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Absolutely summing weighted composition operators
on Bloch spaces

Tonie Fares*, Pascal Lefévre!

Abstract

We characterize p-summing composition operators C,,(f) = f o ¢ from a Bloch space B*
to another such space B?, where p, 3 > 0. The corresponding result on little Bloch-type
spaces is also proved. In addition, we construct an example of a conformal mapping of the
unit disk D into itself which has a contact point with the unit circle T, and induces a compact
composition operator, that fails to be p-summing for any p > 1. We also detail the case of lens
maps. Moreover we explore the case of weighted composition operators uCy(f) = u.(f o ¢)
and characterize such nuclear operators, and p-summing ones for a class of weights. We also
show that compactness of a composition operator on B? and Bg implies its compactness on
Bergrﬂnan spaces. Moreover when 8 > 1 the converse is also true for composition operators
on By .

1 Introduction and background

This paper is interested in composition operators, i.e. mapping f +— C,(f) = f o ¢, where
¢ : D — D (the symbol) is analytic, between Banach spaces of analytic functions over the unit
disk . A major purpose of this field of investigation is to understand the link between the
properties of the operator Cy, and the properties of the function ¢. Of course it also depends on
the spaces involved.

In this paper we focus on two features: the p-summing property for the operator Cy, (see
below for the details and [7] or |22] for good references on this operator property); and, for the
underlying space, the classical Bloch space (and its standard weighted generalization, as well as
the little Bloch spaces). This problem was completely open except in the case p = 1: indeed
in [10], we characterized nuclear composition operators Cy, on the classical Bloch spaces B and
Bp and it turns out that nuclear composition operators on Bloch spaces are exactly 1-summing
composition operators on these spaces.

It is then natural to wonder whether we can extend this in three natural directions: from 1
to p-summingness, adding (standard) weights to the spaces, and consider weighted composition
operators. Nevertheless, according to us, the main point is to get a characterization of p-summing
composition operators on the classical Bloch space. This problem is solved (among other things)
in our paper.

More precisely, we obtain: the characterization of p-summing composition operators, for any
1 < p < 400, on Bloch-type spaces; for weighted composition operators, we characterize nuclear

*E-mail: tonie_fares@ens.univ-artois.fr
TE-mail: pascal.lefevre@univ-artois.fr

tUniv. Artois, UR 2462, Laboratoire de Mathématiques de Lens (LML), F-62300 Lens, France



ones on Bloch-type spaces. For the case p > 1, the computations are more delicate. We present a
necessary condition and some sufficient ones that are unfortunately slightly different, except for a
certain class of weights. Whereas the extension is fairly easy to get concerning the weight for the
space, it turns out that managing the weight for the operator and extending the characterization
from 1-summing to arbitrary p-summing is more difficult and requires more work. Actually, once
our work was already completed, we discoreved that recently, using similar methods as in [10],
Bonet & al. [3] extended the result on nuclearity to the case B® with 3 > 1. However the results
of the present paper are more general than [3] and [10] in many ways.

Throughout this paper, we will denote by A% = AL (D) = Hol(D) N LP(D, 4,), 1 < p < o
and —1 < a < 400, the (weighted) Bergman space consisting of analytic functions f on the
open unit disk D satisfying

1/p

11 = ( [ 17GPaAa(:) " < oo,

where dA,(2) = (a+1)(1—]z|*)*dA(z) and A denotes the normalized area measure on D. When
a =0, A} is simply denoted AP.

For 1 < p < oo, HP = HP(D) is the Hardy space consisting of analytic functions f on D
satisfying

£l = sup ([ 17G2Pan) " < +oc.

0<r<

where A denotes the Haar measure on T.

The space H* = Hol(D) N L>(D) is the Hardy space of the bounded analytic functions f
on the open unit disk D. It is equipped with its usual norm

[flloc = sup[f(2)].
z€D

The classical Bloch space B is defined as the space of analytic functions f on D which satisfy

sup(1 — [2*)| f'(2)] < +e0.

z€D
See monographs [9], [13] for a classical background, [5] for a survey and [1] for more recent results
on B. One can also see [30] for more details on Bloch-type spaces.

In this paper we study composition operators on a class of generalized Bloch spaces. More
precisely, for each 5 > 0, we let B? denote the space of analytic functions f on I) which satisfy

sup(1 — |2%)°|f'(2)] < +o0.
zeD

When 3 = 1, we recover the classical Bloch space B! = B.
We will also be interested in the generalization of the little Bloch space By consisting of functions
f in B such that

lim (1 [2])|f'(2)| = 0.

|z| =1~



Thus, for each 5 > 0, we let Bg denote the subspace of B? consisting of functions f such that

lim (1 [2/)°|f'(2)] = 0.

|z]—1
It is well known that the Bloch-type space B? is a Banach space when equipped with the norm

1£llgs = 1£(O)] + sup(1 — |2[*)°|f(2)]
zeD

and that Bg is a closed subspace of B? (see [30] for instance).

An important tool in functional analysis is the duality, and it will play once again a key role
below. Here the situation is well known and there is a natural description of the duality between
Bloch-type spaces and the Bergman space A'. Actually, we have (A!)* ~ B%. More precisely,
given h € A and f € B?, we use the integral pairing

(h, f) = lim h(rw) f(rw) dAg_1(w)

r—17 JD

and, for some ¢ > 0 and every ® € (A')*, there exists f € B satisfying ® = (-, f) with
I f]l < c||®] (see [30, Theorem 14]).

In the same spirit, we have (Bg )* ~ Al under the same integral pairing

(1) (h, f) = lim [ h(rw)f(rw) dAg—,(w)

r—17 Jp

where h € Bg and f € A! (see [30, Theorem 15]).
When h € H® N B , we can simplify the preceding formula and write

(. f) = /D h(w)F(w) dAs_y (w).

Note that, when 0 < 8 < 1, the space B? is contained in H>(ID). More specifically f belongs to
BP if and only if it satisfies the following Lipschitz condition

sup {\f(z) — f(w)\; z # w} < +o0.
|z —w['=F
In particular, when 0 < 8 < 1, the space B is contained in the disk algebra (see [30, Prop. 9]).
When 8 > 1, it is easy to see by the Schwarz-Pick lemma that H>(D) C B (see [13, p.13]).
Another important tool is the point evaluation functional. Let a € D, the point evaluation
functional &, is defined by 6,(f) = f(a). This functional is bounded on B? for all 8 > 0 and on
Al (see [9], [13] or [30]).

Given an analytic map ¢ : D — D, the composition operator Cy is (formally) defined by

Cw(f):foﬂﬂ-

Its behavior on various spaces of analytic functions on D is already widely studied and still
receives a lot of attention, even on classical spaces. Its weighted version uCy, : f — u(f o ¢),



where v is an analytic function on I, is a natural extension of C,, and generalizes the multiplier
operators as well. The question of the boundedness and of the membership of classical operator
ideals is natural when viewed on Bloch-type spaces.

Actually, for 0 < 8 < 1, the boundedness of the composition operator C, on B was consid-
ered and solved first by Roan [23] and later by Madigan [16]. Then boundedness and compact-
ness of Cy, on classical Bloch spaces were described by Madigan and Matheson in [17]. Contreras
and Hernandez-Diaz 4] on one hand and Xiao [29] on the other hand generalized the work of
Madigan and Matheson, characterizing bounded and compact composition operators on general
Bloch-type spaces. The case of weighted composition operators on classical Bloch spaces was
treated by Ohno and Zhao in [20]: they characterised boundedness and compactness. In 2003,
Ohno, Stroethoff and Zhao [21] extended this work to Bloch-type spaces.

The study of absolutely summing composition operators was initiated by Shapiro-Taylor in
the seminal paper [26]. Nevertheless except very specific cases, the problem was left open for
classical spaces. On Bergman spaces, the problem was solved by Domenig in [8] and more
recently it was solved on Hardy spaces HP, when p > 1, by Rodriguez-Piazza and the second
named author [15].

