
A1 (see [9], [13] or [30]).

Given an analytic map ϕ : D→ D, the composition operator Cϕ is (formally) defined by

Cϕ(f) = f ◦ ϕ.

Its behavior on various spaces of analytic functions on D is already widely studied and still
receives a lot of attention, even on classical spaces. Its weighted version uCϕ : f 7→ u(f ◦ ϕ),
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where u is an analytic function on D, is a natural extension of Cϕ, and generalizes the multiplier
operators as well. The question of the boundedness and of the membership of classical operator
ideals is natural when viewed on Bloch-type spaces.

Actually, for 0 < β < 1, the boundedness of the composition operator Cϕ on Bβ was consid-
ered and solved first by Roan [23] and later by Madigan [16]. Then boundedness and compact-
ness of Cϕ on classical Bloch spaces were described by Madigan and Matheson in [17]. Contreras
and Hernandez-Díaz [4] on one hand and Xiao [29] on the other hand generalized the work of
Madigan and Matheson, characterizing bounded and compact composition operators on general
Bloch-type spaces. The case of weighted composition operators on classical Bloch spaces was
treated by Ohno and Zhao in [20]: they characterised boundedness and compactness. In 2003,
Ohno, Stroethoff and Zhao [21] extended this work to Bloch-type spaces.

The study of absolutely summing composition operators was initiated by Shapiro-Taylor in
the seminal paper [26]. Nevertheless except very specific cases, the problem was left open for
classical spaces. On Bergman spaces, the problem was solved by Domenig in [8] and more
recently it was solved on Hardy spaces Hp, when p > 1, by Rodríguez-Piazza and the second
named author [15].

In this paper, we study p-summing weighted composition operators uCϕ on Bloch-type spaces.
Nevertheless we start by some further results on compactness of composition operators on Bloch-
type spaces. We discuss how compactness of Cϕ on the Bloch-type space and the little Bloch-type
space relates to its compactness on the Bergman space. In particular, we show that compactness
of Cϕ on Bβ (with β > 0) or on Bβ0 implies compactness of Cϕ on the Bergman space Apα.
Moreover when β > 1, we show that compactness of Cϕ on Bβ0 is equivalent to its compactness
on Apα. In the third section, we first give a necessary condition for uCϕ to be p-summing for p ≥ 1.
Then we give some sufficient conditions. As a consequence, we obtain a characterization for p-
summing composition operators on Bloch-type spaces, p ≥ 1. We also obtain a characterization
for nuclear weighted composition operators. For the case p > 1 we obtain a characterization
only for a class of weights. This is the purpose of section 4. When p = 1 and β = µ = 1 we
recover the characterization of nuclear composition operators on classical Bloch spaces which was
given in [10]. In section 5, we exhibit an example of a symbol ϕ with a contact point with the
unit circle T that induces a compact composition operator on the classical Bloch space which is
not p-summing for any p ≥ 1. We also give an example of an inner symbol inducing a nuclear
composition operator of the Bloch space Bβ when β ≥ 1. Finally we consider the example of
the lens map. We give several basic properties of this symbol and we study the behaviour of its
associated composition operator on Bβ depending on β > 0.

Let us recall the definition of absolutely summing operators and nuclear operators.

Definition 1.1. An operator T : X −→ Y is p-summing, 1 ≤ p < +∞, if there exists a constant
C such that for all finite sequences (xj)

n
j=1 ⊂ X, we have

( n∑
j=1

‖Txj‖pY
)1/p

≤ C sup
x∗∈X∗
‖x∗‖≤1

n∑
j=1

(
|x∗(xj)|p

)1/p
= C sup

a∈`p′
‖a‖p′≤1

∥∥∥ n∑
j=1

ajxj

∥∥∥
X
.

We define the p-summing norm of an operator T by the least admissible constant C and denote
it by πp(T ).
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A generic example is the canonical identity from C(K) to some Lp(K,µ) space (where µ is
a Borel measure on a compact Hausdorff set K). See [7] for more informations on the subject,
and [22] for the study of such operators viewed on Banach spaces of analytic functions. They
are not compact in general (see the previous generic example). Nevertheless, and even if we do
not use this fact, it is worth mentioning that on Bloch spaces, and little Bloch spaces, absolute
summingness of the composition operators implies their compactness. It is due to the fact that
Bloch spaces are isomorphic to `∞ and little Bloch spaces are isomorphic to c0 (see [14]).

Definition 1.2. An operator T : X −→ Y is said to be nuclear if there exist a sequence (x∗n) ⊂ X∗

and a sequence (yn) ⊂ Y such that
∑
n

‖x∗n‖‖yn‖ <∞ and

T =
∞∑
n=1

x∗n ⊗ yn ,

where x∗n ⊗ yn : X → Y is defined to be the mapping x 7→ x∗n(x)yn.

In other words, nuclear operators are absolutely convergent series of rank one operators.
Therefore they are compact.

As usual, the notation A . B means that there exists a positive constant C such that
A ≤ CB. In the same way, the notation A ≈ B means that A . B and B . A.

We also use the conjugate exponent of p ∈ [1,∞[, denoted by p′, which is defined by the

relation
1

p
+

1

p′
= 1 . When p = 1, p′ =∞ and 1

p′ = 0.

2 Further results on compactness of composition operators

In this section we give a property of monotony concerning the compactness of composition
operators on Bloch-type spaces with respect to the parameter β > 0. Surprisingly it does not
appear in the literature. We also show that compactness of composition operators on the Bloch
spaces induces compactness on Bergman spaces. Moreover when β > 1 the compactness on
the little Bloch spaces is equivalent to the one on Bergman spaces. We start by recalling the
characterization of compact composition operators on Bloch-type spaces. Denote

F (ϕ, z, µ, β) =
(1− |z|2)β|ϕ′(z)|

(1− |ϕ(z)|2)µ
·

Theorem 2.1. ([29, Theorem 3.1])
Let ϕ : D −→ D be analytic, and µ, β ∈ (0,∞). Then

(i) Cϕ : Bµ or Bµ0 −→ Bβ is compact ⇐⇒ lim
|ϕ(z)|→1

F (ϕ, z, µ, β) = 0.

(ii) Cϕ : Bµ or Bµ0 −→ B
β
0 is compact ⇐⇒ lim

|z|→1
F (ϕ, z, µ, β) = 0.

Curiously the following fact does not appear in the literature:
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Corollary 2.2. If Cϕ : Bβ −→ Bβ is compact and γ > β then Cϕ : Bγ −→ Bγ is compact.

We point out that this is also true for little Bloch-type spaces.

Proof. In the first part of the proof we assume that ϕ(0) = 0.
Since Cϕ is compact on Bβ , we have lim

|ϕ(z)|→1
F (ϕ, z, β, β) = 0.

We want to prove that lim
|ϕ(z)|→1

F (ϕ, z, γ, γ) = 0.

But,

F (ϕ, z, γ, γ) =
(1− |z|2)γ |ϕ′(z)|

(1− |ϕ(z)|2)γ
=

(1− |z|2)β|ϕ′(z)|(1− |z|2)γ−β

(1− |ϕ(z)|2)β(1− |ϕ(z)|2)γ−β
·

Then thanks to Schwarz’s lemma (since ϕ(0) = 0) we have |ϕ(z)| ≤ |z|, for every z ∈ D.
So ( 1− |z|2

1− |ϕ(z)|2
)γ−β

.
( 1− |z|

1− |ϕ(z)|

)γ−β
≤ 1.

We get

F (ϕ, z, γ, γ) =
(1− |z|2)γ |ϕ′(z)|

(1− |ϕ(z)|2)γ
. F (ϕ, z, β, β) −→

|ϕ(z)|→1
0.

To prove that Cϕ is compact on Bγ even when ϕ does not fix the origin, we use a standard strategy,

but we give the details for the sake of completeness. We use the Möbius map ϕa(z) =
a− z
1− az

,

for a = ϕ(0). Then the holomorphic function ψ = ϕa ◦ ϕ takes D into itself and fixes the origin.
Hence Cψ satisfies the first case so it is compact on Bγ as soon as it is compact on Bβ and γ > β.
Now by the self-inverse property of ϕa we have ϕ = ϕa ◦ ψ and this translates into the operator
equation Cϕ = CψCϕa . It is easy to check that

sup
z∈D

F (ϕa, z, γ, γ) ≤
(1 + |a|

1− |a|

)|1−γ|
,

which implies that Cϕa is bounded on Bγ ([29, Theorem 2.2]). By the ideal property of compact
operators (see for example [7, P. 37, 2.4]) Cϕ is a compact composition operator on Bγ , and this
ends the proof.

In [17], Madigan and Matheson have noticed using the Julia-Caratheodory theorem, that if
ϕ has a finite angular derivative at some point of T, then Cϕ cannot be compact on B. Actually
we extend this remark to Bloch-type spaces and get the following result, which does not appear
(as far as we saw) in the literature.

Proposition 2.3. For 1 ≤ p <∞, α > −1 and β > 0 we have:

Cϕ : Bβ0 −→ B
β
0 compact =⇒ Cϕ : Apα −→ Apα compact.