In this paper, we study p-summing weighted composition operators uCy, on Bloch-type spaces.
Nevertheless we start by some further results on compactness of composition operators on Bloch-
type spaces. We discuss how compactness of C,, on the Bloch-type space and the little Bloch-type
space relates to its compactness on the Bergman space. In particular, we show that compactness
of C, on B? (with > 0) or on Bg implies compactness of Cy, on the Bergman space A%.
Moreover when 8 > 1, we show that compactness of Cy, on Bg is equivalent to its compactness
on A% In the third section, we first give a necessary condition for uCly, to be p-summing for p > 1.
Then we give some sufficient conditions. As a consequence, we obtain a characterization for p-
summing composition operators on Bloch-type spaces, p > 1. We also obtain a characterization
for nuclear weighted composition operators. For the case p > 1 we obtain a characterization
only for a class of weights. This is the purpose of section 4. When p =1 and 8 = u = 1 we
recover the characterization of nuclear composition operators on classical Bloch spaces which was
given in [10]. In section 5, we exhibit an example of a symbol ¢ with a contact point with the
unit circle T that induces a compact composition operator on the classical Bloch space which is
not p-summing for any p > 1. We also give an example of an inner symbol inducing a nuclear
composition operator of the Bloch space B? when 8 > 1. Finally we consider the example of
the lens map. We give several basic properties of this symbol and we study the behaviour of its
associated composition operator on B? depending on 3 > 0.

Let us recall the definition of absolutely summing operators and nuclear operators.

Definition 1.1. An operator T : X — Y is p-summing, 1 < p < +o0, if there exists a constant
C such that for all finite sequences (%’)?:1 C X, we have

(i) <o s > (wr) =c s HZ%H
j=1

1
lesli<t = ||aH <1

We define the p-summing norm of an operator T by the least admissible constant C and denote
it by m,(T).



A generic example is the canonical identity from C(K) to some LP(K, ) space (where p is
a Borel measure on a compact Hausdorff set K). See [7| for more informations on the subject,
and [22] for the study of such operators viewed on Banach spaces of analytic functions. They
are not compact in general (see the previous generic example). Nevertheless, and even if we do
not use this fact, it is worth mentioning that on Bloch spaces, and little Bloch spaces, absolute
summingness of the composition operators implies their compactness. It is due to the fact that
Bloch spaces are isomorphic to > and little Bloch spaces are isomorphic to ¢q (see [14]).

Definition 1.2. An operator T : X — Y is said to be nuclear if there exist a sequence (x}) C X*
and a sequence (yn) CY such that Z llzn | |ynl| < oo and

n

)
T=) w0,
n=1

where x), @ yp : X = Y is defined to be the mapping x — ) (z)yn.

In other words, nuclear operators are absolutely convergent series of rank one operators.
Therefore they are compact.

As usual, the notation A < B means that there exists a positive constant C' such that
A < CB. In the same way, the notation A =~ B means that A < B and B < A.
We also use the conjugate exponent of p € [1,00[, denoted by p’, which is defined by the

1 1
relation7+—/:1.Whenp:1,p’:ooand%:0.
p D g

2 Further results on compactness of composition operators

In this section we give a property of monotony concerning the compactness of composition
operators on Bloch-type spaces with respect to the parameter 5 > 0. Surprisingly it does not
appear in the literature. We also show that compactness of composition operators on the Bloch
spaces induces compactness on Bergman spaces. Moreover when 5 > 1 the compactness on
the little Bloch spaces is equivalent to the one on Bergman spaces. We start by recalling the
characterization of compact composition operators on Bloch-type spaces. Denote

(=12l (2)]
(1 —[e(2))*

F(()O?Znuaﬂ) =

Theorem 2.1. (/29, Theorem 3.1])
Let ¢ : D — D be analytic, and p, 8 € (0,00). Then

(i) Cy : B* or By — BP is compact <:>‘ (11;1‘1 1F(<p,z,,u,ﬁ) =0.
p(z)|—

(i) Cy : B* or B — Bg is compact <= |l}m1 F(p,z,p1,08) =0.
zZ|—

Curiously the following fact does not appear in the literature:



Corollary 2.2. If C, : B — BP is compact and v > B then Cy : BT — B7 is compact.
We point out that this is also true for little Bloch-type spaces.

Proof. In the first part of the proof we assume that ¢(0) = 0.
Since Cy, is compact on B, we have lim F(p,z2,3,6)=0.
lp(2)|—1

We want to prove that lim F(g,z,v,v) =0.
lp(2)|—1

But,

F(@v 257 7) = ’
A =le()P) (1 =le(z)P)P(A = lp(2)]) 7
Then thanks to Schwarz’s lemma (since ¢(0) = 0) we have |¢(z)| < |z|, for every z € D.

So
1—|z2 \7-5 1—|z| \78
(por) sGpen) =t

=P
F(QO7Z7’Y;’7) = (1 — |cp(z)|2)'7 5 F(¢727675) ‘%(;)‘—}1 0.

(1= PPl _ A=) ()1 = |2*) 7
)

N

We get

To prove that C, is compact on B” even when ¢ does not fix the origin, we use a standard strategy,
a—z

but we give the details for the sake of completeness. We use the Mobius map ¢4(z) = T,
—az
for a = p(0). Then the holomorphic function ¥ = ¢, o ¢ takes D into itself and fixes the origin.
Hence Cy, satisfies the first case so it is compact on B” as soon as it is compact on B and v > 8.
Now by the self-inverse property of ¢, we have ¢ = ¢, o1 and this translates into the operator

equation C, = CyCy,. It is easy to check that

1+ |al\ 11—l
SUPF(QDaaZ,%W)g( | ’> )
z€D 1- |a’

which implies that C,,, is bounded on BY (|29, Theorem 2.2]). By the ideal property of compact
operators (see for example [7, P. 37, 2.4|) C,, is a compact composition operator on B?, and this
ends the proof. ]

In [17], Madigan and Matheson have noticed using the Julia-Caratheodory theorem, that if
¢ has a finite angular derivative at some point of T, then C, cannot be compact on B. Actually
we extend this remark to Bloch-type spaces and get the following result, which does not appear
(as far as we saw) in the literature.

Proposition 2.3. For1 <p < oo, a > —1 and g > 0 we have:
Cy : Bg — Bg compact = Cy, : AV, — AP compact.

The converse is not true in general. We show in section 5 that for the lens map A,, the
composition operator Cy, is not compact on By. But it is well known that the lens map induces
a compact (even nuclear) composition operator on the Bergman space.

Note that this theorem is no longer true if we replace the Bergman space A%, by the Hardy space
HP. Smith in [27] constructs an inner function ¢ that induces a compact composition operator
on By. But it is well known (see [25, Theorem 2.6]) that if Cy, is compact on H? then |p*| < 1,
where *(e') = 1_1)1{1 @(re') for almost every t.

B

6



Proof. We give here a selfcontained argument. Assume that C,, is not compact on A%, then (see
[19, Theorem 3.5])
1—
lim inf M < 00.
l2l-1- 1 —|z]

Which implies that there exists w € T such that,
0 < liminf M

R =0 < o0.

By Julia-Caratheodory’s theorem ([24, p.57]), we get that for some 1 € T, the angular derivative

of ¢ at w exists and is equal to ¢'(w) = £ lim =9 _ .
z

Moreover, Z lim ¢'(z) = wnd. Hence,
zZ—w

- PPl 1
APy T

which implies (by Theorem 2.1) that Cy is not compact on the little Bloch-type space. O

In fact, when 8 > 1, we have an equivalence.
Theorem 2.4. For 1 <p < oo, a > —1 and 8 > 1 we have:
Cy Bg — Bg compact <= Cy, : AL, — AY compact.

Proof. By the preceding proposition, we only need to prove the sufficiency. Assume that C,, is
compact on A%, then

1—1z

m L

=11 — |(2)]

By Schwarz-Pick lemma we have

1—12]2)8¢ 1-— B—1
(1—1z%) ISOQ(Z)I S,( ] ) 0
(L —1e(2)P?) 1—Jep(z)| |21
which ends the proof of the theorem. O

The compactness of a composition operator on the Bloch-type space also implies compactness

on the Bergman space. The proof of this result is more technical than the corresponding result
for little Bloch-type spaces (see Prop.2.3).

Theorem 2.5. For 1 <p<oo, a > —1 and 8 > 0 we have:
Cy,: B® — BP compact = Cy, : AL, — AP, compact.
We need the following lemma for its proof.

Lemma 2.6. Let ¢ : D — D be analytic, 8 > % and a > max(28 —3,—1). Lety =2+ a—20.
The operator
T : L*(D,dA,) — (L?(D|, d’%,gw)
1—|z]7)Pw
f — Tf(z) = /D Wf(w)d/la(w)

18 bounded.



Here A, stands for the pull back measure of A, relative to ¢: Ay ,(E) = A, (¢~ (E)) for
E C D measurable.
We point out too that o > —1 and v > —1.

Proof. It suffices to show that the operator

S : L*(D,dA,) — L*(D,dA, )
— 2]2)8
/ ;Sﬂ@:/wlw)“”

[ e f(w)dAa )

is bounded.
We are going to use the Schur’s test. Let h?(z) = W and ¢2(z) =
that

1

=P 0 Ve show

L2Vl
Q [ S it w) £ 26 zem

Indeed,
(1= s)°lw] B |
[ e SO = [ i)

1
| T )

But we know that C, is bounded on A, so we get

(1= 1ol [ sk
RSl o WP e A < Sl o WPy}
[ ma et @A) < [ e idiae)
P N
S TP -

1
thanks to Theorem 1.7 of [13] for 5 > 3’

In the same way we have,

(1= z[»%w|, 4 2 ,3/ (1 — |w[?)>—2FH
———=——h dA < (11— dA

1
S

As a conclusion we have that T is a bounded operator:

ITfllz2m,aa,.) < CllfllL2m,daa)-



Proof of Theorem 2.5. Assume that the operator Cy, is compact on B8, 3> 0 and choose a >
max(0,28 — 3) so that v = 2+ o — 28 > —1. We want to prove that C, is compact on AZ2. It
suffices to show that if (f,,) is a bounded sequence in A2 that converges to 0 uniformly on every
compact subset of I, then ||Ci(fn)[| 4z — 0.

By the Littlewood-Paley formula we have:

ICs (£) I < 1(fn 0 ) (0 + /D(l = 2 F2[(fn 0 0)' (2) PdA(z)

for every n > 1. Since f,(¢(0)) — 0, it remains to show that the integral tends to 0.
n—oo

Since Cy, is compact on B3, for every € > 0, there exists some 0 < & < 1 such that
1 - »°l¢'(2)]
(1 —[e(2)[?)?

/(1 = 272 |(fa 0 9) (2)PdA(2) < / (1= )21 () PI(fr 0 ) (2)PdA(2)
D {le(2)] <0}

<e¢e , for § < |p(z)| < 1. This implies that

+62/ (1= 2?7201 — (=) ) |(fn 0 0)(2) PdA(2)
{5<lp(2)l<1}
S / (1= 1221 (2)PI(fn 0 9) (=) PdA(2)
{le(2)|<8}

+e? / (1— 2P| £ (=) Pd Ay o (2)
e({d<|e(2)|<1})

Therefore, using the fact that o + 2 > 2 and that [|¢||g < 1 in the first integral, we get

[l toey @A) S [ (feed@PdAR [ (A=D1 A o),
D {le(2)|<d} D

Denote by I, the first integral and by J,, the second one. Since f] tends to 0 uniformly on
the closed disk D(0, ), I, tends to 0. It remains to show that the sequence (J,,) is bounded.
But for f,, € A2 by the reproducing kernel formula we have,

en. - (arn [ L

o (1— zw)(2+a

Jn(w)dA(w).
Differentiating under the integral sign and multiplying by (1 — |z|?)?, we obtain

—Z ﬁw
Tha() = (1 2P £l / 4 ’3+a fo(w)dAq(w).

By the preceding lemma we have, HTanLz(D’dA%%) < Ol fallz2,aaq)-
As a conclusion we have, J, < C| full%2. Since (fy) is bounded in A3, then ||Co(fn)llaz — 0O

when n — oo, and C, is compact on A2 where 3 > % - Hence C,, is compact on A% in the case
where 5 > 2
Now for 0 < g < 1 5, if the composition operator is compact on B8 then by corollary 2.2, Cy
is also compact on Bﬁ for g > % -
But we can conclude that C, is compact on A2 for any a > —1 since this property actually
does not depend on the parameter « as soon as « > —1. This ends the proof of the theorem.
O

1—zw



3 Absolutely summing weighted composition operators

We start this section by some preliminary results which we shall need for the proofs of our
theorems.
Lemma 3.1. Let f € AL where o > —1, and p > 1. We have

[f (w)[P(1 = [w]*)*
v WP < .
z €D, 2)| / 1= waor dA(w)

Remark 1. Actually when p is an integer and f € Ak, thanks to the reproducing kernel formula
for the Bergman space (see for example [13, Cor. 1.5]), we clearly have the equality

FPw)(1 = Jw]?)?
VzeD, fP(z a+1) / 1—wz otz —dA(w)-
Proof. Let f € AL. The rotation invariance of dA, gives
= [ rwyddqfw)

Then, since p > 1 and dA, is a probability measure, we have

0P < /D F(@)P dAq(w).

Replacing f by f o ., where ¢, is a Mobius map, making a change of variables and using
the properties of ¢,, we obtain

FEP < / 1F o s (w)P(1 — |w]?)*dA(w)
D
< / F@)[P(1— s (w) 2)] 0 () 2dA(w)
D
— |z 2\a+2/1 _ w 2\«
/,f<w),p<1 )20 = )

Q

‘1 Z*w‘4+20¢

| (w)[P(1 — w[*)
< A(w).
~ / |1 — zw|at2 dA(w)

We state the following result as a lemma, but is already known (see [30, Cor.4]).

Lemma 3.2. Let v > 0 and g € BY, we have

/ w — |w 2\y
VzeD, g(z)=g(0)+ /D gtf)(l)(_lwlwhf dA(w)-

Lemma 3.3. Let G : D — C analytic, p>1, a« > —1 and ¢ > 0. We have

[ 16t asaw ~ [ Gu)lel daaw),

where the underlying constants depend only on p, q¢ and « (but not on G).

10



Proof. Of course, we have to prove something when G belongs to A%.
anmvm /}KXuOWhﬂqua@u)§‘/WCKwﬂpdAa@®.
D D
On the other hand, we have
[Iewpritaw = [ jePddw)+ [ (6@ daaw)
D D(0,1/2) D\D(0,1/2)

The second integral is easy to handle:
[ oGPt <2 [ G dAa(w) <20 [ fullG)l? dAa(w)
D\D(0,1/2) D\D(0,1/2) D

Taking n as the integer just larger than ¢/p and using that the norm of point evaluation in
a on AL is (1 — |a?)~2F®)/P_the first integral is lower than

4\ (2+a)
2" sup |w".G(w)]P < 2””(7) / |w|"™P|G(w)[P dAg(w).
lw|=1/2 3 D

Hence

/ (G (w) P dAa(w) < / G w) Pt dAg (w).
D(0,1/2) D

We now state our necessary condition which is valid for all p > 1 and any p, 5 > 0.

3.1 Necessary condition

Theorem 3.4. Let ¢ : D — D, u : D — C be analytic, and u, 5 > 0. If the weighted
composition operator uC, : B¥ — B? is p-summing, p > 1, Then

— |w|?)2e=D (1 — [2]2)8P| ! (2)|P
(ﬂ)hz/&mu w72 A = 2P PP ) < +oo.