The converse is not true in general. We show in section 5 that for the lens map Λa, the
composition operator CΛa is not compact on B0. But it is well known that the lens map induces
a compact (even nuclear) composition operator on the Bergman space.
Note that this theorem is no longer true if we replace the Bergman space Apα by the Hardy space
Hp. Smith in [27] constructs an inner function ϕ that induces a compact composition operator
on B0. But it is well known (see [25, Theorem 2.6]) that if Cϕ is compact on Hp then |ϕ∗| < 1,
where ϕ∗(eit) = lim

r→1−
ϕ(reit) for almost every t.
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Proof. We give here a selfcontained argument. Assume that Cϕ is not compact on Apα, then (see
[19, Theorem 3.5])

lim inf
|z|→1−

1− |ϕ(z)|
1− |z|

<∞.

Which implies that there exists w ∈ T such that,

0 < lim inf
z→w

1− |ϕ(z)|
1− |z|

= δ <∞.

By Julia-Caratheodory’s theorem ([24, p.57]), we get that for some η ∈ T, the angular derivative

of ϕ at w exists and is equal to ϕ′(w) = ∠ lim
z→w

η − ϕ(z)

w − z
= wηδ.

Moreover, ∠ lim
z→w

ϕ′(z) = wηδ. Hence,

∠ lim
z→w

(1− |z|2)β|ϕ′(z)|
(1− |ϕ(z)|2)β

=
1

δβ−1
6= 0 ,

which implies (by Theorem 2.1) that Cϕ is not compact on the little Bloch-type space.

In fact, when β > 1, we have an equivalence.

Theorem 2.4. For 1 ≤ p <∞, α > −1 and β > 1 we have:

Cϕ : Bβ0 −→ B
β
0 compact ⇐⇒ Cϕ : Apα −→ Apα compact.

Proof. By the preceding proposition, we only need to prove the sufficiency. Assume that Cϕ is
compact on Apα, then

lim
|z|→1

1− |z|
1− |ϕ(z)|

= 0.

By Schwarz-Pick lemma we have

(1− |z|2)β|ϕ′(z)|
(1− |ϕ(z)|2)β

.
( 1− |z|

1− |ϕ(z)|

)β−1
−→
|z|→1

0 ,

which ends the proof of the theorem.

The compactness of a composition operator on the Bloch-type space also implies compactness
on the Bergman space. The proof of this result is more technical than the corresponding result
for little Bloch-type spaces (see Prop.2.3).

Theorem 2.5. For 1 ≤ p <∞, α > −1 and β > 0 we have:

Cϕ : Bβ −→ Bβ compact =⇒ Cϕ : Apα −→ Apα compact.

We need the following lemma for its proof.

Lemma 2.6. Let ϕ : D −→ D be analytic, β > 1
2 and α > max(2β− 3,−1). Let γ = 2 +α− 2β.

The operator

T : L2(D, dAα) −→ L2(D, dAγ,ϕ)

f 7−→ Tf(z) =

∫
D

(1− |z|2)βw

(1− zw)3+α
f(w)dAα(w)

is bounded.
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Here Aγ,ϕ stands for the pull back measure of Aγ relative to ϕ: Aγ,ϕ(E) = Aγ
(
ϕ−1(E)

)
for

E ⊂ D measurable.
We point out too that α > −1 and γ > −1.

Proof. It suffices to show that the operator

S : L2(D, dAα) −→ L2(D, dAγ,ϕ)

f 7−→ Sf(z) =

∫
D

(1− |z|2)β|w|
|1− zw|3+α

f(w)dAα(w)

is bounded.
We are going to use the Schur’s test. Let h2(z) = 1

(1−|z|2)2β−1 and g2(z) = 1
(1−|z|2)β

, we show
that

(2)
∫
D

(1− |z|2)β|w|
|1− zw|3+α

g2(z)dAγ,ϕ(z) . h2(w), w ∈ D.

and

(3)
∫
D

(1− |z|2)β|w|
|1− zw|3+α

h2(w)dAα(w) . g2(z), z ∈ D,

Indeed, ∫
D

(1− |z|2)β|w|
|1− zw|3+α

g2(z)dAγ,ϕ(z) = |w|
∫
D

1

|1− zw|3+α
dAγ,ϕ(z)

≤
∫
D

1

|1− ϕ(z)w|3+α
dAγ(z) .

But we know that Cϕ is bounded on Aγ so we get∫
D

(1− |z|2)β|w|
|1− zw|3+α

g2(z)dAγ,ϕ(z) .
∫
D

(1− |z|2)γ

|1− zw|3+α
dA(z)

.
1

(1− |w|2)2β−1
= h2(w)

thanks to Theorem 1.7 of [13] for β >
1

2
·

In the same way we have,

∫
D

(1− |z|2)β|w|
|1− zw|3+α

h2(w)dAα(w) . (1− |z|2)β
∫
D

(1− |w|2)α−2β+1

|1− zw|3+α
dA(w)

.
1

(1− |z|2)β
= g2(z).

As a conclusion we have that T is a bounded operator:

‖Tf‖L2(D,dAγ,ϕ) ≤ C‖f‖L2(D,dAα).
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Proof of Theorem 2.5. Assume that the operator Cϕ is compact on Bβ , β > 0 and choose α >
max(0, 2β − 3) so that γ = 2 + α − 2β > −1. We want to prove that Cϕ is compact on A2

α. It
suffices to show that if (fn) is a bounded sequence in A2

α that converges to 0 uniformly on every
compact subset of D, then ‖Cϕ(fn)‖A2

α
→ 0.

By the Littlewood-Paley formula we have:

‖Cϕ(fn)‖2A2
α
. |(fn ◦ ϕ)(0)|2 +

∫
D

(1− |z|2)α+2|(fn ◦ ϕ)′(z)|2dA(z)

for every n ≥ 1. Since fn(ϕ(0)) −→
n→∞

0, it remains to show that the integral tends to 0.

Since Cϕ is compact on Bβ , for every ε > 0, there exists some 0 < δ < 1 such that
(1− |z|2)β|ϕ′(z)|

(1− |ϕ(z)|2)β
≤ ε , for δ < |ϕ(z)| < 1. This implies that∫

D
(1− |z|2)α+2|(fn ◦ ϕ)′(z)|2dA(z) ≤

∫
{|ϕ(z)|≤δ}

(1− |z|2)α+2|ϕ′(z)|2|(f ′n ◦ ϕ)(z)|2dA(z)

+ε2

∫
{δ<|ϕ(z)|<1}

(1− |z|2)2+α−2β(1− |ϕ(z)|2)2β|(f ′n ◦ ϕ)(z)|2dA(z)

.
∫
{|ϕ(z)|≤δ}

(1− |z|2)α+2|ϕ′(z)|2|(f ′n ◦ ϕ)(z)|2dA(z)

+ε2

∫
ϕ({δ<|ϕ(z)|<1})

(1− |z|2)2β|f ′n(z)|2dAγ,ϕ(z)

Therefore, using the fact that α+ 2 ≥ 2 and that ‖ϕ‖B ≤ 1 in the first integral, we get

∫
D

(1−|z|2)α+2|(fn◦ϕ)′(z)|2dA(z) .
∫
{|ϕ(z)|≤δ}

|(f ′n◦ϕ)(z)|2dA(z)+ε2

∫
D

(1−|z|2)2β|f ′n(z)|2dAγ,ϕ(z).

Denote by In the first integral and by Jn the second one. Since f ′n tends to 0 uniformly on
the closed disk D(0, δ), In tends to 0. It remains to show that the sequence (Jn) is bounded.
But for fn ∈ A2

α by the reproducing kernel formula we have,

∀z ∈ D, fn(z) = (α+ 1)

∫
D

(1− |w|2)α

(1− zw)(2+α)
fn(w)dA(w).

Differentiating under the integral sign and multiplying by (1− |z|2)β , we obtain

Tfn(z) = (1− |z|2)βf ′n(z) = C

∫
D

(1− |z|2)βw

(1− zw)3+α
fn(w)dAα(w).

By the preceding lemma we have, ‖Tfn‖L2(D,dAγ,ϕ) ≤ C‖fn‖L2(D,dAα).
As a conclusion we have, Jn ≤ C‖fn‖2A2

α
. Since (fn) is bounded in A2

α, then ‖Cϕ(fn)‖A2
α
−→ 0

when n→∞, and Cϕ is compact on A2
α where β > 1

2 · Hence Cϕ is compact on Apα in the case
where β > 1

2 ·
Now for 0 < β ≤ 1

2 , if the composition operator is compact on Bβ then by corollary 2.2, Cϕ
is also compact on Bβ for β > 1

2 ·
But we can conclude that Cϕ is compact on A2

α for any α > −1 since this property actually
does not depend on the parameter α as soon as α > −1. This ends the proof of the theorem.
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3 Absolutely summing weighted composition operators

We start this section by some preliminary results which we shall need for the proofs of our
theorems.

Lemma 3.1. Let f ∈ Apα where α > −1, and p ≥ 1. We have

∀z ∈ D, |f(z)|p .
∫
D

|f(w)|p(1− |w|2)α

|1− wz|α+2
dA(w)·

Remark 1. Actually when p is an integer and f ∈ Apα, thanks to the reproducing kernel formula
for the Bergman space (see for example [13, Cor. 1.5]), we clearly have the equality

∀z ∈ D, fp(z) = (α+ 1)

∫
D

fp(w)(1− |w|2)α

(1− wz)α+2
dA(w)·

Proof. Let f ∈ Apα. The rotation invariance of dAα gives

f(0) =

∫
D
f(w)dAα(w).

Then, since p ≥ 1 and dAα is a probability measure, we have

|f(0)|p ≤
∫
D
|f(w)|p dAα(w).

Replacing f by f ◦ ϕz, where ϕz is a Möbius map, making a change of variables and using
the properties of ϕz, we obtain

|f(z)|p .
∫
D
|f ◦ ϕz(w)|p(1− |w|2)αdA(w)

.
∫
D
|f(w)|p(1− |ϕz(w)|2)α|ϕ′z(w)|2dA(w)

≈
∫
D
|f(w)|p (1− |z|2)α+2(1− |w|2)α

|1− zw|4+2α
dA(w)

.
∫
D

|f(w)|p(1− |w|2)α

|1− zw|α+2
dA(w).

We state the following result as a lemma, but is already known (see [30, Cor.4]).

Lemma 3.2. Let γ > 0 and g ∈ Bγ, we have

∀z ∈ D, g(z) = g(0) +

∫
D

g′(w)(1− |w|2)γ

w(1− wz)γ+1
dA(w)·

Lemma 3.3. Let G : D→ C analytic, p ≥ 1, α > −1 and q ≥ 0. We have∫
D
|G(w)|p dAα(w) ≈

∫
D
|G(w)|p|w|q dAα(w) ,

where the underlying constants depend only on p, q and α (but not on G).
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Proof. Of course, we have to prove something when G belongs to Apα.
Moreover

∫
D
|G(w)|p|w|q dAα(w) ≤

∫
D
|G(w)|p dAα(w).

On the other hand, we have∫
D
|G(w)|p dAα(w) =

∫
D(0,1/2)

|G(w)|p dAα(w) +

∫
D\D(0,1/2)

|G(w)|p dAα(w).

The second integral is easy to handle:∫
D\D(0,1/2)

|G(w)|p dAα(w) ≤ 2q
∫
D\D(0,1/2)

|w|q|G(w)|p dAα(w) ≤ 2q
∫
D
|w|q|G(w)|p dAα(w).

Taking n as the integer just larger than q/p and using that the norm of point evaluation in
a on Apα is (1− |a|2)−(2+α)/p, the first integral is lower than

2np sup
|w|=1/2

|wn.G(w)|p ≤ 2np
(4

3

)(2+α)
∫
D
|w|np|G(w)|p dAα(w).

Hence ∫
D(0,1/2)

|G(w)|p dAα(w) .
∫
D
|G(w)|p|w|q dAα(w).

We now state our necessary condition which is valid for all p ≥ 1 and any µ, β > 0.

3.1 Necessary condition

Theorem 3.4. Let ϕ : D −→ D, u : D −→ C be analytic, and µ, β > 0. If the weighted
composition operator uCϕ : Bµ −→ Bβ is p-summing, p ≥ 1, Then

(C1) J1 =

∫
D

sup
z∈D

(1− |w|2)2(p−1)(1− |z|2)βp|ϕ′(z)|p

|1− wϕ(z)|(2+µ)p
|u(z)|pdA(w) < +∞.

and

(C2) J2 =

∫
D

sup
z∈D

(1− |w|2)2(p−1)

|1− wϕ(z)|(1+µ)p
(1− |z|2)βp|u′(z)|pdA(w) < +∞.

Proof. Assume that uCϕ : Bµ −→ Bβ is p-summing, then uCϕ : Bµ0 −→ Bβ is also p-summing.
Thanks to Pietsch’s theorem (see [7, Th. 2.12]) there exists a Borel probability measure ν on(

B(Bµ0 )∗ , σ((Bµ0 )∗,Bµ0 )
)
(here BZ denotes the unit ball of a Banach space Z), such that

(4) ‖u.(f ◦ ϕ)‖Bβ ≤ πp(uCϕ)
(∫

B
(Bµ0 )∗

|ξ(f)|p dν(ξ)
)1/p

,

for every f ∈ Bµ0 .
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Now, for every w in D, we consider fw(z) =
(1− |w|2)2/p′

(1− wz)1+µ
which lies in Bµ0 ∩H∞.

From (4), we get
(5)

sup
z∈D

(1−|w|2)2(p−1)(1−|z|2)βp
∣∣∣(1 + µ)wu(z)ϕ′(z)

(1− wϕ(z))2+µ
+

u′(z)

(1− wϕ(z))1+µ

∣∣∣p ≤ Kp

∫
B

(Bµ0 )∗

|ξ(fw)|pdν(ξ)

where K stands for the πp constant of the operator uCϕ.
But thanks to the duality between Bµ0 and A1, there exists some numerical constant γ ≥ 1

satisfying: for every ξ ∈ B(Bµ0 )∗ , there exists h ∈ γBA1 such that ξ(f) = 〈h, f〉 for every f ∈ Bµ0 .
In particular, thanks to the reproducing kernel formula for the Bergman space,

ξ(fw) = 〈h, fw〉 =

∫
D
h(z)fw(z)(1− |z|2)µ−1dA(z)

= (1− |w|2)2/p′
∫
D

h(z)

(1− wz)1+µ
(1− |z|2)µ−1dA(z)

= (1− |w|2)2/p′ 1

µ

∫
D

h(z)

(1− wz)2+µ−1
dAµ−1(z)

=
1

µ
(1− |w|2)2/p′h(w) .

We finally use the fact that the point-evaluation δz is a bounded linear functional on A1, with

norm equal to
1

(1− |z|2)2
(see for example [9, Theorem 1]). Therefore

(6) |ξ(fw)|p ≤ 1

µp
‖h‖p−1

A1 |h(w)| ≤ γp−1

µp
|h(w)| .

Integrating over D inequality (5), we get

(7)
∫
D

sup
z∈D

(1− |w|2)2(p−1)(1− |z|2)βp
∣∣∣(1 + µ)wu(z)ϕ′(z)

(1− wϕ(z))2+µ
+

u′(z)

(1− wϕ(z))1+µ

∣∣∣p dA(w) <∞ .

• Now, we focus on the case p > 1:
for every w, z0 in D, we consider

F (z) =
a

(1− wz)1+µ
+

b

(1− wz)µ
,

where a, b ∈ C are chosen so that F (ϕ(z0)) =
(1− |w|2)2/p′

(1− wϕ(z0))1+µ
and F ′(ϕ(z0)) = 0. Clearly

F ∈ Bµ0 ∩H∞. Actually the values of a and b are easy to compute:

a = −µ(1− |w|2)2/p′ and b = (µ+ 1)
(1− |w|2)2/p′

1− wϕ(z0)
·
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From (4) applied to F , we get

(8) (1− |z0|2)β|u′(z0).F (ϕ(z0))| ≤ ‖u(F ◦ ϕ)‖Bβ ≤ πp(u.Cϕ)
(∫

B
(Bµ0 )∗

|ξ(F )|p dν(ξ)
)1/p

,

We have now to estimate |ξ(F )| for any ξ in the unit ball of (Bµ0 )∗. We adapt the previous
computation (recall (6)) with the same notations and we have

|ξ(F )| . |ξ(fw)|+ |ξ(Cw)|, where Cw(z) =
b

(1− wz)µ
·

ξ(Cw) = 〈h,Cw〉 = (µ+ 1)
(1− |w|2)2/p′

1− wϕ(z0)

∫
D

h(z)(1− |z|2)µ−1

(1− zw)µ
dA(z)

Let G(w) =

∫
D

h(z)(1− |z|2)µ−1

(1− zw)µ
dA(z).

Then, using Fourier convolution between functions on the torus T, we can write

w2G′′(w) = µ(µ+ 1)

∫
D

w2z2h(z)(1− |z|2)µ−1

(1− zw)µ+2
dA(z) = µ(µ+ 1)h√r ∗Q√rρ(u) ,

where Q√rρ(u) =

∫ 1

0
q√rρ(u)(1 − ρ)µ−1 dρ, and q(t) = t2(1 − t)−(µ+2), for t ∈ D, with w = ru

(i.e r = |w| and u ∈ T).

Therefore, for all ξ in the unit ball of Bµ0 , since p − 2 > −1, (by [13, Proposition 1.11] and
Lemma 3.3), we have∫

D
|ξ(Cw)|pdA(w) .

∫
D

(1− |w|2)p−2|G(w)|pdA(w)

= ‖G‖pApp−2
≈ ‖(1− |w|)2G′′‖pLp(D,dAp−2)

≈ ‖w2G′′‖pLp(D,dA3p−2)

≈
∫
D

(1− |w|)3p−2|w2G′′(w)|pdA(w)

=

∫ 1

0
2r1+2p(1− r)3p−2‖G′′r‖

p
Hpdr ,

where Hp is the classical Hardy space. But,

r2p‖G′′r‖
p
Hp . ‖h√r‖

p
Hp‖Q√rρ‖

p
H1 . ‖h√r‖

p
Hp

(∫
D
|q(
√
rz)|(1− |z|)µ−1dA(z)

)p
,

and ∫
D
|q(
√
rz)|(1− |z|)µ−1dA(z) ≈

∫
D

(1− |z|)µ−1

|1−
√
rz|µ+2

dA(z) ≈ 1

1− r
,

where we used theorem 1.7 of [13] for the last estimate.
We get, ∫

D
|ξ(Cw)|pdA(w) .

∫ 1

0
2r(1− r)2p−2‖h√r‖

p
Hpdr.
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Again, using the norm of the evaluation functional on A1 which is equal to
1

(1− |z|2)2
, we have

‖h√r‖
p
Hp =

∫
T

∣∣h(
√
rz)
∣∣p dλ(z) ≤

‖h‖p−1
A1

(1− r)2(p−1)
‖h√r‖H1 .

Therefore,∫
D
|ξ(Cw)|pdA(w) . γp−1

∫ 1

0
2r‖h√r‖H1dr = γp−1

∫ 1

0
4s3‖hs‖H1ds ≤ 2γp−1‖h‖A1 ≤ 2γp.