D z€D |1 = wp(z)|CHr

and

1 — lwl2)2-1)
(€ 1= [ o by < 4o

Proof. Assume that uCy, : B¥ — B? is p-summing, then uCly, : B — B? is also p-summing.
Thanks to Pietsch’s theorem (see |7, Th. 2.12|) there exists a Borel probability measure v on
(B(Bg)*,a((l’j’g)*, Bfy)) (here By denotes the unit ball of a Banach space Z), such that

(4 uf ol <mue)( [ lepran)”

Baspy

for every f € BY.

11



(1 — [w]*)*”

Now, for every w in D, we consider f,(z) = which lies in Bf N H®°.

From (4), we et )

rom (4), we ge

®) o |

sup(1~ fuf? 2001 - o2y | GEEEZE) o WO g [ je(gpante

By«

where K stands for the 7, constant of the operator uCl,.

But thanks to the duality between Bj and A', there exists some numerical constant v > 1
satisfying: for every £ € B(ppy., there exists h € B 41 such that E(f) = (h, f) for every f € Bj.
In particular, thanks to the reproducing kernel formula for the Bergman space,

) = (ufud = [ REIul)(1= s AAC)
— a-pp [ W(l—ww—ldma
1 h(z
= -t [

— l —1w>2P B(w)
u(l [w[*)* h(w) .

We finally use the fact that the point-evaluation ¢, is a bounded linear functional on A', with

1
norm equal to m (see for example [9, Theorem 1|). Therefore
(6) 1€(fw)lP < *HhH o h(w)] < (w)|.
Integrating over D inequality (5), we get
_ 1+ p)wu(z)¢'(2) u'(2) P
7 /su 1 — |w|?)2® 1)1—,226]’( Z_ + — dA(w) < 0o.
N S 6 (e ) i B

e Now, we focus on the case p > 1:
for every w, zg in D, we consider

a b

) = -+ ' (I—wa)r’

(1 — w7

(1 —wip(z0)) 4+
F € BN H>®. Actually the values of a and b are easy to compute:

where a,b € C are chosen so that F(y(z0)) = and F'(p(z0)) = 0. Clearly

(1= [w?)/¥

a=—u(l— ’w‘2>2/p’ and b= (,u—i—l)m.

12



From (4) applied to F', we get
) 1= L0P) I o). Fela)] < [P o o)l < muC)( [ lempane) ",
(BEy*

We have now to estimate |(F')| for any & in the unit ball of (B))*. We adapt the previous
computation (recall (6)) with the same notations and we have

b
_ _ (L= w7 [ h@0 =P
E(Cy) = (h,Cy) =(n+1) 1_11)@ /D 0 —Zu) dA(z)

Let G(w) = /D MR =4,

(1 —zw)H
Then, using Fourier convolution between functions on the torus T, we can write

W222h(2) (1 — | 2|2 -1
w2y = s ) [ EEHEERI 1) s 1+ @y 0

1
where Q /,(u) = / qrp(u)(1 = p)* L dp, and q(t) = t2(1 — t)~#+2) for t € D, with w = ru

0
(ier=|w|and u € T).

Therefore, for all ¢ in the unit ball of B, since p — 2 > —1, (by [13, Proposition 1.11] and
Lemma 3.3), we have

[lecapirw) £ [0-wpricwraw
= G ~ 10~ P B an,

~ 2~
~ |w'G ||Lp (D,dAszp_2)

/ (1 — [w)*2|w?G" (w)PdA(w)
D

1
=[2G yar
0

where HP is the classical Hardy space. But,

_ P
UG 5 Iyl 1@yl S W ill [ 072101 = oy A ))',

Q

and
(1= [zt 1

[l —lelytaae) ~ [ A ~

where we used theorem 1.7 of [13] for the last estimate.

We get,
1
/ €(Cu)PdA(w) < /0 21— )22yl

13




1
Again, using the norm of the evaluation functional on A' which is equal to —————, we have

(1= 2>

A S O E M!\hfrrHl.

Therefore,

1 1
/ E(Cu)PdA(w) < P! /0 2 g = 77! /0 45 s < 297l < 247,

Taking the supremum over zp and integrating inequality (8) over D, we get,

p— u'(20) p
Y s Pl e dtw < oo

Hence we get condition (C2). Then, combining (7) and (9), we obtain (C1).

Remark: let us mention that the proof can be simplified when py > 2p — 1. Adapting the
preceding proof we have

_ wl2)2/P (1 — |2[2)r—1
R SR PR Lol G e b
D

1 —we(zg) (1 —zw)"
AR
e )

Here we do not use the convolution. Actually we have

/ E(Cu)PdAw) < / (1 [w?)P |G (w) PdA(w)
= 161y, 10~ WPy,

_ /1_yw\ Plj/‘“h (=P 4 o) dAw)

1 —zw)rtl

Now by theorem 1.9 of [13|, we have

/ E(Co)PdA(w) < /D (1= ]2V |h(w)PdA(w) S .

Therefore, from (8), we get

/ sup (1~ [w2)2ED(1 ~ [20[)7| W) 1 g4(w) < oo
D zoe% 0 (1 —wep(zp))H+t )

e Now, we focus on the case p = 1:
We adapt the preceding method and consider for § € (0, 1), for every w, zp in D, the functions

14



a b

FG) = oy * d—gagee

1
where a,b € C still chosen so that F(y(z0)) = 0 —mp(z)) and F'(p(z0)) = 0.
+6 p+1
We h = db= .
e have a T on A= 91 —Dp(a))

We apply (4) to F in the same way and we have again to estimate |£(F')| for any £ in the

unit ball of (Bf)*. The term [(f.,)| was already estimated from above. Let us choose § = 1/2 to
b

simplify the expressions (but any value of § € (0, 1) would work) and write D,,(2) = ———
(1 —wz)Ht2

&0. =5 | MU ED 14(2) = b w).

(1— wz)"*s

Then,

wzh(z — |22t !
w6w) = ot 3) [ UECEE ) — e ) [ e Qum - ot

2 (1 —zw) "tz

where Q(t) = t(1 — t)_(‘”'%), fort €D, and w =ru (i.e r = |w| and v € T).
We have for every ¢ in the unit ball of (Bf))*

| @uliAw) < 16y, ~ 10~ DGl )
|wG’

Q

HLllDdAl)

Q

/D (1~ )} |G ()| dA(uw)
1 1
_ /027»2(1—7«)2||G;HH1dr.

But,

1
G S [ sl Qs lln (1= '~ dp = il [ 1QU/)I(1 = [ dA),

and (|13, Theorem 1.7]),
1

[1avmala - el tdA) ~ ——-
D (1—7)2

We get,
1
/ |€(Dy)|dA(w / 27”Hhﬁ||H1dT < 2.
0

The proof now ends like in the case p > 1.
Remark: once again the proof can be simplified when p > 1: we have,

2(p+1) / h(z)(1 — |z
(1-— @(p(zo))% D (1- z@)’”%

§(Dy) = dA(2).

15



Then,

[reoiaw = [ 2eE [HOCEER )

we(zp))2 (1-— Zw)‘”%

s [(] =D ) i)l A

|1 — zw|“+2
|h(2)](1 — |z})»1
< / 1—z| = dA(z) < 7.
We used again Theorem 1.7 of [13] for p > 1. O

3.2 Sufficient conditions

We are going to present several sufficient conditions. The first one is valid for classical Bloch
spaces, the second one is valid for Bloch-type spaces but we have to separate cases according to
the value of y relative to 1. The last one is true only for p = 1 on Bloch-type spaces.

Theorem 3.5. Let ¢ : D — D be analytic, w € B, and p > 1. Assume that the following
conditions are satisfied

— |w2)2e=D (1 = [212)P| (2)|P
1) 4 = [ B e asw) < o

(1 — 2]}/ (2)|dA(w) < +oo.