Taking the supremum over z0 and integrating inequality (8) over D, we get,

(9)
∫
D

sup
z0∈D

(1− |w|2)2(p−1)(1− |z0|2)βp
∣∣∣ u′(z0)

(1− wϕ(z0))1+µ

∣∣∣p dA(w) <∞

Hence we get condition (C2). Then, combining (7) and (9), we obtain (C1).

Remark: let us mention that the proof can be simplified when pµ > 2p − 1. Adapting the
preceding proof we have

ξ(Cw) = (µ+ 1)
(1− |w|2)2/p′

1− wϕ(z0)

∫
D

h(z)(1− |z|2)µ−1

(1− zw)µ
dA(z)

= (µ+ 1)
(1− |w|2)2/p′

1− wϕ(z0)
G(w).

Here we do not use the convolution. Actually we have∫
D
|ξ(Cw)|pdA(w) .

∫
D

(1− |w|2)p−2|G(w)|pdA(w)

= ‖G‖pApp−2
≈ ‖(1− |w|2)G′‖p

Lp(D,Ap−2)

=

∫
D

(1− |w|2)2(p−1)
∣∣∣ ∫

D

µzh(z)(1− |z|2)µ−1

(1− zw)µ+1
dA(z)

∣∣∣pdA(w)

Now by theorem 1.9 of [13], we have∫
D
|ξ(Cw)|pdA(w) .

∫
D

(1− |w|2)2(p−1)|h(w)|pdA(w) . γp.

Therefore, from (8), we get∫
D

sup
z0∈D

(1− |w|2)2(p−1)(1− |z0|2)βp
∣∣∣ u′(z0)

(1− wϕ(z0))µ+1

∣∣∣p dA(w) <∞.

• Now, we focus on the case p = 1:
We adapt the preceding method and consider for δ ∈ (0, 1), for every w, z0 in D, the functions
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F (z) =
a

(1− wz)µ+1
+

b

(1− wz)µ+δ

where a, b ∈ C still chosen so that F (ϕ(z0)) =
1

(1− wϕ(z0))µ+1
and F ′(ϕ(z0)) = 0.

We have a = −µ+ δ

1− δ
and b =

µ+ 1

(1− δ)(1− wϕ(z0))1−δ ·

We apply (4) to F in the same way and we have again to estimate |ξ(F )| for any ξ in the
unit ball of (Bµ0 )∗. The term |ξ(fw)| was already estimated from above. Let us choose δ = 1/2 to

simplify the expressions (but any value of δ ∈ (0, 1) would work) and writeDw(z) =
b

(1− wz)µ+ 1
2

·

ξ(Dw) = b̄

∫
D

h(z)(1− |z|2)µ−1

(1− wz)µ+ 1
2

dA(z) = b̄G(w).

Then,

wG′(w) = (µ+
1

2
)

∫
D

wzh(z)(1− |z|2)µ−1

(1− zw)µ+ 3
2

dA(z) = (µ+
1

2
)

∫ 1

0
h√r ∗Q√rρ(u)(1− ρ)µ−1 dρ

where Q(t) = t(1− t)−(µ+ 3
2

), for t ∈ D, and w = ru (i.e r = |w| and u ∈ T).
We have for every ξ in the unit ball of (Bµ0 )∗ :

∫
D
|ξ(Dw)|dA(w) . ‖G‖A1

− 1
2

≈ ‖(1− |w|)G′‖L1(D,dA− 1
2

)

≈ ‖wG′‖p
L1(D,dA 1

2
)

≈
∫
D

(1− |w|)
1
2 |wG′(w)|dA(w)

=

∫ 1

0
2r2(1− r)

1
2 ‖G′r‖H1dr.

But,

r‖G′r‖H1 .
∫ 1

0
‖h√r‖H1‖Q√rρ‖H1(1− ρ)µ−1 dρ ≈ ‖h√r‖H1

∫
D
|Q(
√
rz)|(1− |z|)µ−1dA(z),

and ([13, Theorem 1.7]), ∫
D
|Q(
√
rz)|(1− |z|)µ−1dA(z) ≈ 1

(1− r)
1
2

·

We get, ∫
D
|ξ(Dw)|dA(w) .

∫ 1

0
2r‖h√r‖H1dr ≤ 2γ.

The proof now ends like in the case p > 1.
Remark: once again the proof can be simplified when µ > 1: we have,

ξ(Dw) =
2(µ+ 1)

(1− wϕ(z0))
1
2

∫
D

h(z)(1− |z|2)µ−1

(1− zw)µ+ 1
2

dA(z).
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Then, ∫
D
|ξ(Dw)|dA(w) =

∫
D

∣∣∣ 2(µ+ 1)

(1− wϕ(z0))
1
2

∫
D

h(z)(1− |z|2)µ−1

(1− zw)µ+ 1
2

dA(z)
∣∣∣dA(w)

.
∫
D

(∫
D

(1− |w|)−
1
2

|1− zw|µ+ 1
2

dA(w)
)
|h(z)|(1− |z|2)µ−1dA(z)

.
∫
D

|h(z)|(1− |z|2)µ−1

(1− |z|2)µ−1
dA(z) ≤ γ.

We used again Theorem 1.7 of [13] for µ > 1.

3.2 Sufficient conditions

We are going to present several sufficient conditions. The first one is valid for classical Bloch
spaces, the second one is valid for Bloch-type spaces but we have to separate cases according to
the value of µ relative to 1. The last one is true only for p = 1 on Bloch-type spaces.

Theorem 3.5. Let ϕ : D → D be analytic, u ∈ B, and p ≥ 1. Assume that the following
conditions are satisfied

(C’1) J ′1 =

∫
D

sup
z∈D

(1− |w|2)2(p−1)(1− |z|2)p|ϕ′(z)|p

|1− wϕ(z)|3p
|u(z)|pdA(w) < +∞ .

(C’2) J ′2 =

∫
D

sup
z∈D

(1− |w|2)2(p−1)

|w|.|1− wϕ(z)|2p
(1− |z|2)|u′(z)|dA(w) < +∞ .

Then the weighted composition operator uCϕ : B −→ B is p-summing.

Remark 2. This theorem has to be compared on one hand to Theorem 3.4: J ′1 = J1 when
µ = β = 1 and J ′2 ≈ J2 when p = 1. In other words we have an equivalence in this case of
classical Bloch spaces for p = 1. In that case it coincides with Theorem 3.7.

The only difference between J ′2 and J2 concerns the power of (1 − |z|2)|u′(z)| in the integral
for µ = β = 1: that is why we miss the full characterization for classical Bloch spaces when
p > 1.

On the other hand, the second condition has to be compared also to the second one in Theorem
3.6 (see also Theorem 3.7 as mentioned).

Proof. We want to prove that uCϕ is p-summing. We consider f1, . . . , fN ∈ B satisfying

sup
a∈B

`p
′

∥∥∥ N∑
j=1

ajfj

∥∥∥
B

= 1.

Equivalently we have

(10) sup
w∈D

N∑
j=1

|f ′j(w)|p(1− |w|2)p = sup
a∈B

`p
′

sup
w∈D

∣∣∣ N∑
j=1

ajf
′
j(w)(1− |w|2)

∣∣∣p = 1.
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We wish to get an upper estimate for

( N∑
j=1

‖u(fj ◦ ϕ)‖pB
)1/p

which is less than

( N∑
j=1

∣∣∣u(0).fj(ϕ(0))
∣∣∣p)1/p

+
( ∑

1≤j≤N
sup
z∈D

(
(1− |z|2)|u(z)||ϕ′(z)||f ′j(ϕ(z))|

)p)1/p

+
( ∑

1≤j≤N
sup
z∈D

(
(1− |z|2)|u′(z)||fj(ϕ(z))|

)p)1/p

by the triangular inequality on `p.

The term
( N∑
j=1

∣∣∣u(0).fj(ϕ(0))
∣∣∣p)1/p

is clearly bounded by |u(0)|.‖δϕ(0)‖B∗ using linearization

like in (10).

Now we focus on the second term S2 =
(∑N

j=1 sup
z∈D

(
(1 − |z|2)|u(z)||ϕ′(z)||f ′j(ϕ(z))|

)p)1/p
.

For each 1 ≤ j ≤ N , there exists some zj ∈ D such that

sup
z∈D

(
(1− |z|2)|u(z)||ϕ′(z)||f ′j(ϕ(z))|

)p
≤ (1− |zj |2)p|u(zj)|p|ϕ′(zj)|p|f ′j(ϕ(zj))|p + 2−j

so that we need to control

N∑
j=1

(1− |zj |2)p|u(zj)|p|ϕ′(zj)|p|f ′j(ϕ(zj))|p.

Using Lemma 3.1 with α = 3p− 2 > 0, this is less than

N∑
j=1

(1− |zj |2)p|u(zj)|p|ϕ′(zj)|p
∫
D

|f ′j(w)|p(1− |w|2)3p−2

|1− wϕ(zj))|3p
dA(w)

itself being less than∫
D

( N∑
j=1

|f ′j(w)|p(1− |w|2)p
)

sup
1≤j≤N

(1− |zj |2)p(1− |w|2)2(p−1)

|1− wϕ(zj))|3p
|u(zj)|p|ϕ′(zj)|p dA(w).

On one hand
( N∑
j=1

|f ′j(w)|p(1− |w|2)p
)
≤ 1 by (10).

On the other hand, we have for every w ∈ D and every j ∈ {1 . . . , N},

(1− |zj |2)p(1− |w|2)2(p−1)

|1− wϕ(zj))|3p
|u(zj)|p|ϕ′(zj)|p ≤ sup

z∈D

(1− |z|2)p(1− |w|2)2(p−1)

|1− wϕ(z))|3p
|u(z)|p|ϕ′(z)|p.
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Therefore our second quantity S2 is indeed uniformly bounded by (1 + J ′1)
1
p thanks to condition

(C ′1).

Now we have to get a uniform estimate from above for the third term

S3 =
( N∑
j=1

sup
z∈D

(
(1− |z|2)|u′(z)||fj(ϕ(z))|

)p)1/p
.

By linearization and as before, we can find
(
aj
)

1≤j≤N in the unit ball of `p′ and, for each
1 ≤ j ≤ N , some zj ∈ D such that

S3 ≤ 1 +

N∑
j=1

aj(1− |zj |2)|u′(zj)| |fj(ϕ(zj))| ≤ 1 + ‖u‖B +

N∑
j=1

aj(1− |zj |2)|u′(zj)| |f̃j(ϕ(zj))|,

where f̃j = fj − fj(0), since

N∑
j=1

aj(1− |zj |2)|u′(zj)| |fj(0)| ≤ ‖u‖B
∣∣∣ N∑
j=1

ajfj(0)
∣∣∣ ≤ ‖u‖B∥∥∥ N∑

j=1

ajfj

∥∥∥
B
≤ ‖u‖B.

Now we can use Lemma 3.2 for each 1 ≤ j ≤ N to the function f̃j at point ϕ(zj), with
γ = 2p− 1 > 0, since f̃j ∈ B ⊂ Bγ (because p ≥ 1). We get

S3 ≤ 1 + ‖u‖B +
N∑
j=1

aj(1− |zj |2)|u′(zj)|
∫
D

f̃ ′j(w)(1− |w|2)2p−1

w(1− wϕ(zj)))2p
dA(w).

Rearranging, we obtain

S3 ≤ 1 + ‖u‖B +

∫
D

∣∣∣ N∑
j=1

ajf
′
j(w)(1− |w|2)

∣∣∣ sup
z∈D
|u′(z)|(1− |z|

2)(1− |w|2)2(p−1)

|w||1− wϕ(z))|2p
dA(w).

At last,
∣∣∣ N∑
j=1

ajf
′
j(w)(1− |w|2)

∣∣∣ ≤ 1 by (10) and we conclude that S3 ≤ 1 + ‖u‖B + J ′2.

A second result giving a sufficient condition for weighted composition operators to be p-
summing on Bloch-type spaces is the following:

Theorem 3.6. Let ϕ : D −→ D, u : D −→ C be analytic, p ≥ 1 and µ, β > 0. Assume that
uCϕ : Bµ −→ Bβ is bounded.

• For µ > 1 if

(C”0) J1 =

∫
D

sup
z∈D

(1− |z|2)βp(1− |w|2)2(p−1)|u(z)|p|ϕ′(z)|p

|1− wϕ(z)|(µ+2)p
dA(w) <∞,
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and

(C”1) J2 =

∫
D

sup
z∈D

(1− |z|2)βp(1− |w|2)2(p−1)|u′(z)|p

|1− wϕ(z)|(µ+1)p
dA(w) <∞,

then uCϕ : Bµ −→ Bβ is p-summing.

• For µ = 1 if

(C”2) J”1 =

∫
D

sup
z∈D

(1− |z|2)βp(1− |w|2)2(p−1)|u(z)|p|ϕ′(z)|p

|1− wϕ(z)|3p
dA(w) <∞,

and

(C”3) K1 =

∫
D

sup
z∈D

(1− |z|2)βp(1− |w|2)2(p−1)|u′(z)|p log
(

1
1−|w|2

)p
|1− wϕ(z)|2p

dA(w) <∞,

then uCϕ : B −→ Bβ is p-summing.

• For 0 < µ < 1 if

(C”4) J1 =

∫
D

sup
z∈D

(1− |z|2)βp(1− |w|2)2(p−1)|u(z)|p|ϕ′(z)|p

|1− wϕ(z)|(µ+2)p
dA(w) <∞,

and

(C”5) K2 =

∫
D

sup
z∈D

(1− |z|2)βp(1− |w|2)(µ+1)p−2|u′(z)|p

|1− wϕ(z)|(1+µ)p
dA(w) <∞,

then uCϕ : Bµ −→ Bβ is p-summing.

Proof. The proof of this theorem uses several similar ideas as in the proof of Theorem 3.5.
Nevertheless, there are some technical differences and it leads to different conditions.

We consider f1, . . . , fN ∈ Bµ satisfying

sup
a∈B

`p
′

∥∥∥ N∑
j=1

ajfj

∥∥∥
Bµ

= 1.

Equivalently

(11) sup
w∈D

N∑
j=1

|f ′j(w)|p(1− |w|2)µp = 1.

We wish to get an upper estimate for

( N∑
j=1

‖u(fj ◦ ϕ)‖pBβ
)1/p

.
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The term
( N∑
j=1

∣∣∣u(0).fj(ϕ(0))
∣∣∣p)1/p

is bounded by |u(0)|.‖δϕ(0)‖(Bµ)∗ .

Now we focus on the second term

S2 =
( N∑
j=1

sup
z∈D

(
(1− |z|2)β|u(z)||ϕ′(z)||f ′j(ϕ(z))|

)p)1/p
.

As before, we need to control

N∑
j=1

(1− |zj |2)βp|u(zj)|p|ϕ′(zj)|p|f ′j(ϕ(zj))|p, for any arbitrary zj ∈ D.

We use once again Lemma 3.1 with α = (2 + µ)p − 2 > 0, then the preceding quantity is less
than

N∑
j=1

(1− |zj |2)βp|u(zj)|p|ϕ′(zj)|p
∫
D

|f ′j(w)|p(1− |w|2)(2+µ)p−2

|1− wϕ(zj)|(2+µ)p
dA(w) .

Rearranging, this is less than

(
sup
w

N∑
j=1

(1− |w|2)µp|f ′j(w)|p
)∫

D
sup
z∈D

(1− |z|2)βp(1− |w|2)2(p−1)|u(z)|p|ϕ′(z)|p

|1− wϕ(z)|(2+µ)p
dA(w) .

Since
( N∑
j=1

|f ′j(w)|p(1 − |w|2)µp
)
≤ 1 (by (11)), we conclude that S2 is uniformly bounded by

(1 + J1)
1
p thanks to condition (C”0).

We still need to get a uniform estimate from above for the third term

S3 =
( N∑
j=1

sup
z∈D

(
(1− |z|2)β|u′(z)||fj(ϕ(z))|

)p)1/p
.

In other words, we want to upper estimate

N∑
j=1

(1− |zj |2)βp|u′(zj)|p|fj(ϕ(zj))|p, for any zj ∈ D.

We use again Lemma 3.1, this time with α = (1 + µ)p − 2 > −1. Then the preceding quantity
is less than

N∑
j=1

(1− |zj |2)βp|u′(zj)|p
∫
D

(1− |w|2)(1+µ)p−2|fj(w)|p

|1− ϕ(zj)w|(1+µ)p
dA(w)

itself being less than

(
sup
w∈D

N∑
j=1

(1− |w|2)p(µ−1)|fj(w)|p
)∫

D
sup
z∈D

(1− |z|2)βp(1− |w|2)2(p−1)|u′(z)|p

|1− ϕ(z)w|(1+µ)p
dA(w).
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Thanks to (C”1) this is less than

J2

(
sup
w∈D

N∑
j=1

(1− |w|2)p(µ−1)|fj(w)|p
)
.

Now we use the norm of point evaluation function δw on Bµ.

When µ > 1, we have ‖δw‖(Bµ)∗ ≈
1

(1− |w|2)(µ−1)
, then

sup
w∈D

N∑
j=1

(1− |w|2)p(µ−1)|fj(w)|p ≈ sup
w∈D

sup
a∈B

`p
′

1

‖δw‖p(Bµ)∗

∣∣∣ N∑
j=1

ajfj(w)
∣∣∣p

. sup
a∈B

`p
′

∥∥∥ N∑
j=1

ajfj

∥∥∥p
Bµ

= 1.

Therefore, S3 is uniformly bounded by (1 + J2)1/p, and uCϕ : Bµ −→ Bβ is p-summing.

When µ = 1, we have ‖δw‖B∗ ≈ log
1

1− |w|2
· We need to control

∫
D

( N∑
j=1

|fj(w)|p
)

sup
j

(1− |zj |2)βp(1− |w|2)2(p−1)|u′(zj)|p

|1− wϕ(zj)|2p
dA(w).

We multiply and divide by
(

log
1

1− |w|2
)p

, getting

(
sup
w∈D

N∑
j=1

|fj(w)|p
(

log
1

1− |w|2
)−p)∫

D
sup
z∈D

(1− |z|2)βp(1− |w|2)2(p−1)|u′(z)|p
(

log 1
1−|w|2

)p
|1− wϕ(z)|2p

dA(w).

Thanks to (C”3), this is less than

K1

(
sup
w∈D

N∑
j=1

|fj(w)|p
(

log
1

1− |w|2
)−p)

.

Since ‖δw‖B∗ ≈ log
1

1− |w|2
, we conclude as before that

sup
w∈D

N∑
j=1

|fj(w)|p
(

log
1

1− |w|2
)−p

. sup
a∈B

`p
′

∥∥∥ N∑
j=1

ajfj

∥∥∥p
B

= 1.