- [w]2)2e-)
c2) J! :/sup ( —
(C2) Jo= | S ol —wp() PP

Then the weighted composition operator uCy, : B — B is p-summing.

Remark 2. This theorem has to be compared on one hand to Theorem 3.4: Ji = J1 when
pw=p=1and Jy =~ Jy when p = 1. In other words we have an equivalence in this case of
classical Bloch spaces for p=1. In that case it coincides with Theorem 3.7.

The only difference between Jby and Jo concerns the power of (1 — |z|?)|u/(2)| in the integral
for pw = B = 1: that is why we miss the full characterization for classical Bloch spaces when
p> 1.

On the other hand, the second condition has to be compared also to the second one in Theorem
3.6 (see also Theorem 3.7 as mentioned).

Proof. We want to prove that uCy, is p-summing. We consider f1,..., fy € B satisfying

N
Zajfj”s B
i=1

sup
(/LGBZp/
Equivalently we have
N P
(10) sup Y |f} ()l (1 = [wl*)” = sup sup]Zan )1 — )| =1.
wE]D)j:1 aEB p/ WED

16



We wish to get an upper estimate for

(Zuu )"

which is less than

(i w()-£6O)[") "+ (X sup (- EPREILGIAEE))

i=1 1<j<n *€P
1/p

+ (X sw (A= 1P EILEE))
1S5<N Z€D
by the triangular inequality on P.
The term (iv: ‘U(O)f] (@(O))‘p) " is clearly bounded by [u(0)|.[|0,(0) |5+ using linearization
like in (10). -

p
Now we focus on the second term S; = (Zjvzl sup ((1 - |z|2)|u(z)||<p'(z)||f]’(gp(z))|) )
zeD
For each 1 < j < N, there exists some z; € D such that

1/p

sup (1= [Pl IALEN) < (1= 12 2Pl PIe (@) P e ()P + 27

zeD

so that we need to control
N
D (1= [z 2P lulz) Pl (2)[PL £ (0 (2) P
7=1

Using Lemma 3.1 with a = 3p — 2 > 0, this is less than

N

/ p — |w 3p—2
S Py e [ SO

1T—wo(z))

itself being less than

. ]2)P wl2)2(-1)
/ (Zifj PPy sup LB e daqw).

1<j<N |1 —wp(z;))]3P

N
On one hand (Z | fi(w)[P(1 - ]w|2)p) <1 by (10).
=1

On the other hand, we have for every w € D and every j € {1..., N},

(L 5P PReD (1 e )
- waipr E e =) < sup e

[u(2)["l¢ (2) P

17



Therefore our second quantity Sy is indeed uniformly bounded by (1 + J{)% thanks to condition
(C'1).

Now we have to get a uniform estimate from above for the third term

1/p

S = éi‘é{; (=R ENEI))

By linearization and as before, we can find (aj) in the unit ball of /" and, for each

. 1<j<N
1 <j < N, some z; € D such that

N N
Ss <14+ a1 — |z () £ < 1+ lulls + > ai(1 = |z ()] 1£5(0(2)],

j=1 j=1

where f] = f; — f;(0), since
N N N
>~ a1 = 5P ) 0)] < lulls| Y a0 < llulls| Yo aifs]|, < Il
j=1 J=1 J=1

Now we can use Lemma 3.2 for each 1 < j < N to the function ]?] at point ¢(z;), with
v=2p—1>0,since fj € BC BY (because p > 1). We get

Fw)(1 = fw]?)?!
w(l — wp(z)))%

N
Sy <1t llulls + 3 ay(1 - [Pl ()] /D

Jj=1

dA(w).
Rearranging, we obtain

(1= [ (A — |w]?)*r—D

Wil —wpGp )

sup [u'(z)]
zeD

N
S <1+ fuls + | | 3 asf(w)1 = ol

N
At last, ’Zajf]/-(w)(l - |w\2)‘ <1 by (10) and we conclude that S3 < 1+ |luljg+ J5. O
j=1

A second result giving a sufficient condition for weighted composition operators to be p-
summing on Bloch-type spaces is the following:

Theorem 3.6. Let ¢ : D — D, u : D — C be analytic, p > 1 and u, § > 0. Assume that
uCy : BF — BP is bounded.

o For u>1if

R (1= 2P0 P PO P O 4y ) < o,
D

2€D |1 = wp(z)|F2p

18



and

(1= [2[)P (1 — |w]?)*®~V}u/ (2) P
71 = dA

then uCy, : B¥ — B? is p-summinyg.

o Foru=1if

D = [ s (L= )71 = [P PO PP gy o

2€D 1 —wep(2)[*

and

dA(w) < o0,

(1—[21)PP(1 = Jw[*)2P= D/ (2) P log (1=7)”
(C”3) Klz/sup — 5 (1 | ‘2)
D 2€D |1 —wp(2)[?P

then uCy, : B — BP is p-summing.

o For0 < pu<1if

(1= 2P (1 = Jw[*)2PD]u(z) P|¢' (2) [P
c”4) J; = dA
( ) 1 /]D)ilel]g ‘1 —ESO(Z)‘('LH_z)p ('UJ) < 00,

and

(1= [P (1 — [w]) e F VP2 () P

C’5) Ky = dA <
( ) 2 /]D)ilellg |1—@<p(z)|(1+/‘)p (w> o0,

then uCy, : B¥ — B? is p-summinyg.

Proof. The proof of this theorem uses several similar ideas as in the proof of Theorem 3.5.
Nevertheless, there are some technical differences and it leads to different conditions.

We consider f1,..., fny € B* satisfying

N
> aif; o
j=1

sup
aeng’
Equivalently
N
(11) sup S [f1(w)[P(1 = w2 = 1.
weD =1

We wish to get an upper estimate for

(Znu frooln) "
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N
»1/p
The term (Z)u(()). fj(go(O))‘ ) is bounded by [w(0)]-[[84(0)ll 5+
=1

Now we focus on the second term
52 = (S s (0 - PRI EILEN))
=1 z€D J

As before, we need to control

N

Y= 1z Plu(z) P ()| £((2)IP,  for any arbitrary z; € D.
j=1

We use once again Lemma 3.1 with @ = (2 + p)p — 2 > 0, then the preceding quantity is less

than
N

w22+
Z(l - |Z | )ﬂp’U(Zj)mSO |p/ |f 1 wg0(| )|‘(l+u) dA(w).

J=1

Rearranging, this is less than

N —1212)8P(1 — 1w!2)20=D) y( 2 (5
(s 3200 afyrigup) [ sup L= BV ol DUGISCIP 3
j=1

D 2€D |1 = wp(z)|Hr

Since (Z | £ (w)[P(1 = [w] )“p) <1 (by (11)), we conclude that Sy is uniformly bounded by
(1+ Jl)P thanks to condition (C”0).

We still need to get a uniform estimate from above for the third term

S5 = (ﬁ_vjigg (1= 1= @A) )

In other words, we want to upper estimate

N

D= =Pl () PIfi ()P, for any z; € D.

j=1

We use again Lemma 3.1, this time with o = (1 + p)p — 2 > —1. Then the preceding quantity

is less than
N

— w|2)AHWP=2| £ () |P
S -lsfyrep [ S B daw)

j=1
itself being less than

—|2]|2)8 — w221/ (2
(supz ~ PV pp) [ sup EREE RO ),

weD 2€D ’1 - ‘P(Z)w’(H“)p
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Thanks to (C”1) this is less than

Jg(supz 1 — Jw? )P £ (w )\p).

wG]D)

Now we use the norm of point evaluation function d,, on B¥.

1
When n > ].7 we have ||5wH(B[_L)* ~ W’ then

sup » (1 — [w*)P* V| fi(w)P ~ sup sup
we]D)Z ! we]D)aEB(Z / Hé H

N
P
sup Zajfj an

|

Zajf] ‘

N

Therefore, S3 is uniformly bounded by (1 + Jg)l/p, and uCy : B — B? is p-summing.

1
When g = 1, we have |05+ = log Tl We need to control

jw]?

i (Z ) - 527 = [l PO )P

1 —wp(z)[*

1 P
We multiply and divide by <log 17"2> , getting
— |w

y L vony [ (R (o) (log )
(s 2t (e =) ) fysue 1w At

Thanks to (C”3), this is less than

N
P
K (sup Y 1S (log ) )
we j=1 1 ‘ |
. 1
Since [|dy||p+ =~ log —————, we conclude as before that

1= Jwf*’

N
1
sup filw P<10g7) < sup
sup 3115000 (o o

Za]fJH
aEB ! j=1

Therefore, S is uniformly bounded by (1 4+ K;)'/?, and uCy: B— B8 is p-summing,.

Finally when p < 1, we have [[d,||(gx)« ~ 1. We need to control

N 1 — |2]2)8P(1 — |w|2)A+mp=21/ (5)|P
(zlé]%;\fj(w)p)/msup( )™ ]w|)’(1+u)p [(2)] dA(w).

2€D 11— o(z)w
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Thanks to (C”5), this is less than

(s S l).

we]D)

Since [[dy|(sr)+ = 1, we conclude that

sulef 5 sup Hzam

Therefore, Ss is uniformly bounded by (1 + Kg)l/ P and uCy, : B*¥ — B? is p-summing.
This ends the proof of the theorem. O

In the special case p = 1, we succeed in obtaining the characterization for 1-summing weighted
composition operators on Bloch-type spaces. We prove now that necessary conditions in Theorem
3.4 are sufficient.

Theorem 3.7. Let ¢ : D — D be analytic, v € B?, and pu, 8 > 0. If the following conditions are
satisfied

_1L2)8
(C1) Jy = /Dilelg (|11 —’w|<p)( |;T“(+2)‘ u(z)|dA(w) < +oo.

(€2) J :/D?égll(—l;cp%’ ()| dA(w) < +oo.

Then the weighted composition operator uCy, : B¥ — BB is 1-summing.

Proof. Suppose that (C'1) and (C2) are satisfied, we want to prove that uCy, is 1-summing. Using
the same technique as before, we consider f1, ..., fy elements in B* satisfying

N
sup HZzsjfj -
J=1

lej1=1

Therefore,

(12) sulef 11— [w]?) = 1.

wGD

We wish to get an upper estimate for

leu io@)lse -

N
The term Y _ |u(0)£;(2(0))] is bounded by [u(0)|.[|6,(0)ll 5)-
j=1
For the estimate of the second term we apply once again Lemma 3.1 (or the reproducing kernel
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formula) to the function f]' at point ¢(z;) with o = p. As in the preceding proofs we obtain by
(C1) that Sy is bounded by 1+ J;.
The difference here is given in the estimate of the last term.

We need to control N

D=1z 1 ()1 £i (e ()]

J=1

which is less than

N
lullgs + > (1= 1221 (2)]1£ (0 ()],

j=1
with f, = f; — f;(0), since

N N
S =15l () 1650 )\<\|U||Bﬂ‘253fy O < llulss | i, < ullss.
7j=1 Jj=1

where |g;| = 1.
In this case, we apply lemma 3.2 to the function f; at ¢(z;) with v = p. We obtain that

N
> = 1zl ()1 F ()]
7=1

is less than

N £

(1 = JwP)¥ | fj(w)]
Z 1 - ‘ZJ‘ |u ‘/ |—H1 _ Z w\(1+”) dA(U))
j=1 i)

itself being less than

N
" (1~ e (o)
(sup 3000w pigio) [Lsup o 1A

N
Now since (Z | fi(w)] (1 — \w[Z)”) < 1, we conclude that S3 is bounded by 1 + ||ul|gs + J2
j=
thanks to (C2).
Hence, uC,, : B* — B? is 1-summing, and this ends the proof of the theorem. O
4 Consequences

4.1 Absolutely summing composition operators

As an immediate corollary of theorems 3.4 and 3.6, we mention the important case of com-
position operators.

Theorem 4.1. Let ¢ : D — D be analytic, u,3 > 0 and p > 1. The following assertions are
equivalent:

23



(a) The composition operator C, : B* — B? is p-summing.

(b) The composition operator Cy, : By — BP is p-summing.

(¢) Qusp) :/Sup (1~ |w?)*®~ V(1 — \ZI2)5”\90’(Z)!”dA(w) < 4oo.

D 2€D |1 —wp(z)|Hr

Moreover, when ¢ € Bg, the preceding assertions are also equivalent to

d) The composition operator C, : B — BP is p-Summing.
¢ P 0

~

Remark: using the fact that ||.|[zs < ||-|loc when 5 > 1 and applying this to the function
1

z 1 o)) we point out that (having Lemma 3.3 in mind)
—w(z

e |2)2(0-1)
Qu,ﬁ(p)ﬁ/ sup (L= )™ dA(w)

D Zep(D) |1 —wWZ|A+r)P

which depends only on p and the geometry of ¢(DD).
In the same spirit, when 5 < 1:

(1 — |wl|?)?—D
dA < '
/Dzzl;%)m) |1 —wz|(+mp (w) S Qu,s(p)

This remark may be useful to get some sufficient or necessary condition (according to the
value of 11): see an application in Prop.4.6. Similar ideas are used in Cor. 4.5.

Combining again theorem 3.4 and 3.6 we obtain a characterization of p-summing weighted
composition operators, p > 1, for pu > 1.

Theorem 4.2. Let ¢ : D — D be analytic, u € B, p > 1, 8> 0 and u > 1. The following
assertions are equivalent:
(a) The weighted composition operator uCy, : B* — BP is p-summing.

e wel ea, composition operator u : — 8 p-summing.
b) The weighted iti tor uCy, : By — BP i ing

(¢) The following conditions are satisfied

(1 Jw/?)*P V(1 ~ |z’2)ﬂp|w/(z)‘p|U(z)|pdA(w) < o00.

(c1) le/Dsup

2€D |1 —wp(z)|wt2p
_ (1~ |w[*)*@~") NN
(c2) Jy = /Dilelﬂg 1 —@go(z)|(”“)p(1 — [2]7)P|u’ (2)|PdA(w) < +oo.

Moreover, when ¢ € Bg, the preceding assertions are also equivalent to

(d) The weighted composition operator uCl, : By — Bg 1S p-Summing.

24



4.2 Nuclear weighted composition operators

Now combining theorem 3.4 and 3.7, and since 1-summing operators on Bloch-type spaces
are nuclear (see [10, Lemma 2.1| and [14, Theorem 1.1]), we obtain a characterization of nuclear
weighted composition operators on Bloch-type spaces.

Theorem 4.3. Let ¢ : D — D be analytic, u € B? and p, B > 0. The following assertions are
equivalent:
(a) The weighted composition operator uCy, : B* — BP is nuclear.

(b) The weighted composition operator uCly : Bl — B? is nuclear.

(c) The following conditions are satisfied

—1212)8| (2
(c1) Jy = /Dilel]g (’11 —‘w‘cp)(z’)(il‘(“)‘ lu(z)|dA(w) < +o0.

_1L2)8
(c2) ng/Dsup (1= J2F) |u/(2)|dA(w) < +o0.

zeD |1 — W (z)[FH!
Moreover, when ¢ € Bg, the preceding assertions are also equivalent to

d) The weighted composition operator uC, : BY —» Bﬁ 1s nuclear.
g 14 P @ 0 0

4.3 Other consequences

We focus on composition operators on Bloch-type spaces. We deduce from Theorem 4.1 a
property of monotony with respect to the parameter 5.

Corollary 4.4. If C, : B2 — BP is p-summing and v > B then Cy : BY — B is p-summing.