Therefore, S3 is uniformly bounded by (1 +K1)1/p, and uCϕ : B −→ Bβ is p-summing.

Finally when µ < 1, we have ‖δw‖(Bµ)∗ ≈ 1. We need to control

(
sup
w∈D

N∑
j=1

|fj(w)|p
)∫

D
sup
z∈D

(1− |z|2)βp(1− |w|2)(1+µ)p−2|u′(z)|p

|1− ϕ(z)w|(1+µ)p
dA(w).
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Thanks to (C”5), this is less than

K2

(
sup
w∈D

N∑
j=1

|fj(w)|p
)
.

Since ‖δw‖(Bµ)∗ ≈ 1, we conclude that

sup
w∈D

N∑
j=1

|fj(w)|p . sup
a∈B

`p
′

∥∥∥ N∑
j=1

ajfj

∥∥∥p
Bµ

= 1.

Therefore, S3 is uniformly bounded by (1 +K2)1/p, and uCϕ : Bµ −→ Bβ is p-summing.
This ends the proof of the theorem.

In the special case p = 1, we succeed in obtaining the characterization for 1-summing weighted
composition operators on Bloch-type spaces. We prove now that necessary conditions in Theorem
3.4 are sufficient.

Theorem 3.7. Let ϕ : D→ D be analytic, u ∈ Bβ, and µ, β > 0. If the following conditions are
satisfied

(C1) J1 =

∫
D

sup
z∈D

(1− |z|2)β|ϕ′(z)|
|1− wϕ(z)|µ+2

|u(z)|dA(w) < +∞.

(C2) J2 =

∫
D

sup
z∈D

(1− |z|2)β

|1− wϕ(z)|µ+1
|u′(z)|dA(w) < +∞.

Then the weighted composition operator uCϕ : Bµ −→ Bβ is 1-summing.

Proof. Suppose that (C1) and (C2) are satisfied, we want to prove that uCϕ is 1-summing. Using
the same technique as before, we consider f1, ..., fN elements in Bµ satisfying

sup
|εj |=1

∥∥∥ N∑
j=1

εjfj

∥∥∥
Bµ

= 1.

Therefore,

(12) sup
w∈D

N∑
j=1

|f ′j(w)|(1− |w|2)µ = 1.

We wish to get an upper estimate for

N∑
j=1

‖u(fj ◦ ϕ)‖Bβ .

The term
N∑
j=1

|u(0)fj(ϕ(0))| is bounded by |u(0)|.‖δϕ(0)‖(Bµ)∗ .

For the estimate of the second term we apply once again Lemma 3.1 (or the reproducing kernel
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formula) to the function f ′j at point ϕ(zj) with α = µ. As in the preceding proofs we obtain by
(C1) that S2 is bounded by 1 + J1.
The difference here is given in the estimate of the last term.
We need to control

N∑
j=1

(1− |zj |2)β|u′(zj)|fj(ϕ(zj))| .

which is less than

‖u‖Bβ +
N∑
j=1

(1− |zj |2)β|u′(zj)| |f̃j(ϕ(zj))|,

with f̃j = fj − fj(0), since

N∑
j=1

(1− |zj |2)β|u′(zj)| |fj(0)| ≤ ‖u‖Bβ
∣∣∣ N∑
j=1

εjfj(0)
∣∣∣ ≤ ‖u‖Bβ∥∥∥ N∑

j=1

εjfj

∥∥∥
Bµ
≤ ‖u‖Bβ ,

where |εj | = 1.
In this case, we apply lemma 3.2 to the function f̃j at ϕ(zj) with γ = µ. We obtain that

N∑
j=1

(1− |zj |2)β|u′(zj)|f̃j(ϕ(zj))|

is less than
N∑
j=1

(1− |zj |2)β|u′(zj)|
∫
D

(1− |w|2)µ|f̃ ′j(w)|
|w||1− ϕ(zj)w|(1+µ)

dA(w)

itself being less than

(
sup
w

N∑
j=1

(1− |w|2)µ|f ′j(w)|
)∫

D
sup
z∈D

(1− |z|2)β|u′(z)|
|w||1− ϕ(z)w|(1+µ)

dA(w) .

Now since
( N∑
j=1

|f ′j(w)|(1 − |w|2)µ
)
≤ 1, we conclude that S3 is bounded by 1 + ‖u‖Bβ + J2

thanks to (C2).
Hence, uCϕ : Bµ −→ Bβ is 1-summing, and this ends the proof of the theorem.

4 Consequences

4.1 Absolutely summing composition operators

As an immediate corollary of theorems 3.4 and 3.6, we mention the important case of com-
position operators.

Theorem 4.1. Let ϕ : D → D be analytic, µ, β > 0 and p ≥ 1. The following assertions are
equivalent:
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(a) The composition operator Cϕ : Bµ −→ Bβ is p-summing.

(b) The composition operator Cϕ : Bµ0 −→ Bβ is p-summing.

(c) Qµ,β(p) =

∫
D

sup
z∈D

(1− |w|2)2(p−1)(1− |z|2)βp|ϕ′(z)|p

|1− wϕ(z)|(2+µ)p
dA(w) < +∞.

Moreover, when ϕ ∈ Bβ0 , the preceding assertions are also equivalent to

(d) The composition operator Cϕ : Bµ0 −→ B
β
0 is p-summing.

Remark: using the fact that ‖.‖Bβ . ‖.‖∞ when β ≥ 1 and applying this to the function

z 7→ 1

(1− wϕ(z))(1+µ)
, we point out that (having Lemma 3.3 in mind)

Qµ,β(p) .
∫
D

sup
Z∈ϕ(D)

(1− |w|2)2(p−1)

|1− wZ|(1+µ)p
dA(w)

which depends only on µ and the geometry of ϕ(D).
In the same spirit, when β < 1:∫

D
sup

Z∈ϕ(D)

(1− |w|2)2(p−1)

|1− wZ|(1+µ)p
dA(w) . Qµ,β(p) .

This remark may be useful to get some sufficient or necessary condition (according to the
value of µ): see an application in Prop.4.6. Similar ideas are used in Cor. 4.5.

Combining again theorem 3.4 and 3.6 we obtain a characterization of p-summing weighted
composition operators, p ≥ 1, for µ > 1.

Theorem 4.2. Let ϕ : D → D be analytic, u ∈ Bβ, p ≥ 1, β > 0 and µ > 1. The following
assertions are equivalent:

(a) The weighted composition operator uCϕ : Bµ −→ Bβ is p-summing.

(b) The weighted composition operator uCϕ : Bµ0 −→ Bβ is p-summing.

(c) The following conditions are satisfied

(c1) J1 =

∫
D

sup
z∈D

(1− |w|2)2(p−1)(1− |z|2)βp|ϕ′(z)|p

|1− wϕ(z)|(µ+2)p
|u(z)|pdA(w) < +∞.

(c2) J2 =

∫
D

sup
z∈D

(1− |w|2)2(p−1)

|1− wϕ(z)|(µ+1)p
(1− |z|2)βp|u′(z)|pdA(w) < +∞.

Moreover, when ϕ ∈ Bβ0 , the preceding assertions are also equivalent to

(d) The weighted composition operator uCϕ : Bµ0 −→ B
β
0 is p-summing.
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4.2 Nuclear weighted composition operators

Now combining theorem 3.4 and 3.7, and since 1-summing operators on Bloch-type spaces
are nuclear (see [10, Lemma 2.1] and [14, Theorem 1.1]), we obtain a characterization of nuclear
weighted composition operators on Bloch-type spaces.

Theorem 4.3. Let ϕ : D → D be analytic, u ∈ Bβ and µ, β > 0. The following assertions are
equivalent:

(a) The weighted composition operator uCϕ : Bµ −→ Bβ is nuclear.

(b) The weighted composition operator uCϕ : Bµ0 −→ Bβ is nuclear.

(c) The following conditions are satisfied

(c1) J1 =

∫
D

sup
z∈D

(1− |z|2)β|ϕ′(z)|
|1− wϕ(z)|µ+2

|u(z)|dA(w) < +∞.

(c2) J2 =

∫
D

sup
z∈D

(1− |z|2)β

|1− wϕ(z)|µ+1
|u′(z)|dA(w) < +∞.

Moreover, when ϕ ∈ Bβ0 , the preceding assertions are also equivalent to

(d) The weighted composition operator uCϕ : Bµ0 −→ B
β
0 is nuclear.

4.3 Other consequences

We focus on composition operators on Bloch-type spaces. We deduce from Theorem 4.1 a
property of monotony with respect to the parameter β.

Corollary 4.4. If Cϕ : Bβ −→ Bβ is p-summing and γ > β then Cϕ : Bγ −→ Bγ is p-summing.

Proof. As in the proof of Corollary 2.2 we first assume that ϕ(0) = 0.
Since Cϕ is p-summing on Bβ we have Qβ,β(p) <∞. We want to prove that Qγ,γ(p) is finite.
But

Qγ,γ(p) =

∫
D

sup
z∈D

(1− |w|2)2(p−1)(1− |z|2)γp|ϕ′(z)|p

|1− wϕ(z)|(2+γ)p
dA(w)

=

∫
D

sup
z∈D

(1− |w|2)2(p−1)(1− |z|2)βp|ϕ′(z)|p(1− |z|2)(γ−β)p

|1− wϕ(z)|(2+β)p|1− wϕ(z)|(γ−β)p
dA(w) .