Proof. As in the proof of Corollary 2.2 we first assume that ¢(0) = 0.
Since C, is p-summing on B? we have Qs 5(p) < co. We want to prove that @ (p) is finite.
But

Qv y ()

(1 = w2201 — |22y 7|/ ()P
dA
[ s L= wp(z) @ (w)

= [ L el 1 O] L 0 NPT

D w2 — w0
Thanks to Schwarz’s lemma (since ¢(0) = 0) we have |p(z)| < |z|, for every z € D, therefore

1— |22 \O-8) 1—1|z] \Oo—8
(@) sGpan)
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We get

1 — |w|2)2e=D (1 — |2]2)72| (2)|P
Qv (P) Z/Dilelg( i a_w;(z)‘(‘;‘,y))p PP 14w) < Qpplr) < .

To prove that C, is p-summing on B” even when ¢ does not fix the origin, we proceed as in the
proof of Corollary 2.2. O

The following is a strengthening of the fact that any bounded composition operator C, :
B* — BP is automatically compact when 8 > p. It can be viewed as a quantified version of
this fact.

1
Corollary 4.5. Let 8 > 1, u > 0 and p > 1 satisfying 3 > p+ —- Then C, : B¥ — B is
p

Pp-summing.
In particular, when B > u+ 1, then C, : B¥ — B? is r-summing, for every r > 1.

In other words, when 3 > p and 8 > 1, any bounded composition operator C, : B¥ — B

1
is more than compact: it is p-summing for every p > — -

B—n
1
Proof. Under the asumption § > p+ —, we are going to prove that @, g(p) < +oo (see Theorem
p
4.1).

In a standard way, in order to simplify the computations, we assume that ¢(0) = 0. We use
similar ideas as in the remark after Th.4.1.

Since Bp > up + 1, we can choose a suitable § € (0,1) such that Bp—p > up —p+1+9.
Thanks to Schwarz’s lemma (and since 8 > 1), we have

ENEERY
(-l
(1 = [p(z)Jpp—pti+s =
We get
_ (1= [w?)*P V(A — 2P| ()P
Qus(p) = /D sup T Tp() @ dA(w)

N

— 12w (2)]
/Dsup(l— |w‘2)2(17—1)< (1 | | )| 390((136‘)> dA(’U))

<P [1—we(z)[" 7

where we used again Lemma 3.3.
1

Now recall that ||.||g < ||l and apply this to the function z — —5

(I —wep(z)” »
We get X
Qusp) S /D Wd/l(w) < +00.
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Proposition 4.6. Let ¢ : D — D be a symbol such that C, : B* — BP is p-summing for some
p>1, where B € (0,1) and > 0. Then

1
dA .
/gp(]]])) (1 - |w|)2+p(p’,1) (w) < 00

In particular,

(i) If A(D\ (D)) =0, then we must have u < 1/p’.

(11)) When u > 1, we must have

1
L(D) 7(1 )™ dA(w) < o0

for every N > 1.

1
(i4i) If p > — , we cannot have A(D\ ¢(D)) = 0 and ¢ cannot be inner.
p

(iv) Assume that ¢ is inner (or merely A(D\ ¢(D)) = 0). Then Cy, : B? — BP cannot be
p-summing for any p > 1.

We shall see below that the situation is very different as soon as § > 1 (see Th.5.3).

Proof. We already pointed out in a remark after Theorem 4.1 that

(1 — |w|?)2P—1)
dA <
/DZZI;FD) 11— wz|(0+wp (w) S Qup(p)

which is finite with our assumptions. In particular

/ ! dA(w) < / sup (L o)) dA(w) < +o0
o) (1 —[w]?)2P=l) = Jo) zep(m) |1 —wWZ|H1P .

In particular, when A(D \ ¢(D)) = 0, we must have

1
/D = ’w|2)2+p(u—1)dA(w) < 00

hence 2 + p(u — 1) < 1 which means that x4 < 1/p’. This proves (i).

Assume that 8 € (0,1) and ¢ > 1. Since C,, is p-summing it is g-summing for every ¢ > p.
Once N is fixed, we can choose ¢ large enough to satisfy 2 + ¢(u — 1) > N. This proves (ii).

When ¢ is inner then (D) =D a.e (|11, Cor.2.3, p.118|) and the conclusion for (iii) follows.

At last if C, - B? — B were p-summing for some p > 1 then, thanks to Cor.4.4, it would be
p-summing on B for every § > 8. But we can choose such a 4’ in (1/p/,1). And (iii) leads to
a contradiction. O
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5 Examples

In this section we are going to give an example of a cusp map that induces a compact
composition operator on the Bloch space which is not p-summing for any p > 1. On the other
hand, we give an example of an inner symbol ¢ such that C, is nuclear (hence p-summing for
every p > 1) on B? for every f > 1. We also consider the example of the lens map which is
often considered when studying composition operators on Banach spaces of analytic functions on
D. We give several basic properties of this symbol and we study the behaviour of its associated
composition operator on B? depending on 8 > 0.

We recall the definition of a cusp map.

Definition 5.1. Let o : D — D be a univalent analytic self map.
Assume that (D) N'T = {1}, the region p(D) is said to have a nontangential cusp at 1 if

dist(w,0p(D)) = o(|]1 —w|) asw — 1in (D).
Also (D) lies inside a Stolz angle if there exist r, M > 0 such that
1—w <M1 -|w|), if|l-w|<r, andw € ¢(D).

Madigan and Matheson showed (in [17, Theorem 5|) that if ¢ is univalent and if ¢(ID) has
a nontangential cusp at 1 and touches the unit circle at no other point, then Cy, is a compact
operator on B. Actually the same is true on Bloch-type spaces. In [10] we gave an example
of a cusp more flattened than the one of Madigan and Matheson that induces a p-summing
composition operator on B. Again the same remains true on B%. Our next example will satisfy
the properties of definition 5.1 and hence induces a compact composition operator on the Bloch
space but fails to satisfy the condition Q1 1(p) < 4+oo for any finite p > 1.

Example 1. We consider in the sequel a map ® such that its domain ®(ID) is bounded by some
convex curves of type v, (t) = (1 — ¢, (t)) and y2(t) = (1 —t, —ﬁ), for t in a neighborhood of 0
and 0 : (0,1) — (0,+00), such that 6(t) tends to infinity when ¢ tends to 0:

Theorem 5.2. Let p > 1 and ® be the map defined in Example 1 associated to some 0 satisfying

1/2 1
/ ————ds =0
o sO(s)Pt!

Then, Cp : B — B is a compact composition operator which fails to be p-summing.
In particular there exists a compact composition operator on B which is not p-summing for any
p=> 1

1-=z
61 —z)
We consider now the symbol ¢ associated to € like in Example 1. It is clear that ®(D) has a
nontangential cusp at 1:
for a point z € D such that ®(z) = x + iy and IMmP(z) > 0, we have

dist(®(2),7) < y(z) = o(1 — &) = o(|1 - &(2)]).

Proof. Let us define vy(z) =
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(D)

Figure 1: Domain of ®(D)

By symmetry, the same happens when Sm®(z) < 0, and then
dist(®(z2),00(D)) = o(|1 — ®(z)]).

Thus, Cg is a compact composition operator on B.
Now we are going to prove that Q1 1(p) = +oo for every p > 1. For this we use the Koebe
distortion theorem [12, p.13]:

i(l = [21)]9'(2)] < dist(@(2),00(D)) < (1 —|2*)|¥'(2)]

and the following fact: consider z € D such that Sm®(z) > 0 and write ®(z) = = + iy. The
tangent (D) at point (x,v(x)) is totally under the curve 7 (by convexity of ). So that the
distance from ®(z) to v is greater than the distance from ®(z) to (D):

dist(®(z),v) > dist(®(z), (D)).
By symmetry, the same happens when Sm®(z) < 0, and we have
(13) dist(®(z), 00(D)) > dist(P(z), (D)).
Since (D) is the tangent at the point (z,7(z)), it has the following equation
(D): Y =7y(x)+7 (@)X —x).

Therefore the distance from ®(z) = « + iy to the tangent (D) is the following

| =@l
(14) dist(®(z), (D)) = o) T
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Now we compute the integral Q1,1(p). By the Koebe distortion theorem we have:

1 — |w|?)2=1 (1 — |2]2)P|®/(2)|P
Q) = [ O BV
(1 = [wP PP Ddist(B(), 05(D))P
= e e A
(= PP Vdis(@(2).00@)P
z LD)Z@% 1= wd(z) ddtw)-

Now for every w € ®(D), we can write w as ®(z) where z € D and we have

1 — |w]?)2P~Ddist(w, dP(D))P
Qo) = [ Bt )

/ (dist(w,@@(D))pdA(w)'
a(D)

(1 = Jw[?)p*2

From (13) and (14), integrating on ®(D) N {Smz > 0} N {Rez € (3,1)} we get,

ly — ()P
Quilp) 2 //2/ +1)p/2(1_ ’x2+y2‘)p+2dydx

= (v(z) —y)? i
N /1/2/0 (v2(z) + 1)P/2((1 — 22) — y2)P+2 dydz .

Now since 0 <y < y(z) = o(1 — ) in the integral, we have

Q-2 -y ~1-2’~1-—2 whenz — 1.

It is easy to check that 7/(x) — 0 when x — 1. Finally we have,

Quilp) 2 / . / Ty

1 +1
S / 7P ()dw
~ S (1= z)pt2

1
1
=~ / T de
12 (1 —2)(0(1 — )P
and this last integral diverges.
For a concrete example, just choose a convex function 6 such that 6(t) = In(In({)), for
t<e L. O

Example 2. As we already mentioned, we gave in [10] an example of a cusp map (with a contact
point on the torus) inducing a nuclear composition operator on the Bloch space B. We are going
to present a more striking example of an inner symbol also inducing a nuclear operator on B%.
This shows that the situation in Prop.4.6(iv), where § < 1, is very different compared to the
case > 1.

30



Theorem 5.3. There exists a Blaschke product ¢ such that Cy : BP — BB is nuclear for every
B > 1. In particular, Cy is p-summing on BP for every 8> 1 and every p > 1.

Proof. From [2, Th.2], we know that there exists a Blaschke product ¢ such that
vzeD, (1-[z)[¢'(2)] < (1—-16(2)])°.

Thanks to the Schwarz-Pick inequality, we know that 1 — |z| < 1 — |¢(2)| for z € D.
Since § > 1, this implies that

vzeD, (1-[2)%1¢'(2)] S (1 —lo(=)])**7.

We can use Th.4.3 with § = p (we see that Jp is finite and that Jo = 0 since u = 1 here), or
use directly the main result of [10] when 5 = 1. We conclude that Cy : B% — B is nuclear. [

Example 3. (The lens map)
First let us recall that the Cayley transform is an automorphism from the unit disk D onto the
right half plane Cy = {z € C| Re(z) > 0} and is defined by

_1+z
11—z

x(2)

z—1

+1
The lens map is then defined in the following way:
Given a € (0,1), we define the symbol A, : D — D by

Its inverse is x~!(z) =

_ (x(2)" 1 L
Ao(2) = )+ 1 for z € .

a —1
Actually we have z € D =5 () Zz, (x(2))* = Aq(z) and the geometric representation

of Aq(D) is the following:

Cima

Figure 2: Domain of A,(D)

Let us give several basic properties of this symbol.
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Proposition 5.4. Let a € (0,1). We have

(i) A(D)NT = {—1,1}. Actually A, can be extended to D and the contact points correspond
toz=—1 and z = 1.

(11) Ao(D) is included in an angular sector.

11) For every z '(z) = )
(iii) Fi yzeD, N(z) (172)20(( ) (1)

(iv) In particular, when z — 1, we have |, (2)| ~ |1 — z|*~ L.

Proof. (i). The only critical points are —1 and 1 but x(1) = co and x~!(c0) = 1. In the same
way x(—1) =0 and x~1(0) = —1.
(ii). We are first interested in the neighborhood of 1 for the lens. We only have to justify

that x~!(z) belongs to a fixed Stolz domain when z € Cqy with |arg(2)| < ma/2 and |z| — +oo.

But for such z, we have
2 2

1—x 1)) = ——~ =
1@ = g~

whereas . 2Re(2)
_ _ e(z
1—|x"H(z)| ~ 51 =1Ix Y2))?) ~ TR

The inequality Re(z) > cos(ma/2)|z|, satisfied by all such z, settles the justification.
The same occurs around point —1.

(iii) We can write Ag(z) = x ! ((X(z))a>

(1—2)2 and (x 1) (2) =

Therefore, by the chain rule formula,

2
(2—1—1)2'

We have x/(z) =

N(2) = ax () (0 (D7) = = e

1
(iv) When z — 1, we have |x(2)| = and we get

DT
AL ()] ~ |1 — 27T 1 — 4%
which is the result. O

From (iv) of the preceding proposition we get

Proposition 5.5. We have

o When <1 —a, the symbol A, does not even belong to BP.

e The symbol A, belongs to B'—2.
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o When B8 > 1 — a, the symbol A, belongs to Bg.

Concerning the behavior of the associated composition operator on the Bloch space , we have
the following result:

Theorem 5.6. Let 8 > 0. Then
e For 3 < 1, the composition operator Cy, is not bounded on BP.
e For f =1, the composition operator Cy, is bounded but not compact on B.
e For 8 > 1, the composition operator Cy, is compact on Bg.

Proof. We start by the case § < 1: For n > 1, define f,,(z) = n~12" for 2 € D, which belongs
to B? with bounded norm (not depending on n). This sequence (f,,) converges uniformly to 0
on every compact subset of .

Nevertheless we shall see that || f, o Agl|gs 2 1. Indeed

[fn 0o Aallgs = Slelgnﬁ(l = |27 10G(2) | Aa(2)

Take v > 0 and choose z =2, =1—n""7 — 1:

N (z)| =007 and  Ag(zn) =1-—
The choice v = 1/a > 1 leads to
|Aa(zn)|" 1 = (1 —olmap=ar 4 o(n_‘”))n ~1-

We get
1 0 Agllgs > nfA=—Dpr(1-a)

Since f(1 —v)+y(l—a)=5—-Py+~v—1=(y—1)(1 — B), we get the conclusion.

Now when 3 > 1: it suffices to show that A, satisfies
O PPN
=1 (1= [Aa(2)])?

From the estimates of proposition 5.4 we have, when z — 1

e A Y 0 | O e e S
(1= [Aa(2)]?) 1= 2|fe

S (- [22)FD0-0 g,

The same occurs when z — —1 and these are the only two points we have to focus on. ]

Theorem 5.7. Letp > 1 and > 1, if p > then the composition operator

(B=1)(1 —a)

Ch, : B — BP is p-summing.

1
In particular, if a < 1 — =, then Cy, is nuclear on BP.

B

33



Proof. Suppose that p >

, we want to prove that C'y, is p-summing. By theorem

(B=1)(1 —a)

4.1 it suffices to show that

(1= [w?)*PD (1 — [2[)P]Aq (=) P

= dA .
) = [ s T e s

Let ¢ € (0,1), such that

Bp+pla—1)—a(Bp+1+6)>0.

Then for every w, z € D we have,

— lwl2)2(e=1) (1 — |2]2)8P|A/ p
qup (L= [PV~ PPNl I
2€D |1 — WAy (2)|2+A)P (1— [w[2)d=9)

since |1 — WAL (2)|ZHP > (1 — |w]?)2P~170(1 — |Aq(2))PPT1H9, 1 — |Ay(2)] ~ |1 — 2|* and
AL ()]~ 1= 2|7,
The function w € D+ (1 — |w|?)~07%) € L1(D,dA) so we get the conclusion in this case. [
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