Thanks to Schwarz’s lemma (since ϕ(0) = 0) we have |ϕ(z)| ≤ |z|, for every z ∈ D, therefore( 1− |z|2

|1− wϕ(z)|

)(γ−β)p
.
( 1− |z|

1− |ϕ(z)|

)(γ−β)p
≤ 1.
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We get

Qγ,γ(p) =

∫
D

sup
z∈D

(1− |w|2)2(p−1)(1− |z|2)γp|ϕ′(z)|p

|1− wϕ(z)|(2+γ)p
dA(w) . Qβ,β(p) <∞.

To prove that Cϕ is p-summing on Bγ even when ϕ does not fix the origin, we proceed as in the
proof of Corollary 2.2.

The following is a strengthening of the fact that any bounded composition operator Cϕ :
Bµ −→ Bβ is automatically compact when β > µ. It can be viewed as a quantified version of
this fact.

Corollary 4.5. Let β ≥ 1, µ > 0 and p ≥ 1 satisfying β > µ +
1

p
· Then Cϕ : Bµ −→ Bβ is

p-summing.
In particular, when β > µ+ 1, then Cϕ : Bµ −→ Bβ is r-summing, for every r ≥ 1.

In other words, when β > µ and β ≥ 1, any bounded composition operator Cϕ : Bµ −→ Bβ

is more than compact: it is p-summing for every p >
1

β − µ
·

Proof. Under the asumption β > µ+
1

p
, we are going to prove that Qµ,β(p) < +∞ (see Theorem

4.1).
In a standard way, in order to simplify the computations, we assume that ϕ(0) = 0. We use

similar ideas as in the remark after Th.4.1.
Since βp > µp + 1, we can choose a suitable δ ∈ (0, 1) such that βp − p > µp − p + 1 + δ.

Thanks to Schwarz’s lemma (and since β ≥ 1), we have

(1− |z|)(β−1)p

(1− |ϕ(z)|)µp−p+1+δ
≤ 1.

We get

Qµ,β(p) =

∫
D

sup
z∈D

(1− |w|2)2(p−1)(1− |z|2)βp|ϕ′(z)|p

|1− wϕ(z)|(2+µ)p
dA(w)

.
∫
D

sup
z∈D

(1− |w|2)2(p−1)

(
(1− |z|2)|wϕ′(z)|

|1− wϕ(z)|3−
(1+δ)
p

)p
dA(w)

where we used again Lemma 3.3.

Now recall that ‖.‖B . ‖.‖∞ and apply this to the function z 7→ 1

(1− wϕ(z))
2− (1+δ)

p

·

We get

Qµ,β(p) .
∫
D

1

(1− |w|)(1−δ)dA(w) < +∞.
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Proposition 4.6. Let ϕ : D −→ D be a symbol such that Cϕ : Bµ → Bβ is p-summing for some
p ≥ 1, where β ∈ (0, 1) and µ > 0. Then∫

ϕ(D)

1

(1− |w|)2+p(µ−1)
dA(w) <∞.

In particular,

(i) If A(D \ ϕ(D)) = 0, then we must have µ < 1/p′.

(ii) When µ > 1, we must have ∫
ϕ(D)

1

(1− |w|)N
dA(w) <∞

for every N ≥ 1.

(iii) If µ ≥ 1

p′
, we cannot have A(D \ ϕ(D)) = 0 and ϕ cannot be inner.

(iv) Assume that ϕ is inner (or merely A(D \ ϕ(D)) = 0). Then Cϕ : Bβ → Bβ cannot be
p-summing for any p ≥ 1.

We shall see below that the situation is very different as soon as β ≥ 1 (see Th.5.3).

Proof. We already pointed out in a remark after Theorem 4.1 that∫
D

sup
Z∈ϕ(D)

(1− |w|2)2(p−1)

|1− wZ|(1+µ)p
dA(w) . Qµ,β(p)

which is finite with our assumptions. In particular∫
ϕ(D)

1

(1− |w|2)2+p(µ−1)
dA(w) ≤

∫
ϕ(D)

sup
Z∈ϕ(D)

(1− |w|2)2(p−1)

|1− wZ|(1+µ)p
dA(w) < +∞.

In particular, when A(D \ ϕ(D)) = 0, we must have∫
D

1

(1− |w|2)2+p(µ−1)
dA(w) <∞

hence 2 + p(µ− 1) < 1 which means that µ < 1/p′. This proves (i).

Assume that β ∈ (0, 1) and µ > 1. Since Cϕ is p-summing it is q-summing for every q ≥ p.
Once N is fixed, we can choose q large enough to satisfy 2 + q(µ− 1) ≥ N . This proves (ii).

When ϕ is inner then ϕ(D) = D a.e ([11, Cor.2.3, p.118]) and the conclusion for (iii) follows.
At last if Cϕ : Bβ → Bβ were p-summing for some p ≥ 1 then, thanks to Cor.4.4, it would be

p-summing on Bβ′ for every β′ > β. But we can choose such a β′ in (1/p′, 1). And (iii) leads to
a contradiction.
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5 Examples

In this section we are going to give an example of a cusp map that induces a compact
composition operator on the Bloch space which is not p-summing for any p ≥ 1. On the other
hand, we give an example of an inner symbol ϕ such that Cϕ is nuclear (hence p-summing for
every p ≥ 1) on Bβ for every β ≥ 1. We also consider the example of the lens map which is
often considered when studying composition operators on Banach spaces of analytic functions on
D. We give several basic properties of this symbol and we study the behaviour of its associated
composition operator on Bβ depending on β > 0.
We recall the definition of a cusp map.

Definition 5.1. Let ϕ : D −→ D be a univalent analytic self map.
Assume that ϕ(D) ∩ T = {1}, the region ϕ(D) is said to have a nontangential cusp at 1 if

dist(w, ∂ϕ(D)) = o(|1− w|) as w −→ 1 in ϕ(D).

Also ϕ(D) lies inside a Stolz angle if there exist r,M > 0 such that

|1− w| ≤M(1− |w|), if |1− w| < r, and w ∈ ϕ(D).

Madigan and Matheson showed (in [17, Theorem 5]) that if ϕ is univalent and if ϕ(D) has
a nontangential cusp at 1 and touches the unit circle at no other point, then Cϕ is a compact
operator on B. Actually the same is true on Bloch-type spaces. In [10] we gave an example
of a cusp more flattened than the one of Madigan and Matheson that induces a p-summing
composition operator on B. Again the same remains true on Bβ . Our next example will satisfy
the properties of definition 5.1 and hence induces a compact composition operator on the Bloch
space but fails to satisfy the condition Q1,1(p) < +∞ for any finite p ≥ 1.

Example 1. We consider in the sequel a map Φ such that its domain Φ(D) is bounded by some
convex curves of type γ1(t) = (1− t, t

θ(t)) and γ2(t) = (1− t,− t
θ(t)), for t in a neighborhood of 0

and θ : (0, 1) −→ (0,+∞), such that θ(t) tends to infinity when t tends to 0:

Theorem 5.2. Let p ≥ 1 and Φ be the map defined in Example 1 associated to some θ satisfying∫ 1/2

0

1

sθ(s)p+1
ds =∞.

Then, CΦ : B −→ B is a compact composition operator which fails to be p-summing.
In particular there exists a compact composition operator on B which is not p-summing for any
p ≥ 1.

Proof. Let us define γ(x) =
1− x
θ(1− x)

·

We consider now the symbol Φ associated to θ like in Example 1. It is clear that Φ(D) has a
nontangential cusp at 1:

for a point z ∈ D such that Φ(z) = x+ iy and =mΦ(z) ≥ 0, we have

dist(Φ(z), γ) ≤ γ(x) = o(1− x) = o(|1− Φ(z)|).
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Figure 1: Domain of Φ(D)

By symmetry, the same happens when =mΦ(z) ≤ 0, and then

dist(Φ(z), ∂Φ(D)) = o(|1− Φ(z)|).

Thus, CΦ is a compact composition operator on B.
Now we are going to prove that Q1,1(p) = +∞ for every p ≥ 1. For this we use the Koebe
distortion theorem [12, p.13]:

1

4
(1− |z|2)|Φ′(z)| ≤ dist(Φ(z), ∂Φ(D)) ≤ (1− |z|2)|Φ′(z)|

and the following fact: consider z ∈ D such that =mΦ(z) ≥ 0 and write Φ(z) = x + iy. The
tangent (D) at point (x, γ(x)) is totally under the curve γ (by convexity of γ). So that the
distance from Φ(z) to γ is greater than the distance from Φ(z) to (D):

dist(Φ(z), γ) ≥ dist(Φ(z), (D)).

By symmetry, the same happens when =mΦ(z) ≤ 0, and we have

(13) dist(Φ(z), ∂Φ(D)) ≥ dist(Φ(z), (D)).

Since (D) is the tangent at the point (x, γ(x)), it has the following equation

(D) : Y = γ(x) + γ′(x)(X − x).

Therefore the distance from Φ(z) = x+ iy to the tangent (D) is the following

(14) dist(Φ(z), (D)) =
|y − γ(x)|√
γ′2(x) + 1

·
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Now we compute the integral Q1,1(p). By the Koebe distortion theorem we have:

Q1,1(p) =

∫
D

sup
z∈D

(1− |w|2)2(p−1)(1− |z|2)p|Φ′(z)|p

|1− wΦ(z)|3p
dA(w)

≥
∫
D

sup
z∈D

(1− |w|2)2(p−1)dist(Φ(z), ∂Φ(D))p

|1− wΦ(z)|3p
dA(w)

≥
∫

Φ(D)
sup
z∈D

(1− |w|2)2(p−1)dist(Φ(z), ∂Φ(D))p

|1− wΦ(z)|3p
dA(w) .

Now for every w ∈ Φ(D), we can write w as Φ(z) where z ∈ D and we have

Q1,1(p) ≥
∫

Φ(D)

(1− |w|2)2(p−1)dist(w, ∂Φ(D))p

(1− |w|2)3p
dA(w)

≥
∫

Φ(D)

(dist(w, ∂Φ(D))p

(1− |w|2)p+2
dA(w) .

From (13) and (14), integrating on Φ(D) ∩ {=mz > 0} ∩ {<ez ∈ (1
2 , 1)} we get,

Q1,1(p) ≥
∫ 1

1/2

∫ γ(x)

0

|y − γ(x)|p

(γ′2(x) + 1)p/2(1− |x2 + y2|)p+2
dydx

=

∫ 1

1/2

∫ γ(x)

0

(γ(x)− y)p

(γ′2(x) + 1)p/2((1− x2)− y2)p+2
dydx .

Now since 0 ≤ y ≤ γ(x) = o(1− x) in the integral, we have

(1− x2)− y2 ∼ 1− x2 ≈ 1− x when x −→ 1.

It is easy to check that γ′(x) −→ 0 when x −→ 1. Finally we have,

Q1,1(p) &
∫ 1

1/2

∫ γ(x)

0

(γ(x)− y)p

(1− x)p+2
dydx

&
∫ 1

1/2

γp+1(x)

(1− x)p+2
dx

&
∫ 1

1/2

1

(1− x)(θ(1− x))p+1
dx

and this last integral diverges.
For a concrete example, just choose a convex function θ such that θ(t) = ln(ln(1

t )), for
t < e−1.

Example 2. As we already mentioned, we gave in [10] an example of a cusp map (with a contact
point on the torus) inducing a nuclear composition operator on the Bloch space B. We are going
to present a more striking example of an inner symbol also inducing a nuclear operator on Bβ .
This shows that the situation in Prop.4.6(iv), where β < 1, is very different compared to the
case β ≥ 1.

30



Theorem 5.3. There exists a Blaschke product φ such that Cφ : Bβ −→ Bβ is nuclear for every
β ≥ 1. In particular, Cφ is p-summing on Bβ for every β ≥ 1 and every p ≥ 1.

Proof. From [2, Th.2], we know that there exists a Blaschke product φ such that

∀z ∈ D , (1− |z|)|φ′(z)| ≤ (1− |φ(z)|)3 .

Thanks to the Schwarz-Pick inequality, we know that 1− |z| . 1− |φ(z)| for z ∈ D.
Since β ≥ 1, this implies that

∀z ∈ D , (1− |z|)β|φ′(z)| . (1− |φ(z)|)2+β .

We can use Th.4.3 with β = µ (we see that J1 is finite and that J2 = 0 since u = 1 here), or
use directly the main result of [10] when β = 1. We conclude that Cφ : Bβ −→ Bβ is nuclear.

Example 3. (The lens map)
First let us recall that the Cayley transform is an automorphism from the unit disk D onto the
right half plane C0 = {z ∈ C | Re(z) > 0} and is defined by

χ(z) =
1 + z

1− z
·

Its inverse is χ−1(z) =
z − 1

z + 1
·

The lens map is then defined in the following way:
Given a ∈ (0, 1), we define the symbol Λa : D −→ D by

Λa(z) =
(χ(z))a − 1

(χ(z))a + 1
for z ∈ D.

Actually we have z ∈ D χ−→ χ(z)
Za−→ (χ(z))a

χ−1

−→ Λa(z) and the geometric representation
of Λa(D) is the following:

Πa

Figure 2: Domain of Λa(D)

Let us give several basic properties of this symbol.
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Proposition 5.4. Let a ∈ (0, 1). We have

(i) Λa(D) ∩ T = {−1, 1}. Actually Λa can be extended to D and the contact points correspond
to z = −1 and z = 1.

(ii) Λa(D) is included in an angular sector.

(iii) For every z ∈ D, Λ′a(z) =
4a

(1− z)2
(χ(z))a−1 1(

(χ(z))a + 1
)2 ·

(iv) In particular, when z → 1, we have |Λ′a(z)| ≈ |1− z|a−1.

Proof. (i). The only critical points are −1 and 1 but χ(1) = ∞ and χ−1(∞) = 1. In the same
way χ(−1) = 0 and χ−1(0) = −1.

(ii). We are first interested in the neighborhood of 1 for the lens. We only have to justify
that χ−1(z) belongs to a fixed Stolz domain when z ∈ C0 with |arg(z)| ≤ πa/2 and |z| → +∞.

But for such z, we have

|1− χ−1(z)| = 2

|z + 1|
∼ 2

|z|
whereas

1− |χ−1(z)| ∼ 1

2
(1− |χ−1(z)|2) ∼ 2Re(z)

|z|2
·

The inequality Re(z) ≥ cos(πa/2)|z|, satisfied by all such z, settles the justification.
The same occurs around point −1.

(iii) We can write Λa(z) = χ−1
(

(χ(z))a
)
.

We have χ′(z) =
2

(1− z)2
and

(
χ−1

)′
(z) =

2

(z + 1)2
·

Therefore, by the chain rule formula,

Λ′a(z) = aχ′(z)(χ(z))a−1
(
χ−1

)′(
(χ(z))a

)
=

4a

(1− z)2
(χ(z))a−1 1(

(χ(z))a + 1
)2 ·

(iv) When z → 1, we have |χ(z)| ≈ 1

|1− z|
and we get

|Λ′a(z)| ≈ |1− z|−(a+1).|1− z|2a

which is the result.

From (iv) of the preceding proposition we get

Proposition 5.5. We have

• When β < 1− a, the symbol Λa does not even belong to Bβ.

• The symbol Λa belongs to B1−a.
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• When β > 1− a, the symbol Λa belongs to Bβ0 .

Concerning the behavior of the associated composition operator on the Bloch space , we have
the following result:

Theorem 5.6. Let β > 0. Then

• For β < 1, the composition operator CΛa is not bounded on Bβ.

• For β = 1, the composition operator CΛa is bounded but not compact on B.

• For β > 1, the composition operator CΛa is compact on Bβ0 .

Proof. We start by the case β ≤ 1: For n ≥ 1, define fn(z) = nβ−1zn for z ∈ D, which belongs
to Bβ with bounded norm (not depending on n). This sequence (fn) converges uniformly to 0
on every compact subset of D.

Nevertheless we shall see that ‖fn ◦ Λa‖Bβ & 1. Indeed

‖fn ◦ Λa‖Bβ = sup
z∈D

nβ(1− |z|2)β|Λ′a(z)|.|Λa(z)|n−1.

Take γ > 0 and choose z = zn = 1− n−γ → 1:

|Λ′a(zn)| ≈ nγ(1−a) and Λa(zn) = 1− 2

(χ(zn))a + 1
= 1− 21−an−aγ + o

(
n−aγ

)
.

The choice γ = 1/a > 1 leads to

|Λa(zn)|n−1 =
(

1− 21−an−aγ + o
(
n−aγ

))n−1
≈ 1 ·

We get
‖fn ◦ Λa‖Bβ & nβ(1−γ)nγ(1−a).

Since β(1− γ) + γ(1− a) = β − βγ + γ − 1 = (γ − 1)(1− β), we get the conclusion.

Now when β > 1: it suffices to show that Λa satisfies

lim
|z|→1

(1− |z|2)β|Λ′a(z)|
(1− |Λa(z)|2)β

= 0.

From the estimates of proposition 5.4 we have, when z → 1

(1− |z|2)β|Λ′a(z)|
(1− |Λa(z)|2)β

≈ (1− |z|2)β|1− z|a−1

|1− z|βa
. (1− |z|2)(β−1)(1−a) −→ 0.

The same occurs when z → −1 and these are the only two points we have to focus on.

Theorem 5.7. Let p ≥ 1 and β > 1, if p >
a

(β − 1)(1− a)
then the composition operator

CΛa : Bβ −→ Bβ is p-summing.

In particular, if a < 1− 1

β
, then CΛa is nuclear on Bβ.
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Proof. Suppose that p >
a

(β − 1)(1− a)
, we want to prove that CΛa is p-summing. By theorem

4.1 it suffices to show that

Qβ(p) =

∫
D

sup
z∈D

(1− |w|2)2(p−1)(1− |z|2)βp|Λ′a(z)|p

|1− wΛa(z)|(2+β)p
dA(w) < +∞.

Let δ ∈ (0, 1), such that
βp+ p(a− 1)− a(βp+ 1 + δ) ≥ 0.

Then for every w, z ∈ D we have,

sup
z∈D

(1− |w|2)2(p−1)(1− |z|2)βp|Λ′a(z)|p

|1− wΛa(z)|(2+β)p
.

1

(1− |w|2)(1−δ)

since |1 − wΛa(z)|(2+β)p ≥ (1 − |w|2)2p−1−δ(1 − |Λa(z)|)βp+1+δ, 1 − |Λa(z)| ≈ |1 − z|a and
|Λ′a(z)| ≈ |1− z|(a−1).
The function w ∈ D 7→ (1− |w|2)−(1−δ) ∈ L1(D, dA) so we get the conclusion in this case.
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